Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.y (of order \(33\), degree \(20\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{33})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | −0.835382 | − | 3.44349i | −0.415415 | + | 0.909632i | 0.912603 | − | 2.48338i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | −3.47934 | + | 0.670588i |
25.2 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | −0.748398 | − | 3.08494i | −0.415415 | + | 0.909632i | 2.13670 | + | 1.56029i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | −3.11705 | + | 0.600763i |
25.3 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | −0.228734 | − | 0.942856i | −0.415415 | + | 0.909632i | −1.88597 | + | 1.85556i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | −0.952672 | + | 0.183612i |
25.4 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | −0.211998 | − | 0.873870i | −0.415415 | + | 0.909632i | 2.39932 | + | 1.11502i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | −0.882967 | + | 0.170178i |
25.5 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | −0.167516 | − | 0.690511i | −0.415415 | + | 0.909632i | −2.01446 | − | 1.71521i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | −0.697700 | + | 0.134471i |
25.6 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | 0.244232 | + | 1.00674i | −0.415415 | + | 0.909632i | 0.601440 | − | 2.57648i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | 1.01722 | − | 0.196053i |
25.7 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | 0.751462 | + | 3.09757i | −0.415415 | + | 0.909632i | 2.38356 | − | 1.14832i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | 3.12982 | − | 0.603223i |
25.8 | 0.0475819 | − | 0.998867i | −0.928368 | − | 0.371662i | −0.995472 | − | 0.0950560i | 0.853588 | + | 3.51854i | −0.415415 | + | 0.909632i | −1.36069 | + | 2.26904i | −0.142315 | + | 0.989821i | 0.723734 | + | 0.690079i | 3.55517 | − | 0.685202i |
121.1 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | −0.163478 | − | 3.43182i | 0.654861 | − | 0.755750i | 0.873534 | − | 2.49739i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | 2.70065 | − | 2.12382i |
121.2 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | −0.161073 | − | 3.38134i | 0.654861 | − | 0.755750i | 2.36003 | + | 1.19594i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | 2.66093 | − | 2.09258i |
121.3 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | −0.142165 | − | 2.98442i | 0.654861 | − | 0.755750i | −2.19584 | + | 1.47590i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | 2.34857 | − | 1.84694i |
121.4 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | −0.0167727 | − | 0.352103i | 0.654861 | − | 0.755750i | −1.88460 | + | 1.85696i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | 0.277085 | − | 0.217902i |
121.5 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | −0.00337646 | − | 0.0708807i | 0.654861 | − | 0.755750i | 1.92801 | + | 1.81184i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | 0.0557792 | − | 0.0438652i |
121.6 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | 0.00889795 | + | 0.186791i | 0.654861 | − | 0.755750i | 2.27500 | − | 1.35069i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | −0.146994 | + | 0.115597i |
121.7 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | 0.0874971 | + | 1.83679i | 0.654861 | − | 0.755750i | 0.484830 | − | 2.60095i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | −1.44545 | + | 1.13672i |
121.8 | 0.580057 | + | 0.814576i | −0.235759 | − | 0.971812i | −0.327068 | + | 0.945001i | 0.141678 | + | 2.97420i | 0.654861 | − | 0.755750i | −2.12708 | − | 1.57338i | −0.959493 | + | 0.281733i | −0.888835 | + | 0.458227i | −2.34053 | + | 1.84061i |
151.1 | −0.327068 | + | 0.945001i | 0.888835 | − | 0.458227i | −0.786053 | − | 0.618159i | −3.08451 | + | 0.294535i | 0.142315 | + | 0.989821i | −0.562151 | + | 2.58534i | 0.841254 | − | 0.540641i | 0.580057 | − | 0.814576i | 0.730508 | − | 3.01119i |
151.2 | −0.327068 | + | 0.945001i | 0.888835 | − | 0.458227i | −0.786053 | − | 0.618159i | −2.78783 | + | 0.266206i | 0.142315 | + | 0.989821i | 2.46897 | − | 0.950880i | 0.841254 | − | 0.540641i | 0.580057 | − | 0.814576i | 0.660246 | − | 2.72157i |
151.3 | −0.327068 | + | 0.945001i | 0.888835 | − | 0.458227i | −0.786053 | − | 0.618159i | −2.45803 | + | 0.234713i | 0.142315 | + | 0.989821i | −0.472531 | − | 2.60321i | 0.841254 | − | 0.540641i | 0.580057 | − | 0.814576i | 0.582139 | − | 2.39961i |
151.4 | −0.327068 | + | 0.945001i | 0.888835 | − | 0.458227i | −0.786053 | − | 0.618159i | −0.150887 | + | 0.0144079i | 0.142315 | + | 0.989821i | −2.59084 | + | 0.536227i | 0.841254 | − | 0.540641i | 0.580057 | − | 0.814576i | 0.0357347 | − | 0.147300i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.m | even | 33 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.y.c | ✓ | 160 |
7.c | even | 3 | 1 | inner | 966.2.y.c | ✓ | 160 |
23.c | even | 11 | 1 | inner | 966.2.y.c | ✓ | 160 |
161.m | even | 33 | 1 | inner | 966.2.y.c | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.y.c | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
966.2.y.c | ✓ | 160 | 7.c | even | 3 | 1 | inner |
966.2.y.c | ✓ | 160 | 23.c | even | 11 | 1 | inner |
966.2.y.c | ✓ | 160 | 161.m | even | 33 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(13\!\cdots\!09\)\( T_{5}^{139} + \)\(26\!\cdots\!42\)\( T_{5}^{138} - \)\(18\!\cdots\!88\)\( T_{5}^{137} + \)\(49\!\cdots\!49\)\( T_{5}^{136} + \)\(22\!\cdots\!99\)\( T_{5}^{135} - \)\(13\!\cdots\!72\)\( T_{5}^{134} - \)\(40\!\cdots\!96\)\( T_{5}^{133} + \)\(13\!\cdots\!38\)\( T_{5}^{132} - \)\(29\!\cdots\!05\)\( T_{5}^{131} + \)\(13\!\cdots\!53\)\( T_{5}^{130} + \)\(41\!\cdots\!99\)\( T_{5}^{129} - \)\(13\!\cdots\!31\)\( T_{5}^{128} - \)\(24\!\cdots\!30\)\( T_{5}^{127} + \)\(20\!\cdots\!67\)\( T_{5}^{126} - \)\(21\!\cdots\!33\)\( T_{5}^{125} - \)\(12\!\cdots\!69\)\( T_{5}^{124} + \)\(60\!\cdots\!96\)\( T_{5}^{123} - \)\(84\!\cdots\!17\)\( T_{5}^{122} - \)\(44\!\cdots\!06\)\( T_{5}^{121} + \)\(22\!\cdots\!81\)\( T_{5}^{120} - \)\(85\!\cdots\!52\)\( T_{5}^{119} - \)\(16\!\cdots\!81\)\( T_{5}^{118} + \)\(51\!\cdots\!20\)\( T_{5}^{117} - \)\(35\!\cdots\!66\)\( T_{5}^{116} - \)\(43\!\cdots\!37\)\( T_{5}^{115} + \)\(18\!\cdots\!39\)\( T_{5}^{114} - \)\(87\!\cdots\!90\)\( T_{5}^{113} - \)\(15\!\cdots\!68\)\( T_{5}^{112} + \)\(31\!\cdots\!24\)\( T_{5}^{111} + \)\(20\!\cdots\!61\)\( T_{5}^{110} - \)\(27\!\cdots\!09\)\( T_{5}^{109} + \)\(83\!\cdots\!14\)\( T_{5}^{108} + \)\(44\!\cdots\!39\)\( T_{5}^{107} - \)\(73\!\cdots\!85\)\( T_{5}^{106} + \)\(92\!\cdots\!75\)\( T_{5}^{105} + \)\(11\!\cdots\!75\)\( T_{5}^{104} - \)\(80\!\cdots\!12\)\( T_{5}^{103} + \)\(12\!\cdots\!67\)\( T_{5}^{102} + \)\(37\!\cdots\!33\)\( T_{5}^{101} - \)\(31\!\cdots\!87\)\( T_{5}^{100} - \)\(64\!\cdots\!80\)\( T_{5}^{99} - \)\(32\!\cdots\!76\)\( T_{5}^{98} + \)\(23\!\cdots\!66\)\( T_{5}^{97} + \)\(35\!\cdots\!43\)\( T_{5}^{96} - \)\(14\!\cdots\!43\)\( T_{5}^{95} - \)\(27\!\cdots\!20\)\( T_{5}^{94} + \)\(64\!\cdots\!00\)\( T_{5}^{93} + \)\(20\!\cdots\!73\)\( T_{5}^{92} + \)\(61\!\cdots\!31\)\( T_{5}^{91} + \)\(86\!\cdots\!82\)\( T_{5}^{90} - \)\(41\!\cdots\!22\)\( T_{5}^{89} - \)\(37\!\cdots\!03\)\( T_{5}^{88} + \)\(19\!\cdots\!50\)\( T_{5}^{87} + \)\(29\!\cdots\!92\)\( T_{5}^{86} - \)\(41\!\cdots\!91\)\( T_{5}^{85} - \)\(10\!\cdots\!57\)\( T_{5}^{84} + \)\(42\!\cdots\!02\)\( T_{5}^{83} + \)\(46\!\cdots\!17\)\( T_{5}^{82} - \)\(26\!\cdots\!87\)\( T_{5}^{81} - \)\(48\!\cdots\!30\)\( T_{5}^{80} + \)\(15\!\cdots\!79\)\( T_{5}^{79} + \)\(37\!\cdots\!95\)\( T_{5}^{78} - \)\(10\!\cdots\!30\)\( T_{5}^{77} - \)\(25\!\cdots\!69\)\( T_{5}^{76} + \)\(48\!\cdots\!53\)\( T_{5}^{75} + \)\(17\!\cdots\!86\)\( T_{5}^{74} - \)\(11\!\cdots\!60\)\( T_{5}^{73} - \)\(99\!\cdots\!54\)\( T_{5}^{72} - \)\(38\!\cdots\!87\)\( T_{5}^{71} + \)\(33\!\cdots\!98\)\( T_{5}^{70} + \)\(52\!\cdots\!75\)\( T_{5}^{69} - \)\(20\!\cdots\!17\)\( T_{5}^{68} - \)\(23\!\cdots\!86\)\( T_{5}^{67} - \)\(40\!\cdots\!82\)\( T_{5}^{66} + \)\(28\!\cdots\!98\)\( T_{5}^{65} + \)\(20\!\cdots\!31\)\( T_{5}^{64} + \)\(17\!\cdots\!77\)\( T_{5}^{63} - \)\(40\!\cdots\!77\)\( T_{5}^{62} - \)\(96\!\cdots\!83\)\( T_{5}^{61} - \)\(58\!\cdots\!01\)\( T_{5}^{60} + \)\(20\!\cdots\!26\)\( T_{5}^{59} + \)\(22\!\cdots\!01\)\( T_{5}^{58} - \)\(20\!\cdots\!84\)\( T_{5}^{57} - \)\(50\!\cdots\!86\)\( T_{5}^{56} - \)\(12\!\cdots\!03\)\( T_{5}^{55} + \)\(59\!\cdots\!40\)\( T_{5}^{54} + \)\(57\!\cdots\!48\)\( T_{5}^{53} - \)\(18\!\cdots\!37\)\( T_{5}^{52} - \)\(78\!\cdots\!97\)\( T_{5}^{51} - \)\(43\!\cdots\!42\)\( T_{5}^{50} + \)\(26\!\cdots\!91\)\( T_{5}^{49} + \)\(78\!\cdots\!73\)\( T_{5}^{48} + \)\(54\!\cdots\!85\)\( T_{5}^{47} - \)\(28\!\cdots\!35\)\( T_{5}^{46} - \)\(78\!\cdots\!96\)\( T_{5}^{45} - \)\(70\!\cdots\!88\)\( T_{5}^{44} + \)\(15\!\cdots\!21\)\( T_{5}^{43} + \)\(11\!\cdots\!32\)\( T_{5}^{42} + \)\(63\!\cdots\!11\)\( T_{5}^{41} - \)\(67\!\cdots\!68\)\( T_{5}^{40} - \)\(13\!\cdots\!90\)\( T_{5}^{39} - \)\(43\!\cdots\!64\)\( T_{5}^{38} + \)\(66\!\cdots\!16\)\( T_{5}^{37} + \)\(80\!\cdots\!62\)\( T_{5}^{36} + \)\(22\!\cdots\!17\)\( T_{5}^{35} - \)\(45\!\cdots\!32\)\( T_{5}^{34} - \)\(24\!\cdots\!22\)\( T_{5}^{33} + \)\(21\!\cdots\!99\)\( T_{5}^{32} + \)\(32\!\cdots\!53\)\( T_{5}^{31} + \)\(16\!\cdots\!76\)\( T_{5}^{30} + \)\(89\!\cdots\!68\)\( T_{5}^{29} - \)\(29\!\cdots\!08\)\( T_{5}^{28} - \)\(18\!\cdots\!65\)\( T_{5}^{27} + \)\(13\!\cdots\!39\)\( T_{5}^{26} + \)\(72\!\cdots\!21\)\( T_{5}^{25} + \)\(46\!\cdots\!47\)\( T_{5}^{24} - \)\(97\!\cdots\!64\)\( T_{5}^{23} - \)\(68\!\cdots\!47\)\( T_{5}^{22} - \)\(38\!\cdots\!94\)\( T_{5}^{21} - \)\(66\!\cdots\!35\)\( T_{5}^{20} + \)\(30\!\cdots\!73\)\( T_{5}^{19} + \)\(39\!\cdots\!10\)\( T_{5}^{18} + \)\(20\!\cdots\!59\)\( T_{5}^{17} + \)\(12\!\cdots\!59\)\( T_{5}^{16} - \)\(78\!\cdots\!72\)\( T_{5}^{15} - \)\(16\!\cdots\!69\)\( T_{5}^{14} - \)\(83\!\cdots\!31\)\( T_{5}^{13} + \)\(87\!\cdots\!39\)\( T_{5}^{12} + \)\(32\!\cdots\!42\)\( T_{5}^{11} + \)\(52\!\cdots\!22\)\( T_{5}^{10} + \)\(11\!\cdots\!75\)\( T_{5}^{9} + \)\(20\!\cdots\!95\)\( T_{5}^{8} + \)\(13\!\cdots\!45\)\( T_{5}^{7} + \)\(30\!\cdots\!99\)\( T_{5}^{6} + \)\(53\!\cdots\!57\)\( T_{5}^{5} - \)\(11\!\cdots\!20\)\( T_{5}^{4} - \)\(16\!\cdots\!90\)\( T_{5}^{3} + \)\(20\!\cdots\!11\)\( T_{5}^{2} - \)\(17\!\cdots\!59\)\( T_{5} + \)\(18\!\cdots\!81\)\( \)">\(T_{5}^{160} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).