Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.y (of order \(33\), degree \(20\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{33})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | −0.495624 | − | 2.04299i | −0.415415 | + | 0.909632i | −2.46554 | + | 0.959758i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | 2.06426 | − | 0.397853i |
25.2 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | −0.494800 | − | 2.03959i | −0.415415 | + | 0.909632i | 2.60154 | + | 0.481642i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | 2.06083 | − | 0.397192i |
25.3 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | −0.365274 | − | 1.50568i | −0.415415 | + | 0.909632i | 0.990231 | + | 2.45346i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | 1.52136 | − | 0.293217i |
25.4 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | 0.0842779 | + | 0.347398i | −0.415415 | + | 0.909632i | 0.863387 | − | 2.50091i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | −0.351015 | + | 0.0676526i |
25.5 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | 0.149969 | + | 0.618179i | −0.415415 | + | 0.909632i | −1.95013 | + | 1.78801i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | −0.624615 | + | 0.120385i |
25.6 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | 0.152691 | + | 0.629402i | −0.415415 | + | 0.909632i | −1.69725 | − | 2.02961i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | −0.635954 | + | 0.122570i |
25.7 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | 0.666702 | + | 2.74818i | −0.415415 | + | 0.909632i | 1.08121 | + | 2.41474i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | −2.77679 | + | 0.535183i |
25.8 | −0.0475819 | + | 0.998867i | 0.928368 | + | 0.371662i | −0.995472 | − | 0.0950560i | 0.902348 | + | 3.71953i | −0.415415 | + | 0.909632i | 1.54544 | − | 2.14747i | 0.142315 | − | 0.989821i | 0.723734 | + | 0.690079i | −3.75825 | + | 0.724344i |
121.1 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | −0.204977 | − | 4.30300i | 0.654861 | − | 0.755750i | −0.384103 | − | 2.61772i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | −3.38622 | + | 2.66296i |
121.2 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | −0.116162 | − | 2.43853i | 0.654861 | − | 0.755750i | 2.62255 | − | 0.349625i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | −1.91899 | + | 1.50911i |
121.3 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | −0.0822082 | − | 1.72576i | 0.654861 | − | 0.755750i | −1.65083 | + | 2.06755i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | −1.35808 | + | 1.06801i |
121.4 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | −0.0296258 | − | 0.621921i | 0.654861 | − | 0.755750i | −2.62091 | − | 0.361724i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | −0.489417 | + | 0.384882i |
121.5 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | 0.0297398 | + | 0.624314i | 0.654861 | − | 0.755750i | 2.47488 | − | 0.935389i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | 0.491301 | − | 0.386363i |
121.6 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | 0.0618096 | + | 1.29754i | 0.654861 | − | 0.755750i | −1.05626 | − | 2.42576i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | 1.02109 | − | 0.802998i |
121.7 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | 0.121343 | + | 2.54731i | 0.654861 | − | 0.755750i | 0.313232 | + | 2.62714i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | 2.00459 | − | 1.57643i |
121.8 | −0.580057 | − | 0.814576i | 0.235759 | + | 0.971812i | −0.327068 | + | 0.945001i | 0.161616 | + | 3.39274i | 0.654861 | − | 0.755750i | 1.77884 | + | 1.95851i | 0.959493 | − | 0.281733i | −0.888835 | + | 0.458227i | 2.66990 | − | 2.09963i |
151.1 | 0.327068 | − | 0.945001i | −0.888835 | + | 0.458227i | −0.786053 | − | 0.618159i | −3.90496 | + | 0.372879i | 0.142315 | + | 0.989821i | 2.64365 | + | 0.105392i | −0.841254 | + | 0.540641i | 0.580057 | − | 0.814576i | −0.924818 | + | 3.81215i |
151.2 | 0.327068 | − | 0.945001i | −0.888835 | + | 0.458227i | −0.786053 | − | 0.618159i | −3.73412 | + | 0.356565i | 0.142315 | + | 0.989821i | −2.47167 | − | 0.943859i | −0.841254 | + | 0.540641i | 0.580057 | − | 0.814576i | −0.884357 | + | 3.64537i |
151.3 | 0.327068 | − | 0.945001i | −0.888835 | + | 0.458227i | −0.786053 | − | 0.618159i | −1.62160 | + | 0.154844i | 0.142315 | + | 0.989821i | −1.14236 | + | 2.38642i | −0.841254 | + | 0.540641i | 0.580057 | − | 0.814576i | −0.384046 | + | 1.58306i |
151.4 | 0.327068 | − | 0.945001i | −0.888835 | + | 0.458227i | −0.786053 | − | 0.618159i | −1.13751 | + | 0.108619i | 0.142315 | + | 0.989821i | 1.15912 | + | 2.37833i | −0.841254 | + | 0.540641i | 0.580057 | − | 0.814576i | −0.269397 | + | 1.11047i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.m | even | 33 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.y.b | ✓ | 160 |
7.c | even | 3 | 1 | inner | 966.2.y.b | ✓ | 160 |
23.c | even | 11 | 1 | inner | 966.2.y.b | ✓ | 160 |
161.m | even | 33 | 1 | inner | 966.2.y.b | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.y.b | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
966.2.y.b | ✓ | 160 | 7.c | even | 3 | 1 | inner |
966.2.y.b | ✓ | 160 | 23.c | even | 11 | 1 | inner |
966.2.y.b | ✓ | 160 | 161.m | even | 33 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(11\!\cdots\!77\)\( T_{5}^{139} - \)\(43\!\cdots\!24\)\( T_{5}^{138} - \)\(17\!\cdots\!24\)\( T_{5}^{137} + \)\(10\!\cdots\!85\)\( T_{5}^{136} + \)\(12\!\cdots\!53\)\( T_{5}^{135} - \)\(17\!\cdots\!10\)\( T_{5}^{134} + \)\(10\!\cdots\!64\)\( T_{5}^{133} + \)\(18\!\cdots\!88\)\( T_{5}^{132} - \)\(47\!\cdots\!03\)\( T_{5}^{131} - \)\(79\!\cdots\!75\)\( T_{5}^{130} + \)\(77\!\cdots\!67\)\( T_{5}^{129} - \)\(11\!\cdots\!67\)\( T_{5}^{128} - \)\(79\!\cdots\!78\)\( T_{5}^{127} + \)\(28\!\cdots\!91\)\( T_{5}^{126} + \)\(50\!\cdots\!81\)\( T_{5}^{125} - \)\(33\!\cdots\!23\)\( T_{5}^{124} - \)\(55\!\cdots\!88\)\( T_{5}^{123} + \)\(24\!\cdots\!57\)\( T_{5}^{122} - \)\(31\!\cdots\!28\)\( T_{5}^{121} - \)\(91\!\cdots\!33\)\( T_{5}^{120} + \)\(46\!\cdots\!56\)\( T_{5}^{119} - \)\(12\!\cdots\!79\)\( T_{5}^{118} - \)\(38\!\cdots\!54\)\( T_{5}^{117} + \)\(36\!\cdots\!56\)\( T_{5}^{116} + \)\(19\!\cdots\!73\)\( T_{5}^{115} - \)\(15\!\cdots\!73\)\( T_{5}^{114} - \)\(14\!\cdots\!56\)\( T_{5}^{113} - \)\(93\!\cdots\!78\)\( T_{5}^{112} - \)\(77\!\cdots\!06\)\( T_{5}^{111} - \)\(12\!\cdots\!87\)\( T_{5}^{110} + \)\(70\!\cdots\!23\)\( T_{5}^{109} + \)\(81\!\cdots\!62\)\( T_{5}^{108} - \)\(19\!\cdots\!59\)\( T_{5}^{107} - \)\(70\!\cdots\!13\)\( T_{5}^{106} - \)\(14\!\cdots\!33\)\( T_{5}^{105} + \)\(41\!\cdots\!61\)\( T_{5}^{104} + \)\(14\!\cdots\!78\)\( T_{5}^{103} + \)\(36\!\cdots\!27\)\( T_{5}^{102} + \)\(56\!\cdots\!45\)\( T_{5}^{101} - \)\(24\!\cdots\!29\)\( T_{5}^{100} - \)\(90\!\cdots\!28\)\( T_{5}^{99} - \)\(46\!\cdots\!78\)\( T_{5}^{98} + \)\(59\!\cdots\!62\)\( T_{5}^{97} + \)\(16\!\cdots\!05\)\( T_{5}^{96} + \)\(16\!\cdots\!25\)\( T_{5}^{95} - \)\(93\!\cdots\!80\)\( T_{5}^{94} - \)\(25\!\cdots\!72\)\( T_{5}^{93} - \)\(41\!\cdots\!03\)\( T_{5}^{92} + \)\(14\!\cdots\!97\)\( T_{5}^{91} + \)\(34\!\cdots\!00\)\( T_{5}^{90} - \)\(72\!\cdots\!30\)\( T_{5}^{89} - \)\(16\!\cdots\!87\)\( T_{5}^{88} - \)\(39\!\cdots\!68\)\( T_{5}^{87} - \)\(29\!\cdots\!80\)\( T_{5}^{86} + \)\(13\!\cdots\!13\)\( T_{5}^{85} + \)\(58\!\cdots\!55\)\( T_{5}^{84} + \)\(88\!\cdots\!94\)\( T_{5}^{83} - \)\(13\!\cdots\!35\)\( T_{5}^{82} - \)\(96\!\cdots\!57\)\( T_{5}^{81} - \)\(13\!\cdots\!34\)\( T_{5}^{80} + \)\(27\!\cdots\!51\)\( T_{5}^{79} + \)\(12\!\cdots\!69\)\( T_{5}^{78} + \)\(10\!\cdots\!08\)\( T_{5}^{77} - \)\(40\!\cdots\!99\)\( T_{5}^{76} - \)\(11\!\cdots\!95\)\( T_{5}^{75} - \)\(24\!\cdots\!84\)\( T_{5}^{74} + \)\(39\!\cdots\!16\)\( T_{5}^{73} + \)\(68\!\cdots\!24\)\( T_{5}^{72} - \)\(23\!\cdots\!39\)\( T_{5}^{71} - \)\(22\!\cdots\!78\)\( T_{5}^{70} - \)\(26\!\cdots\!25\)\( T_{5}^{69} + \)\(18\!\cdots\!83\)\( T_{5}^{68} + \)\(77\!\cdots\!20\)\( T_{5}^{67} + \)\(56\!\cdots\!94\)\( T_{5}^{66} - \)\(27\!\cdots\!48\)\( T_{5}^{65} - \)\(70\!\cdots\!55\)\( T_{5}^{64} + \)\(42\!\cdots\!95\)\( T_{5}^{63} - \)\(31\!\cdots\!05\)\( T_{5}^{62} - \)\(98\!\cdots\!63\)\( T_{5}^{61} - \)\(10\!\cdots\!73\)\( T_{5}^{60} + \)\(67\!\cdots\!64\)\( T_{5}^{59} + \)\(37\!\cdots\!47\)\( T_{5}^{58} + \)\(44\!\cdots\!10\)\( T_{5}^{57} + \)\(76\!\cdots\!48\)\( T_{5}^{56} + \)\(17\!\cdots\!21\)\( T_{5}^{55} - \)\(48\!\cdots\!24\)\( T_{5}^{54} - \)\(95\!\cdots\!98\)\( T_{5}^{53} - \)\(15\!\cdots\!33\)\( T_{5}^{52} + \)\(12\!\cdots\!63\)\( T_{5}^{51} + \)\(34\!\cdots\!44\)\( T_{5}^{50} + \)\(54\!\cdots\!21\)\( T_{5}^{49} + \)\(30\!\cdots\!13\)\( T_{5}^{48} - \)\(34\!\cdots\!15\)\( T_{5}^{47} - \)\(75\!\cdots\!91\)\( T_{5}^{46} - \)\(90\!\cdots\!78\)\( T_{5}^{45} - \)\(17\!\cdots\!58\)\( T_{5}^{44} - \)\(22\!\cdots\!49\)\( T_{5}^{43} - \)\(88\!\cdots\!46\)\( T_{5}^{42} - \)\(36\!\cdots\!37\)\( T_{5}^{41} + \)\(10\!\cdots\!66\)\( T_{5}^{40} + \)\(94\!\cdots\!50\)\( T_{5}^{39} + \)\(10\!\cdots\!90\)\( T_{5}^{38} + \)\(17\!\cdots\!66\)\( T_{5}^{37} + \)\(16\!\cdots\!18\)\( T_{5}^{36} + \)\(24\!\cdots\!33\)\( T_{5}^{35} + \)\(53\!\cdots\!38\)\( T_{5}^{34} + \)\(13\!\cdots\!32\)\( T_{5}^{33} + \)\(31\!\cdots\!97\)\( T_{5}^{32} - \)\(17\!\cdots\!35\)\( T_{5}^{31} + \)\(43\!\cdots\!92\)\( T_{5}^{30} + \)\(24\!\cdots\!16\)\( T_{5}^{29} - \)\(38\!\cdots\!32\)\( T_{5}^{28} + \)\(28\!\cdots\!15\)\( T_{5}^{27} + \)\(13\!\cdots\!19\)\( T_{5}^{26} - \)\(39\!\cdots\!63\)\( T_{5}^{25} - \)\(21\!\cdots\!93\)\( T_{5}^{24} + \)\(58\!\cdots\!54\)\( T_{5}^{23} - \)\(25\!\cdots\!21\)\( T_{5}^{22} + \)\(31\!\cdots\!16\)\( T_{5}^{21} + \)\(17\!\cdots\!43\)\( T_{5}^{20} - \)\(10\!\cdots\!51\)\( T_{5}^{19} + \)\(31\!\cdots\!98\)\( T_{5}^{18} + \)\(33\!\cdots\!57\)\( T_{5}^{17} - \)\(28\!\cdots\!73\)\( T_{5}^{16} + \)\(11\!\cdots\!96\)\( T_{5}^{15} + \)\(32\!\cdots\!69\)\( T_{5}^{14} - \)\(50\!\cdots\!93\)\( T_{5}^{13} + \)\(27\!\cdots\!03\)\( T_{5}^{12} - \)\(20\!\cdots\!84\)\( T_{5}^{11} - \)\(52\!\cdots\!14\)\( T_{5}^{10} + \)\(41\!\cdots\!85\)\( T_{5}^{9} - \)\(14\!\cdots\!73\)\( T_{5}^{8} + \)\(93\!\cdots\!27\)\( T_{5}^{7} + \)\(21\!\cdots\!77\)\( T_{5}^{6} - \)\(16\!\cdots\!47\)\( T_{5}^{5} + \)\(74\!\cdots\!00\)\( T_{5}^{4} - \)\(25\!\cdots\!30\)\( T_{5}^{3} + \)\(66\!\cdots\!91\)\( T_{5}^{2} - \)\(12\!\cdots\!13\)\( T_{5} + \)\(13\!\cdots\!61\)\( \)">\(T_{5}^{160} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).