Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.s (of order \(22\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | −0.518172 | + | 3.60397i | −0.540641 | − | 0.841254i | 2.64368 | + | 0.104630i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −1.51254 | + | 3.31199i |
97.2 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | −0.332974 | + | 2.31589i | −0.540641 | − | 0.841254i | −2.61372 | + | 0.410464i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.971947 | + | 2.12827i |
97.3 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | −0.141036 | + | 0.980930i | −0.540641 | − | 0.841254i | −0.385560 | − | 2.61751i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.411683 | + | 0.901461i |
97.4 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | −0.108989 | + | 0.758036i | −0.540641 | − | 0.841254i | 1.08396 | − | 2.41351i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.318138 | + | 0.696624i |
97.5 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | −0.0778857 | + | 0.541707i | −0.540641 | − | 0.841254i | 2.00180 | + | 1.72997i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.227347 | + | 0.497821i |
97.6 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | 0.258147 | − | 1.79545i | −0.540641 | − | 0.841254i | −1.04979 | + | 2.42857i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 0.753527 | − | 1.64999i |
97.7 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | 0.445696 | − | 3.09989i | −0.540641 | − | 0.841254i | −2.43154 | − | 1.04288i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 1.30098 | − | 2.84875i |
97.8 | 0.959493 | + | 0.281733i | −0.755750 | − | 0.654861i | 0.841254 | + | 0.540641i | 0.629097 | − | 4.37546i | −0.540641 | − | 0.841254i | 2.43657 | − | 1.03108i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 1.83632 | − | 4.02099i |
97.9 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | −0.629097 | + | 4.37546i | 0.540641 | + | 0.841254i | 2.37485 | − | 1.16622i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −1.83632 | + | 4.02099i |
97.10 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | −0.445696 | + | 3.09989i | 0.540641 | + | 0.841254i | −0.804171 | + | 2.52058i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −1.30098 | + | 2.84875i |
97.11 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | −0.258147 | + | 1.79545i | 0.540641 | + | 0.841254i | −2.52286 | − | 0.796992i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.753527 | + | 1.64999i |
97.12 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | 0.0778857 | − | 0.541707i | 0.540641 | + | 0.841254i | 0.00348138 | − | 2.64575i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 0.227347 | − | 0.497821i |
97.13 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | 0.108989 | − | 0.758036i | 0.540641 | + | 0.841254i | 2.53385 | + | 0.761316i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 0.318138 | − | 0.696624i |
97.14 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | 0.141036 | − | 0.980930i | 0.540641 | + | 0.841254i | 1.72569 | + | 2.00549i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 0.411683 | − | 0.901461i |
97.15 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | 0.332974 | − | 2.31589i | 0.540641 | + | 0.841254i | −2.02183 | + | 1.70652i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 0.971947 | − | 2.12827i |
97.16 | 0.959493 | + | 0.281733i | 0.755750 | + | 0.654861i | 0.841254 | + | 0.540641i | 0.518172 | − | 3.60397i | 0.540641 | + | 0.841254i | 1.65217 | − | 2.06648i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | 1.51254 | − | 3.31199i |
181.1 | 0.142315 | + | 0.989821i | −0.909632 | − | 0.415415i | −0.959493 | + | 0.281733i | −2.34664 | + | 2.70817i | 0.281733 | − | 0.959493i | −2.57403 | + | 0.611844i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −3.01456 | − | 1.93734i |
181.2 | 0.142315 | + | 0.989821i | −0.909632 | − | 0.415415i | −0.959493 | + | 0.281733i | −2.30682 | + | 2.66222i | 0.281733 | − | 0.959493i | 1.33240 | + | 2.28576i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −2.96342 | − | 1.90447i |
181.3 | 0.142315 | + | 0.989821i | −0.909632 | − | 0.415415i | −0.959493 | + | 0.281733i | −0.762866 | + | 0.880394i | 0.281733 | − | 0.959493i | 2.62112 | + | 0.360195i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.980000 | − | 0.629808i |
181.4 | 0.142315 | + | 0.989821i | −0.909632 | − | 0.415415i | −0.959493 | + | 0.281733i | −0.278516 | + | 0.321425i | 0.281733 | − | 0.959493i | −0.505900 | − | 2.59693i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.357790 | − | 0.229938i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.k | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.s.b | ✓ | 160 |
7.b | odd | 2 | 1 | inner | 966.2.s.b | ✓ | 160 |
23.d | odd | 22 | 1 | inner | 966.2.s.b | ✓ | 160 |
161.k | even | 22 | 1 | inner | 966.2.s.b | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.s.b | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
966.2.s.b | ✓ | 160 | 7.b | odd | 2 | 1 | inner |
966.2.s.b | ✓ | 160 | 23.d | odd | 22 | 1 | inner |
966.2.s.b | ✓ | 160 | 161.k | even | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(17\!\cdots\!00\)\( T_{5}^{142} + \)\(23\!\cdots\!51\)\( T_{5}^{140} + \)\(32\!\cdots\!35\)\( T_{5}^{138} + \)\(42\!\cdots\!90\)\( T_{5}^{136} + \)\(55\!\cdots\!67\)\( T_{5}^{134} + \)\(69\!\cdots\!33\)\( T_{5}^{132} + \)\(82\!\cdots\!21\)\( T_{5}^{130} + \)\(92\!\cdots\!57\)\( T_{5}^{128} + \)\(97\!\cdots\!19\)\( T_{5}^{126} + \)\(10\!\cdots\!56\)\( T_{5}^{124} + \)\(10\!\cdots\!40\)\( T_{5}^{122} + \)\(12\!\cdots\!01\)\( T_{5}^{120} + \)\(12\!\cdots\!90\)\( T_{5}^{118} + \)\(12\!\cdots\!20\)\( T_{5}^{116} + \)\(10\!\cdots\!80\)\( T_{5}^{114} + \)\(84\!\cdots\!87\)\( T_{5}^{112} + \)\(78\!\cdots\!92\)\( T_{5}^{110} + \)\(84\!\cdots\!93\)\( T_{5}^{108} + \)\(83\!\cdots\!08\)\( T_{5}^{106} + \)\(65\!\cdots\!57\)\( T_{5}^{104} + \)\(40\!\cdots\!08\)\( T_{5}^{102} + \)\(26\!\cdots\!92\)\( T_{5}^{100} + \)\(22\!\cdots\!15\)\( T_{5}^{98} + \)\(23\!\cdots\!68\)\( T_{5}^{96} + \)\(17\!\cdots\!15\)\( T_{5}^{94} + \)\(89\!\cdots\!77\)\( T_{5}^{92} + \)\(47\!\cdots\!03\)\( T_{5}^{90} + \)\(27\!\cdots\!52\)\( T_{5}^{88} + \)\(13\!\cdots\!45\)\( T_{5}^{86} + \)\(60\!\cdots\!48\)\( T_{5}^{84} + \)\(29\!\cdots\!68\)\( T_{5}^{82} + \)\(14\!\cdots\!05\)\( T_{5}^{80} + \)\(61\!\cdots\!56\)\( T_{5}^{78} + \)\(24\!\cdots\!51\)\( T_{5}^{76} + \)\(98\!\cdots\!91\)\( T_{5}^{74} + \)\(34\!\cdots\!83\)\( T_{5}^{72} + \)\(10\!\cdots\!70\)\( T_{5}^{70} + \)\(30\!\cdots\!69\)\( T_{5}^{68} + \)\(80\!\cdots\!16\)\( T_{5}^{66} + \)\(18\!\cdots\!32\)\( T_{5}^{64} + \)\(35\!\cdots\!80\)\( T_{5}^{62} + \)\(58\!\cdots\!46\)\( T_{5}^{60} + \)\(83\!\cdots\!62\)\( T_{5}^{58} + \)\(11\!\cdots\!66\)\( T_{5}^{56} + \)\(15\!\cdots\!68\)\( T_{5}^{54} + \)\(24\!\cdots\!48\)\( T_{5}^{52} + \)\(35\!\cdots\!32\)\( T_{5}^{50} + \)\(47\!\cdots\!70\)\( T_{5}^{48} + \)\(54\!\cdots\!56\)\( T_{5}^{46} + \)\(54\!\cdots\!14\)\( T_{5}^{44} + \)\(47\!\cdots\!32\)\( T_{5}^{42} + \)\(36\!\cdots\!25\)\( T_{5}^{40} + \)\(22\!\cdots\!92\)\( T_{5}^{38} + \)\(11\!\cdots\!28\)\( T_{5}^{36} + \)\(39\!\cdots\!02\)\( T_{5}^{34} + \)\(97\!\cdots\!42\)\( T_{5}^{32} + \)\(17\!\cdots\!66\)\( T_{5}^{30} + \)\(30\!\cdots\!69\)\( T_{5}^{28} + \)\(48\!\cdots\!23\)\( T_{5}^{26} + \)\(36\!\cdots\!39\)\( T_{5}^{24} + \)\(34\!\cdots\!62\)\( T_{5}^{22} + \)\(28\!\cdots\!69\)\( T_{5}^{20} - \)\(11\!\cdots\!96\)\( T_{5}^{18} + \)\(29\!\cdots\!96\)\( T_{5}^{16} - \)\(73\!\cdots\!08\)\( T_{5}^{14} + \)\(49\!\cdots\!36\)\( T_{5}^{12} - \)\(27\!\cdots\!32\)\( T_{5}^{10} + \)\(27\!\cdots\!20\)\( T_{5}^{8} + \)\(98\!\cdots\!60\)\( T_{5}^{6} + \)\(25\!\cdots\!04\)\( T_{5}^{4} - \)\(63\!\cdots\!32\)\( T_{5}^{2} + \)\(45\!\cdots\!76\)\( \)">\(T_{5}^{160} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).