Properties

Label 966.2.s.a.97.13
Level $966$
Weight $2$
Character 966.97
Analytic conductor $7.714$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.s (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 97.13
Character \(\chi\) \(=\) 966.97
Dual form 966.2.s.a.727.13

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.959493 - 0.281733i) q^{2} +(0.755750 + 0.654861i) q^{3} +(0.841254 + 0.540641i) q^{4} +(-0.0153446 + 0.106724i) q^{5} +(-0.540641 - 0.841254i) q^{6} +(0.137306 + 2.64219i) q^{7} +(-0.654861 - 0.755750i) q^{8} +(0.142315 + 0.989821i) q^{9} +O(q^{10})\) \(q+(-0.959493 - 0.281733i) q^{2} +(0.755750 + 0.654861i) q^{3} +(0.841254 + 0.540641i) q^{4} +(-0.0153446 + 0.106724i) q^{5} +(-0.540641 - 0.841254i) q^{6} +(0.137306 + 2.64219i) q^{7} +(-0.654861 - 0.755750i) q^{8} +(0.142315 + 0.989821i) q^{9} +(0.0447907 - 0.0980779i) q^{10} +(-0.605838 - 2.06330i) q^{11} +(0.281733 + 0.959493i) q^{12} +(-0.737982 - 0.337025i) q^{13} +(0.612646 - 2.57384i) q^{14} +(-0.0814861 + 0.0706081i) q^{15} +(0.415415 + 0.909632i) q^{16} +(2.64382 - 1.69908i) q^{17} +(0.142315 - 0.989821i) q^{18} +(4.49952 + 2.89167i) q^{19} +(-0.0706081 + 0.0814861i) q^{20} +(-1.62650 + 2.08675i) q^{21} +2.15040i q^{22} +(3.88448 + 2.81262i) q^{23} -1.00000i q^{24} +(4.78631 + 1.40539i) q^{25} +(0.613137 + 0.531287i) q^{26} +(-0.540641 + 0.841254i) q^{27} +(-1.31296 + 2.29698i) q^{28} +(-7.56227 + 4.85998i) q^{29} +(0.0980779 - 0.0447907i) q^{30} +(-5.87795 + 5.09327i) q^{31} +(-0.142315 - 0.989821i) q^{32} +(0.893309 - 1.95607i) q^{33} +(-3.01542 + 0.885406i) q^{34} +(-0.284092 - 0.0258894i) q^{35} +(-0.415415 + 0.909632i) q^{36} +(-6.91847 + 0.994726i) q^{37} +(-3.50258 - 4.04219i) q^{38} +(-0.337025 - 0.737982i) q^{39} +(0.0907052 - 0.0582927i) q^{40} +(10.8479 + 1.55970i) q^{41} +(2.14852 - 1.54398i) q^{42} +(3.89938 + 3.37883i) q^{43} +(0.605838 - 2.06330i) q^{44} -0.107822 q^{45} +(-2.93472 - 3.79307i) q^{46} -5.19392i q^{47} +(-0.281733 + 0.959493i) q^{48} +(-6.96229 + 0.725575i) q^{49} +(-4.19649 - 2.69692i) q^{50} +(3.11073 + 0.447255i) q^{51} +(-0.438620 - 0.682506i) q^{52} +(-5.98440 + 2.73298i) q^{53} +(0.755750 - 0.654861i) q^{54} +(0.229500 - 0.0329971i) q^{55} +(1.90691 - 1.83403i) q^{56} +(1.50687 + 5.13193i) q^{57} +(8.62516 - 2.53258i) q^{58} +(1.18795 + 0.542521i) q^{59} +(-0.106724 + 0.0153446i) q^{60} +(0.503527 + 0.581101i) q^{61} +(7.07479 - 3.23095i) q^{62} +(-2.59575 + 0.511931i) q^{63} +(-0.142315 + 0.989821i) q^{64} +(0.0472927 - 0.0735889i) q^{65} +(-1.40821 + 1.62517i) q^{66} +(-3.01781 + 10.2777i) q^{67} +3.14272 q^{68} +(1.09382 + 4.66943i) q^{69} +(0.265290 + 0.104879i) q^{70} +(1.55575 + 0.456809i) q^{71} +(0.654861 - 0.755750i) q^{72} +(-4.28281 + 6.66418i) q^{73} +(6.91847 + 0.994726i) q^{74} +(2.69692 + 4.19649i) q^{75} +(2.22188 + 4.86525i) q^{76} +(5.36843 - 1.88404i) q^{77} +(0.115460 + 0.803039i) q^{78} +(0.0576276 + 0.0263176i) q^{79} +(-0.103454 + 0.0303768i) q^{80} +(-0.959493 + 0.281733i) q^{81} +(-9.96911 - 4.55274i) q^{82} +(-0.979751 - 6.81432i) q^{83} +(-2.49648 + 0.876134i) q^{84} +(0.140764 + 0.308231i) q^{85} +(-2.78950 - 4.34055i) q^{86} +(-8.89779 - 1.27931i) q^{87} +(-1.16260 + 1.80903i) q^{88} +(9.03413 - 10.4259i) q^{89} +(0.103454 + 0.0303768i) q^{90} +(0.789153 - 1.99616i) q^{91} +(1.74721 + 4.46623i) q^{92} -7.77764 q^{93} +(-1.46330 + 4.98353i) q^{94} +(-0.377653 + 0.435835i) q^{95} +(0.540641 - 0.841254i) q^{96} +(0.499783 - 3.47606i) q^{97} +(6.88469 + 1.26532i) q^{98} +(1.95607 - 0.893309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q - 16q^{2} - 16q^{4} - 16q^{8} + 16q^{9} + O(q^{10}) \) \( 160q - 16q^{2} - 16q^{4} - 16q^{8} + 16q^{9} - 22q^{14} - 16q^{16} + 16q^{18} - 36q^{23} + 96q^{25} + 22q^{28} - 20q^{29} - 16q^{32} - 50q^{35} + 16q^{36} + 22q^{37} + 4q^{39} - 110q^{43} + 8q^{46} - 36q^{50} + 22q^{51} - 88q^{53} + 22q^{57} + 24q^{58} - 16q^{64} - 72q^{70} + 48q^{71} + 16q^{72} - 22q^{74} + 24q^{77} + 4q^{78} + 88q^{79} - 16q^{81} + 22q^{84} + 76q^{85} + 44q^{86} - 44q^{88} + 8q^{92} - 14q^{95} + 22q^{98} - 22q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.959493 0.281733i −0.678464 0.199215i
\(3\) 0.755750 + 0.654861i 0.436332 + 0.378084i
\(4\) 0.841254 + 0.540641i 0.420627 + 0.270320i
\(5\) −0.0153446 + 0.106724i −0.00686231 + 0.0477284i −0.992965 0.118409i \(-0.962221\pi\)
0.986103 + 0.166138i \(0.0531296\pi\)
\(6\) −0.540641 0.841254i −0.220716 0.343440i
\(7\) 0.137306 + 2.64219i 0.0518968 + 0.998652i
\(8\) −0.654861 0.755750i −0.231528 0.267198i
\(9\) 0.142315 + 0.989821i 0.0474383 + 0.329940i
\(10\) 0.0447907 0.0980779i 0.0141641 0.0310150i
\(11\) −0.605838 2.06330i −0.182667 0.622107i −0.999008 0.0445363i \(-0.985819\pi\)
0.816341 0.577571i \(-0.195999\pi\)
\(12\) 0.281733 + 0.959493i 0.0813292 + 0.276982i
\(13\) −0.737982 0.337025i −0.204679 0.0934739i 0.310438 0.950594i \(-0.399524\pi\)
−0.515117 + 0.857120i \(0.672252\pi\)
\(14\) 0.612646 2.57384i 0.163736 0.687888i
\(15\) −0.0814861 + 0.0706081i −0.0210396 + 0.0182309i
\(16\) 0.415415 + 0.909632i 0.103854 + 0.227408i
\(17\) 2.64382 1.69908i 0.641221 0.412088i −0.179228 0.983808i \(-0.557360\pi\)
0.820449 + 0.571720i \(0.193724\pi\)
\(18\) 0.142315 0.989821i 0.0335439 0.233303i
\(19\) 4.49952 + 2.89167i 1.03226 + 0.663393i 0.943061 0.332620i \(-0.107933\pi\)
0.0891996 + 0.996014i \(0.471569\pi\)
\(20\) −0.0706081 + 0.0814861i −0.0157884 + 0.0182208i
\(21\) −1.62650 + 2.08675i −0.354930 + 0.455366i
\(22\) 2.15040i 0.458467i
\(23\) 3.88448 + 2.81262i 0.809970 + 0.586472i
\(24\) 1.00000i 0.204124i
\(25\) 4.78631 + 1.40539i 0.957262 + 0.281078i
\(26\) 0.613137 + 0.531287i 0.120246 + 0.104194i
\(27\) −0.540641 + 0.841254i −0.104046 + 0.161899i
\(28\) −1.31296 + 2.29698i −0.248127 + 0.434089i
\(29\) −7.56227 + 4.85998i −1.40428 + 0.902475i −0.999926 0.0121279i \(-0.996139\pi\)
−0.404352 + 0.914603i \(0.632503\pi\)
\(30\) 0.0980779 0.0447907i 0.0179065 0.00817762i
\(31\) −5.87795 + 5.09327i −1.05571 + 0.914778i −0.996510 0.0834678i \(-0.973400\pi\)
−0.0592000 + 0.998246i \(0.518855\pi\)
\(32\) −0.142315 0.989821i −0.0251579 0.174977i
\(33\) 0.893309 1.95607i 0.155505 0.340509i
\(34\) −3.01542 + 0.885406i −0.517140 + 0.151846i
\(35\) −0.284092 0.0258894i −0.0480203 0.00437612i
\(36\) −0.415415 + 0.909632i −0.0692358 + 0.151605i
\(37\) −6.91847 + 0.994726i −1.13739 + 0.163532i −0.685176 0.728378i \(-0.740275\pi\)
−0.452214 + 0.891910i \(0.649366\pi\)
\(38\) −3.50258 4.04219i −0.568194 0.655730i
\(39\) −0.337025 0.737982i −0.0539672 0.118172i
\(40\) 0.0907052 0.0582927i 0.0143418 0.00921689i
\(41\) 10.8479 + 1.55970i 1.69416 + 0.243584i 0.920704 0.390260i \(-0.127615\pi\)
0.773460 + 0.633845i \(0.218524\pi\)
\(42\) 2.14852 1.54398i 0.331523 0.238242i
\(43\) 3.89938 + 3.37883i 0.594650 + 0.515267i 0.899378 0.437172i \(-0.144020\pi\)
−0.304728 + 0.952440i \(0.598565\pi\)
\(44\) 0.605838 2.06330i 0.0913336 0.311054i
\(45\) −0.107822 −0.0160731
\(46\) −2.93472 3.79307i −0.432701 0.559258i
\(47\) 5.19392i 0.757611i −0.925476 0.378806i \(-0.876335\pi\)
0.925476 0.378806i \(-0.123665\pi\)
\(48\) −0.281733 + 0.959493i −0.0406646 + 0.138491i
\(49\) −6.96229 + 0.725575i −0.994613 + 0.103654i
\(50\) −4.19649 2.69692i −0.593473 0.381402i
\(51\) 3.11073 + 0.447255i 0.435589 + 0.0626283i
\(52\) −0.438620 0.682506i −0.0608257 0.0946466i
\(53\) −5.98440 + 2.73298i −0.822020 + 0.375404i −0.781601 0.623779i \(-0.785597\pi\)
−0.0404192 + 0.999183i \(0.512869\pi\)
\(54\) 0.755750 0.654861i 0.102844 0.0891153i
\(55\) 0.229500 0.0329971i 0.0309457 0.00444932i
\(56\) 1.90691 1.83403i 0.254822 0.245083i
\(57\) 1.50687 + 5.13193i 0.199590 + 0.679741i
\(58\) 8.62516 2.53258i 1.13254 0.332544i
\(59\) 1.18795 + 0.542521i 0.154659 + 0.0706302i 0.491240 0.871024i \(-0.336544\pi\)
−0.336582 + 0.941654i \(0.609271\pi\)
\(60\) −0.106724 + 0.0153446i −0.0137780 + 0.00198098i
\(61\) 0.503527 + 0.581101i 0.0644700 + 0.0744024i 0.787068 0.616866i \(-0.211598\pi\)
−0.722598 + 0.691268i \(0.757052\pi\)
\(62\) 7.07479 3.23095i 0.898499 0.410331i
\(63\) −2.59575 + 0.511931i −0.327034 + 0.0644972i
\(64\) −0.142315 + 0.989821i −0.0177894 + 0.123728i
\(65\) 0.0472927 0.0735889i 0.00586594 0.00912758i
\(66\) −1.40821 + 1.62517i −0.173339 + 0.200044i
\(67\) −3.01781 + 10.2777i −0.368684 + 1.25562i 0.541247 + 0.840864i \(0.317952\pi\)
−0.909931 + 0.414759i \(0.863866\pi\)
\(68\) 3.14272 0.381111
\(69\) 1.09382 + 4.66943i 0.131680 + 0.562133i
\(70\) 0.265290 + 0.104879i 0.0317082 + 0.0125354i
\(71\) 1.55575 + 0.456809i 0.184633 + 0.0542133i 0.372742 0.927935i \(-0.378418\pi\)
−0.188109 + 0.982148i \(0.560236\pi\)
\(72\) 0.654861 0.755750i 0.0771761 0.0890659i
\(73\) −4.28281 + 6.66418i −0.501265 + 0.779983i −0.996028 0.0890447i \(-0.971619\pi\)
0.494763 + 0.869028i \(0.335255\pi\)
\(74\) 6.91847 + 0.994726i 0.804256 + 0.115635i
\(75\) 2.69692 + 4.19649i 0.311413 + 0.484569i
\(76\) 2.22188 + 4.86525i 0.254868 + 0.558082i
\(77\) 5.36843 1.88404i 0.611789 0.214706i
\(78\) 0.115460 + 0.803039i 0.0130732 + 0.0909263i
\(79\) 0.0576276 + 0.0263176i 0.00648361 + 0.00296096i 0.418654 0.908146i \(-0.362502\pi\)
−0.412171 + 0.911107i \(0.635229\pi\)
\(80\) −0.103454 + 0.0303768i −0.0115665 + 0.00339623i
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) −9.96911 4.55274i −1.10090 0.502766i
\(83\) −0.979751 6.81432i −0.107542 0.747969i −0.970222 0.242219i \(-0.922125\pi\)
0.862680 0.505750i \(-0.168784\pi\)
\(84\) −2.49648 + 0.876134i −0.272388 + 0.0955940i
\(85\) 0.140764 + 0.308231i 0.0152680 + 0.0334324i
\(86\) −2.78950 4.34055i −0.300800 0.468054i
\(87\) −8.89779 1.27931i −0.953944 0.137156i
\(88\) −1.16260 + 1.80903i −0.123933 + 0.192844i
\(89\) 9.03413 10.4259i 0.957616 1.10515i −0.0367687 0.999324i \(-0.511706\pi\)
0.994385 0.105824i \(-0.0337481\pi\)
\(90\) 0.103454 + 0.0303768i 0.0109050 + 0.00320200i
\(91\) 0.789153 1.99616i 0.0827258 0.209254i
\(92\) 1.74721 + 4.46623i 0.182160 + 0.465637i
\(93\) −7.77764 −0.806504
\(94\) −1.46330 + 4.98353i −0.150928 + 0.514012i
\(95\) −0.377653 + 0.435835i −0.0387464 + 0.0447158i
\(96\) 0.540641 0.841254i 0.0551789 0.0858601i
\(97\) 0.499783 3.47606i 0.0507452 0.352941i −0.948591 0.316505i \(-0.897491\pi\)
0.999336 0.0364356i \(-0.0116004\pi\)
\(98\) 6.88469 + 1.26532i 0.695459 + 0.127817i
\(99\) 1.95607 0.893309i 0.196593 0.0897810i
\(100\) 3.26669 + 3.76996i 0.326669 + 0.376996i
\(101\) −7.95327 + 1.14351i −0.791380 + 0.113783i −0.526139 0.850399i \(-0.676361\pi\)
−0.265242 + 0.964182i \(0.585452\pi\)
\(102\) −2.85872 1.30553i −0.283055 0.129267i
\(103\) 16.7913 4.93038i 1.65450 0.485804i 0.684519 0.728995i \(-0.260012\pi\)
0.969979 + 0.243191i \(0.0781941\pi\)
\(104\) 0.228569 + 0.778434i 0.0224130 + 0.0763317i
\(105\) −0.197748 0.205606i −0.0192982 0.0200651i
\(106\) 6.51196 0.936278i 0.632497 0.0909394i
\(107\) −8.08932 + 7.00944i −0.782024 + 0.677628i −0.951412 0.307922i \(-0.900367\pi\)
0.169387 + 0.985550i \(0.445821\pi\)
\(108\) −0.909632 + 0.415415i −0.0875294 + 0.0399733i
\(109\) 4.40545 + 6.85501i 0.421965 + 0.656591i 0.985534 0.169478i \(-0.0542083\pi\)
−0.563569 + 0.826069i \(0.690572\pi\)
\(110\) −0.229500 0.0329971i −0.0218819 0.00314615i
\(111\) −5.88004 3.77887i −0.558109 0.358675i
\(112\) −2.34638 + 1.22250i −0.221712 + 0.115516i
\(113\) −4.80510 + 16.3647i −0.452026 + 1.53946i 0.346825 + 0.937930i \(0.387260\pi\)
−0.798851 + 0.601529i \(0.794559\pi\)
\(114\) 5.34859i 0.500941i
\(115\) −0.359780 + 0.371409i −0.0335496 + 0.0346340i
\(116\) −8.98929 −0.834635
\(117\) 0.228569 0.778434i 0.0211312 0.0719662i
\(118\) −0.986988 0.855230i −0.0908597 0.0787303i
\(119\) 4.85230 + 6.75218i 0.444810 + 0.618971i
\(120\) 0.106724 + 0.0153446i 0.00974253 + 0.00140076i
\(121\) 5.36364 3.44700i 0.487604 0.313364i
\(122\) −0.319416 0.699422i −0.0289185 0.0633227i
\(123\) 7.17695 + 8.28264i 0.647123 + 0.746820i
\(124\) −7.69847 + 1.10687i −0.691343 + 0.0994002i
\(125\) −0.447386 + 0.979639i −0.0400154 + 0.0876215i
\(126\) 2.63483 + 0.240114i 0.234730 + 0.0213911i
\(127\) −5.81926 + 1.70869i −0.516376 + 0.151622i −0.529529 0.848292i \(-0.677631\pi\)
0.0131530 + 0.999913i \(0.495813\pi\)
\(128\) 0.415415 0.909632i 0.0367178 0.0804009i
\(129\) 0.734291 + 5.10711i 0.0646507 + 0.449656i
\(130\) −0.0661094 + 0.0572841i −0.00579818 + 0.00502415i
\(131\) 19.2294 8.78179i 1.68008 0.767269i 0.680687 0.732575i \(-0.261682\pi\)
0.999398 0.0346943i \(-0.0110458\pi\)
\(132\) 1.80903 1.16260i 0.157456 0.101191i
\(133\) −7.02251 + 12.2856i −0.608929 + 1.06530i
\(134\) 5.79113 9.01118i 0.500278 0.778447i
\(135\) −0.0814861 0.0706081i −0.00701320 0.00607698i
\(136\) −3.01542 0.885406i −0.258570 0.0759229i
\(137\) 7.58310i 0.647868i −0.946080 0.323934i \(-0.894994\pi\)
0.946080 0.323934i \(-0.105006\pi\)
\(138\) 0.266018 4.78845i 0.0226450 0.407620i
\(139\) 14.8628i 1.26065i 0.776332 + 0.630324i \(0.217078\pi\)
−0.776332 + 0.630324i \(0.782922\pi\)
\(140\) −0.224996 0.175371i −0.0190157 0.0148216i
\(141\) 3.40129 3.92530i 0.286441 0.330570i
\(142\) −1.36403 0.876610i −0.114467 0.0735635i
\(143\) −0.248285 + 1.72686i −0.0207626 + 0.144407i
\(144\) −0.841254 + 0.540641i −0.0701045 + 0.0450534i
\(145\) −0.402636 0.881651i −0.0334371 0.0732171i
\(146\) 5.98684 5.18763i 0.495475 0.429331i
\(147\) −5.73690 4.01098i −0.473172 0.330820i
\(148\) −6.35798 2.90359i −0.522623 0.238674i
\(149\) −3.30828 11.2670i −0.271025 0.923026i −0.976721 0.214512i \(-0.931184\pi\)
0.705696 0.708514i \(-0.250634\pi\)
\(150\) −1.40539 4.78631i −0.114749 0.390801i
\(151\) 9.86178 21.5943i 0.802540 1.75732i 0.165921 0.986139i \(-0.446940\pi\)
0.636619 0.771179i \(-0.280333\pi\)
\(152\) −0.761183 5.29415i −0.0617401 0.429412i
\(153\) 2.05804 + 2.37511i 0.166383 + 0.192016i
\(154\) −5.68176 + 0.295263i −0.457849 + 0.0237930i
\(155\) −0.453380 0.705472i −0.0364163 0.0566649i
\(156\) 0.115460 0.803039i 0.00924417 0.0642946i
\(157\) 4.58505 + 2.94663i 0.365927 + 0.235167i 0.710663 0.703533i \(-0.248395\pi\)
−0.344736 + 0.938700i \(0.612032\pi\)
\(158\) −0.0478787 0.0414871i −0.00380903 0.00330054i
\(159\) −6.31243 1.85350i −0.500608 0.146992i
\(160\) 0.107822 0.00852404
\(161\) −6.89810 + 10.6497i −0.543646 + 0.839314i
\(162\) 1.00000 0.0785674
\(163\) 16.4357 + 4.82595i 1.28734 + 0.377997i 0.852603 0.522560i \(-0.175023\pi\)
0.434738 + 0.900557i \(0.356841\pi\)
\(164\) 8.28264 + 7.17695i 0.646765 + 0.560425i
\(165\) 0.195053 + 0.125353i 0.0151848 + 0.00975870i
\(166\) −0.979751 + 6.81432i −0.0760434 + 0.528894i
\(167\) −0.139867 0.217637i −0.0108232 0.0168412i 0.835800 0.549034i \(-0.185004\pi\)
−0.846623 + 0.532193i \(0.821368\pi\)
\(168\) 2.64219 0.137306i 0.203849 0.0105934i
\(169\) −8.08216 9.32731i −0.621704 0.717485i
\(170\) −0.0482238 0.335404i −0.00369859 0.0257243i
\(171\) −2.22188 + 4.86525i −0.169912 + 0.372055i
\(172\) 1.45363 + 4.95062i 0.110839 + 0.377481i
\(173\) 0.576865 + 1.96462i 0.0438582 + 0.149367i 0.978511 0.206194i \(-0.0661079\pi\)
−0.934653 + 0.355561i \(0.884290\pi\)
\(174\) 8.17695 + 3.73429i 0.619893 + 0.283096i
\(175\) −3.05611 + 12.8393i −0.231020 + 0.970559i
\(176\) 1.62517 1.40821i 0.122501 0.106148i
\(177\) 0.542521 + 1.18795i 0.0407784 + 0.0892921i
\(178\) −11.6055 + 7.45841i −0.869870 + 0.559032i
\(179\) 2.15848 15.0125i 0.161332 1.12209i −0.734794 0.678291i \(-0.762721\pi\)
0.896126 0.443800i \(-0.146370\pi\)
\(180\) −0.0907052 0.0582927i −0.00676077 0.00434488i
\(181\) 8.65526 9.98870i 0.643340 0.742454i −0.336621 0.941640i \(-0.609284\pi\)
0.979962 + 0.199186i \(0.0638297\pi\)
\(182\) −1.31957 + 1.69297i −0.0978131 + 0.125491i
\(183\) 0.768907i 0.0568392i
\(184\) −0.418157 4.77757i −0.0308269 0.352207i
\(185\) 0.753631i 0.0554080i
\(186\) 7.46259 + 2.19121i 0.547184 + 0.160668i
\(187\) −5.10744 4.42562i −0.373493 0.323633i
\(188\) 2.80805 4.36940i 0.204798 0.318672i
\(189\) −2.29698 1.31296i −0.167081 0.0955041i
\(190\) 0.485145 0.311784i 0.0351961 0.0226192i
\(191\) 14.8833 6.79698i 1.07692 0.491812i 0.203646 0.979045i \(-0.434721\pi\)
0.873272 + 0.487232i \(0.161994\pi\)
\(192\) −0.755750 + 0.654861i −0.0545415 + 0.0472605i
\(193\) −1.59730 11.1095i −0.114976 0.799677i −0.962958 0.269652i \(-0.913091\pi\)
0.847982 0.530026i \(-0.177818\pi\)
\(194\) −1.45886 + 3.19445i −0.104740 + 0.229348i
\(195\) 0.0839319 0.0246446i 0.00601049 0.00176484i
\(196\) −6.24933 3.15371i −0.446381 0.225265i
\(197\) 3.82658 8.37904i 0.272632 0.596982i −0.722947 0.690903i \(-0.757213\pi\)
0.995580 + 0.0939216i \(0.0299403\pi\)
\(198\) −2.12851 + 0.306034i −0.151267 + 0.0217489i
\(199\) −9.77155 11.2770i −0.692687 0.799403i 0.295058 0.955479i \(-0.404661\pi\)
−0.987745 + 0.156076i \(0.950116\pi\)
\(200\) −2.07225 4.53759i −0.146530 0.320856i
\(201\) −9.01118 + 5.79113i −0.635600 + 0.408475i
\(202\) 7.95327 + 1.14351i 0.559590 + 0.0804570i
\(203\) −13.8793 19.3136i −0.974137 1.35555i
\(204\) 2.37511 + 2.05804i 0.166291 + 0.144092i
\(205\) −0.332915 + 1.13380i −0.0232518 + 0.0791883i
\(206\) −17.5002 −1.21930
\(207\) −2.23117 + 4.24522i −0.155077 + 0.295063i
\(208\) 0.811297i 0.0562533i
\(209\) 3.24038 11.0357i 0.224142 0.763357i
\(210\) 0.131812 + 0.252990i 0.00909589 + 0.0174580i
\(211\) −7.49440 4.81636i −0.515935 0.331572i 0.256627 0.966511i \(-0.417389\pi\)
−0.772562 + 0.634939i \(0.781025\pi\)
\(212\) −6.51196 0.936278i −0.447243 0.0643038i
\(213\) 0.876610 + 1.36403i 0.0600643 + 0.0934619i
\(214\) 9.73644 4.44648i 0.665569 0.303955i
\(215\) −0.420437 + 0.364311i −0.0286736 + 0.0248458i
\(216\) 0.989821 0.142315i 0.0673488 0.00968330i
\(217\) −14.2644 14.8313i −0.968334 1.00681i
\(218\) −2.29572 7.81849i −0.155486 0.529535i
\(219\) −7.60084 + 2.23181i −0.513617 + 0.150812i
\(220\) 0.210907 + 0.0963180i 0.0142193 + 0.00649376i
\(221\) −2.52373 + 0.362857i −0.169764 + 0.0244084i
\(222\) 4.57723 + 5.28240i 0.307203 + 0.354531i
\(223\) 13.8136 6.30845i 0.925025 0.422445i 0.104805 0.994493i \(-0.466578\pi\)
0.820220 + 0.572048i \(0.193851\pi\)
\(224\) 2.59575 0.511931i 0.173436 0.0342048i
\(225\) −0.709920 + 4.93760i −0.0473280 + 0.329173i
\(226\) 9.22092 14.3480i 0.613366 0.954417i
\(227\) −15.2776 + 17.6313i −1.01401 + 1.17023i −0.0286799 + 0.999589i \(0.509130\pi\)
−0.985333 + 0.170644i \(0.945415\pi\)
\(228\) −1.50687 + 5.13193i −0.0997950 + 0.339871i
\(229\) 21.5926 1.42688 0.713438 0.700718i \(-0.247137\pi\)
0.713438 + 0.700718i \(0.247137\pi\)
\(230\) 0.449844 0.255002i 0.0296618 0.0168144i
\(231\) 5.29097 + 2.09171i 0.348120 + 0.137624i
\(232\) 8.62516 + 2.53258i 0.566270 + 0.166272i
\(233\) 4.86906 5.61920i 0.318983 0.368126i −0.573501 0.819205i \(-0.694415\pi\)
0.892484 + 0.451079i \(0.148961\pi\)
\(234\) −0.438620 + 0.682506i −0.0286735 + 0.0446168i
\(235\) 0.554316 + 0.0796986i 0.0361596 + 0.00519897i
\(236\) 0.706062 + 1.09865i 0.0459607 + 0.0715163i
\(237\) 0.0263176 + 0.0576276i 0.00170951 + 0.00374331i
\(238\) −2.75344 7.84572i −0.178479 0.508562i
\(239\) −4.20074 29.2168i −0.271723 1.88988i −0.430542 0.902570i \(-0.641678\pi\)
0.158819 0.987308i \(-0.449231\pi\)
\(240\) −0.0980779 0.0447907i −0.00633090 0.00289123i
\(241\) −24.8655 + 7.30117i −1.60173 + 0.470310i −0.956026 0.293281i \(-0.905253\pi\)
−0.645701 + 0.763590i \(0.723435\pi\)
\(242\) −6.11751 + 1.79626i −0.393248 + 0.115468i
\(243\) −0.909632 0.415415i −0.0583529 0.0266489i
\(244\) 0.109427 + 0.761081i 0.00700534 + 0.0487232i
\(245\) 0.0293973 0.754178i 0.00187812 0.0481827i
\(246\) −4.55274 9.96911i −0.290272 0.635607i
\(247\) −2.34600 3.65045i −0.149272 0.232272i
\(248\) 7.69847 + 1.10687i 0.488854 + 0.0702865i
\(249\) 3.72198 5.79152i 0.235871 0.367023i
\(250\) 0.705260 0.813913i 0.0446045 0.0514764i
\(251\) 7.59691 + 2.23066i 0.479513 + 0.140798i 0.512552 0.858656i \(-0.328700\pi\)
−0.0330387 + 0.999454i \(0.510518\pi\)
\(252\) −2.46046 0.972706i −0.154994 0.0612747i
\(253\) 3.44990 9.71882i 0.216893 0.611017i
\(254\) 6.06494 0.380548
\(255\) −0.0954658 + 0.325127i −0.00597830 + 0.0203602i
\(256\) −0.654861 + 0.755750i −0.0409288 + 0.0472343i
\(257\) −7.26871 + 11.3103i −0.453409 + 0.705519i −0.990425 0.138054i \(-0.955915\pi\)
0.537015 + 0.843572i \(0.319552\pi\)
\(258\) 0.734291 5.10711i 0.0457150 0.317954i
\(259\) −3.57820 18.1433i −0.222338 1.12737i
\(260\) 0.0795703 0.0363385i 0.00493474 0.00225362i
\(261\) −5.88673 6.79365i −0.364380 0.420517i
\(262\) −20.9246 + 3.00851i −1.29273 + 0.185866i
\(263\) −23.4923 10.7286i −1.44860 0.661553i −0.472989 0.881068i \(-0.656825\pi\)
−0.975609 + 0.219515i \(0.929552\pi\)
\(264\) −2.06330 + 0.605838i −0.126987 + 0.0372868i
\(265\) −0.199847 0.680616i −0.0122765 0.0418099i
\(266\) 10.1993 9.80949i 0.625359 0.601458i
\(267\) 13.6551 1.96330i 0.835678 0.120152i
\(268\) −8.09529 + 7.01461i −0.494499 + 0.428486i
\(269\) −13.1209 + 5.99212i −0.799996 + 0.365346i −0.773093 0.634292i \(-0.781292\pi\)
−0.0269025 + 0.999638i \(0.508564\pi\)
\(270\) 0.0582927 + 0.0907052i 0.00354758 + 0.00552014i
\(271\) 1.90790 + 0.274314i 0.115897 + 0.0166634i 0.200019 0.979792i \(-0.435900\pi\)
−0.0841225 + 0.996455i \(0.526809\pi\)
\(272\) 2.64382 + 1.69908i 0.160305 + 0.103022i
\(273\) 1.90361 0.991812i 0.115212 0.0600272i
\(274\) −2.13641 + 7.27594i −0.129065 + 0.439555i
\(275\) 10.7270i 0.646863i
\(276\) −1.60430 + 4.51954i −0.0965678 + 0.272044i
\(277\) −3.74743 −0.225161 −0.112580 0.993643i \(-0.535912\pi\)
−0.112580 + 0.993643i \(0.535912\pi\)
\(278\) 4.18734 14.2608i 0.251140 0.855305i
\(279\) −5.87795 5.09327i −0.351903 0.304926i
\(280\) 0.166475 + 0.231656i 0.00994876 + 0.0138441i
\(281\) −13.4540 1.93439i −0.802597 0.115396i −0.271204 0.962522i \(-0.587422\pi\)
−0.531392 + 0.847126i \(0.678331\pi\)
\(282\) −4.36940 + 2.80805i −0.260194 + 0.167217i
\(283\) −3.26978 7.15982i −0.194368 0.425607i 0.787206 0.616691i \(-0.211527\pi\)
−0.981574 + 0.191084i \(0.938800\pi\)
\(284\) 1.06181 + 1.22539i 0.0630068 + 0.0727137i
\(285\) −0.570823 + 0.0820719i −0.0338126 + 0.00486152i
\(286\) 0.724739 1.58696i 0.0428547 0.0938388i
\(287\) −2.63153 + 28.8765i −0.155334 + 1.70452i
\(288\) 0.959493 0.281733i 0.0565387 0.0166013i
\(289\) −2.95913 + 6.47960i −0.174067 + 0.381153i
\(290\) 0.137937 + 0.959374i 0.00809994 + 0.0563364i
\(291\) 2.65405 2.29975i 0.155583 0.134813i
\(292\) −7.20586 + 3.29080i −0.421691 + 0.192580i
\(293\) −4.03640 + 2.59403i −0.235809 + 0.151545i −0.653209 0.757178i \(-0.726578\pi\)
0.417400 + 0.908723i \(0.362941\pi\)
\(294\) 4.37449 + 5.46478i 0.255126 + 0.318712i
\(295\) −0.0761287 + 0.118459i −0.00443238 + 0.00689692i
\(296\) 5.28240 + 4.57723i 0.307033 + 0.266046i
\(297\) 2.06330 + 0.605838i 0.119725 + 0.0351543i
\(298\) 11.7426i 0.680232i
\(299\) −1.91875 3.38483i −0.110964 0.195750i
\(300\) 4.98837i 0.288004i
\(301\) −8.39210 + 10.7668i −0.483713 + 0.620590i
\(302\) −15.5461 + 17.9412i −0.894579 + 1.03240i
\(303\) −6.75952 4.34408i −0.388324 0.249561i
\(304\) −0.761183 + 5.29415i −0.0436569 + 0.303640i
\(305\) −0.0697439 + 0.0448217i −0.00399352 + 0.00256648i
\(306\) −1.30553 2.85872i −0.0746323 0.163422i
\(307\) 22.3146 19.3357i 1.27356 1.10355i 0.284092 0.958797i \(-0.408308\pi\)
0.989468 0.144749i \(-0.0462376\pi\)
\(308\) 5.53480 + 1.31743i 0.315374 + 0.0750678i
\(309\) 15.9187 + 7.26984i 0.905585 + 0.413567i
\(310\) 0.236260 + 0.804628i 0.0134187 + 0.0456998i
\(311\) −5.89455 20.0750i −0.334249 1.13835i −0.939567 0.342364i \(-0.888772\pi\)
0.605318 0.795984i \(-0.293046\pi\)
\(312\) −0.337025 + 0.737982i −0.0190803 + 0.0417800i
\(313\) −1.61685 11.2454i −0.0913898 0.635630i −0.983106 0.183035i \(-0.941408\pi\)
0.891717 0.452594i \(-0.149501\pi\)
\(314\) −3.56916 4.11903i −0.201419 0.232450i
\(315\) −0.0148045 0.284884i −0.000834141 0.0160514i
\(316\) 0.0342510 + 0.0532956i 0.00192677 + 0.00299811i
\(317\) −4.03774 + 28.0831i −0.226782 + 1.57730i 0.484753 + 0.874651i \(0.338910\pi\)
−0.711535 + 0.702651i \(0.751999\pi\)
\(318\) 5.53454 + 3.55683i 0.310362 + 0.199457i
\(319\) 14.6091 + 12.6588i 0.817952 + 0.708759i
\(320\) −0.103454 0.0303768i −0.00578325 0.00169812i
\(321\) −10.7037 −0.597423
\(322\) 9.61905 8.27490i 0.536049 0.461142i
\(323\) 16.8091 0.935284
\(324\) −0.959493 0.281733i −0.0533052 0.0156518i
\(325\) −3.05856 2.65026i −0.169658 0.147010i
\(326\) −14.4103 9.26092i −0.798111 0.512915i
\(327\) −1.15966 + 8.06563i −0.0641294 + 0.446030i
\(328\) −5.92515 9.21972i −0.327162 0.509074i
\(329\) 13.7233 0.713156i 0.756590 0.0393176i
\(330\) −0.151836 0.175228i −0.00835828 0.00964597i
\(331\) −4.41912 30.7356i −0.242897 1.68938i −0.637435 0.770504i \(-0.720004\pi\)
0.394538 0.918880i \(-0.370905\pi\)
\(332\) 2.85988 6.26226i 0.156956 0.343686i
\(333\) −1.96920 6.70649i −0.107912 0.367513i
\(334\) 0.0728857 + 0.248226i 0.00398813 + 0.0135823i
\(335\) −1.05057 0.479780i −0.0573989 0.0262132i
\(336\) −2.57384 0.612646i −0.140415 0.0334226i
\(337\) 2.74700 2.38029i 0.149639 0.129663i −0.576824 0.816868i \(-0.695708\pi\)
0.726463 + 0.687205i \(0.241163\pi\)
\(338\) 5.12697 + 11.2265i 0.278870 + 0.610641i
\(339\) −14.3480 + 9.22092i −0.779278 + 0.500812i
\(340\) −0.0482238 + 0.335404i −0.00261530 + 0.0181898i
\(341\) 14.0700 + 9.04224i 0.761934 + 0.489665i
\(342\) 3.50258 4.04219i 0.189398 0.218577i
\(343\) −2.87307 18.2961i −0.155131 0.987894i
\(344\) 5.15962i 0.278188i
\(345\) −0.515124 + 0.0450863i −0.0277334 + 0.00242737i
\(346\) 2.04756i 0.110078i
\(347\) 19.5569 + 5.74243i 1.04987 + 0.308270i 0.760765 0.649028i \(-0.224824\pi\)
0.289105 + 0.957297i \(0.406642\pi\)
\(348\) −6.79365 5.88673i −0.364178 0.315562i
\(349\) 0.314465 0.489316i 0.0168329 0.0261925i −0.832735 0.553672i \(-0.813226\pi\)
0.849568 + 0.527479i \(0.176863\pi\)
\(350\) 6.54956 11.4582i 0.350089 0.612467i
\(351\) 0.682506 0.438620i 0.0364295 0.0234118i
\(352\) −1.95607 + 0.893309i −0.104259 + 0.0476135i
\(353\) 2.44400 2.11774i 0.130081 0.112716i −0.587391 0.809304i \(-0.699845\pi\)
0.717472 + 0.696588i \(0.245299\pi\)
\(354\) −0.185859 1.29268i −0.00987831 0.0687052i
\(355\) −0.0726248 + 0.159026i −0.00385453 + 0.00844023i
\(356\) 13.2367 3.88664i 0.701543 0.205992i
\(357\) −0.754610 + 8.28054i −0.0399382 + 0.438253i
\(358\) −6.30057 + 13.7963i −0.332995 + 0.729158i
\(359\) −11.3770 + 1.63577i −0.600458 + 0.0863328i −0.435839 0.900025i \(-0.643548\pi\)
−0.164618 + 0.986357i \(0.552639\pi\)
\(360\) 0.0706081 + 0.0814861i 0.00372137 + 0.00429469i
\(361\) 3.99106 + 8.73920i 0.210056 + 0.459958i
\(362\) −11.1188 + 7.14562i −0.584391 + 0.375566i
\(363\) 6.31087 + 0.907367i 0.331235 + 0.0476244i
\(364\) 1.74308 1.25263i 0.0913624 0.0656556i
\(365\) −0.645510 0.559338i −0.0337876 0.0292771i
\(366\) 0.216626 0.737761i 0.0113232 0.0385634i
\(367\) 26.9709 1.40787 0.703934 0.710266i \(-0.251425\pi\)
0.703934 + 0.710266i \(0.251425\pi\)
\(368\) −0.944777 + 4.70185i −0.0492499 + 0.245101i
\(369\) 10.9595i 0.570529i
\(370\) −0.212322 + 0.723104i −0.0110381 + 0.0375924i
\(371\) −8.04274 15.4366i −0.417558 0.801430i
\(372\) −6.54297 4.20491i −0.339237 0.218014i
\(373\) −9.85540 1.41699i −0.510293 0.0733691i −0.117641 0.993056i \(-0.537533\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(374\) 3.65371 + 5.68528i 0.188929 + 0.293979i
\(375\) −0.979639 + 0.447386i −0.0505883 + 0.0231029i
\(376\) −3.92530 + 3.40129i −0.202432 + 0.175408i
\(377\) 7.21875 1.03790i 0.371785 0.0534546i
\(378\) 1.83403 + 1.90691i 0.0943325 + 0.0980811i
\(379\) −2.11854 7.21507i −0.108822 0.370613i 0.887018 0.461735i \(-0.152773\pi\)
−0.995840 + 0.0911219i \(0.970955\pi\)
\(380\) −0.553333 + 0.162473i −0.0283854 + 0.00833470i
\(381\) −5.51686 2.51947i −0.282637 0.129076i
\(382\) −16.1954 + 2.32854i −0.828627 + 0.119139i
\(383\) 9.88685 + 11.4100i 0.505194 + 0.583025i 0.949862 0.312670i \(-0.101224\pi\)
−0.444667 + 0.895696i \(0.646678\pi\)
\(384\) 0.909632 0.415415i 0.0464195 0.0211991i
\(385\) 0.118696 + 0.601850i 0.00604931 + 0.0306731i
\(386\) −1.59730 + 11.1095i −0.0813005 + 0.565457i
\(387\) −2.78950 + 4.34055i −0.141798 + 0.220643i
\(388\) 2.29975 2.65405i 0.116752 0.134739i
\(389\) −5.96465 + 20.3137i −0.302420 + 1.02995i 0.658376 + 0.752689i \(0.271244\pi\)
−0.960796 + 0.277258i \(0.910574\pi\)
\(390\) −0.0874753 −0.00442948
\(391\) 15.0487 + 0.836019i 0.761048 + 0.0422793i
\(392\) 5.10769 + 4.78660i 0.257977 + 0.241760i
\(393\) 20.2835 + 5.95577i 1.02317 + 0.300429i
\(394\) −6.03222 + 6.96156i −0.303899 + 0.350718i
\(395\) −0.00369300 + 0.00574641i −0.000185815 + 0.000289133i
\(396\) 2.12851 + 0.306034i 0.106962 + 0.0153788i
\(397\) 4.23088 + 6.58338i 0.212342 + 0.330410i 0.931043 0.364908i \(-0.118900\pi\)
−0.718702 + 0.695319i \(0.755263\pi\)
\(398\) 6.19865 + 13.5731i 0.310710 + 0.680360i
\(399\) −13.3526 + 4.68608i −0.668467 + 0.234597i
\(400\) 0.709920 + 4.93760i 0.0354960 + 0.246880i
\(401\) 20.7444 + 9.47366i 1.03593 + 0.473092i 0.859454 0.511213i \(-0.170804\pi\)
0.176473 + 0.984305i \(0.443531\pi\)
\(402\) 10.2777 3.01781i 0.512606 0.150515i
\(403\) 6.05438 1.77773i 0.301590 0.0885548i
\(404\) −7.30895 3.33788i −0.363634 0.166066i
\(405\) −0.0153446 0.106724i −0.000762479 0.00530316i
\(406\) 7.87582 + 22.4415i 0.390871 + 1.11376i
\(407\) 6.24389 + 13.6722i 0.309498 + 0.677706i
\(408\) −1.69908 2.64382i −0.0841171 0.130889i
\(409\) 29.3492 + 4.21977i 1.45122 + 0.208654i 0.822407 0.568900i \(-0.192631\pi\)
0.628816 + 0.777554i \(0.283540\pi\)
\(410\) 0.638859 0.994084i 0.0315510 0.0490943i
\(411\) 4.96588 5.73093i 0.244949 0.282686i
\(412\) 16.7913 + 4.93038i 0.827249 + 0.242902i
\(413\) −1.27033 + 3.21329i −0.0625087 + 0.158116i
\(414\) 3.33681 3.44466i 0.163995 0.169296i
\(415\) 0.742286 0.0364374
\(416\) −0.228569 + 0.778434i −0.0112065 + 0.0381659i
\(417\) −9.73309 + 11.2326i −0.476631 + 0.550062i
\(418\) −6.21824 + 9.67577i −0.304144 + 0.473258i
\(419\) −3.39690 + 23.6260i −0.165950 + 1.15420i 0.721201 + 0.692726i \(0.243590\pi\)
−0.887151 + 0.461479i \(0.847319\pi\)
\(420\) −0.0551971 0.279878i −0.00269334 0.0136566i
\(421\) −30.0395 + 13.7186i −1.46404 + 0.668603i −0.978619 0.205680i \(-0.934059\pi\)
−0.485417 + 0.874283i \(0.661332\pi\)
\(422\) 5.83390 + 6.73267i 0.283990 + 0.327741i
\(423\) 5.14105 0.739172i 0.249967 0.0359398i
\(424\) 5.98440 + 2.73298i 0.290628 + 0.132725i
\(425\) 15.0420 4.41674i 0.729645 0.214243i
\(426\) −0.456809 1.55575i −0.0221325 0.0753763i
\(427\) −1.46624 + 1.41020i −0.0709563 + 0.0682444i
\(428\) −10.5948 + 1.52330i −0.512117 + 0.0736313i
\(429\) −1.31849 + 1.14248i −0.0636574 + 0.0551594i
\(430\) 0.506045 0.231103i 0.0244037 0.0111448i
\(431\) −4.35676 6.77924i −0.209858 0.326545i 0.720329 0.693633i \(-0.243991\pi\)
−0.930186 + 0.367088i \(0.880355\pi\)
\(432\) −0.989821 0.142315i −0.0476228 0.00684713i
\(433\) −18.5693 11.9337i −0.892381 0.573499i 0.0121403 0.999926i \(-0.496136\pi\)
−0.904522 + 0.426428i \(0.859772\pi\)
\(434\) 9.50818 + 18.2493i 0.456407 + 0.875993i
\(435\) 0.273066 0.929978i 0.0130925 0.0445890i
\(436\) 8.14857i 0.390246i
\(437\) 9.34513 + 23.8880i 0.447038 + 1.14272i
\(438\) 7.92173 0.378515
\(439\) −1.12955 + 3.84689i −0.0539104 + 0.183602i −0.982046 0.188639i \(-0.939592\pi\)
0.928136 + 0.372241i \(0.121411\pi\)
\(440\) −0.175228 0.151836i −0.00835366 0.00723848i
\(441\) −1.70903 6.78817i −0.0813823 0.323246i
\(442\) 2.52373 + 0.362857i 0.120041 + 0.0172593i
\(443\) −5.57411 + 3.58226i −0.264834 + 0.170198i −0.666318 0.745668i \(-0.732131\pi\)
0.401484 + 0.915866i \(0.368494\pi\)
\(444\) −2.90359 6.35798i −0.137798 0.301736i
\(445\) 0.974074 + 1.12414i 0.0461755 + 0.0532894i
\(446\) −15.0313 + 2.16118i −0.711753 + 0.102335i
\(447\) 4.87806 10.6815i 0.230725 0.505216i
\(448\) −2.63483 0.240114i −0.124484 0.0113443i
\(449\) 1.07869 0.316733i 0.0509066 0.0149475i −0.256180 0.966629i \(-0.582464\pi\)
0.307087 + 0.951682i \(0.400646\pi\)
\(450\) 2.07225 4.53759i 0.0976866 0.213904i
\(451\) −3.35398 23.3275i −0.157933 1.09845i
\(452\) −12.8897 + 11.1690i −0.606281 + 0.525346i
\(453\) 21.5943 9.86178i 1.01459 0.463347i
\(454\) 19.6261 12.6129i 0.921099 0.591954i
\(455\) 0.200929 + 0.114852i 0.00941970 + 0.00538434i
\(456\) 2.89167 4.49952i 0.135415 0.210709i
\(457\) 27.1983 + 23.5675i 1.27228 + 1.10244i 0.989694 + 0.143198i \(0.0457387\pi\)
0.282589 + 0.959241i \(0.408807\pi\)
\(458\) −20.7179 6.08333i −0.968084 0.284255i
\(459\) 3.14272i 0.146690i
\(460\) −0.503465 + 0.117937i −0.0234742 + 0.00549885i
\(461\) 34.0796i 1.58724i −0.608411 0.793622i \(-0.708193\pi\)
0.608411 0.793622i \(-0.291807\pi\)
\(462\) −4.48735 3.49762i −0.208770 0.162724i
\(463\) 25.9692 29.9701i 1.20689 1.39283i 0.309905 0.950768i \(-0.399703\pi\)
0.896986 0.442059i \(-0.145752\pi\)
\(464\) −7.56227 4.85998i −0.351070 0.225619i
\(465\) 0.119345 0.830061i 0.00553448 0.0384932i
\(466\) −6.25494 + 4.01981i −0.289754 + 0.186214i
\(467\) 4.32963 + 9.48056i 0.200351 + 0.438708i 0.982963 0.183802i \(-0.0588404\pi\)
−0.782612 + 0.622510i \(0.786113\pi\)
\(468\) 0.613137 0.531287i 0.0283423 0.0245587i
\(469\) −27.5700 6.56242i −1.27306 0.303025i
\(470\) −0.509409 0.232639i −0.0234973 0.0107308i
\(471\) 1.53552 + 5.22949i 0.0707528 + 0.240962i
\(472\) −0.367935 1.25307i −0.0169356 0.0576773i
\(473\) 4.60914 10.0926i 0.211928 0.464059i
\(474\) −0.00901602 0.0627078i −0.000414119 0.00288026i
\(475\) 17.4722 + 20.1640i 0.801679 + 0.925187i
\(476\) 0.431514 + 8.30365i 0.0197784 + 0.380597i
\(477\) −3.55683 5.53454i −0.162856 0.253409i
\(478\) −4.20074 + 29.2168i −0.192137 + 1.33635i
\(479\) −24.2858 15.6075i −1.10965 0.713126i −0.148430 0.988923i \(-0.547422\pi\)
−0.961216 + 0.275797i \(0.911058\pi\)
\(480\) 0.0814861 + 0.0706081i 0.00371931 + 0.00322280i
\(481\) 5.44095 + 1.59761i 0.248086 + 0.0728447i
\(482\) 25.9152 1.18041
\(483\) −12.1873 + 3.53121i −0.554542 + 0.160676i
\(484\) 6.37577 0.289808
\(485\) 0.363311 + 0.106678i 0.0164971 + 0.00484398i
\(486\) 0.755750 + 0.654861i 0.0342815 + 0.0297051i
\(487\) 13.1390 + 8.44395i 0.595387 + 0.382632i 0.803352 0.595504i \(-0.203048\pi\)
−0.207965 + 0.978136i \(0.566684\pi\)
\(488\) 0.109427 0.761081i 0.00495352 0.0344525i
\(489\) 9.26092 + 14.4103i 0.418793 + 0.651655i
\(490\) −0.240683 + 0.715346i −0.0108729 + 0.0323160i
\(491\) 11.0553 + 12.7585i 0.498918 + 0.575782i 0.948226 0.317595i \(-0.102875\pi\)
−0.449309 + 0.893376i \(0.648330\pi\)
\(492\) 1.55970 + 10.8479i 0.0703167 + 0.489063i
\(493\) −11.7358 + 25.6978i −0.528554 + 1.15737i
\(494\) 1.22252 + 4.16352i 0.0550038 + 0.187326i
\(495\) 0.0653224 + 0.222468i 0.00293602 + 0.00999918i
\(496\) −7.07479 3.23095i −0.317667 0.145074i
\(497\) −0.993361 + 4.17330i −0.0445583 + 0.187198i
\(498\) −5.20288 + 4.50832i −0.233146 + 0.202023i
\(499\) −2.62586 5.74984i −0.117550 0.257398i 0.841707 0.539935i \(-0.181551\pi\)
−0.959256 + 0.282537i \(0.908824\pi\)
\(500\) −0.905998 + 0.582249i −0.0405175 + 0.0260390i
\(501\) 0.0368176 0.256072i 0.00164489 0.0114405i
\(502\) −6.66074 4.28060i −0.297283 0.191052i
\(503\) −3.46540 + 3.99928i −0.154514 + 0.178319i −0.827729 0.561128i \(-0.810368\pi\)
0.673215 + 0.739447i \(0.264913\pi\)
\(504\) 2.08675 + 1.62650i 0.0929511 + 0.0724498i
\(505\) 0.866352i 0.0385522i
\(506\) −6.04826 + 8.35319i −0.268878 + 0.371345i
\(507\) 12.3418i 0.548118i
\(508\) −5.81926 1.70869i −0.258188 0.0758108i
\(509\) 15.1555 + 13.1323i 0.671755 + 0.582079i 0.922511 0.385971i \(-0.126134\pi\)
−0.250756 + 0.968050i \(0.580679\pi\)
\(510\) 0.183198 0.285061i 0.00811212 0.0126227i
\(511\) −18.1961 10.4009i −0.804946 0.460111i
\(512\) 0.841254 0.540641i 0.0371785 0.0238932i
\(513\) −4.86525 + 2.22188i −0.214806 + 0.0980986i
\(514\) 10.1608 8.80435i 0.448172 0.388343i
\(515\) 0.268534 + 1.86769i 0.0118330 + 0.0823003i
\(516\) −2.14338 + 4.69336i −0.0943573 + 0.206614i
\(517\) −10.7166 + 3.14668i −0.471315 + 0.138391i
\(518\) −1.67830 + 18.4165i −0.0737405 + 0.809173i
\(519\) −0.850587 + 1.86253i −0.0373366 + 0.0817559i
\(520\) −0.0865849 + 0.0124490i −0.00379700 + 0.000545926i
\(521\) 5.04471 + 5.82190i 0.221013 + 0.255062i 0.855418 0.517938i \(-0.173300\pi\)
−0.634405 + 0.773001i \(0.718755\pi\)
\(522\) 3.73429 + 8.17695i 0.163445 + 0.357895i
\(523\) 14.1051 9.06479i 0.616772 0.396376i −0.194619 0.980879i \(-0.562347\pi\)
0.811391 + 0.584503i \(0.198711\pi\)
\(524\) 20.9246 + 3.00851i 0.914097 + 0.131427i
\(525\) −10.7176 + 7.70196i −0.467754 + 0.336141i
\(526\) 19.5181 + 16.9126i 0.851031 + 0.737422i
\(527\) −6.88637 + 23.4528i −0.299975 + 1.02162i
\(528\) 2.15040 0.0935842
\(529\) 7.17835 + 21.8511i 0.312102 + 0.950049i
\(530\) 0.709349i 0.0308122i
\(531\) −0.367935 + 1.25307i −0.0159670 + 0.0543787i
\(532\) −12.5498 + 6.53866i −0.544103 + 0.283487i
\(533\) −7.47993 4.80706i −0.323992 0.208217i
\(534\) −13.6551 1.96330i −0.590913 0.0849605i
\(535\) −0.623948 0.970882i −0.0269756 0.0419749i
\(536\) 9.74362 4.44976i 0.420860 0.192201i
\(537\) 11.4624 9.93222i 0.494639 0.428607i
\(538\) 14.2776 2.05281i 0.615551 0.0885029i
\(539\) 5.71510 + 13.9257i 0.246167 + 0.599822i
\(540\) −0.0303768 0.103454i −0.00130721 0.00445195i
\(541\) −25.1273 + 7.37805i −1.08031 + 0.317207i −0.773002 0.634404i \(-0.781246\pi\)
−0.307306 + 0.951611i \(0.599428\pi\)
\(542\) −1.75333 0.800719i −0.0753120 0.0343938i
\(543\) 13.0824 1.88097i 0.561420 0.0807201i
\(544\) −2.05804 2.37511i −0.0882379 0.101832i
\(545\) −0.799194 + 0.364980i −0.0342337 + 0.0156340i
\(546\) −2.10593 + 0.415328i −0.0901253 + 0.0177744i
\(547\) −2.34122 + 16.2836i −0.100104 + 0.696235i 0.876534 + 0.481340i \(0.159850\pi\)
−0.976637 + 0.214895i \(0.931059\pi\)
\(548\) 4.09974 6.37931i 0.175132 0.272511i
\(549\) −0.503527 + 0.581101i −0.0214900 + 0.0248008i
\(550\) −3.02215 + 10.2925i −0.128865 + 0.438873i
\(551\) −48.0800 −2.04828
\(552\) 2.81262 3.88448i 0.119713 0.165334i
\(553\) −0.0616235 + 0.155876i −0.00262050 + 0.00662854i
\(554\) 3.59563 + 1.05577i 0.152764 + 0.0448554i
\(555\) 0.493523 0.569556i 0.0209489 0.0241763i
\(556\) −8.03545 + 12.5034i −0.340779 + 0.530263i
\(557\) −39.1447 5.62815i −1.65861 0.238472i −0.751613 0.659604i \(-0.770724\pi\)
−0.906999 + 0.421132i \(0.861633\pi\)
\(558\) 4.20491 + 6.54297i 0.178008 + 0.276986i
\(559\) −1.73892 3.80771i −0.0735485 0.161049i
\(560\) −0.0944661 0.269174i −0.00399192 0.0113747i
\(561\) −0.961779 6.68932i −0.0406063 0.282423i
\(562\) 12.3640 + 5.64646i 0.521544 + 0.238181i
\(563\) −15.9998 + 4.69798i −0.674313 + 0.197996i −0.600923 0.799307i \(-0.705200\pi\)
−0.0733904 + 0.997303i \(0.523382\pi\)
\(564\) 4.98353 1.46330i 0.209844 0.0616159i
\(565\) −1.67277 0.763929i −0.0703740 0.0321387i
\(566\) 1.12018 + 7.79100i 0.0470845 + 0.327480i
\(567\) −0.876134 2.49648i −0.0367942 0.104842i
\(568\) −0.673565 1.47490i −0.0282622 0.0618855i
\(569\) 10.3660 + 16.1298i 0.434564 + 0.676194i 0.987605 0.156959i \(-0.0501692\pi\)
−0.553041 + 0.833154i \(0.686533\pi\)
\(570\) 0.570823 + 0.0820719i 0.0239091 + 0.00343762i
\(571\) 16.3778 25.4843i 0.685388 1.06648i −0.307968 0.951397i \(-0.599649\pi\)
0.993355 0.115087i \(-0.0367148\pi\)
\(572\) −1.14248 + 1.31849i −0.0477695 + 0.0551289i
\(573\) 15.6991 + 4.60968i 0.655840 + 0.192572i
\(574\) 10.6604 26.9654i 0.444955 1.12551i
\(575\) 14.6395 + 18.9213i 0.610509 + 0.789071i
\(576\) −1.00000 −0.0416667
\(577\) 6.38690 21.7518i 0.265890 0.905538i −0.713002 0.701162i \(-0.752665\pi\)
0.978892 0.204376i \(-0.0655166\pi\)
\(578\) 4.66478 5.38345i 0.194029 0.223922i
\(579\) 6.06800 9.44199i 0.252177 0.392396i
\(580\) 0.137937 0.959374i 0.00572753 0.0398358i
\(581\) 17.8702 3.52433i 0.741380 0.146214i
\(582\) −3.19445 + 1.45886i −0.132414 + 0.0604716i
\(583\) 9.26453 + 10.6918i 0.383698 + 0.442811i
\(584\) 7.84110 1.12738i 0.324467 0.0466513i
\(585\) 0.0795703 + 0.0363385i 0.00328983 + 0.00150241i
\(586\) 4.60372 1.35177i 0.190178 0.0558412i
\(587\) −1.79348 6.10803i −0.0740248 0.252105i 0.914165 0.405343i \(-0.132848\pi\)
−0.988189 + 0.153238i \(0.951030\pi\)
\(588\) −2.65769 6.47585i −0.109601 0.267060i
\(589\) −41.1760 + 5.92021i −1.69663 + 0.243938i
\(590\) 0.106419 0.0922122i 0.00438118 0.00379632i
\(591\) 8.37904 3.82658i 0.344668 0.157404i
\(592\) −3.77887 5.88004i −0.155311 0.241668i
\(593\) −30.3802 4.36801i −1.24756 0.179373i −0.513284 0.858219i \(-0.671571\pi\)
−0.734280 + 0.678846i \(0.762480\pi\)
\(594\) −1.80903 1.16260i −0.0742255 0.0477019i
\(595\) −0.795076 + 0.414248i −0.0325950 + 0.0169825i
\(596\) 3.30828 11.2670i 0.135512 0.461513i
\(597\) 14.9216i 0.610699i
\(598\) 0.887412 + 3.78829i 0.0362890 + 0.154915i
\(599\) −23.5652 −0.962850 −0.481425 0.876487i \(-0.659881\pi\)
−0.481425 + 0.876487i \(0.659881\pi\)
\(600\) 1.40539 4.78631i 0.0573747 0.195400i
\(601\) −23.8568 20.6720i −0.973138 0.843229i 0.0145134 0.999895i \(-0.495380\pi\)
−0.987652 + 0.156666i \(0.949926\pi\)
\(602\) 11.0855 7.96637i 0.451812 0.324685i
\(603\) −10.6026 1.52442i −0.431770 0.0620792i
\(604\) 19.9710 12.8346i 0.812609 0.522232i
\(605\) 0.285575 + 0.625322i 0.0116103 + 0.0254230i
\(606\) 5.26185 + 6.07249i 0.213748 + 0.246678i
\(607\) 26.8665 3.86282i 1.09048 0.156787i 0.426463 0.904505i \(-0.359760\pi\)
0.664016 + 0.747718i \(0.268851\pi\)
\(608\) 2.22188 4.86525i 0.0901093 0.197312i
\(609\) 2.15845 23.6853i 0.0874650 0.959776i
\(610\) 0.0795465 0.0233570i 0.00322074 0.000945696i
\(611\) −1.75048 + 3.83302i −0.0708169 + 0.155067i
\(612\) 0.447255 + 3.11073i 0.0180792 + 0.125744i
\(613\) −10.1961 + 8.83498i −0.411817 + 0.356842i −0.835995 0.548737i \(-0.815109\pi\)
0.424178 + 0.905579i \(0.360563\pi\)
\(614\) −26.8582 + 12.2657i −1.08391 + 0.495004i
\(615\) −0.994084 + 0.638859i −0.0400853 + 0.0257613i
\(616\) −4.93943 2.82340i −0.199015 0.113758i
\(617\) −4.44720 + 6.91997i −0.179037 + 0.278588i −0.919160 0.393884i \(-0.871131\pi\)
0.740123 + 0.672472i \(0.234767\pi\)
\(618\) −13.2258 11.4602i −0.532018 0.460997i
\(619\) 42.7430 + 12.5505i 1.71799 + 0.504446i 0.984519 0.175279i \(-0.0560829\pi\)
0.733467 + 0.679725i \(0.237901\pi\)
\(620\) 0.838597i 0.0336789i
\(621\) −4.46623 + 1.74721i −0.179224 + 0.0701133i
\(622\) 20.9225i 0.838915i
\(623\) 28.7877 + 22.4383i 1.15336 + 0.898972i
\(624\) 0.531287 0.613137i 0.0212685 0.0245451i
\(625\) 20.8848 + 13.4218i 0.835390 + 0.536873i
\(626\) −1.61685 + 11.2454i −0.0646223 + 0.449458i
\(627\) 9.67577 6.21824i 0.386413 0.248333i
\(628\) 2.26412 + 4.95773i 0.0903482 + 0.197835i
\(629\) −16.6011 + 14.3849i −0.661929 + 0.573565i
\(630\) −0.0660564 + 0.277516i −0.00263175 + 0.0110565i
\(631\) −9.90074 4.52152i −0.394142 0.179999i 0.208477 0.978027i \(-0.433149\pi\)
−0.602620 + 0.798028i \(0.705876\pi\)
\(632\) −0.0178485 0.0607864i −0.000709975 0.00241795i
\(633\) −2.50984 8.54774i −0.0997573 0.339742i
\(634\) 11.7861 25.8079i 0.468086 1.02496i
\(635\) −0.0930640 0.647274i −0.00369313 0.0256863i
\(636\) −4.30828 4.97202i −0.170834 0.197153i
\(637\) 5.38258 + 1.81101i 0.213266 + 0.0717546i
\(638\) −10.4509 16.2619i −0.413755 0.643816i
\(639\) −0.230753 + 1.60492i −0.00912846 + 0.0634898i
\(640\) 0.0907052 + 0.0582927i 0.00358544 + 0.00230422i
\(641\) 8.83005 + 7.65129i 0.348766 + 0.302208i 0.811572 0.584252i \(-0.198612\pi\)
−0.462806 + 0.886459i \(0.653157\pi\)
\(642\) 10.2701 + 3.01558i 0.405330 + 0.119016i
\(643\) 13.5990 0.536291 0.268146 0.963378i \(-0.413589\pi\)
0.268146 + 0.963378i \(0.413589\pi\)
\(644\) −11.5607 + 5.22971i −0.455556 + 0.206079i
\(645\) −0.556318 −0.0219050
\(646\) −16.1282 4.73567i −0.634556 0.186323i
\(647\) 8.83349 + 7.65427i 0.347280 + 0.300920i 0.810982 0.585071i \(-0.198933\pi\)
−0.463701 + 0.885992i \(0.653479\pi\)
\(648\) 0.841254 + 0.540641i 0.0330476 + 0.0212384i
\(649\) 0.399672 2.77978i 0.0156885 0.109116i
\(650\) 2.18800 + 3.40460i 0.0858205 + 0.133539i
\(651\) −1.06792 20.5500i −0.0418549 0.805417i
\(652\) 11.2175 + 12.9456i 0.439309 + 0.506990i
\(653\) −3.80423 26.4590i −0.148871 1.03542i −0.918072 0.396414i \(-0.870255\pi\)
0.769201 0.639007i \(-0.220655\pi\)
\(654\) 3.38504 7.41220i 0.132365 0.289840i
\(655\) 0.642160 + 2.18700i 0.0250913 + 0.0854531i
\(656\) 3.08765 + 10.5156i 0.120552 + 0.410564i
\(657\) −7.20586 3.29080i −0.281127 0.128387i
\(658\) −13.3683 3.18203i −0.521152 0.124049i
\(659\) 7.97209 6.90786i 0.310549 0.269092i −0.485616 0.874172i \(-0.661405\pi\)
0.796164 + 0.605080i \(0.206859\pi\)
\(660\) 0.0963180 + 0.210907i 0.00374917 + 0.00820954i
\(661\) 12.2940 7.90088i 0.478182 0.307309i −0.279255 0.960217i \(-0.590088\pi\)
0.757437 + 0.652908i \(0.226451\pi\)
\(662\) −4.41912 + 30.7356i −0.171754 + 1.19457i
\(663\) −2.14493 1.37846i −0.0833020 0.0535349i
\(664\) −4.50832 + 5.20288i −0.174957 + 0.201911i
\(665\) −1.20341 0.937988i −0.0466663 0.0363736i
\(666\) 6.98962i 0.270842i
\(667\) −43.0448 2.39131i −1.66670 0.0925920i
\(668\) 0.258705i 0.0100096i
\(669\) 14.5708 + 4.27836i 0.563338 + 0.165411i
\(670\) 0.872847 + 0.756326i 0.0337210 + 0.0292194i
\(671\) 0.893928 1.39098i 0.0345097 0.0536981i
\(672\) 2.29698 + 1.31296i 0.0886080 + 0.0506487i
\(673\) −13.1440 + 8.44714i −0.506664 + 0.325613i −0.768877 0.639397i \(-0.779184\pi\)
0.262213 + 0.965010i \(0.415548\pi\)
\(674\) −3.30634 + 1.50995i −0.127355 + 0.0581612i
\(675\) −3.76996 + 3.26669i −0.145106 + 0.125735i
\(676\) −1.75642 12.2162i −0.0675546 0.469853i
\(677\) −3.48703 + 7.63552i −0.134017 + 0.293457i −0.964729 0.263247i \(-0.915207\pi\)
0.830711 + 0.556703i \(0.187934\pi\)
\(678\) 16.3647 4.80510i 0.628481 0.184539i
\(679\) 9.25303 + 0.843234i 0.355099 + 0.0323604i
\(680\) 0.140764 0.308231i 0.00539807 0.0118201i
\(681\) −23.0921 + 3.32015i −0.884893 + 0.127228i
\(682\) −10.9526 12.6399i −0.419396 0.484009i
\(683\) −17.1995 37.6616i −0.658120 1.44108i −0.884263 0.466989i \(-0.845339\pi\)
0.226143 0.974094i \(-0.427388\pi\)
\(684\) −4.49952 + 2.89167i −0.172043 + 0.110566i
\(685\) 0.809300 + 0.116360i 0.0309217 + 0.00444588i
\(686\) −2.39790 + 18.3644i −0.0915524 + 0.701155i
\(687\) 16.3186 + 14.1401i 0.622592 + 0.539479i
\(688\) −1.45363 + 4.95062i −0.0554193 + 0.188741i
\(689\) 5.33746 0.203341
\(690\) 0.506961 + 0.101867i 0.0192997 + 0.00387802i
\(691\) 33.0727i 1.25814i −0.777347 0.629072i \(-0.783435\pi\)
0.777347 0.629072i \(-0.216565\pi\)
\(692\) −0.576865 + 1.96462i −0.0219291 + 0.0746837i
\(693\) 2.62887 + 5.04566i 0.0998625 + 0.191669i
\(694\) −17.1469 11.0196i −0.650887 0.418300i
\(695\) −1.58622 0.228064i −0.0601688 0.00865097i
\(696\) 4.85998 + 7.56227i 0.184217 + 0.286647i
\(697\) 31.3301 14.3080i 1.18671 0.541953i
\(698\) −0.439583 + 0.380901i −0.0166385 + 0.0144173i
\(699\) 7.35958 1.05815i 0.278365 0.0400228i
\(700\) −9.51240 + 9.14884i −0.359535 + 0.345794i
\(701\) −4.01840 13.6854i −0.151773 0.516891i 0.848144 0.529766i \(-0.177720\pi\)
−0.999917 + 0.0128741i \(0.995902\pi\)
\(702\) −0.778434 + 0.228569i −0.0293801 + 0.00862677i
\(703\) −34.0062 15.5301i −1.28257 0.585729i
\(704\) 2.12851 0.306034i 0.0802214 0.0115341i
\(705\) 0.366733 + 0.423232i 0.0138120 + 0.0159398i
\(706\) −2.94164 + 1.34340i −0.110710 + 0.0505596i
\(707\) −4.11339 20.8570i −0.154700 0.784409i
\(708\) −0.185859 + 1.29268i −0.00698502 + 0.0485819i
\(709\) 21.3356 33.1989i 0.801277 1.24681i −0.164227 0.986423i \(-0.552513\pi\)
0.965504 0.260389i \(-0.0838507\pi\)
\(710\) 0.114486 0.132124i 0.00429658 0.00495852i
\(711\) −0.0178485 + 0.0607864i −0.000669371 + 0.00227967i
\(712\) −13.7955 −0.517008
\(713\) −37.1582 + 3.25227i −1.39159 + 0.121799i
\(714\) 3.05694 7.73252i 0.114403 0.289382i
\(715\) −0.180487 0.0529959i −0.00674984 0.00198193i
\(716\) 9.93222 11.4624i 0.371185 0.428370i
\(717\) 15.9582 24.8315i 0.595971 0.927349i
\(718\) 11.3770 + 1.63577i 0.424588 + 0.0610465i
\(719\) 8.37449 + 13.0310i 0.312316 + 0.485973i 0.961555 0.274611i \(-0.0885491\pi\)
−0.649239 + 0.760584i \(0.724913\pi\)
\(720\) −0.0447907 0.0980779i −0.00166925 0.00365515i
\(721\) 15.3325 + 43.6888i 0.571013 + 1.62706i
\(722\) −1.36728 9.50961i −0.0508847 0.353911i
\(723\) −23.5733 10.7656i −0.876702 0.400376i
\(724\) 12.6816 3.72364i 0.471307 0.138388i
\(725\) −43.0255 + 12.6334i −1.59793 + 0.469194i
\(726\) −5.79961 2.64859i −0.215244 0.0982984i
\(727\) 3.73587 + 25.9836i 0.138556 + 0.963677i 0.933904 + 0.357524i \(0.116379\pi\)
−0.795348 + 0.606153i \(0.792712\pi\)
\(728\) −2.02538 + 0.710805i −0.0750657 + 0.0263442i
\(729\) −0.415415 0.909632i −0.0153857 0.0336901i
\(730\) 0.461779 + 0.718542i 0.0170912 + 0.0265944i
\(731\) 16.0502 + 2.30767i 0.593638 + 0.0853522i
\(732\) −0.415703 + 0.646846i −0.0153648 + 0.0239081i
\(733\) −2.95699 + 3.41255i −0.109219 + 0.126045i −0.807727 0.589557i \(-0.799302\pi\)
0.698508 + 0.715602i \(0.253848\pi\)
\(734\) −25.8783 7.59857i −0.955187 0.280468i
\(735\) 0.516098 0.550718i 0.0190366 0.0203136i
\(736\) 2.23117 4.24522i 0.0822421 0.156481i
\(737\) 23.0343 0.848478
\(738\) 3.08765 10.5156i 0.113658 0.387083i
\(739\) −10.3796 + 11.9788i −0.381822 + 0.440646i −0.913832 0.406092i \(-0.866891\pi\)
0.532011 + 0.846738i \(0.321437\pi\)
\(740\) 0.407444 0.633995i 0.0149779 0.0233061i
\(741\) 0.617546 4.29513i 0.0226861 0.157785i
\(742\) 3.36795 + 17.0772i 0.123641 + 0.626925i
\(743\) 38.2330 17.4604i 1.40263 0.640561i 0.436760 0.899578i \(-0.356126\pi\)
0.965873 + 0.259017i \(0.0833987\pi\)
\(744\) 5.09327 + 5.87795i 0.186728 + 0.215496i
\(745\) 1.25322 0.180186i 0.0459145 0.00660150i
\(746\) 9.05698 + 4.13618i 0.331600 + 0.151436i
\(747\) 6.60553 1.93956i 0.241684 0.0709647i
\(748\) −1.90398 6.48436i −0.0696164 0.237092i
\(749\) −19.6310 20.4111i −0.717299 0.745804i
\(750\) 1.06600 0.153268i 0.0389248 0.00559654i
\(751\) 17.5282 15.1883i 0.639613 0.554228i −0.273532 0.961863i \(-0.588192\pi\)
0.913145 + 0.407635i \(0.133646\pi\)
\(752\) 4.72456 2.15763i 0.172287 0.0786808i
\(753\) 4.28060 + 6.66074i 0.155994 + 0.242731i
\(754\) −7.21875 1.03790i −0.262891 0.0377981i
\(755\) 2.15330 + 1.38384i 0.0783668 + 0.0503633i
\(756\) −1.22250 2.34638i −0.0444620 0.0853369i
\(757\) −7.54179 + 25.6850i −0.274111 + 0.933536i 0.701249 + 0.712917i \(0.252626\pi\)
−0.975360 + 0.220620i \(0.929192\pi\)
\(758\) 7.51967i 0.273127i
\(759\) 8.97173 5.08579i 0.325653 0.184603i
\(760\) 0.576693 0.0209188
\(761\) 10.9537 37.3049i 0.397072 1.35230i −0.482234 0.876043i \(-0.660174\pi\)
0.879305 0.476259i \(-0.158007\pi\)
\(762\) 4.58357 + 3.97169i 0.166045 + 0.143879i
\(763\) −17.5073 + 12.5812i −0.633807 + 0.455472i
\(764\) 16.1954 + 2.32854i 0.585928 + 0.0842437i
\(765\) −0.285061 + 0.183198i −0.0103064 + 0.00662352i
\(766\) −6.27178 13.7333i −0.226609 0.496204i
\(767\) −0.693846 0.800741i −0.0250533 0.0289131i
\(768\) −0.989821 + 0.142315i −0.0357171 + 0.00513534i
\(769\) 0.144058 0.315444i 0.00519487 0.0113752i −0.907017 0.421094i \(-0.861646\pi\)
0.912212 + 0.409719i \(0.134373\pi\)
\(770\) 0.0556727 0.610911i 0.00200631 0.0220157i
\(771\) −12.9000 + 3.78778i −0.464583 + 0.136414i
\(772\) 4.66250 10.2094i 0.167807 0.367446i
\(773\) 3.16747 + 22.0302i 0.113926 + 0.792371i 0.964037 + 0.265768i \(0.0856256\pi\)