Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator \(16\!\cdots\!91\)\( T_{5}^{224} + \)\(75\!\cdots\!64\)\( T_{5}^{223} + \)\(37\!\cdots\!73\)\( T_{5}^{222} + \)\(17\!\cdots\!84\)\( T_{5}^{221} + \)\(81\!\cdots\!34\)\( T_{5}^{220} + \)\(37\!\cdots\!44\)\( T_{5}^{219} + \)\(17\!\cdots\!55\)\( T_{5}^{218} + \)\(78\!\cdots\!52\)\( T_{5}^{217} + \)\(35\!\cdots\!72\)\( T_{5}^{216} + \)\(15\!\cdots\!84\)\( T_{5}^{215} + \)\(71\!\cdots\!79\)\( T_{5}^{214} + \)\(31\!\cdots\!60\)\( T_{5}^{213} + \)\(13\!\cdots\!75\)\( T_{5}^{212} + \)\(59\!\cdots\!72\)\( T_{5}^{211} + \)\(25\!\cdots\!79\)\( T_{5}^{210} + \)\(11\!\cdots\!68\)\( T_{5}^{209} + \)\(46\!\cdots\!95\)\( T_{5}^{208} + \)\(19\!\cdots\!76\)\( T_{5}^{207} + \)\(81\!\cdots\!21\)\( T_{5}^{206} + \)\(33\!\cdots\!98\)\( T_{5}^{205} + \)\(13\!\cdots\!90\)\( T_{5}^{204} + \)\(56\!\cdots\!00\)\( T_{5}^{203} + \)\(22\!\cdots\!51\)\( T_{5}^{202} + \)\(91\!\cdots\!98\)\( T_{5}^{201} + \)\(36\!\cdots\!97\)\( T_{5}^{200} + \)\(14\!\cdots\!18\)\( T_{5}^{199} + \)\(56\!\cdots\!02\)\( T_{5}^{198} + \)\(22\!\cdots\!74\)\( T_{5}^{197} + \)\(86\!\cdots\!59\)\( T_{5}^{196} + \)\(33\!\cdots\!92\)\( T_{5}^{195} + \)\(12\!\cdots\!70\)\( T_{5}^{194} + \)\(49\!\cdots\!30\)\( T_{5}^{193} + \)\(18\!\cdots\!59\)\( T_{5}^{192} + \)\(70\!\cdots\!58\)\( T_{5}^{191} + \)\(26\!\cdots\!75\)\( T_{5}^{190} + \)\(96\!\cdots\!50\)\( T_{5}^{189} + \)\(35\!\cdots\!75\)\( T_{5}^{188} + \)\(13\!\cdots\!56\)\( T_{5}^{187} + \)\(47\!\cdots\!81\)\( T_{5}^{186} + \)\(17\!\cdots\!06\)\( T_{5}^{185} + \)\(61\!\cdots\!33\)\( T_{5}^{184} + \)\(21\!\cdots\!50\)\( T_{5}^{183} + \)\(76\!\cdots\!00\)\( T_{5}^{182} + \)\(27\!\cdots\!82\)\( T_{5}^{181} + \)\(94\!\cdots\!66\)\( T_{5}^{180} + \)\(32\!\cdots\!04\)\( T_{5}^{179} + \)\(11\!\cdots\!50\)\( T_{5}^{178} + \)\(37\!\cdots\!38\)\( T_{5}^{177} + \)\(12\!\cdots\!96\)\( T_{5}^{176} + \)\(42\!\cdots\!06\)\( T_{5}^{175} + \)\(14\!\cdots\!57\)\( T_{5}^{174} + \)\(45\!\cdots\!16\)\( T_{5}^{173} + \)\(14\!\cdots\!38\)\( T_{5}^{172} + \)\(47\!\cdots\!48\)\( T_{5}^{171} + \)\(14\!\cdots\!91\)\( T_{5}^{170} + \)\(46\!\cdots\!20\)\( T_{5}^{169} + \)\(14\!\cdots\!79\)\( T_{5}^{168} + \)\(43\!\cdots\!52\)\( T_{5}^{167} + \)\(13\!\cdots\!67\)\( T_{5}^{166} + \)\(38\!\cdots\!46\)\( T_{5}^{165} + \)\(11\!\cdots\!18\)\( T_{5}^{164} + \)\(33\!\cdots\!20\)\( T_{5}^{163} + \)\(96\!\cdots\!33\)\( T_{5}^{162} + \)\(27\!\cdots\!74\)\( T_{5}^{161} + \)\(79\!\cdots\!01\)\( T_{5}^{160} + \)\(22\!\cdots\!06\)\( T_{5}^{159} + \)\(63\!\cdots\!70\)\( T_{5}^{158} + \)\(17\!\cdots\!34\)\( T_{5}^{157} + \)\(49\!\cdots\!49\)\( T_{5}^{156} + \)\(13\!\cdots\!48\)\( T_{5}^{155} + \)\(37\!\cdots\!40\)\( T_{5}^{154} + \)\(10\!\cdots\!34\)\( T_{5}^{153} + \)\(27\!\cdots\!33\)\( T_{5}^{152} + \)\(73\!\cdots\!78\)\( T_{5}^{151} + \)\(19\!\cdots\!87\)\( T_{5}^{150} + \)\(51\!\cdots\!34\)\( T_{5}^{149} + \)\(13\!\cdots\!22\)\( T_{5}^{148} + \)\(35\!\cdots\!96\)\( T_{5}^{147} + \)\(92\!\cdots\!05\)\( T_{5}^{146} + \)\(23\!\cdots\!22\)\( T_{5}^{145} + \)\(60\!\cdots\!88\)\( T_{5}^{144} + \)\(15\!\cdots\!78\)\( T_{5}^{143} + \)\(38\!\cdots\!70\)\( T_{5}^{142} + \)\(97\!\cdots\!40\)\( T_{5}^{141} + \)\(24\!\cdots\!40\)\( T_{5}^{140} + \)\(60\!\cdots\!72\)\( T_{5}^{139} + \)\(15\!\cdots\!16\)\( T_{5}^{138} + \)\(36\!\cdots\!36\)\( T_{5}^{137} + \)\(89\!\cdots\!59\)\( T_{5}^{136} + \)\(21\!\cdots\!96\)\( T_{5}^{135} + \)\(52\!\cdots\!36\)\( T_{5}^{134} + \)\(12\!\cdots\!46\)\( T_{5}^{133} + \)\(29\!\cdots\!92\)\( T_{5}^{132} + \)\(69\!\cdots\!48\)\( T_{5}^{131} + \)\(16\!\cdots\!52\)\( T_{5}^{130} + \)\(37\!\cdots\!58\)\( T_{5}^{129} + \)\(86\!\cdots\!89\)\( T_{5}^{128} + \)\(19\!\cdots\!90\)\( T_{5}^{127} + \)\(45\!\cdots\!57\)\( T_{5}^{126} + \)\(10\!\cdots\!34\)\( T_{5}^{125} + \)\(22\!\cdots\!94\)\( T_{5}^{124} + \)\(50\!\cdots\!72\)\( T_{5}^{123} + \)\(11\!\cdots\!95\)\( T_{5}^{122} + \)\(24\!\cdots\!70\)\( T_{5}^{121} + \)\(53\!\cdots\!12\)\( T_{5}^{120} + \)\(11\!\cdots\!62\)\( T_{5}^{119} + \)\(24\!\cdots\!22\)\( T_{5}^{118} + \)\(51\!\cdots\!00\)\( T_{5}^{117} + \)\(10\!\cdots\!70\)\( T_{5}^{116} + \)\(21\!\cdots\!96\)\( T_{5}^{115} + \)\(44\!\cdots\!68\)\( T_{5}^{114} + \)\(88\!\cdots\!68\)\( T_{5}^{113} + \)\(17\!\cdots\!87\)\( T_{5}^{112} + \)\(33\!\cdots\!36\)\( T_{5}^{111} + \)\(64\!\cdots\!62\)\( T_{5}^{110} + \)\(12\!\cdots\!54\)\( T_{5}^{109} + \)\(22\!\cdots\!87\)\( T_{5}^{108} + \)\(40\!\cdots\!04\)\( T_{5}^{107} + \)\(71\!\cdots\!78\)\( T_{5}^{106} + \)\(12\!\cdots\!70\)\( T_{5}^{105} + \)\(21\!\cdots\!73\)\( T_{5}^{104} + \)\(37\!\cdots\!54\)\( T_{5}^{103} + \)\(64\!\cdots\!35\)\( T_{5}^{102} + \)\(11\!\cdots\!28\)\( T_{5}^{101} + \)\(18\!\cdots\!91\)\( T_{5}^{100} + \)\(31\!\cdots\!24\)\( T_{5}^{99} + \)\(53\!\cdots\!65\)\( T_{5}^{98} + \)\(90\!\cdots\!66\)\( T_{5}^{97} + \)\(15\!\cdots\!47\)\( T_{5}^{96} + \)\(24\!\cdots\!72\)\( T_{5}^{95} + \)\(39\!\cdots\!63\)\( T_{5}^{94} + \)\(61\!\cdots\!64\)\( T_{5}^{93} + \)\(92\!\cdots\!55\)\( T_{5}^{92} + \)\(13\!\cdots\!34\)\( T_{5}^{91} + \)\(18\!\cdots\!52\)\( T_{5}^{90} + \)\(24\!\cdots\!08\)\( T_{5}^{89} + \)\(31\!\cdots\!97\)\( T_{5}^{88} + \)\(38\!\cdots\!94\)\( T_{5}^{87} + \)\(44\!\cdots\!85\)\( T_{5}^{86} + \)\(52\!\cdots\!28\)\( T_{5}^{85} + \)\(60\!\cdots\!60\)\( T_{5}^{84} + \)\(73\!\cdots\!38\)\( T_{5}^{83} + \)\(90\!\cdots\!84\)\( T_{5}^{82} + \)\(11\!\cdots\!86\)\( T_{5}^{81} + \)\(14\!\cdots\!08\)\( T_{5}^{80} + \)\(17\!\cdots\!94\)\( T_{5}^{79} + \)\(20\!\cdots\!79\)\( T_{5}^{78} + \)\(23\!\cdots\!20\)\( T_{5}^{77} + \)\(25\!\cdots\!10\)\( T_{5}^{76} + \)\(29\!\cdots\!56\)\( T_{5}^{75} + \)\(33\!\cdots\!05\)\( T_{5}^{74} + \)\(38\!\cdots\!94\)\( T_{5}^{73} + \)\(43\!\cdots\!95\)\( T_{5}^{72} + \)\(46\!\cdots\!24\)\( T_{5}^{71} + \)\(49\!\cdots\!47\)\( T_{5}^{70} + \)\(51\!\cdots\!90\)\( T_{5}^{69} + \)\(53\!\cdots\!75\)\( T_{5}^{68} + \)\(57\!\cdots\!54\)\( T_{5}^{67} + \)\(61\!\cdots\!78\)\( T_{5}^{66} + \)\(66\!\cdots\!76\)\( T_{5}^{65} + \)\(71\!\cdots\!40\)\( T_{5}^{64} + \)\(77\!\cdots\!32\)\( T_{5}^{63} + \)\(83\!\cdots\!92\)\( T_{5}^{62} + \)\(86\!\cdots\!02\)\( T_{5}^{61} + \)\(87\!\cdots\!01\)\( T_{5}^{60} + \)\(83\!\cdots\!00\)\( T_{5}^{59} + \)\(76\!\cdots\!44\)\( T_{5}^{58} + \)\(69\!\cdots\!26\)\( T_{5}^{57} + \)\(66\!\cdots\!44\)\( T_{5}^{56} + \)\(66\!\cdots\!10\)\( T_{5}^{55} + \)\(68\!\cdots\!09\)\( T_{5}^{54} + \)\(67\!\cdots\!48\)\( T_{5}^{53} + \)\(64\!\cdots\!26\)\( T_{5}^{52} + \)\(59\!\cdots\!64\)\( T_{5}^{51} + \)\(54\!\cdots\!81\)\( T_{5}^{50} + \)\(49\!\cdots\!24\)\( T_{5}^{49} + \)\(45\!\cdots\!28\)\( T_{5}^{48} + \)\(41\!\cdots\!44\)\( T_{5}^{47} + \)\(37\!\cdots\!39\)\( T_{5}^{46} + \)\(31\!\cdots\!06\)\( T_{5}^{45} + \)\(26\!\cdots\!38\)\( T_{5}^{44} + \)\(20\!\cdots\!04\)\( T_{5}^{43} + \)\(16\!\cdots\!37\)\( T_{5}^{42} + \)\(12\!\cdots\!96\)\( T_{5}^{41} + \)\(90\!\cdots\!59\)\( T_{5}^{40} + \)\(65\!\cdots\!10\)\( T_{5}^{39} + \)\(45\!\cdots\!64\)\( T_{5}^{38} + \)\(30\!\cdots\!94\)\( T_{5}^{37} + \)\(19\!\cdots\!70\)\( T_{5}^{36} + \)\(11\!\cdots\!86\)\( T_{5}^{35} + \)\(64\!\cdots\!11\)\( T_{5}^{34} + \)\(33\!\cdots\!72\)\( T_{5}^{33} + \)\(16\!\cdots\!64\)\( T_{5}^{32} + \)\(76\!\cdots\!56\)\( T_{5}^{31} + \)\(34\!\cdots\!29\)\( T_{5}^{30} + \)\(13\!\cdots\!50\)\( T_{5}^{29} + \)\(55\!\cdots\!51\)\( T_{5}^{28} + \)\(18\!\cdots\!88\)\( T_{5}^{27} + \)\(73\!\cdots\!11\)\( T_{5}^{26} + \)\(19\!\cdots\!02\)\( T_{5}^{25} + \)\(81\!\cdots\!42\)\( T_{5}^{24} + \)\(17\!\cdots\!02\)\( T_{5}^{23} + \)\(56\!\cdots\!32\)\( T_{5}^{22} + \)\(20\!\cdots\!80\)\( T_{5}^{21} + \)\(16\!\cdots\!25\)\( T_{5}^{20} + \)\(14\!\cdots\!64\)\( T_{5}^{19} + \)\(38\!\cdots\!12\)\( T_{5}^{18} - \)\(28\!\cdots\!04\)\( T_{5}^{17} + \)\(34\!\cdots\!00\)\( T_{5}^{16} + \)\(29\!\cdots\!36\)\( T_{5}^{15} - \)\(82\!\cdots\!48\)\( T_{5}^{14} + \)\(38\!\cdots\!64\)\( T_{5}^{13} + \)\(68\!\cdots\!16\)\( T_{5}^{12} - \)\(60\!\cdots\!32\)\( T_{5}^{11} + \)\(26\!\cdots\!76\)\( T_{5}^{10} - \)\(32\!\cdots\!72\)\( T_{5}^{9} + \)\(47\!\cdots\!28\)\( T_{5}^{8} - \)\(20\!\cdots\!40\)\( T_{5}^{7} + \)\(13\!\cdots\!68\)\( T_{5}^{6} + \)\(14\!\cdots\!80\)\( T_{5}^{5} + \)\(49\!\cdots\!92\)\( T_{5}^{4} - \)\(39\!\cdots\!48\)\( T_{5}^{3} + \)\(27\!\cdots\!96\)\( T_{5}^{2} - \)\(71\!\cdots\!92\)\( T_{5} + \)\(11\!\cdots\!84\)\( \)">\(T_{5}^{240} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).