Properties

Label 966.2.r.a
Level $966$
Weight $2$
Character orbit 966.r
Analytic conductor $7.714$
Analytic rank $0$
Dimension $240$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [966,2,Mod(113,966)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("966.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(966, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.r (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,-4,24,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 240 q - 4 q^{3} + 24 q^{4} - 4 q^{5} + 4 q^{9} + 4 q^{12} - 8 q^{13} + 24 q^{14} + 18 q^{15} - 24 q^{16} + 32 q^{17} - 4 q^{18} + 4 q^{20} - 8 q^{23} + 12 q^{25} - 148 q^{27} + 40 q^{30} + 16 q^{31} + 42 q^{33}+ \cdots + 172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1 −0.540641 + 0.841254i −1.72997 0.0847817i −0.415415 0.909632i −2.86323 0.840720i 1.00662 1.40951i −0.755750 0.654861i 0.989821 + 0.142315i 2.98562 + 0.293340i 2.25524 1.95417i
113.2 −0.540641 + 0.841254i −1.65958 0.495767i −0.415415 0.909632i 1.08122 + 0.317476i 1.31430 1.12810i −0.755750 0.654861i 0.989821 + 0.142315i 2.50843 + 1.64553i −0.851632 + 0.737943i
113.3 −0.540641 + 0.841254i −1.54004 + 0.792632i −0.415415 0.909632i −1.55379 0.456233i 0.165806 1.72410i −0.755750 0.654861i 0.989821 + 0.142315i 1.74347 2.44138i 1.22385 1.06047i
113.4 −0.540641 + 0.841254i −0.844377 + 1.51229i −0.415415 0.909632i 2.57280 + 0.755442i −0.815716 1.52794i −0.755750 0.654861i 0.989821 + 0.142315i −1.57405 2.55389i −2.02648 + 1.75595i
113.5 −0.540641 + 0.841254i −0.618673 1.61779i −0.415415 0.909632i −0.285460 0.0838187i 1.69545 + 0.354183i −0.755750 0.654861i 0.989821 + 0.142315i −2.23449 + 2.00176i 0.224844 0.194829i
113.6 −0.540641 + 0.841254i 0.0176252 + 1.73196i −0.415415 0.909632i 0.959405 + 0.281707i −1.46655 0.921542i −0.755750 0.654861i 0.989821 + 0.142315i −2.99938 + 0.0610522i −0.755680 + 0.654801i
113.7 −0.540641 + 0.841254i 0.822715 1.52418i −0.415415 0.909632i 3.64992 + 1.07171i 0.837432 + 1.51615i −0.755750 0.654861i 0.989821 + 0.142315i −1.64628 2.50794i −2.87488 + 2.49110i
113.8 −0.540641 + 0.841254i 0.897526 + 1.48137i −0.415415 0.909632i 1.68096 + 0.493574i −1.73144 0.0458405i −0.755750 0.654861i 0.989821 + 0.142315i −1.38889 + 2.65913i −1.32402 + 1.14727i
113.9 −0.540641 + 0.841254i 0.899579 1.48012i −0.415415 0.909632i −0.854693 0.250960i 0.758807 + 1.55699i −0.755750 0.654861i 0.989821 + 0.142315i −1.38151 2.66297i 0.673203 0.583334i
113.10 −0.540641 + 0.841254i 1.04501 + 1.38129i −0.415415 0.909632i −1.38055 0.405366i −1.72699 + 0.132338i −0.755750 0.654861i 0.989821 + 0.142315i −0.815909 + 2.88692i 1.08740 0.942236i
113.11 −0.540641 + 0.841254i 1.32111 1.12013i −0.415415 0.909632i −1.47166 0.432119i 0.228066 + 1.71697i −0.755750 0.654861i 0.989821 + 0.142315i 0.490639 2.95961i 1.15916 1.00442i
113.12 −0.540641 + 0.841254i 1.57548 + 0.719621i −0.415415 0.909632i −2.33211 0.684769i −1.45715 + 0.936324i −0.755750 0.654861i 0.989821 + 0.142315i 1.96429 + 2.26750i 1.83690 1.59168i
113.13 0.540641 0.841254i −1.71466 + 0.244816i −0.415415 0.909632i −0.707825 0.207836i −0.721063 + 1.57482i 0.755750 + 0.654861i −0.989821 0.142315i 2.88013 0.839555i −0.557522 + 0.483096i
113.14 0.540641 0.841254i −1.70862 + 0.283914i −0.415415 0.909632i 4.23656 + 1.24397i −0.684908 + 1.59088i 0.755750 + 0.654861i −0.989821 0.142315i 2.83879 0.970204i 3.33695 2.89148i
113.15 0.540641 0.841254i −1.67713 0.432689i −0.415415 0.909632i −0.241809 0.0710016i −1.27073 + 1.17697i 0.755750 + 0.654861i −0.989821 0.142315i 2.62556 + 1.45135i −0.190462 + 0.165036i
113.16 0.540641 0.841254i −0.980063 + 1.42810i −0.415415 0.909632i −3.32190 0.975398i 0.671534 + 1.59657i 0.755750 + 0.654861i −0.989821 0.142315i −1.07895 2.79926i −2.61651 + 2.26722i
113.17 0.540641 0.841254i −0.628320 1.61407i −0.415415 0.909632i −2.58447 0.758869i −1.69754 0.344054i 0.755750 + 0.654861i −0.989821 0.142315i −2.21043 + 2.02830i −2.03567 + 1.76392i
113.18 0.540641 0.841254i 0.331308 + 1.70007i −0.415415 0.909632i 2.40341 + 0.705705i 1.60931 + 0.640412i 0.755750 + 0.654861i −0.989821 0.142315i −2.78047 + 1.12649i 1.89306 1.64034i
113.19 0.540641 0.841254i 0.367161 1.69269i −0.415415 0.909632i −2.84093 0.834172i −1.22548 1.22401i 0.755750 + 0.654861i −0.989821 0.142315i −2.73039 1.24298i −2.23767 + 1.93895i
113.20 0.540641 0.841254i 0.677326 + 1.59412i −0.415415 0.909632i −2.64132 0.775563i 1.70725 + 0.292045i 0.755750 + 0.654861i −0.989821 0.142315i −2.08246 + 2.15948i −2.08045 + 1.80272i
See next 80 embeddings (of 240 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 113.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
69.g even 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.r.a 240
3.b odd 2 1 966.2.r.b yes 240
23.d odd 22 1 966.2.r.b yes 240
69.g even 22 1 inner 966.2.r.a 240
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.r.a 240 1.a even 1 1 trivial
966.2.r.a 240 69.g even 22 1 inner
966.2.r.b yes 240 3.b odd 2 1
966.2.r.b yes 240 23.d odd 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{240} + 4 T_{5}^{239} + 62 T_{5}^{238} + 276 T_{5}^{237} + 2903 T_{5}^{236} + \cdots + 11\!\cdots\!84 \) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\). Copy content Toggle raw display