Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.q (of order \(11\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
85.1 | −0.654861 | + | 0.755750i | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | −1.36169 | − | 2.98169i | 0.142315 | − | 0.989821i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | 0.415415 | − | 0.909632i | 3.14512 | + | 0.923492i |
85.2 | −0.654861 | + | 0.755750i | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | −0.568699 | − | 1.24528i | 0.142315 | − | 0.989821i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | 0.415415 | − | 0.909632i | 1.31354 | + | 0.385689i |
85.3 | −0.654861 | + | 0.755750i | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | 0.479771 | + | 1.05055i | 0.142315 | − | 0.989821i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | 0.415415 | − | 0.909632i | −1.10814 | − | 0.325379i |
85.4 | −0.654861 | + | 0.755750i | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | 1.60548 | + | 3.51551i | 0.142315 | − | 0.989821i | 0.959493 | − | 0.281733i | 0.841254 | + | 0.540641i | 0.415415 | − | 0.909632i | −3.70821 | − | 1.08883i |
127.1 | 0.841254 | − | 0.540641i | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | −3.54832 | + | 1.04188i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −0.959493 | − | 0.281733i | −2.42175 | + | 2.79485i |
127.2 | 0.841254 | − | 0.540641i | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | −0.571809 | + | 0.167898i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −0.959493 | − | 0.281733i | −0.390264 | + | 0.450389i |
127.3 | 0.841254 | − | 0.540641i | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | −0.309565 | + | 0.0908964i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −0.959493 | − | 0.281733i | −0.211280 | + | 0.243830i |
127.4 | 0.841254 | − | 0.540641i | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | 3.08844 | − | 0.906847i | −0.415415 | − | 0.909632i | 0.654861 | + | 0.755750i | −0.142315 | − | 0.989821i | −0.959493 | − | 0.281733i | 2.10788 | − | 2.43262i |
169.1 | −0.142315 | + | 0.989821i | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | −2.74645 | − | 3.16958i | 0.959493 | − | 0.281733i | −0.841254 | − | 0.540641i | 0.415415 | − | 0.909632i | −0.654861 | + | 0.755750i | 3.52818 | − | 2.26742i |
169.2 | −0.142315 | + | 0.989821i | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | −0.463708 | − | 0.535148i | 0.959493 | − | 0.281733i | −0.841254 | − | 0.540641i | 0.415415 | − | 0.909632i | −0.654861 | + | 0.755750i | 0.595693 | − | 0.382829i |
169.3 | −0.142315 | + | 0.989821i | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | 0.0335087 | + | 0.0386712i | 0.959493 | − | 0.281733i | −0.841254 | − | 0.540641i | 0.415415 | − | 0.909632i | −0.654861 | + | 0.755750i | −0.0430463 | + | 0.0276642i |
169.4 | −0.142315 | + | 0.989821i | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | 2.81897 | + | 3.25326i | 0.959493 | − | 0.281733i | −0.841254 | − | 0.540641i | 0.415415 | − | 0.909632i | −0.654861 | + | 0.755750i | −3.62133 | + | 2.32729i |
211.1 | 0.415415 | + | 0.909632i | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | −3.48521 | − | 2.23981i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.959493 | − | 0.281733i | 0.841254 | − | 0.540641i | 0.589593 | − | 4.10071i |
211.2 | 0.415415 | + | 0.909632i | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | −2.25359 | − | 1.44829i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.959493 | − | 0.281733i | 0.841254 | − | 0.540641i | 0.381240 | − | 2.65158i |
211.3 | 0.415415 | + | 0.909632i | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | 1.73540 | + | 1.11528i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.959493 | − | 0.281733i | 0.841254 | − | 0.540641i | −0.293578 | + | 2.04188i |
211.4 | 0.415415 | + | 0.909632i | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | 3.08798 | + | 1.98452i | 0.654861 | + | 0.755750i | 0.142315 | + | 0.989821i | −0.959493 | − | 0.281733i | 0.841254 | − | 0.540641i | −0.522394 | + | 3.63333i |
463.1 | −0.142315 | − | 0.989821i | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | −2.74645 | + | 3.16958i | 0.959493 | + | 0.281733i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −0.654861 | − | 0.755750i | 3.52818 | + | 2.26742i |
463.2 | −0.142315 | − | 0.989821i | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | −0.463708 | + | 0.535148i | 0.959493 | + | 0.281733i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −0.654861 | − | 0.755750i | 0.595693 | + | 0.382829i |
463.3 | −0.142315 | − | 0.989821i | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | 0.0335087 | − | 0.0386712i | 0.959493 | + | 0.281733i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −0.654861 | − | 0.755750i | −0.0430463 | − | 0.0276642i |
463.4 | −0.142315 | − | 0.989821i | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | 2.81897 | − | 3.25326i | 0.959493 | + | 0.281733i | −0.841254 | + | 0.540641i | 0.415415 | + | 0.909632i | −0.654861 | − | 0.755750i | −3.62133 | − | 2.32729i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.q.j | ✓ | 40 |
23.c | even | 11 | 1 | inner | 966.2.q.j | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.q.j | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
966.2.q.j | ✓ | 40 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(18\!\cdots\!18\)\( T_{5}^{18} + \)\(21\!\cdots\!84\)\( T_{5}^{17} + \)\(66\!\cdots\!51\)\( T_{5}^{16} + \)\(80\!\cdots\!67\)\( T_{5}^{15} + \)\(29\!\cdots\!83\)\( T_{5}^{14} + \)\(56\!\cdots\!56\)\( T_{5}^{13} + \)\(12\!\cdots\!69\)\( T_{5}^{12} + \)\(19\!\cdots\!34\)\( T_{5}^{11} + \)\(26\!\cdots\!45\)\( T_{5}^{10} + \)\(31\!\cdots\!92\)\( T_{5}^{9} + \)\(32\!\cdots\!36\)\( T_{5}^{8} + \)\(28\!\cdots\!32\)\( T_{5}^{7} + \)\(20\!\cdots\!32\)\( T_{5}^{6} + \)\(11\!\cdots\!04\)\( T_{5}^{5} + \)\(38\!\cdots\!40\)\( T_{5}^{4} + \)\(72\!\cdots\!48\)\( T_{5}^{3} + 376549054208 T_{5}^{2} - 35888090112 T_{5} + 2431673344 \)">\(T_{5}^{40} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).