Properties

Label 966.2.l.d.47.9
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.9
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.845576 - 1.51162i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.37030 - 2.37343i) q^{5} +(-1.48810 + 0.886316i) q^{6} +(-2.52742 + 0.782396i) q^{7} -1.00000i q^{8} +(-1.57000 - 2.55638i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.845576 - 1.51162i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.37030 - 2.37343i) q^{5} +(-1.48810 + 0.886316i) q^{6} +(-2.52742 + 0.782396i) q^{7} -1.00000i q^{8} +(-1.57000 - 2.55638i) q^{9} +(-2.37343 + 1.37030i) q^{10} +(3.00395 - 1.73433i) q^{11} +(1.73189 - 0.0235212i) q^{12} -0.435804i q^{13} +(2.58001 + 0.586136i) q^{14} +(-2.42904 - 4.07829i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.760820 - 1.31778i) q^{17} +(0.0814724 + 2.99889i) q^{18} +(-1.05371 - 0.608361i) q^{19} +2.74060 q^{20} +(-0.954439 + 4.48208i) q^{21} -3.46866 q^{22} +(-0.866025 - 0.500000i) q^{23} +(-1.51162 - 0.845576i) q^{24} +(-1.25545 - 2.17451i) q^{25} +(-0.217902 + 0.377417i) q^{26} +(-5.19184 + 0.211639i) q^{27} +(-1.94128 - 1.79761i) q^{28} -4.66508i q^{29} +(0.0644624 + 4.74643i) q^{30} +(0.180650 - 0.104298i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.0815872 - 6.00734i) q^{33} +1.52164i q^{34} +(-1.60637 + 7.07078i) q^{35} +(1.42889 - 2.63785i) q^{36} +(-0.00946499 + 0.0163938i) q^{37} +(0.608361 + 1.05371i) q^{38} +(-0.658771 - 0.368505i) q^{39} +(-2.37343 - 1.37030i) q^{40} -8.06897 q^{41} +(3.06761 - 3.40438i) q^{42} -4.20542 q^{43} +(3.00395 + 1.73433i) q^{44} +(-8.21878 + 0.223284i) q^{45} +(0.500000 + 0.866025i) q^{46} +(1.71464 - 2.96985i) q^{47} +(0.886316 + 1.48810i) q^{48} +(5.77571 - 3.95489i) q^{49} +2.51090i q^{50} +(-2.63531 + 0.0357908i) q^{51} +(0.377417 - 0.217902i) q^{52} +(-0.785507 + 0.453513i) q^{53} +(4.60209 + 2.41264i) q^{54} -9.50622i q^{55} +(0.782396 + 2.52742i) q^{56} +(-1.81061 + 1.07840i) q^{57} +(-2.33254 + 4.04008i) q^{58} +(3.25061 + 5.63022i) q^{59} +(2.31739 - 4.14276i) q^{60} +(8.95335 + 5.16922i) q^{61} -0.208596 q^{62} +(5.96816 + 5.23269i) q^{63} -1.00000 q^{64} +(-1.03435 - 0.597183i) q^{65} +(-2.93301 + 5.24330i) q^{66} +(1.36737 + 2.36835i) q^{67} +(0.760820 - 1.31778i) q^{68} +(-1.48810 + 0.886316i) q^{69} +(4.92654 - 5.32029i) q^{70} +3.46373i q^{71} +(-2.55638 + 1.57000i) q^{72} +(7.02012 - 4.05307i) q^{73} +(0.0163938 - 0.00946499i) q^{74} +(-4.34861 + 0.0590596i) q^{75} -1.21672i q^{76} +(-6.23531 + 6.73366i) q^{77} +(0.386260 + 0.648520i) q^{78} +(-1.10560 + 1.91495i) q^{79} +(1.37030 + 2.37343i) q^{80} +(-4.07018 + 8.02706i) q^{81} +(6.98793 + 4.03448i) q^{82} -8.99307 q^{83} +(-4.35882 + 1.41447i) q^{84} -4.17021 q^{85} +(3.64200 + 2.10271i) q^{86} +(-7.05184 - 3.94468i) q^{87} +(-1.73433 - 3.00395i) q^{88} +(2.28463 - 3.95710i) q^{89} +(7.22931 + 3.91602i) q^{90} +(0.340971 + 1.10146i) q^{91} -1.00000i q^{92} +(-0.00490644 - 0.361266i) q^{93} +(-2.96985 + 1.71464i) q^{94} +(-2.88781 + 1.66728i) q^{95} +(-0.0235212 - 1.73189i) q^{96} -13.7096i q^{97} +(-6.97936 + 0.537175i) q^{98} +(-9.14982 - 4.95633i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.845576 1.51162i 0.488193 0.872736i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.37030 2.37343i 0.612817 1.06143i −0.377946 0.925828i \(-0.623369\pi\)
0.990763 0.135603i \(-0.0432972\pi\)
\(6\) −1.48810 + 0.886316i −0.607515 + 0.361837i
\(7\) −2.52742 + 0.782396i −0.955275 + 0.295718i
\(8\) 1.00000i 0.353553i
\(9\) −1.57000 2.55638i −0.523335 0.852127i
\(10\) −2.37343 + 1.37030i −0.750545 + 0.433327i
\(11\) 3.00395 1.73433i 0.905724 0.522920i 0.0266714 0.999644i \(-0.491509\pi\)
0.879053 + 0.476724i \(0.158176\pi\)
\(12\) 1.73189 0.0235212i 0.499954 0.00679000i
\(13\) 0.435804i 0.120870i −0.998172 0.0604351i \(-0.980751\pi\)
0.998172 0.0604351i \(-0.0192488\pi\)
\(14\) 2.58001 + 0.586136i 0.689536 + 0.156651i
\(15\) −2.42904 4.07829i −0.627175 1.05301i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.760820 1.31778i −0.184526 0.319608i 0.758891 0.651218i \(-0.225742\pi\)
−0.943417 + 0.331610i \(0.892408\pi\)
\(18\) 0.0814724 + 2.99889i 0.0192032 + 0.706846i
\(19\) −1.05371 0.608361i −0.241738 0.139568i 0.374237 0.927333i \(-0.377905\pi\)
−0.615975 + 0.787765i \(0.711238\pi\)
\(20\) 2.74060 0.612817
\(21\) −0.954439 + 4.48208i −0.208276 + 0.978070i
\(22\) −3.46866 −0.739521
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) −1.51162 0.845576i −0.308559 0.172602i
\(25\) −1.25545 2.17451i −0.251090 0.434901i
\(26\) −0.217902 + 0.377417i −0.0427341 + 0.0740176i
\(27\) −5.19184 + 0.211639i −0.999170 + 0.0407300i
\(28\) −1.94128 1.79761i −0.366868 0.339717i
\(29\) 4.66508i 0.866284i −0.901326 0.433142i \(-0.857405\pi\)
0.901326 0.433142i \(-0.142595\pi\)
\(30\) 0.0644624 + 4.74643i 0.0117692 + 0.866575i
\(31\) 0.180650 0.104298i 0.0324456 0.0187325i −0.483689 0.875240i \(-0.660704\pi\)
0.516135 + 0.856507i \(0.327370\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −0.0815872 6.00734i −0.0142025 1.04574i
\(34\) 1.52164i 0.260959i
\(35\) −1.60637 + 7.07078i −0.271525 + 1.19518i
\(36\) 1.42889 2.63785i 0.238148 0.439642i
\(37\) −0.00946499 + 0.0163938i −0.00155603 + 0.00269513i −0.866802 0.498652i \(-0.833829\pi\)
0.865246 + 0.501347i \(0.167162\pi\)
\(38\) 0.608361 + 1.05371i 0.0986892 + 0.170935i
\(39\) −0.658771 0.368505i −0.105488 0.0590080i
\(40\) −2.37343 1.37030i −0.375272 0.216664i
\(41\) −8.06897 −1.26016 −0.630080 0.776530i \(-0.716978\pi\)
−0.630080 + 0.776530i \(0.716978\pi\)
\(42\) 3.06761 3.40438i 0.473342 0.525307i
\(43\) −4.20542 −0.641321 −0.320660 0.947194i \(-0.603905\pi\)
−0.320660 + 0.947194i \(0.603905\pi\)
\(44\) 3.00395 + 1.73433i 0.452862 + 0.261460i
\(45\) −8.21878 + 0.223284i −1.22518 + 0.0332852i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 1.71464 2.96985i 0.250107 0.433197i −0.713448 0.700708i \(-0.752868\pi\)
0.963555 + 0.267510i \(0.0862010\pi\)
\(48\) 0.886316 + 1.48810i 0.127929 + 0.214789i
\(49\) 5.77571 3.95489i 0.825102 0.564984i
\(50\) 2.51090i 0.355095i
\(51\) −2.63531 + 0.0357908i −0.369018 + 0.00501172i
\(52\) 0.377417 0.217902i 0.0523383 0.0302176i
\(53\) −0.785507 + 0.453513i −0.107898 + 0.0622948i −0.552978 0.833196i \(-0.686509\pi\)
0.445080 + 0.895491i \(0.353175\pi\)
\(54\) 4.60209 + 2.41264i 0.626264 + 0.328318i
\(55\) 9.50622i 1.28182i
\(56\) 0.782396 + 2.52742i 0.104552 + 0.337741i
\(57\) −1.81061 + 1.07840i −0.239821 + 0.142838i
\(58\) −2.33254 + 4.04008i −0.306278 + 0.530488i
\(59\) 3.25061 + 5.63022i 0.423193 + 0.732992i 0.996250 0.0865235i \(-0.0275758\pi\)
−0.573056 + 0.819516i \(0.694242\pi\)
\(60\) 2.31739 4.14276i 0.299173 0.534828i
\(61\) 8.95335 + 5.16922i 1.14636 + 0.661851i 0.947997 0.318278i \(-0.103105\pi\)
0.198362 + 0.980129i \(0.436438\pi\)
\(62\) −0.208596 −0.0264918
\(63\) 5.96816 + 5.23269i 0.751918 + 0.659257i
\(64\) −1.00000 −0.125000
\(65\) −1.03435 0.597183i −0.128295 0.0740714i
\(66\) −2.93301 + 5.24330i −0.361029 + 0.645406i
\(67\) 1.36737 + 2.36835i 0.167051 + 0.289340i 0.937382 0.348304i \(-0.113242\pi\)
−0.770331 + 0.637644i \(0.779909\pi\)
\(68\) 0.760820 1.31778i 0.0922629 0.159804i
\(69\) −1.48810 + 0.886316i −0.179146 + 0.106700i
\(70\) 4.92654 5.32029i 0.588835 0.635896i
\(71\) 3.46373i 0.411069i 0.978650 + 0.205534i \(0.0658932\pi\)
−0.978650 + 0.205534i \(0.934107\pi\)
\(72\) −2.55638 + 1.57000i −0.301272 + 0.185027i
\(73\) 7.02012 4.05307i 0.821643 0.474376i −0.0293400 0.999569i \(-0.509341\pi\)
0.850983 + 0.525194i \(0.176007\pi\)
\(74\) 0.0163938 0.00946499i 0.00190574 0.00110028i
\(75\) −4.34861 + 0.0590596i −0.502134 + 0.00681961i
\(76\) 1.21672i 0.139568i
\(77\) −6.23531 + 6.73366i −0.710579 + 0.767372i
\(78\) 0.386260 + 0.648520i 0.0437353 + 0.0734304i
\(79\) −1.10560 + 1.91495i −0.124389 + 0.215449i −0.921494 0.388392i \(-0.873031\pi\)
0.797105 + 0.603841i \(0.206364\pi\)
\(80\) 1.37030 + 2.37343i 0.153204 + 0.265358i
\(81\) −4.07018 + 8.02706i −0.452242 + 0.891895i
\(82\) 6.98793 + 4.03448i 0.771688 + 0.445534i
\(83\) −8.99307 −0.987118 −0.493559 0.869712i \(-0.664304\pi\)
−0.493559 + 0.869712i \(0.664304\pi\)
\(84\) −4.35882 + 1.41447i −0.475586 + 0.154332i
\(85\) −4.17021 −0.452323
\(86\) 3.64200 + 2.10271i 0.392727 + 0.226741i
\(87\) −7.05184 3.94468i −0.756037 0.422914i
\(88\) −1.73433 3.00395i −0.184880 0.320222i
\(89\) 2.28463 3.95710i 0.242171 0.419452i −0.719162 0.694843i \(-0.755474\pi\)
0.961332 + 0.275391i \(0.0888073\pi\)
\(90\) 7.22931 + 3.91602i 0.762036 + 0.412785i
\(91\) 0.340971 + 1.10146i 0.0357435 + 0.115464i
\(92\) 1.00000i 0.104257i
\(93\) −0.00490644 0.361266i −0.000508775 0.0374616i
\(94\) −2.96985 + 1.71464i −0.306317 + 0.176852i
\(95\) −2.88781 + 1.66728i −0.296283 + 0.171059i
\(96\) −0.0235212 1.73189i −0.00240063 0.176760i
\(97\) 13.7096i 1.39200i −0.718042 0.696000i \(-0.754962\pi\)
0.718042 0.696000i \(-0.245038\pi\)
\(98\) −6.97936 + 0.537175i −0.705022 + 0.0542628i
\(99\) −9.14982 4.95633i −0.919592 0.498130i
\(100\) 1.25545 2.17451i 0.125545 0.217451i
\(101\) −5.31566 9.20699i −0.528928 0.916130i −0.999431 0.0337317i \(-0.989261\pi\)
0.470503 0.882398i \(-0.344073\pi\)
\(102\) 2.30014 + 1.28666i 0.227748 + 0.127398i
\(103\) 14.5965 + 8.42729i 1.43824 + 0.830366i 0.997727 0.0673824i \(-0.0214648\pi\)
0.440509 + 0.897748i \(0.354798\pi\)
\(104\) −0.435804 −0.0427341
\(105\) 9.33004 + 8.40710i 0.910519 + 0.820449i
\(106\) 0.907026 0.0880981
\(107\) −14.9112 8.60896i −1.44152 0.832260i −0.443565 0.896242i \(-0.646287\pi\)
−0.997951 + 0.0639822i \(0.979620\pi\)
\(108\) −2.77921 4.39045i −0.267429 0.422471i
\(109\) −5.24940 9.09223i −0.502801 0.870878i −0.999995 0.00323780i \(-0.998969\pi\)
0.497193 0.867640i \(-0.334364\pi\)
\(110\) −4.75311 + 8.23263i −0.453191 + 0.784950i
\(111\) 0.0167779 + 0.0281697i 0.00159249 + 0.00267375i
\(112\) 0.586136 2.58001i 0.0553847 0.243788i
\(113\) 7.78724i 0.732562i 0.930504 + 0.366281i \(0.119369\pi\)
−0.930504 + 0.366281i \(0.880631\pi\)
\(114\) 2.10723 0.0286188i 0.197360 0.00268040i
\(115\) −2.37343 + 1.37030i −0.221324 + 0.127781i
\(116\) 4.04008 2.33254i 0.375112 0.216571i
\(117\) −1.11408 + 0.684214i −0.102997 + 0.0632556i
\(118\) 6.50122i 0.598486i
\(119\) 2.95394 + 2.73532i 0.270787 + 0.250746i
\(120\) −4.07829 + 2.42904i −0.372296 + 0.221740i
\(121\) 0.515802 0.893396i 0.0468911 0.0812178i
\(122\) −5.16922 8.95335i −0.467999 0.810598i
\(123\) −6.82292 + 12.1972i −0.615202 + 1.09979i
\(124\) 0.180650 + 0.104298i 0.0162228 + 0.00936625i
\(125\) 6.82162 0.610145
\(126\) −2.55224 7.51572i −0.227371 0.669554i
\(127\) −8.98092 −0.796928 −0.398464 0.917184i \(-0.630457\pi\)
−0.398464 + 0.917184i \(0.630457\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −3.55600 + 6.35701i −0.313088 + 0.559703i
\(130\) 0.597183 + 1.03435i 0.0523764 + 0.0907185i
\(131\) −3.72178 + 6.44632i −0.325174 + 0.563217i −0.981548 0.191218i \(-0.938756\pi\)
0.656374 + 0.754436i \(0.272089\pi\)
\(132\) 5.16172 3.07433i 0.449270 0.267586i
\(133\) 3.13915 + 0.713165i 0.272199 + 0.0618392i
\(134\) 2.73474i 0.236245i
\(135\) −6.61208 + 12.6125i −0.569077 + 1.08551i
\(136\) −1.31778 + 0.760820i −0.112999 + 0.0652397i
\(137\) −0.531957 + 0.307126i −0.0454482 + 0.0262395i −0.522552 0.852607i \(-0.675020\pi\)
0.477104 + 0.878847i \(0.341687\pi\)
\(138\) 1.73189 0.0235212i 0.147428 0.00200226i
\(139\) 17.6028i 1.49305i −0.665356 0.746526i \(-0.731720\pi\)
0.665356 0.746526i \(-0.268280\pi\)
\(140\) −6.92666 + 2.14424i −0.585409 + 0.181221i
\(141\) −3.03943 5.10313i −0.255966 0.429761i
\(142\) 1.73186 2.99967i 0.145335 0.251727i
\(143\) −0.755828 1.30913i −0.0632055 0.109475i
\(144\) 2.99889 0.0814724i 0.249908 0.00678937i
\(145\) −11.0723 6.39257i −0.919500 0.530874i
\(146\) −8.10613 −0.670868
\(147\) −1.09449 12.0749i −0.0902721 0.995917i
\(148\) −0.0189300 −0.00155603
\(149\) 5.50079 + 3.17588i 0.450642 + 0.260179i 0.708101 0.706111i \(-0.249552\pi\)
−0.257459 + 0.966289i \(0.582885\pi\)
\(150\) 3.79554 + 2.12316i 0.309904 + 0.173355i
\(151\) 11.4470 + 19.8269i 0.931548 + 1.61349i 0.780678 + 0.624934i \(0.214874\pi\)
0.150870 + 0.988554i \(0.451793\pi\)
\(152\) −0.608361 + 1.05371i −0.0493446 + 0.0854673i
\(153\) −2.17425 + 4.01386i −0.175778 + 0.324502i
\(154\) 8.76677 2.71386i 0.706446 0.218689i
\(155\) 0.571680i 0.0459184i
\(156\) −0.0102506 0.754765i −0.000820708 0.0604295i
\(157\) 3.14379 1.81507i 0.250902 0.144858i −0.369275 0.929320i \(-0.620394\pi\)
0.620177 + 0.784462i \(0.287061\pi\)
\(158\) 1.91495 1.10560i 0.152345 0.0879567i
\(159\) 0.0213344 + 1.57087i 0.00169193 + 0.124578i
\(160\) 2.74060i 0.216664i
\(161\) 2.58001 + 0.586136i 0.203333 + 0.0461940i
\(162\) 7.53840 4.91655i 0.592273 0.386281i
\(163\) −10.3727 + 17.9660i −0.812452 + 1.40721i 0.0986911 + 0.995118i \(0.468534\pi\)
−0.911143 + 0.412090i \(0.864799\pi\)
\(164\) −4.03448 6.98793i −0.315040 0.545666i
\(165\) −14.3698 8.03823i −1.11869 0.625775i
\(166\) 7.78823 + 4.49654i 0.604484 + 0.348999i
\(167\) 25.6239 1.98284 0.991419 0.130719i \(-0.0417285\pi\)
0.991419 + 0.130719i \(0.0417285\pi\)
\(168\) 4.48208 + 0.954439i 0.345800 + 0.0736366i
\(169\) 12.8101 0.985390
\(170\) 3.61151 + 2.08510i 0.276990 + 0.159920i
\(171\) 0.0991293 + 3.64882i 0.00758061 + 0.279032i
\(172\) −2.10271 3.64200i −0.160330 0.277700i
\(173\) 5.11367 8.85714i 0.388785 0.673396i −0.603501 0.797362i \(-0.706228\pi\)
0.992286 + 0.123966i \(0.0395615\pi\)
\(174\) 4.13473 + 6.94211i 0.313453 + 0.526280i
\(175\) 4.87438 + 4.51363i 0.368468 + 0.341199i
\(176\) 3.46866i 0.261460i
\(177\) 11.2594 0.152917i 0.846309 0.0114939i
\(178\) −3.95710 + 2.28463i −0.296597 + 0.171240i
\(179\) 17.8312 10.2948i 1.33276 0.769471i 0.347041 0.937850i \(-0.387187\pi\)
0.985722 + 0.168379i \(0.0538533\pi\)
\(180\) −4.30276 7.00603i −0.320709 0.522198i
\(181\) 9.82577i 0.730344i −0.930940 0.365172i \(-0.881010\pi\)
0.930940 0.365172i \(-0.118990\pi\)
\(182\) 0.255440 1.12438i 0.0189345 0.0833444i
\(183\) 15.3846 9.16312i 1.13727 0.677357i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 0.0259398 + 0.0449290i 0.00190713 + 0.00330325i
\(186\) −0.176384 + 0.315319i −0.0129331 + 0.0231203i
\(187\) −4.57092 2.63902i −0.334259 0.192985i
\(188\) 3.42929 0.250107
\(189\) 12.9564 4.59697i 0.942438 0.334381i
\(190\) 3.33455 0.241914
\(191\) 15.8766 + 9.16635i 1.14879 + 0.663254i 0.948592 0.316501i \(-0.102508\pi\)
0.200198 + 0.979755i \(0.435842\pi\)
\(192\) −0.845576 + 1.51162i −0.0610242 + 0.109092i
\(193\) −10.7816 18.6742i −0.776075 1.34420i −0.934188 0.356780i \(-0.883875\pi\)
0.158113 0.987421i \(-0.449459\pi\)
\(194\) −6.85480 + 11.8729i −0.492146 + 0.852422i
\(195\) −1.77734 + 1.05858i −0.127278 + 0.0758068i
\(196\) 6.31289 + 3.02447i 0.450921 + 0.216034i
\(197\) 6.82329i 0.486139i −0.970009 0.243070i \(-0.921846\pi\)
0.970009 0.243070i \(-0.0781543\pi\)
\(198\) 5.44581 + 8.86722i 0.387017 + 0.630166i
\(199\) 21.2578 12.2732i 1.50692 0.870022i 0.506954 0.861973i \(-0.330771\pi\)
0.999968 0.00804890i \(-0.00256207\pi\)
\(200\) −2.17451 + 1.25545i −0.153761 + 0.0887738i
\(201\) 4.73627 0.0643244i 0.334071 0.00453709i
\(202\) 10.6313i 0.748017i
\(203\) 3.64994 + 11.7906i 0.256175 + 0.827540i
\(204\) −1.34865 2.26435i −0.0944246 0.158536i
\(205\) −11.0569 + 19.1511i −0.772249 + 1.33757i
\(206\) −8.42729 14.5965i −0.587157 1.01699i
\(207\) 0.0814724 + 2.99889i 0.00566273 + 0.208438i
\(208\) 0.377417 + 0.217902i 0.0261692 + 0.0151088i
\(209\) −4.22040 −0.291931
\(210\) −3.87651 11.9458i −0.267504 0.824337i
\(211\) 7.16890 0.493527 0.246764 0.969076i \(-0.420633\pi\)
0.246764 + 0.969076i \(0.420633\pi\)
\(212\) −0.785507 0.453513i −0.0539489 0.0311474i
\(213\) 5.23584 + 2.92884i 0.358754 + 0.200681i
\(214\) 8.60896 + 14.9112i 0.588497 + 1.01931i
\(215\) −5.76269 + 9.98128i −0.393013 + 0.680718i
\(216\) 0.211639 + 5.19184i 0.0144002 + 0.353260i
\(217\) −0.374976 + 0.404945i −0.0254550 + 0.0274895i
\(218\) 10.4988i 0.711069i
\(219\) −0.190666 14.0389i −0.0128840 0.948664i
\(220\) 8.23263 4.75311i 0.555044 0.320455i
\(221\) −0.574293 + 0.331568i −0.0386311 + 0.0223037i
\(222\) −0.000445256 0.0327846i −2.98836e−5 0.00220036i
\(223\) 21.5279i 1.44162i −0.693134 0.720809i \(-0.743771\pi\)
0.693134 0.720809i \(-0.256229\pi\)
\(224\) −1.79761 + 1.94128i −0.120108 + 0.129708i
\(225\) −3.58780 + 6.62340i −0.239187 + 0.441560i
\(226\) 3.89362 6.74395i 0.259000 0.448601i
\(227\) 12.4069 + 21.4893i 0.823474 + 1.42630i 0.903080 + 0.429472i \(0.141300\pi\)
−0.0796069 + 0.996826i \(0.525366\pi\)
\(228\) −1.83922 1.02883i −0.121806 0.0681360i
\(229\) 7.00295 + 4.04316i 0.462768 + 0.267179i 0.713207 0.700953i \(-0.247242\pi\)
−0.250439 + 0.968132i \(0.580575\pi\)
\(230\) 2.74060 0.180710
\(231\) 4.90632 + 15.1192i 0.322812 + 0.994774i
\(232\) −4.66508 −0.306278
\(233\) −15.1865 8.76791i −0.994899 0.574405i −0.0881639 0.996106i \(-0.528100\pi\)
−0.906735 + 0.421701i \(0.861433\pi\)
\(234\) 1.30693 0.0355060i 0.0854366 0.00232110i
\(235\) −4.69916 8.13918i −0.306539 0.530942i
\(236\) −3.25061 + 5.63022i −0.211597 + 0.366496i
\(237\) 1.95982 + 3.29048i 0.127304 + 0.213740i
\(238\) −1.19052 3.84582i −0.0771702 0.249288i
\(239\) 10.5376i 0.681622i −0.940132 0.340811i \(-0.889298\pi\)
0.940132 0.340811i \(-0.110702\pi\)
\(240\) 4.74643 0.0644624i 0.306380 0.00416103i
\(241\) 7.85333 4.53412i 0.505877 0.292068i −0.225260 0.974299i \(-0.572323\pi\)
0.731137 + 0.682230i \(0.238990\pi\)
\(242\) −0.893396 + 0.515802i −0.0574297 + 0.0331570i
\(243\) 8.69224 + 12.9401i 0.557607 + 0.830105i
\(244\) 10.3384i 0.661851i
\(245\) −1.47218 19.1276i −0.0940543 1.22202i
\(246\) 12.0074 7.15165i 0.765566 0.455973i
\(247\) −0.265126 + 0.459212i −0.0168696 + 0.0292189i
\(248\) −0.104298 0.180650i −0.00662294 0.0114713i
\(249\) −7.60432 + 13.5941i −0.481904 + 0.861493i
\(250\) −5.90770 3.41081i −0.373636 0.215719i
\(251\) 12.9843 0.819563 0.409782 0.912184i \(-0.365605\pi\)
0.409782 + 0.912184i \(0.365605\pi\)
\(252\) −1.54756 + 7.78493i −0.0974871 + 0.490404i
\(253\) −3.46866 −0.218073
\(254\) 7.77770 + 4.49046i 0.488017 + 0.281756i
\(255\) −3.52623 + 6.30378i −0.220821 + 0.394758i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.19925 + 2.07716i −0.0748072 + 0.129570i −0.901002 0.433814i \(-0.857167\pi\)
0.826195 + 0.563384i \(0.190501\pi\)
\(258\) 6.25809 3.72733i 0.389612 0.232053i
\(259\) 0.0110955 0.0488395i 0.000689443 0.00303474i
\(260\) 1.19437i 0.0740714i
\(261\) −11.9257 + 7.32420i −0.738184 + 0.453356i
\(262\) 6.44632 3.72178i 0.398255 0.229933i
\(263\) 14.7688 8.52676i 0.910683 0.525783i 0.0300318 0.999549i \(-0.490439\pi\)
0.880651 + 0.473766i \(0.157106\pi\)
\(264\) −6.00734 + 0.0815872i −0.369726 + 0.00502134i
\(265\) 2.48580i 0.152701i
\(266\) −2.36200 2.18720i −0.144824 0.134106i
\(267\) −4.04981 6.79953i −0.247844 0.416124i
\(268\) −1.36737 + 2.36835i −0.0835254 + 0.144670i
\(269\) −6.75121 11.6934i −0.411628 0.712961i 0.583440 0.812157i \(-0.301706\pi\)
−0.995068 + 0.0991953i \(0.968373\pi\)
\(270\) 12.0325 7.61670i 0.732273 0.463537i
\(271\) 24.6557 + 14.2350i 1.49773 + 0.864715i 0.999997 0.00261508i \(-0.000832408\pi\)
0.497734 + 0.867330i \(0.334166\pi\)
\(272\) 1.52164 0.0922629
\(273\) 1.95331 + 0.415948i 0.118220 + 0.0251743i
\(274\) 0.614251 0.0371083
\(275\) −7.54262 4.35474i −0.454837 0.262600i
\(276\) −1.51162 0.845576i −0.0909890 0.0508977i
\(277\) −3.00910 5.21192i −0.180799 0.313154i 0.761354 0.648337i \(-0.224535\pi\)
−0.942153 + 0.335183i \(0.891202\pi\)
\(278\) −8.80142 + 15.2445i −0.527874 + 0.914304i
\(279\) −0.550247 0.298061i −0.0329424 0.0178445i
\(280\) 7.07078 + 1.60637i 0.422560 + 0.0959987i
\(281\) 3.00152i 0.179056i −0.995984 0.0895278i \(-0.971464\pi\)
0.995984 0.0895278i \(-0.0285358\pi\)
\(282\) 0.0806611 + 5.93916i 0.00480330 + 0.353672i
\(283\) −7.32745 + 4.23050i −0.435572 + 0.251477i −0.701717 0.712455i \(-0.747583\pi\)
0.266146 + 0.963933i \(0.414250\pi\)
\(284\) −2.99967 + 1.73186i −0.177998 + 0.102767i
\(285\) 0.0784328 + 5.77508i 0.00464596 + 0.342086i
\(286\) 1.51166i 0.0893861i
\(287\) 20.3937 6.31312i 1.20380 0.372652i
\(288\) −2.63785 1.42889i −0.155437 0.0841981i
\(289\) 7.34231 12.7172i 0.431900 0.748073i
\(290\) 6.39257 + 11.0723i 0.375384 + 0.650185i
\(291\) −20.7237 11.5925i −1.21485 0.679565i
\(292\) 7.02012 + 4.05307i 0.410821 + 0.237188i
\(293\) −16.8122 −0.982177 −0.491088 0.871110i \(-0.663401\pi\)
−0.491088 + 0.871110i \(0.663401\pi\)
\(294\) −5.08957 + 11.0044i −0.296830 + 0.641788i
\(295\) 17.8173 1.03736
\(296\) 0.0163938 + 0.00946499i 0.000952872 + 0.000550141i
\(297\) −15.2290 + 9.64012i −0.883674 + 0.559376i
\(298\) −3.17588 5.50079i −0.183974 0.318652i
\(299\) −0.217902 + 0.377417i −0.0126016 + 0.0218266i
\(300\) −2.22545 3.73648i −0.128487 0.215726i
\(301\) 10.6289 3.29030i 0.612638 0.189650i
\(302\) 22.8941i 1.31741i
\(303\) −18.4123 + 0.250062i −1.05776 + 0.0143657i
\(304\) 1.05371 0.608361i 0.0604345 0.0348919i
\(305\) 24.5376 14.1668i 1.40502 0.811187i
\(306\) 3.88989 2.38898i 0.222370 0.136569i
\(307\) 24.6237i 1.40535i −0.711510 0.702676i \(-0.751988\pi\)
0.711510 0.702676i \(-0.248012\pi\)
\(308\) −8.94917 2.03311i −0.509926 0.115847i
\(309\) 25.0813 14.9385i 1.42683 0.849821i
\(310\) −0.285840 + 0.495089i −0.0162346 + 0.0281192i
\(311\) 14.0970 + 24.4167i 0.799366 + 1.38454i 0.920029 + 0.391850i \(0.128165\pi\)
−0.120663 + 0.992694i \(0.538502\pi\)
\(312\) −0.368505 + 0.658771i −0.0208625 + 0.0372956i
\(313\) 23.5943 + 13.6222i 1.33363 + 0.769970i 0.985854 0.167609i \(-0.0536047\pi\)
0.347773 + 0.937579i \(0.386938\pi\)
\(314\) −3.63014 −0.204861
\(315\) 20.5976 6.99467i 1.16054 0.394105i
\(316\) −2.21120 −0.124389
\(317\) 4.97190 + 2.87053i 0.279250 + 0.161225i 0.633084 0.774083i \(-0.281789\pi\)
−0.353834 + 0.935308i \(0.615122\pi\)
\(318\) 0.766959 1.37108i 0.0430089 0.0768864i
\(319\) −8.09079 14.0137i −0.452997 0.784614i
\(320\) −1.37030 + 2.37343i −0.0766022 + 0.132679i
\(321\) −25.6220 + 15.2605i −1.43008 + 0.851759i
\(322\) −1.94128 1.79761i −0.108184 0.100177i
\(323\) 1.85141i 0.103015i
\(324\) −8.98672 + 0.488654i −0.499262 + 0.0271475i
\(325\) −0.947658 + 0.547131i −0.0525666 + 0.0303494i
\(326\) 17.9660 10.3727i 0.995046 0.574490i
\(327\) −18.1828 + 0.246945i −1.00551 + 0.0136561i
\(328\) 8.06897i 0.445534i
\(329\) −2.01003 + 8.84760i −0.110817 + 0.487784i
\(330\) 8.42551 + 14.1462i 0.463809 + 0.778724i
\(331\) −3.41368 + 5.91267i −0.187633 + 0.324990i −0.944461 0.328625i \(-0.893415\pi\)
0.756828 + 0.653614i \(0.226748\pi\)
\(332\) −4.49654 7.78823i −0.246779 0.427435i
\(333\) 0.0567690 0.00154227i 0.00311092 8.45159e-5i
\(334\) −22.1910 12.8120i −1.21424 0.701039i
\(335\) 7.49483 0.409486
\(336\) −3.40438 3.06761i −0.185724 0.167352i
\(337\) 22.6179 1.23207 0.616037 0.787717i \(-0.288737\pi\)
0.616037 + 0.787717i \(0.288737\pi\)
\(338\) −11.0939 6.40504i −0.603426 0.348388i
\(339\) 11.7714 + 6.58470i 0.639333 + 0.357632i
\(340\) −2.08510 3.61151i −0.113081 0.195861i
\(341\) 0.361775 0.626613i 0.0195912 0.0339330i
\(342\) 1.73856 3.20954i 0.0940106 0.173552i
\(343\) −11.5034 + 14.5146i −0.621124 + 0.783712i
\(344\) 4.20542i 0.226741i
\(345\) 0.0644624 + 4.74643i 0.00347054 + 0.255539i
\(346\) −8.85714 + 5.11367i −0.476163 + 0.274913i
\(347\) −13.8384 + 7.98958i −0.742882 + 0.428903i −0.823116 0.567873i \(-0.807766\pi\)
0.0802344 + 0.996776i \(0.474433\pi\)
\(348\) −0.109728 8.07941i −0.00588206 0.433102i
\(349\) 8.55471i 0.457923i 0.973435 + 0.228961i \(0.0735330\pi\)
−0.973435 + 0.228961i \(0.926467\pi\)
\(350\) −1.96452 6.34611i −0.105008 0.339214i
\(351\) 0.0922331 + 2.26262i 0.00492304 + 0.120770i
\(352\) 1.73433 3.00395i 0.0924401 0.160111i
\(353\) −1.19637 2.07217i −0.0636764 0.110291i 0.832430 0.554131i \(-0.186949\pi\)
−0.896106 + 0.443840i \(0.853616\pi\)
\(354\) −9.82739 5.49727i −0.522320 0.292177i
\(355\) 8.22092 + 4.74635i 0.436321 + 0.251910i
\(356\) 4.56926 0.242171
\(357\) 6.63254 2.15232i 0.351031 0.113913i
\(358\) −20.5896 −1.08820
\(359\) −10.3163 5.95610i −0.544472 0.314351i 0.202417 0.979299i \(-0.435120\pi\)
−0.746889 + 0.664948i \(0.768454\pi\)
\(360\) 0.223284 + 8.21878i 0.0117681 + 0.433168i
\(361\) −8.75979 15.1724i −0.461042 0.798548i
\(362\) −4.91289 + 8.50937i −0.258216 + 0.447243i
\(363\) −0.914327 1.53513i −0.0479897 0.0805736i
\(364\) −0.783407 + 0.846019i −0.0410617 + 0.0443435i
\(365\) 22.2157i 1.16282i
\(366\) −17.9051 + 0.243173i −0.935912 + 0.0127109i
\(367\) −18.7139 + 10.8045i −0.976856 + 0.563988i −0.901320 0.433155i \(-0.857400\pi\)
−0.0755369 + 0.997143i \(0.524067\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) 12.6683 + 20.6274i 0.659486 + 1.07382i
\(370\) 0.0518795i 0.00269709i
\(371\) 1.63048 1.76080i 0.0846504 0.0914159i
\(372\) 0.310412 0.184882i 0.0160941 0.00958569i
\(373\) −5.41610 + 9.38096i −0.280435 + 0.485728i −0.971492 0.237073i \(-0.923812\pi\)
0.691057 + 0.722800i \(0.257145\pi\)
\(374\) 2.63902 + 4.57092i 0.136461 + 0.236357i
\(375\) 5.76820 10.3117i 0.297869 0.532495i
\(376\) −2.96985 1.71464i −0.153158 0.0884260i
\(377\) −2.03306 −0.104708
\(378\) −13.5190 2.49709i −0.695345 0.128437i
\(379\) −21.6669 −1.11295 −0.556477 0.830863i \(-0.687847\pi\)
−0.556477 + 0.830863i \(0.687847\pi\)
\(380\) −2.88781 1.66728i −0.148141 0.0855294i
\(381\) −7.59405 + 13.5758i −0.389055 + 0.695507i
\(382\) −9.16635 15.8766i −0.468992 0.812317i
\(383\) −8.29154 + 14.3614i −0.423678 + 0.733832i −0.996296 0.0859904i \(-0.972595\pi\)
0.572618 + 0.819822i \(0.305928\pi\)
\(384\) 1.48810 0.886316i 0.0759393 0.0452296i
\(385\) 7.43762 + 24.0262i 0.379056 + 1.22449i
\(386\) 21.5632i 1.09754i
\(387\) 6.60253 + 10.7507i 0.335625 + 0.546487i
\(388\) 11.8729 6.85480i 0.602753 0.348000i
\(389\) 19.6980 11.3727i 0.998729 0.576617i 0.0908572 0.995864i \(-0.471039\pi\)
0.907872 + 0.419247i \(0.137706\pi\)
\(390\) 2.06851 0.0280929i 0.104743 0.00142254i
\(391\) 1.52164i 0.0769526i
\(392\) −3.95489 5.77571i −0.199752 0.291718i
\(393\) 6.59735 + 11.0768i 0.332792 + 0.558750i
\(394\) −3.41164 + 5.90914i −0.171876 + 0.297698i
\(395\) 3.03001 + 5.24812i 0.152456 + 0.264062i
\(396\) −0.282600 10.4021i −0.0142012 0.522727i
\(397\) −16.9159 9.76642i −0.848986 0.490162i 0.0113226 0.999936i \(-0.496396\pi\)
−0.860309 + 0.509774i \(0.829729\pi\)
\(398\) −24.5463 −1.23040
\(399\) 3.73243 4.14218i 0.186855 0.207368i
\(400\) 2.51090 0.125545
\(401\) 12.3930 + 7.15511i 0.618877 + 0.357309i 0.776432 0.630201i \(-0.217028\pi\)
−0.157554 + 0.987510i \(0.550361\pi\)
\(402\) −4.13389 2.31243i −0.206180 0.115333i
\(403\) −0.0454535 0.0787278i −0.00226420 0.00392171i
\(404\) 5.31566 9.20699i 0.264464 0.458065i
\(405\) 13.4743 + 20.6598i 0.669544 + 1.02659i
\(406\) 2.73437 12.0359i 0.135705 0.597334i
\(407\) 0.0656616i 0.00325473i
\(408\) 0.0357908 + 2.63531i 0.00177191 + 0.130467i
\(409\) 1.19071 0.687456i 0.0588768 0.0339925i −0.470273 0.882521i \(-0.655844\pi\)
0.529149 + 0.848529i \(0.322511\pi\)
\(410\) 19.1511 11.0569i 0.945807 0.546062i
\(411\) 0.0144479 + 1.06382i 0.000712665 + 0.0524742i
\(412\) 16.8546i 0.830366i
\(413\) −12.6207 11.6867i −0.621025 0.575064i
\(414\) 1.42889 2.63785i 0.0702261 0.129643i
\(415\) −12.3232 + 21.3444i −0.604923 + 1.04776i
\(416\) −0.217902 0.377417i −0.0106835 0.0185044i
\(417\) −26.6088 14.8845i −1.30304 0.728898i
\(418\) 3.65497 + 2.11020i 0.178770 + 0.103213i
\(419\) −16.4251 −0.802421 −0.401210 0.915986i \(-0.631410\pi\)
−0.401210 + 0.915986i \(0.631410\pi\)
\(420\) −2.61574 + 12.2836i −0.127635 + 0.599378i
\(421\) −11.5639 −0.563590 −0.281795 0.959475i \(-0.590930\pi\)
−0.281795 + 0.959475i \(0.590930\pi\)
\(422\) −6.20845 3.58445i −0.302222 0.174488i
\(423\) −10.2841 + 0.279393i −0.500029 + 0.0135845i
\(424\) 0.453513 + 0.785507i 0.0220245 + 0.0381476i
\(425\) −1.91034 + 3.30881i −0.0926653 + 0.160501i
\(426\) −3.06995 5.15437i −0.148740 0.249730i
\(427\) −26.6733 6.05973i −1.29081 0.293251i
\(428\) 17.2179i 0.832260i
\(429\) −2.61802 + 0.0355560i −0.126399 + 0.00171666i
\(430\) 9.98128 5.76269i 0.481340 0.277902i
\(431\) 2.68474 1.55004i 0.129319 0.0746626i −0.433945 0.900940i \(-0.642879\pi\)
0.563264 + 0.826277i \(0.309545\pi\)
\(432\) 2.41264 4.60209i 0.116078 0.221418i
\(433\) 21.8007i 1.04767i 0.851818 + 0.523837i \(0.175500\pi\)
−0.851818 + 0.523837i \(0.824500\pi\)
\(434\) 0.527211 0.163205i 0.0253069 0.00783408i
\(435\) −19.0256 + 11.3317i −0.912206 + 0.543312i
\(436\) 5.24940 9.09223i 0.251401 0.435439i
\(437\) 0.608361 + 1.05371i 0.0291019 + 0.0504059i
\(438\) −6.85435 + 12.2534i −0.327513 + 0.585491i
\(439\) 24.8166 + 14.3279i 1.18443 + 0.683833i 0.957036 0.289969i \(-0.0936449\pi\)
0.227398 + 0.973802i \(0.426978\pi\)
\(440\) −9.50622 −0.453191
\(441\) −19.1781 8.55574i −0.913243 0.407416i
\(442\) 0.663136 0.0315422
\(443\) 25.5305 + 14.7401i 1.21299 + 0.700322i 0.963410 0.268032i \(-0.0863732\pi\)
0.249583 + 0.968353i \(0.419707\pi\)
\(444\) −0.0160067 + 0.0286150i −0.000759645 + 0.00135801i
\(445\) −6.26127 10.8448i −0.296813 0.514095i
\(446\) −10.7640 + 18.6437i −0.509689 + 0.882807i
\(447\) 9.45207 5.62967i 0.447068 0.266274i
\(448\) 2.52742 0.782396i 0.119409 0.0369647i
\(449\) 31.8252i 1.50193i −0.660344 0.750963i \(-0.729590\pi\)
0.660344 0.750963i \(-0.270410\pi\)
\(450\) 6.41883 3.94213i 0.302586 0.185834i
\(451\) −24.2388 + 13.9943i −1.14136 + 0.658964i
\(452\) −6.74395 + 3.89362i −0.317209 + 0.183140i
\(453\) 39.6501 0.538497i 1.86292 0.0253008i
\(454\) 24.8138i 1.16457i
\(455\) 3.08147 + 0.700061i 0.144462 + 0.0328193i
\(456\) 1.07840 + 1.81061i 0.0505007 + 0.0847894i
\(457\) −3.68965 + 6.39067i −0.172595 + 0.298943i −0.939326 0.343025i \(-0.888548\pi\)
0.766732 + 0.641968i \(0.221882\pi\)
\(458\) −4.04316 7.00295i −0.188924 0.327226i
\(459\) 4.22895 + 6.68068i 0.197390 + 0.311827i
\(460\) −2.37343 1.37030i −0.110662 0.0638906i
\(461\) 21.7224 1.01171 0.505856 0.862618i \(-0.331177\pi\)
0.505856 + 0.862618i \(0.331177\pi\)
\(462\) 3.31062 15.5468i 0.154024 0.723303i
\(463\) −32.2342 −1.49805 −0.749025 0.662542i \(-0.769478\pi\)
−0.749025 + 0.662542i \(0.769478\pi\)
\(464\) 4.04008 + 2.33254i 0.187556 + 0.108285i
\(465\) −0.864164 0.483398i −0.0400746 0.0224171i
\(466\) 8.76791 + 15.1865i 0.406166 + 0.703500i
\(467\) −0.354054 + 0.613240i −0.0163837 + 0.0283774i −0.874101 0.485744i \(-0.838549\pi\)
0.857717 + 0.514122i \(0.171882\pi\)
\(468\) −1.14959 0.622716i −0.0531397 0.0287850i
\(469\) −5.30891 4.91600i −0.245142 0.227000i
\(470\) 9.39832i 0.433512i
\(471\) −0.0853854 6.28701i −0.00393435 0.289690i
\(472\) 5.63022 3.25061i 0.259152 0.149621i
\(473\) −12.6329 + 7.29359i −0.580860 + 0.335360i
\(474\) −0.0520101 3.82955i −0.00238890 0.175897i
\(475\) 3.05507i 0.140176i
\(476\) −0.891888 + 3.92584i −0.0408796 + 0.179941i
\(477\) 2.39260 + 1.29604i 0.109550 + 0.0593416i
\(478\) −5.26881 + 9.12585i −0.240990 + 0.417407i
\(479\) 16.5330 + 28.6360i 0.755412 + 1.30841i 0.945169 + 0.326581i \(0.105897\pi\)
−0.189757 + 0.981831i \(0.560770\pi\)
\(480\) −4.14276 2.31739i −0.189090 0.105774i
\(481\) 0.00714450 + 0.00412488i 0.000325761 + 0.000188078i
\(482\) −9.06824 −0.413047
\(483\) 3.06761 3.40438i 0.139581 0.154904i
\(484\) 1.03160 0.0468911
\(485\) −32.5388 18.7863i −1.47751 0.853041i
\(486\) −1.05767 15.5525i −0.0479771 0.705477i
\(487\) −2.98815 5.17563i −0.135406 0.234530i 0.790346 0.612660i \(-0.209901\pi\)
−0.925753 + 0.378130i \(0.876567\pi\)
\(488\) 5.16922 8.95335i 0.234000 0.405299i
\(489\) 18.3870 + 30.8712i 0.831487 + 1.39605i
\(490\) −8.28888 + 17.3011i −0.374453 + 0.781585i
\(491\) 5.24711i 0.236799i 0.992966 + 0.118399i \(0.0377763\pi\)
−0.992966 + 0.118399i \(0.962224\pi\)
\(492\) −13.9746 + 0.189792i −0.630022 + 0.00855649i
\(493\) −6.14754 + 3.54929i −0.276871 + 0.159852i
\(494\) 0.459212 0.265126i 0.0206609 0.0119286i
\(495\) −24.3015 + 14.9248i −1.09227 + 0.670820i
\(496\) 0.208596i 0.00936625i
\(497\) −2.71000 8.75429i −0.121560 0.392684i
\(498\) 13.3826 7.97070i 0.599689 0.357176i
\(499\) 18.0190 31.2098i 0.806641 1.39714i −0.108537 0.994092i \(-0.534617\pi\)
0.915178 0.403050i \(-0.132050\pi\)
\(500\) 3.41081 + 5.90770i 0.152536 + 0.264200i
\(501\) 21.6670 38.7337i 0.968009 1.73049i
\(502\) −11.2448 6.49216i −0.501878 0.289759i
\(503\) −27.3783 −1.22074 −0.610369 0.792117i \(-0.708979\pi\)
−0.610369 + 0.792117i \(0.708979\pi\)
\(504\) 5.23269 5.96816i 0.233082 0.265843i
\(505\) −29.1362 −1.29655
\(506\) 3.00395 + 1.73433i 0.133542 + 0.0771004i
\(507\) 10.8319 19.3640i 0.481061 0.859985i
\(508\) −4.49046 7.77770i −0.199232 0.345080i
\(509\) 0.828354 1.43475i 0.0367161 0.0635942i −0.847083 0.531460i \(-0.821644\pi\)
0.883800 + 0.467866i \(0.154977\pi\)
\(510\) 6.20569 3.69612i 0.274793 0.163667i
\(511\) −14.5717 + 15.7363i −0.644614 + 0.696134i
\(512\) 1.00000i 0.0441942i
\(513\) 5.59946 + 2.93551i 0.247222 + 0.129606i
\(514\) 2.07716 1.19925i 0.0916198 0.0528967i
\(515\) 40.0032 23.0959i 1.76275 1.01773i
\(516\) −7.28333 + 0.0989167i −0.320631 + 0.00435457i
\(517\) 11.8950i 0.523143i
\(518\) −0.0340288 + 0.0367485i −0.00149514 + 0.00161464i
\(519\) −9.06465 15.2193i −0.397894 0.668054i
\(520\) −0.597183 + 1.03435i −0.0261882 + 0.0453593i
\(521\) 2.85673 + 4.94801i 0.125156 + 0.216776i 0.921794 0.387680i \(-0.126724\pi\)
−0.796638 + 0.604457i \(0.793390\pi\)
\(522\) 13.9901 0.380076i 0.612329 0.0166355i
\(523\) −0.405946 0.234373i −0.0177508 0.0102484i 0.491098 0.871104i \(-0.336596\pi\)
−0.508849 + 0.860856i \(0.669929\pi\)
\(524\) −7.44357 −0.325174
\(525\) 10.9446 3.55160i 0.477660 0.155005i
\(526\) −17.0535 −0.743569
\(527\) −0.274884 0.158704i −0.0119741 0.00691326i
\(528\) 5.24330 + 2.93301i 0.228186 + 0.127643i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 1.24290 2.15276i 0.0539881 0.0935101i
\(531\) 9.28952 17.1493i 0.403131 0.744215i
\(532\) 0.951958 + 3.07517i 0.0412726 + 0.133325i
\(533\) 3.51649i 0.152316i
\(534\) 0.107475 + 7.91347i 0.00465089 + 0.342449i
\(535\) −40.8656 + 23.5937i −1.76677 + 1.02005i
\(536\) 2.36835 1.36737i 0.102297 0.0590613i
\(537\) −0.484294 35.6590i −0.0208988 1.53880i
\(538\) 13.5024i 0.582130i
\(539\) 10.4909 21.8973i 0.451874 0.943182i
\(540\) −14.2288 + 0.580019i −0.612309 + 0.0249600i
\(541\) −16.5701 + 28.7003i −0.712405 + 1.23392i 0.251547 + 0.967845i \(0.419061\pi\)
−0.963952 + 0.266077i \(0.914273\pi\)
\(542\) −14.2350 24.6557i −0.611446 1.05906i
\(543\) −14.8529 8.30843i −0.637397 0.356549i
\(544\) −1.31778 0.760820i −0.0564993 0.0326199i
\(545\) −28.7730 −1.23250
\(546\) −1.48364 1.33688i −0.0634939 0.0572130i
\(547\) −30.6968 −1.31250 −0.656249 0.754544i \(-0.727858\pi\)
−0.656249 + 0.754544i \(0.727858\pi\)
\(548\) −0.531957 0.307126i −0.0227241 0.0131198i
\(549\) −0.842298 31.0039i −0.0359484 1.32321i
\(550\) 4.35474 + 7.54262i 0.185687 + 0.321619i
\(551\) −2.83805 + 4.91565i −0.120905 + 0.209414i
\(552\) 0.886316 + 1.48810i 0.0377241 + 0.0633378i
\(553\) 1.29606 5.70490i 0.0551142 0.242597i
\(554\) 6.01820i 0.255689i
\(555\) 0.0898497 0.00122027i 0.00381391 5.17976e-5i
\(556\) 15.2445 8.80142i 0.646511 0.373263i
\(557\) −10.5510 + 6.09161i −0.447060 + 0.258110i −0.706588 0.707626i \(-0.749766\pi\)
0.259528 + 0.965736i \(0.416433\pi\)
\(558\) 0.327497 + 0.533252i 0.0138641 + 0.0225744i
\(559\) 1.83274i 0.0775166i
\(560\) −5.32029 4.92654i −0.224823 0.208184i
\(561\) −7.85427 + 4.67802i −0.331608 + 0.197506i
\(562\) −1.50076 + 2.59939i −0.0633057 + 0.109649i
\(563\) −6.35275 11.0033i −0.267737 0.463733i 0.700540 0.713613i \(-0.252942\pi\)
−0.968277 + 0.249879i \(0.919609\pi\)
\(564\) 2.89972 5.18379i 0.122100 0.218277i
\(565\) 18.4825 + 10.6709i 0.777564 + 0.448927i
\(566\) 8.46101 0.355643
\(567\) 4.00671 23.4722i 0.168266 0.985742i
\(568\) 3.46373 0.145335
\(569\) −25.7753 14.8814i −1.08056 0.623859i −0.149510 0.988760i \(-0.547770\pi\)
−0.931046 + 0.364901i \(0.881103\pi\)
\(570\) 2.81962 5.04058i 0.118101 0.211127i
\(571\) 10.6920 + 18.5190i 0.447445 + 0.774997i 0.998219 0.0596575i \(-0.0190009\pi\)
−0.550774 + 0.834654i \(0.685668\pi\)
\(572\) 0.755828 1.30913i 0.0316027 0.0547376i
\(573\) 27.2809 16.2486i 1.13968 0.678794i
\(574\) −20.8180 4.72951i −0.868927 0.197406i
\(575\) 2.51090i 0.104712i
\(576\) 1.57000 + 2.55638i 0.0654168 + 0.106516i
\(577\) 2.79488 1.61362i 0.116352 0.0671760i −0.440694 0.897657i \(-0.645268\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(578\) −12.7172 + 7.34231i −0.528968 + 0.305400i
\(579\) −37.3450 + 0.507192i −1.55201 + 0.0210782i
\(580\) 12.7851i 0.530874i
\(581\) 22.7293 7.03614i 0.942969 0.291908i
\(582\) 12.1510 + 20.4013i 0.503676 + 0.845660i
\(583\) −1.57308 + 2.72466i −0.0651504 + 0.112844i
\(584\) −4.05307 7.02012i −0.167717 0.290495i
\(585\) 0.0973078 + 3.58177i 0.00402318 + 0.148088i
\(586\) 14.5598 + 8.40608i 0.601458 + 0.347252i
\(587\) −30.8413 −1.27296 −0.636479 0.771294i \(-0.719610\pi\)
−0.636479 + 0.771294i \(0.719610\pi\)
\(588\) 9.90988 6.98528i 0.408677 0.288068i
\(589\) −0.253804 −0.0104578
\(590\) −15.4302 8.90863i −0.635251 0.366762i
\(591\) −10.3142 5.76961i −0.424271 0.237330i
\(592\) −0.00946499 0.0163938i −0.000389009 0.000673783i
\(593\) 13.7391 23.7969i 0.564199 0.977221i −0.432925 0.901430i \(-0.642518\pi\)
0.997124 0.0757913i \(-0.0241483\pi\)
\(594\) 18.0087 0.734104i 0.738907 0.0301207i
\(595\) 10.5399 3.26275i 0.432093 0.133760i
\(596\) 6.35177i 0.260179i
\(597\) −0.577360 42.5116i −0.0236298 1.73988i
\(598\) 0.377417 0.217902i 0.0154337 0.00891067i
\(599\) 17.0476 9.84243i 0.696546 0.402151i −0.109514 0.993985i \(-0.534929\pi\)
0.806060 + 0.591834i \(0.201596\pi\)
\(600\) 0.0590596 + 4.34861i 0.00241110 + 0.177531i
\(601\) 9.65964i 0.394025i 0.980401 + 0.197013i \(0.0631240\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(602\) −10.8500 2.46495i −0.442214 0.100464i
\(603\) 3.90764 7.21384i 0.159131 0.293770i
\(604\) −11.4470 + 19.8269i −0.465774 + 0.806744i
\(605\) −1.41361 2.44844i −0.0574714 0.0995434i
\(606\) 16.0705 + 8.98959i 0.652821 + 0.365177i
\(607\) −12.7673 7.37122i −0.518210 0.299189i 0.217992 0.975951i \(-0.430049\pi\)
−0.736202 + 0.676762i \(0.763383\pi\)
\(608\) −1.21672 −0.0493446
\(609\) 20.9093 + 4.45253i 0.847286 + 0.180426i
\(610\) −28.3336 −1.14719
\(611\) −1.29427 0.747249i −0.0523607 0.0302304i
\(612\) −4.56323 + 0.123972i −0.184458 + 0.00501126i
\(613\) 13.4281 + 23.2582i 0.542356 + 0.939389i 0.998768 + 0.0496200i \(0.0158010\pi\)
−0.456412 + 0.889769i \(0.650866\pi\)
\(614\) −12.3119 + 21.3248i −0.496867 + 0.860599i
\(615\) 19.5998 + 32.9076i 0.790342 + 1.32696i
\(616\) 6.73366 + 6.23531i 0.271307 + 0.251228i
\(617\) 18.1042i 0.728846i 0.931234 + 0.364423i \(0.118734\pi\)
−0.931234 + 0.364423i \(0.881266\pi\)
\(618\) −29.1903 + 0.396441i −1.17421 + 0.0159472i
\(619\) −24.1494 + 13.9427i −0.970646 + 0.560403i −0.899433 0.437058i \(-0.856020\pi\)
−0.0712131 + 0.997461i \(0.522687\pi\)
\(620\) 0.495089 0.285840i 0.0198833 0.0114796i
\(621\) 4.60209 + 2.41264i 0.184675 + 0.0968157i
\(622\) 28.1940i 1.13047i
\(623\) −2.67821 + 11.7887i −0.107300 + 0.472306i
\(624\) 0.648520 0.386260i 0.0259616 0.0154628i
\(625\) 15.6249 27.0632i 0.624998 1.08253i
\(626\) −13.6222 23.5943i −0.544451 0.943016i
\(627\) −3.56866 + 6.37964i −0.142519 + 0.254778i
\(628\) 3.14379 + 1.81507i 0.125451 + 0.0724292i
\(629\) 0.0288046 0.00114851
\(630\) −21.3354 4.24125i −0.850022 0.168975i
\(631\) 0.895993 0.0356689 0.0178345 0.999841i \(-0.494323\pi\)
0.0178345 + 0.999841i \(0.494323\pi\)
\(632\) 1.91495 + 1.10560i 0.0761727 + 0.0439783i
\(633\) 6.06184 10.8367i 0.240937 0.430719i
\(634\) −2.87053 4.97190i −0.114003 0.197459i
\(635\) −12.3066 + 21.3156i −0.488371 + 0.845884i
\(636\) −1.34975 + 0.803911i −0.0535209 + 0.0318771i
\(637\) −1.72355 2.51708i −0.0682897 0.0997303i
\(638\) 16.1816i 0.640635i
\(639\) 8.85460 5.43806i 0.350283 0.215126i
\(640\) 2.37343 1.37030i 0.0938181 0.0541659i
\(641\) −13.6094 + 7.85740i −0.537539 + 0.310349i −0.744081 0.668089i \(-0.767112\pi\)
0.206542 + 0.978438i \(0.433779\pi\)
\(642\) 29.8196 0.404987i 1.17688 0.0159836i
\(643\) 31.5591i 1.24457i −0.782791 0.622285i \(-0.786204\pi\)
0.782791 0.622285i \(-0.213796\pi\)
\(644\) 0.782396 + 2.52742i 0.0308307 + 0.0995943i
\(645\) 10.2151 + 17.1509i 0.402220 + 0.675318i
\(646\) 0.925706 1.60337i 0.0364214 0.0630837i
\(647\) 4.68937 + 8.12222i 0.184358 + 0.319318i 0.943360 0.331771i \(-0.107646\pi\)
−0.759002 + 0.651088i \(0.774313\pi\)
\(648\) 8.02706 + 4.07018i 0.315333 + 0.159892i
\(649\) 19.5293 + 11.2753i 0.766593 + 0.442593i
\(650\) 1.09426 0.0429205
\(651\) 0.295054 + 0.909233i 0.0115641 + 0.0356356i
\(652\) −20.7454 −0.812452
\(653\) −12.6574 7.30776i −0.495323 0.285975i 0.231457 0.972845i \(-0.425651\pi\)
−0.726780 + 0.686870i \(0.758984\pi\)
\(654\) 15.8702 + 8.87753i 0.620575 + 0.347139i
\(655\) 10.1999 + 17.6668i 0.398544 + 0.690299i
\(656\) 4.03448 6.98793i 0.157520 0.272833i
\(657\) −21.3828 11.5828i −0.834222 0.451887i
\(658\) 6.16453 6.65723i 0.240319 0.259526i
\(659\) 19.9758i 0.778146i 0.921207 + 0.389073i \(0.127205\pi\)
−0.921207 + 0.389073i \(0.872795\pi\)
\(660\) −0.223598 16.4637i −0.00870354 0.640850i
\(661\) 40.4552 23.3568i 1.57353 0.908475i 0.577793 0.816183i \(-0.303914\pi\)
0.995732 0.0922918i \(-0.0294193\pi\)
\(662\) 5.91267 3.41368i 0.229802 0.132676i
\(663\) 0.0155978 + 1.14848i 0.000605768 + 0.0446033i
\(664\) 8.99307i 0.348999i
\(665\) 5.99423 6.47331i 0.232446 0.251024i
\(666\) −0.0499345 0.0270488i −0.00193492 0.00104812i
\(667\) −2.33254 + 4.04008i −0.0903163 + 0.156432i
\(668\) 12.8120 + 22.1910i 0.495710 + 0.858594i
\(669\) −32.5421 18.2035i −1.25815 0.703788i
\(670\) −6.49071 3.74742i −0.250758 0.144775i
\(671\) 35.8605 1.38438
\(672\) 1.41447 + 4.35882i 0.0545644 + 0.168145i
\(673\) 5.80197 0.223649 0.111825 0.993728i \(-0.464330\pi\)
0.111825 + 0.993728i \(0.464330\pi\)
\(674\) −19.5876 11.3089i −0.754488 0.435604i
\(675\) 6.97832 + 11.0240i 0.268596 + 0.424313i
\(676\) 6.40504 + 11.0939i 0.246348 + 0.426687i
\(677\) 4.48469 7.76771i 0.172361 0.298537i −0.766884 0.641786i \(-0.778194\pi\)
0.939245 + 0.343248i \(0.111527\pi\)
\(678\) −6.90195 11.5882i −0.265068 0.445042i
\(679\) 10.7263 + 34.6499i 0.411639 + 1.32974i
\(680\) 4.17021i 0.159920i
\(681\) 42.9747 0.583650i 1.64680 0.0223655i
\(682\) −0.626613 + 0.361775i −0.0239942 + 0.0138531i
\(683\) −36.4099 + 21.0212i −1.39318 + 0.804355i −0.993666 0.112370i \(-0.964156\pi\)
−0.399518 + 0.916725i \(0.630822\pi\)
\(684\) −3.11041 + 1.91026i −0.118929 + 0.0730406i
\(685\) 1.68342i 0.0643201i
\(686\) 17.2195 6.81829i 0.657443 0.260323i
\(687\) 12.0333 7.16702i 0.459097 0.273439i
\(688\) 2.10271 3.64200i 0.0801651 0.138850i
\(689\) 0.197643 + 0.342327i 0.00752958 + 0.0130416i
\(690\) 2.31739 4.14276i 0.0882214 0.157712i
\(691\) 6.83426 + 3.94576i 0.259987 + 0.150104i 0.624329 0.781162i \(-0.285373\pi\)
−0.364341 + 0.931265i \(0.618706\pi\)
\(692\) 10.2273 0.388785
\(693\) 27.0033 + 5.36796i 1.02577 + 0.203912i
\(694\) 15.9792 0.606560
\(695\) −41.7791 24.1212i −1.58477 0.914969i
\(696\) −3.94468 + 7.05184i −0.149523 + 0.267299i
\(697\) 6.13903 + 10.6331i 0.232532 + 0.402758i
\(698\) 4.27735 7.40859i 0.161900 0.280419i
\(699\) −26.0951 + 15.5423i −0.987007 + 0.587863i
\(700\) −1.47173 + 6.47815i −0.0556262 + 0.244851i
\(701\) 34.0720i 1.28688i 0.765496 + 0.643441i \(0.222494\pi\)
−0.765496 + 0.643441i \(0.777506\pi\)
\(702\) 1.05144 2.00561i 0.0396839 0.0756967i
\(703\) 0.0199467 0.0115163i 0.000752306 0.000434344i
\(704\) −3.00395 + 1.73433i −0.113216 + 0.0653650i
\(705\) −16.2769 + 0.221060i −0.613022 + 0.00832560i
\(706\) 2.39274i 0.0900520i
\(707\) 20.6384 + 19.1110i 0.776188 + 0.718743i
\(708\) 5.76213 + 9.67447i 0.216554 + 0.363589i
\(709\) −15.9712 + 27.6629i −0.599811 + 1.03890i 0.393037 + 0.919523i \(0.371424\pi\)
−0.992848 + 0.119381i \(0.961909\pi\)
\(710\) −4.74635 8.22092i −0.178127 0.308525i
\(711\) 6.63114 0.180152i 0.248687 0.00675621i
\(712\) −3.95710 2.28463i −0.148299 0.0856202i
\(713\) −0.208596 −0.00781199
\(714\) −6.82011 1.45231i −0.255236 0.0543514i
\(715\) −4.14285 −0.154934
\(716\) 17.8312 + 10.2948i 0.666381 + 0.384735i
\(717\) −15.9289 8.91036i −0.594876 0.332763i
\(718\) 5.95610 + 10.3163i 0.222280 + 0.385000i
\(719\) −7.33232 + 12.7000i −0.273449 + 0.473628i −0.969743 0.244129i \(-0.921498\pi\)
0.696293 + 0.717757i \(0.254831\pi\)
\(720\) 3.91602 7.22931i 0.145941 0.269420i
\(721\) −43.4850 9.87908i −1.61947 0.367916i
\(722\) 17.5196i 0.652012i
\(723\) −0.213296 15.7052i −0.00793257 0.584083i
\(724\) 8.50937 4.91289i 0.316248 0.182586i
\(725\) −10.1442 + 5.85678i −0.376748 + 0.217516i
\(726\) 0.0242646 + 1.78663i 0.000900545 + 0.0663080i
\(727\) 42.0245i 1.55860i 0.626650 + 0.779301i \(0.284426\pi\)
−0.626650 + 0.779301i \(0.715574\pi\)
\(728\) 1.10146 0.340971i 0.0408228 0.0126372i
\(729\) 26.9104 2.19759i 0.996682 0.0813923i
\(730\) −11.1078 + 19.2394i −0.411120 + 0.712080i
\(731\) 3.19957 + 5.54181i 0.118340 + 0.204971i
\(732\) 15.6278 + 8.74193i 0.577621 + 0.323111i
\(733\) 25.3917 + 14.6599i 0.937865 + 0.541476i 0.889290 0.457343i \(-0.151199\pi\)
0.0485743 + 0.998820i \(0.484532\pi\)
\(734\) 21.6089 0.797600
\(735\) −30.1586 13.9485i −1.11242 0.514498i
\(736\) −1.00000 −0.0368605
\(737\) 8.21501 + 4.74294i 0.302604 + 0.174708i
\(738\) −0.657398 24.1980i −0.0241992 0.890740i
\(739\) 13.7002 + 23.7295i 0.503971 + 0.872903i 0.999989 + 0.00459102i \(0.00146137\pi\)
−0.496019 + 0.868312i \(0.665205\pi\)
\(740\) −0.0259398 + 0.0449290i −0.000953565 + 0.00165162i
\(741\) 0.469971 + 0.789069i 0.0172648 + 0.0289872i
\(742\) −2.29244 + 0.709653i −0.0841580 + 0.0260522i
\(743\) 52.7110i 1.93378i 0.255193 + 0.966890i \(0.417861\pi\)
−0.255193 + 0.966890i \(0.582139\pi\)
\(744\) −0.361266 + 0.00490644i −0.0132447 + 0.000179879i
\(745\) 15.0755 8.70384i 0.552323 0.318884i
\(746\) 9.38096 5.41610i 0.343461 0.198298i
\(747\) 14.1192 + 22.9897i 0.516593 + 0.841150i
\(748\) 5.27805i 0.192985i
\(749\) 44.4224 + 10.0920i 1.62316 + 0.368755i
\(750\) −10.1513 + 6.04611i −0.370672 + 0.220773i
\(751\) 20.5369 35.5709i 0.749401 1.29800i −0.198709 0.980058i \(-0.563675\pi\)
0.948110 0.317942i \(-0.102992\pi\)
\(752\) 1.71464 + 2.96985i 0.0625267 + 0.108299i
\(753\) 10.9792 19.6274i 0.400105 0.715262i
\(754\) 1.76068 + 1.01653i 0.0641203 + 0.0370198i
\(755\) 62.7436 2.28347
\(756\) 10.4593 + 8.92207i 0.380401 + 0.324492i
\(757\) −13.8131 −0.502045 −0.251023 0.967981i \(-0.580767\pi\)
−0.251023 + 0.967981i \(0.580767\pi\)
\(758\) 18.7641 + 10.8335i 0.681543 + 0.393489i
\(759\) −2.93301 + 5.24330i −0.106462 + 0.190320i
\(760\) 1.66728 + 2.88781i 0.0604785 + 0.104752i
\(761\) 16.4281 28.4543i 0.595517 1.03147i −0.397956 0.917404i \(-0.630280\pi\)
0.993474 0.114062i \(-0.0363862\pi\)
\(762\) 13.3645 7.95993i 0.484145 0.288358i
\(763\) 20.3812 + 18.8728i 0.737848 + 0.683241i
\(764\) 18.3327i 0.663254i
\(765\) 6.54724 + 10.6606i 0.236716 + 0.385436i
\(766\) 14.3614 8.29154i 0.518898 0.299586i
\(767\) 2.45367 1.41663i 0.0885970 0.0511515i
\(768\) −1.73189 + 0.0235212i −0.0624942 + 0.000848750i
\(769\) 50.0765i 1.80580i 0.429847 + 0.902902i \(0.358568\pi\)
−0.429847 + 0.902902i \(0.641432\pi\)
\(770\) 5.57194 24.5261i