Properties

Label 966.2.l.d.47.5
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.5
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.896677 + 1.48188i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.18968 - 2.06059i) q^{5} +(1.51749 - 0.835007i) q^{6} +(1.24146 - 2.33640i) q^{7} -1.00000i q^{8} +(-1.39194 - 2.65754i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.896677 + 1.48188i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.18968 - 2.06059i) q^{5} +(1.51749 - 0.835007i) q^{6} +(1.24146 - 2.33640i) q^{7} -1.00000i q^{8} +(-1.39194 - 2.65754i) q^{9} +(-2.06059 + 1.18968i) q^{10} +(2.74069 - 1.58234i) q^{11} +(-1.73168 - 0.0356051i) q^{12} +2.15362i q^{13} +(-2.24334 + 1.40265i) q^{14} +(1.98679 + 3.61066i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.69727 - 6.40386i) q^{17} +(-0.123314 + 2.99746i) q^{18} +(-7.34038 - 4.23797i) q^{19} +2.37937 q^{20} +(2.34908 + 3.93470i) q^{21} -3.16467 q^{22} +(-0.866025 - 0.500000i) q^{23} +(1.48188 + 0.896677i) q^{24} +(-0.330695 - 0.572780i) q^{25} +(1.07681 - 1.86509i) q^{26} +(5.18627 + 0.320266i) q^{27} +(2.64411 - 0.0930622i) q^{28} +7.43039i q^{29} +(0.0847177 - 4.12031i) q^{30} +(-6.86384 + 3.96284i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.112679 + 5.48022i) q^{33} +7.39454i q^{34} +(-3.33742 - 5.33773i) q^{35} +(1.60553 - 2.53422i) q^{36} +(-1.49395 + 2.58759i) q^{37} +(4.23797 + 7.34038i) q^{38} +(-3.19141 - 1.93110i) q^{39} +(-2.06059 - 1.18968i) q^{40} +5.77496 q^{41} +(-0.0670104 - 4.58209i) q^{42} -9.96100 q^{43} +(2.74069 + 1.58234i) q^{44} +(-7.13207 - 0.293409i) q^{45} +(0.500000 + 0.866025i) q^{46} +(1.93117 - 3.34488i) q^{47} +(-0.835007 - 1.51749i) q^{48} +(-3.91754 - 5.80111i) q^{49} +0.661389i q^{50} +(12.8050 + 0.263284i) q^{51} +(-1.86509 + 1.07681i) q^{52} +(-1.90180 + 1.09800i) q^{53} +(-4.33131 - 2.87049i) q^{54} -7.52992i q^{55} +(-2.33640 - 1.24146i) q^{56} +(12.8621 - 7.07748i) q^{57} +(3.71519 - 6.43491i) q^{58} +(-4.33833 - 7.51421i) q^{59} +(-2.13352 + 3.52594i) q^{60} +(-0.471560 - 0.272255i) q^{61} +7.92568 q^{62} +(-7.93711 - 0.0471049i) q^{63} -1.00000 q^{64} +(4.43773 + 2.56213i) q^{65} +(2.83769 - 4.68967i) q^{66} +(-2.25755 - 3.91019i) q^{67} +(3.69727 - 6.40386i) q^{68} +(1.51749 - 0.835007i) q^{69} +(0.221429 + 6.29132i) q^{70} -4.91507i q^{71} +(-2.65754 + 1.39194i) q^{72} +(7.56919 - 4.37008i) q^{73} +(2.58759 - 1.49395i) q^{74} +(1.14532 + 0.0235488i) q^{75} -8.47594i q^{76} +(-0.294512 - 8.36776i) q^{77} +(1.79829 + 3.26809i) q^{78} +(1.40410 - 2.43197i) q^{79} +(1.18968 + 2.06059i) q^{80} +(-5.12501 + 7.39826i) q^{81} +(-5.00126 - 2.88748i) q^{82} +10.7239 q^{83} +(-2.23301 + 4.00171i) q^{84} -17.5943 q^{85} +(8.62648 + 4.98050i) q^{86} +(-11.0109 - 6.66266i) q^{87} +(-1.58234 - 2.74069i) q^{88} +(5.03800 - 8.72608i) q^{89} +(6.02985 + 3.82013i) q^{90} +(5.03172 + 2.67364i) q^{91} -1.00000i q^{92} +(0.282195 - 13.7248i) q^{93} +(-3.34488 + 1.93117i) q^{94} +(-17.4655 + 10.0837i) q^{95} +(-0.0356051 + 1.73168i) q^{96} -5.10883i q^{97} +(0.492134 + 6.98268i) q^{98} +(-8.01999 - 5.08096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.896677 + 1.48188i −0.517697 + 0.855564i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.18968 2.06059i 0.532043 0.921525i −0.467258 0.884121i \(-0.654758\pi\)
0.999300 0.0374038i \(-0.0119088\pi\)
\(6\) 1.51749 0.835007i 0.619511 0.340890i
\(7\) 1.24146 2.33640i 0.469229 0.883077i
\(8\) 1.00000i 0.353553i
\(9\) −1.39194 2.65754i −0.463980 0.885846i
\(10\) −2.06059 + 1.18968i −0.651617 + 0.376211i
\(11\) 2.74069 1.58234i 0.826348 0.477092i −0.0262523 0.999655i \(-0.508357\pi\)
0.852601 + 0.522563i \(0.175024\pi\)
\(12\) −1.73168 0.0356051i −0.499894 0.0102783i
\(13\) 2.15362i 0.597307i 0.954362 + 0.298653i \(0.0965374\pi\)
−0.954362 + 0.298653i \(0.903463\pi\)
\(14\) −2.24334 + 1.40265i −0.599558 + 0.374874i
\(15\) 1.98679 + 3.61066i 0.512987 + 0.932267i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.69727 6.40386i −0.896720 1.55316i −0.831662 0.555283i \(-0.812610\pi\)
−0.0650579 0.997881i \(-0.520723\pi\)
\(18\) −0.123314 + 2.99746i −0.0290653 + 0.706509i
\(19\) −7.34038 4.23797i −1.68400 0.972258i −0.958956 0.283554i \(-0.908486\pi\)
−0.725043 0.688703i \(-0.758180\pi\)
\(20\) 2.37937 0.532043
\(21\) 2.34908 + 3.93470i 0.512610 + 0.858621i
\(22\) −3.16467 −0.674711
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) 1.48188 + 0.896677i 0.302488 + 0.183033i
\(25\) −0.330695 0.572780i −0.0661389 0.114556i
\(26\) 1.07681 1.86509i 0.211180 0.365774i
\(27\) 5.18627 + 0.320266i 0.998099 + 0.0616352i
\(28\) 2.64411 0.0930622i 0.499691 0.0175871i
\(29\) 7.43039i 1.37979i 0.723910 + 0.689894i \(0.242343\pi\)
−0.723910 + 0.689894i \(0.757657\pi\)
\(30\) 0.0847177 4.12031i 0.0154673 0.752263i
\(31\) −6.86384 + 3.96284i −1.23278 + 0.711747i −0.967609 0.252454i \(-0.918762\pi\)
−0.265173 + 0.964201i \(0.585429\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −0.112679 + 5.48022i −0.0196148 + 0.953983i
\(34\) 7.39454i 1.26815i
\(35\) −3.33742 5.33773i −0.564127 0.902241i
\(36\) 1.60553 2.53422i 0.267588 0.422371i
\(37\) −1.49395 + 2.58759i −0.245603 + 0.425397i −0.962301 0.271987i \(-0.912319\pi\)
0.716698 + 0.697384i \(0.245653\pi\)
\(38\) 4.23797 + 7.34038i 0.687490 + 1.19077i
\(39\) −3.19141 1.93110i −0.511034 0.309224i
\(40\) −2.06059 1.18968i −0.325808 0.188106i
\(41\) 5.77496 0.901897 0.450948 0.892550i \(-0.351086\pi\)
0.450948 + 0.892550i \(0.351086\pi\)
\(42\) −0.0670104 4.58209i −0.0103399 0.707031i
\(43\) −9.96100 −1.51904 −0.759519 0.650485i \(-0.774566\pi\)
−0.759519 + 0.650485i \(0.774566\pi\)
\(44\) 2.74069 + 1.58234i 0.413174 + 0.238546i
\(45\) −7.13207 0.293409i −1.06319 0.0437388i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 1.93117 3.34488i 0.281690 0.487901i −0.690111 0.723703i \(-0.742438\pi\)
0.971801 + 0.235802i \(0.0757718\pi\)
\(48\) −0.835007 1.51749i −0.120523 0.219030i
\(49\) −3.91754 5.80111i −0.559649 0.828730i
\(50\) 0.661389i 0.0935345i
\(51\) 12.8050 + 0.263284i 1.79306 + 0.0368671i
\(52\) −1.86509 + 1.07681i −0.258641 + 0.149327i
\(53\) −1.90180 + 1.09800i −0.261232 + 0.150822i −0.624896 0.780708i \(-0.714859\pi\)
0.363664 + 0.931530i \(0.381526\pi\)
\(54\) −4.33131 2.87049i −0.589417 0.390625i
\(55\) 7.52992i 1.01533i
\(56\) −2.33640 1.24146i −0.312215 0.165897i
\(57\) 12.8621 7.07748i 1.70363 0.937435i
\(58\) 3.71519 6.43491i 0.487829 0.844945i
\(59\) −4.33833 7.51421i −0.564802 0.978267i −0.997068 0.0765202i \(-0.975619\pi\)
0.432266 0.901746i \(-0.357714\pi\)
\(60\) −2.13352 + 3.52594i −0.275437 + 0.455197i
\(61\) −0.471560 0.272255i −0.0603771 0.0348587i 0.469508 0.882928i \(-0.344431\pi\)
−0.529885 + 0.848070i \(0.677765\pi\)
\(62\) 7.92568 1.00656
\(63\) −7.93711 0.0471049i −0.999982 0.00593466i
\(64\) −1.00000 −0.125000
\(65\) 4.43773 + 2.56213i 0.550433 + 0.317793i
\(66\) 2.83769 4.68967i 0.349296 0.577258i
\(67\) −2.25755 3.91019i −0.275804 0.477706i 0.694534 0.719460i \(-0.255611\pi\)
−0.970338 + 0.241754i \(0.922277\pi\)
\(68\) 3.69727 6.40386i 0.448360 0.776582i
\(69\) 1.51749 0.835007i 0.182684 0.100523i
\(70\) 0.221429 + 6.29132i 0.0264659 + 0.751956i
\(71\) 4.91507i 0.583311i −0.956523 0.291656i \(-0.905794\pi\)
0.956523 0.291656i \(-0.0942061\pi\)
\(72\) −2.65754 + 1.39194i −0.313194 + 0.164042i
\(73\) 7.56919 4.37008i 0.885907 0.511479i 0.0133056 0.999911i \(-0.495765\pi\)
0.872602 + 0.488433i \(0.162431\pi\)
\(74\) 2.58759 1.49395i 0.300801 0.173668i
\(75\) 1.14532 + 0.0235488i 0.132250 + 0.00271919i
\(76\) 8.47594i 0.972258i
\(77\) −0.294512 8.36776i −0.0335627 0.953595i
\(78\) 1.79829 + 3.26809i 0.203616 + 0.370038i
\(79\) 1.40410 2.43197i 0.157973 0.273618i −0.776164 0.630531i \(-0.782837\pi\)
0.934138 + 0.356913i \(0.116171\pi\)
\(80\) 1.18968 + 2.06059i 0.133011 + 0.230381i
\(81\) −5.12501 + 7.39826i −0.569445 + 0.822029i
\(82\) −5.00126 2.88748i −0.552297 0.318869i
\(83\) 10.7239 1.17710 0.588548 0.808462i \(-0.299700\pi\)
0.588548 + 0.808462i \(0.299700\pi\)
\(84\) −2.23301 + 4.00171i −0.243641 + 0.436622i
\(85\) −17.5943 −1.90837
\(86\) 8.62648 + 4.98050i 0.930217 + 0.537061i
\(87\) −11.0109 6.66266i −1.18050 0.714312i
\(88\) −1.58234 2.74069i −0.168678 0.292158i
\(89\) 5.03800 8.72608i 0.534027 0.924962i −0.465182 0.885215i \(-0.654011\pi\)
0.999210 0.0397476i \(-0.0126554\pi\)
\(90\) 6.02985 + 3.82013i 0.635602 + 0.402677i
\(91\) 5.03172 + 2.67364i 0.527467 + 0.280273i
\(92\) 1.00000i 0.104257i
\(93\) 0.282195 13.7248i 0.0292622 1.42319i
\(94\) −3.34488 + 1.93117i −0.344998 + 0.199185i
\(95\) −17.4655 + 10.0837i −1.79192 + 1.03457i
\(96\) −0.0356051 + 1.73168i −0.00363393 + 0.176739i
\(97\) 5.10883i 0.518723i −0.965780 0.259361i \(-0.916488\pi\)
0.965780 0.259361i \(-0.0835121\pi\)
\(98\) 0.492134 + 6.98268i 0.0497131 + 0.705357i
\(99\) −8.01999 5.08096i −0.806039 0.510656i
\(100\) 0.330695 0.572780i 0.0330695 0.0572780i
\(101\) −3.98342 6.89948i −0.396365 0.686524i 0.596910 0.802309i \(-0.296395\pi\)
−0.993274 + 0.115785i \(0.963062\pi\)
\(102\) −10.9578 6.63052i −1.08499 0.656519i
\(103\) 2.46427 + 1.42275i 0.242812 + 0.140187i 0.616468 0.787380i \(-0.288563\pi\)
−0.373657 + 0.927567i \(0.621896\pi\)
\(104\) 2.15362 0.211180
\(105\) 10.9025 0.159442i 1.06397 0.0155600i
\(106\) 2.19601 0.213295
\(107\) −10.6647 6.15724i −1.03099 0.595243i −0.113723 0.993513i \(-0.536278\pi\)
−0.917268 + 0.398270i \(0.869611\pi\)
\(108\) 2.31578 + 4.65158i 0.222836 + 0.447598i
\(109\) 5.35294 + 9.27157i 0.512719 + 0.888056i 0.999891 + 0.0147496i \(0.00469511\pi\)
−0.487172 + 0.873306i \(0.661972\pi\)
\(110\) −3.76496 + 6.52110i −0.358975 + 0.621763i
\(111\) −2.49491 4.53408i −0.236807 0.430356i
\(112\) 1.40265 + 2.24334i 0.132538 + 0.211976i
\(113\) 5.80529i 0.546116i −0.961998 0.273058i \(-0.911965\pi\)
0.961998 0.273058i \(-0.0880351\pi\)
\(114\) −14.6777 0.301787i −1.37469 0.0282650i
\(115\) −2.06059 + 1.18968i −0.192151 + 0.110939i
\(116\) −6.43491 + 3.71519i −0.597466 + 0.344947i
\(117\) 5.72332 2.99771i 0.529121 0.277138i
\(118\) 8.67666i 0.798751i
\(119\) −19.5520 + 0.688152i −1.79233 + 0.0630828i
\(120\) 3.61066 1.98679i 0.329606 0.181368i
\(121\) −0.492421 + 0.852898i −0.0447655 + 0.0775362i
\(122\) 0.272255 + 0.471560i 0.0246488 + 0.0426930i
\(123\) −5.17827 + 8.55779i −0.466909 + 0.771630i
\(124\) −6.86384 3.96284i −0.616391 0.355874i
\(125\) 10.3231 0.923331
\(126\) 6.85019 + 4.00935i 0.610263 + 0.357181i
\(127\) 13.4437 1.19294 0.596468 0.802637i \(-0.296570\pi\)
0.596468 + 0.802637i \(0.296570\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 8.93180 14.7610i 0.786401 1.29963i
\(130\) −2.56213 4.43773i −0.224713 0.389215i
\(131\) −5.20398 + 9.01356i −0.454674 + 0.787519i −0.998669 0.0515697i \(-0.983578\pi\)
0.543995 + 0.839088i \(0.316911\pi\)
\(132\) −4.80235 + 2.64253i −0.417991 + 0.230002i
\(133\) −19.0144 + 11.8888i −1.64876 + 1.03089i
\(134\) 4.51510i 0.390045i
\(135\) 6.82996 10.3058i 0.587830 0.886980i
\(136\) −6.40386 + 3.69727i −0.549126 + 0.317038i
\(137\) 8.00856 4.62375i 0.684218 0.395033i −0.117225 0.993105i \(-0.537400\pi\)
0.801442 + 0.598072i \(0.204066\pi\)
\(138\) −1.73168 0.0356051i −0.147411 0.00303091i
\(139\) 15.4050i 1.30663i 0.757085 + 0.653317i \(0.226623\pi\)
−0.757085 + 0.653317i \(0.773377\pi\)
\(140\) 2.95390 5.55916i 0.249650 0.469834i
\(141\) 3.22508 + 5.86104i 0.271601 + 0.493588i
\(142\) −2.45753 + 4.25657i −0.206232 + 0.357204i
\(143\) 3.40775 + 5.90240i 0.284970 + 0.493583i
\(144\) 2.99746 + 0.123314i 0.249789 + 0.0102761i
\(145\) 15.3110 + 8.83981i 1.27151 + 0.734106i
\(146\) −8.74015 −0.723340
\(147\) 12.1093 0.603602i 0.998760 0.0497843i
\(148\) −2.98789 −0.245603
\(149\) −0.236480 0.136532i −0.0193732 0.0111851i 0.490282 0.871564i \(-0.336894\pi\)
−0.509655 + 0.860379i \(0.670227\pi\)
\(150\) −0.980100 0.593053i −0.0800248 0.0484225i
\(151\) 9.96279 + 17.2561i 0.810760 + 1.40428i 0.912333 + 0.409450i \(0.134279\pi\)
−0.101572 + 0.994828i \(0.532387\pi\)
\(152\) −4.23797 + 7.34038i −0.343745 + 0.595384i
\(153\) −11.8721 + 18.7394i −0.959804 + 1.51499i
\(154\) −3.92882 + 7.39395i −0.316594 + 0.595821i
\(155\) 18.8581i 1.51472i
\(156\) 0.0766799 3.72939i 0.00613931 0.298590i
\(157\) 13.3104 7.68478i 1.06229 0.613312i 0.136223 0.990678i \(-0.456504\pi\)
0.926064 + 0.377366i \(0.123170\pi\)
\(158\) −2.43197 + 1.40410i −0.193477 + 0.111704i
\(159\) 0.0781892 3.80279i 0.00620080 0.301581i
\(160\) 2.37937i 0.188106i
\(161\) −2.24334 + 1.40265i −0.176800 + 0.110544i
\(162\) 8.13752 3.84458i 0.639344 0.302059i
\(163\) 9.22292 15.9746i 0.722395 1.25122i −0.237642 0.971353i \(-0.576375\pi\)
0.960037 0.279872i \(-0.0902921\pi\)
\(164\) 2.88748 + 5.00126i 0.225474 + 0.390533i
\(165\) 11.1584 + 6.75191i 0.868684 + 0.525635i
\(166\) −9.28713 5.36193i −0.720821 0.416166i
\(167\) −7.53911 −0.583394 −0.291697 0.956511i \(-0.594220\pi\)
−0.291697 + 0.956511i \(0.594220\pi\)
\(168\) 3.93470 2.34908i 0.303568 0.181235i
\(169\) 8.36192 0.643225
\(170\) 15.2371 + 8.79716i 1.16863 + 0.674712i
\(171\) −1.04520 + 25.4063i −0.0799285 + 1.94287i
\(172\) −4.98050 8.62648i −0.379759 0.657763i
\(173\) 4.26112 7.38048i 0.323967 0.561127i −0.657336 0.753598i \(-0.728317\pi\)
0.981303 + 0.192471i \(0.0616500\pi\)
\(174\) 6.20443 + 11.2755i 0.470357 + 0.854794i
\(175\) −1.74879 + 0.0615503i −0.132196 + 0.00465277i
\(176\) 3.16467i 0.238546i
\(177\) 15.0252 + 0.308934i 1.12937 + 0.0232209i
\(178\) −8.72608 + 5.03800i −0.654047 + 0.377614i
\(179\) 0.0883741 0.0510228i 0.00660539 0.00381362i −0.496694 0.867926i \(-0.665453\pi\)
0.503299 + 0.864112i \(0.332119\pi\)
\(180\) −3.31194 6.32326i −0.246857 0.471308i
\(181\) 8.37882i 0.622793i −0.950280 0.311396i \(-0.899203\pi\)
0.950280 0.311396i \(-0.100797\pi\)
\(182\) −3.02078 4.83130i −0.223915 0.358120i
\(183\) 0.826287 0.454671i 0.0610809 0.0336102i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 3.55465 + 6.15683i 0.261343 + 0.452659i
\(186\) −7.10678 + 11.7449i −0.521094 + 0.861179i
\(187\) −20.2661 11.7007i −1.48201 0.855636i
\(188\) 3.86233 0.281690
\(189\) 7.18683 11.7196i 0.522765 0.852477i
\(190\) 20.1674 1.46310
\(191\) −8.85208 5.11075i −0.640514 0.369801i 0.144299 0.989534i \(-0.453907\pi\)
−0.784812 + 0.619733i \(0.787241\pi\)
\(192\) 0.896677 1.48188i 0.0647121 0.106946i
\(193\) −4.57900 7.93107i −0.329604 0.570891i 0.652829 0.757505i \(-0.273582\pi\)
−0.982433 + 0.186614i \(0.940249\pi\)
\(194\) −2.55441 + 4.42437i −0.183396 + 0.317652i
\(195\) −7.77598 + 4.27879i −0.556849 + 0.306410i
\(196\) 3.06514 6.29324i 0.218938 0.449517i
\(197\) 11.1724i 0.795998i 0.917386 + 0.397999i \(0.130295\pi\)
−0.917386 + 0.397999i \(0.869705\pi\)
\(198\) 4.40503 + 8.41024i 0.313052 + 0.597690i
\(199\) −12.7608 + 7.36743i −0.904586 + 0.522263i −0.878685 0.477401i \(-0.841579\pi\)
−0.0259010 + 0.999665i \(0.508245\pi\)
\(200\) −0.572780 + 0.330695i −0.0405016 + 0.0233836i
\(201\) 7.81873 + 0.160761i 0.551491 + 0.0113392i
\(202\) 7.96683i 0.560545i
\(203\) 17.3604 + 9.22455i 1.21846 + 0.647437i
\(204\) 6.17450 + 11.2211i 0.432301 + 0.785635i
\(205\) 6.87037 11.8998i 0.479848 0.831120i
\(206\) −1.42275 2.46427i −0.0991274 0.171694i
\(207\) −0.123314 + 2.99746i −0.00857090 + 0.208338i
\(208\) −1.86509 1.07681i −0.129321 0.0746633i
\(209\) −26.8236 −1.85543
\(210\) −9.52153 5.31315i −0.657048 0.366642i
\(211\) −8.68620 −0.597983 −0.298991 0.954256i \(-0.596650\pi\)
−0.298991 + 0.954256i \(0.596650\pi\)
\(212\) −1.90180 1.09800i −0.130616 0.0754112i
\(213\) 7.28354 + 4.40723i 0.499060 + 0.301978i
\(214\) 6.15724 + 10.6647i 0.420900 + 0.729021i
\(215\) −11.8504 + 20.5256i −0.808193 + 1.39983i
\(216\) 0.320266 5.18627i 0.0217913 0.352881i
\(217\) 0.737581 + 20.9564i 0.0500703 + 1.42261i
\(218\) 10.7059i 0.725094i
\(219\) −0.311194 + 15.1352i −0.0210286 + 1.02274i
\(220\) 6.52110 3.76496i 0.439653 0.253834i
\(221\) 13.7915 7.96251i 0.927715 0.535617i
\(222\) −0.106384 + 5.17409i −0.00714005 + 0.347262i
\(223\) 23.8764i 1.59888i −0.600744 0.799442i \(-0.705129\pi\)
0.600744 0.799442i \(-0.294871\pi\)
\(224\) −0.0930622 2.64411i −0.00621798 0.176667i
\(225\) −1.06188 + 1.67611i −0.0707918 + 0.111741i
\(226\) −2.90265 + 5.02753i −0.193081 + 0.334426i
\(227\) −2.25177 3.90017i −0.149455 0.258864i 0.781571 0.623816i \(-0.214419\pi\)
−0.931026 + 0.364952i \(0.881085\pi\)
\(228\) 12.5603 + 7.60019i 0.831829 + 0.503335i
\(229\) 11.5357 + 6.66014i 0.762300 + 0.440114i 0.830121 0.557583i \(-0.188271\pi\)
−0.0678208 + 0.997698i \(0.521605\pi\)
\(230\) 2.37937 0.156891
\(231\) 12.6641 + 7.06675i 0.833237 + 0.464958i
\(232\) 7.43039 0.487829
\(233\) −1.18764 0.685683i −0.0778048 0.0449206i 0.460593 0.887612i \(-0.347637\pi\)
−0.538398 + 0.842691i \(0.680970\pi\)
\(234\) −6.45540 0.265571i −0.422003 0.0173609i
\(235\) −4.59496 7.95870i −0.299742 0.519168i
\(236\) 4.33833 7.51421i 0.282401 0.489133i
\(237\) 2.34487 + 4.26140i 0.152315 + 0.276808i
\(238\) 17.2766 + 9.18005i 1.11988 + 0.595054i
\(239\) 7.70669i 0.498504i 0.968439 + 0.249252i \(0.0801848\pi\)
−0.968439 + 0.249252i \(0.919815\pi\)
\(240\) −4.12031 0.0847177i −0.265965 0.00546850i
\(241\) 23.0099 13.2848i 1.48220 0.855746i 0.482400 0.875951i \(-0.339765\pi\)
0.999796 + 0.0202045i \(0.00643172\pi\)
\(242\) 0.852898 0.492421i 0.0548264 0.0316540i
\(243\) −6.36786 14.2285i −0.408498 0.912759i
\(244\) 0.544511i 0.0348587i
\(245\) −16.6144 + 1.17097i −1.06145 + 0.0748104i
\(246\) 8.76341 4.82213i 0.558735 0.307448i
\(247\) 9.12698 15.8084i 0.580736 1.00586i
\(248\) 3.96284 + 6.86384i 0.251641 + 0.435854i
\(249\) −9.61584 + 15.8915i −0.609379 + 1.00708i
\(250\) −8.94011 5.16157i −0.565422 0.326447i
\(251\) −15.6268 −0.986354 −0.493177 0.869929i \(-0.664165\pi\)
−0.493177 + 0.869929i \(0.664165\pi\)
\(252\) −3.92776 6.89729i −0.247426 0.434489i
\(253\) −3.16467 −0.198961
\(254\) −11.6426 6.72186i −0.730521 0.421767i
\(255\) 15.7764 26.0727i 0.987959 1.63274i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.301189 + 0.521674i −0.0187876 + 0.0325411i −0.875266 0.483641i \(-0.839314\pi\)
0.856479 + 0.516182i \(0.172647\pi\)
\(258\) −15.1157 + 8.31751i −0.941061 + 0.517825i
\(259\) 4.19097 + 6.70285i 0.260414 + 0.416495i
\(260\) 5.12425i 0.317793i
\(261\) 19.7465 10.3427i 1.22228 0.640194i
\(262\) 9.01356 5.20398i 0.556860 0.321503i
\(263\) 23.1327 13.3557i 1.42642 0.823545i 0.429586 0.903026i \(-0.358659\pi\)
0.996836 + 0.0794805i \(0.0253261\pi\)
\(264\) 5.48022 + 0.112679i 0.337284 + 0.00693489i
\(265\) 5.22511i 0.320976i
\(266\) 22.4114 0.788790i 1.37413 0.0483638i
\(267\) 8.41354 + 15.2902i 0.514900 + 0.935745i
\(268\) 2.25755 3.91019i 0.137902 0.238853i
\(269\) −3.83960 6.65039i −0.234105 0.405481i 0.724907 0.688846i \(-0.241883\pi\)
−0.959012 + 0.283365i \(0.908549\pi\)
\(270\) −11.0678 + 5.51009i −0.673566 + 0.335333i
\(271\) −11.2087 6.47133i −0.680878 0.393105i 0.119308 0.992857i \(-0.461932\pi\)
−0.800186 + 0.599752i \(0.795266\pi\)
\(272\) 7.39454 0.448360
\(273\) −8.47384 + 5.05901i −0.512860 + 0.306185i
\(274\) −9.24749 −0.558661
\(275\) −1.81266 1.04654i −0.109308 0.0631087i
\(276\) 1.48188 + 0.896677i 0.0891987 + 0.0539736i
\(277\) 12.4936 + 21.6395i 0.750666 + 1.30019i 0.947500 + 0.319754i \(0.103600\pi\)
−0.196835 + 0.980437i \(0.563066\pi\)
\(278\) 7.70249 13.3411i 0.461965 0.800147i
\(279\) 20.0854 + 12.7249i 1.20248 + 0.761818i
\(280\) −5.33773 + 3.33742i −0.318990 + 0.199449i
\(281\) 1.18401i 0.0706320i −0.999376 0.0353160i \(-0.988756\pi\)
0.999376 0.0353160i \(-0.0112438\pi\)
\(282\) 0.137519 6.68835i 0.00818913 0.398285i
\(283\) 6.50760 3.75716i 0.386837 0.223340i −0.293952 0.955820i \(-0.594971\pi\)
0.680789 + 0.732480i \(0.261637\pi\)
\(284\) 4.25657 2.45753i 0.252581 0.145828i
\(285\) 0.718063 34.9236i 0.0425344 2.06869i
\(286\) 6.81550i 0.403009i
\(287\) 7.16939 13.4926i 0.423196 0.796444i
\(288\) −2.53422 1.60553i −0.149331 0.0946065i
\(289\) −18.8396 + 32.6312i −1.10821 + 1.91948i
\(290\) −8.83981 15.3110i −0.519092 0.899093i
\(291\) 7.57067 + 4.58097i 0.443801 + 0.268541i
\(292\) 7.56919 + 4.37008i 0.442954 + 0.255739i
\(293\) 19.9214 1.16382 0.581911 0.813253i \(-0.302305\pi\)
0.581911 + 0.813253i \(0.302305\pi\)
\(294\) −10.7888 5.53193i −0.629214 0.322628i
\(295\) −20.6450 −1.20200
\(296\) 2.58759 + 1.49395i 0.150401 + 0.0868338i
\(297\) 14.7207 7.32868i 0.854183 0.425253i
\(298\) 0.136532 + 0.236480i 0.00790906 + 0.0136989i
\(299\) 1.07681 1.86509i 0.0622735 0.107861i
\(300\) 0.552265 + 1.00365i 0.0318850 + 0.0579457i
\(301\) −12.3662 + 23.2729i −0.712776 + 1.34143i
\(302\) 19.9256i 1.14659i
\(303\) 13.7960 + 0.283660i 0.792562 + 0.0162959i
\(304\) 7.34038 4.23797i 0.421000 0.243064i
\(305\) −1.12201 + 0.647796i −0.0642464 + 0.0370927i
\(306\) 19.6513 10.2928i 1.12339 0.588397i
\(307\) 21.0638i 1.20217i 0.799184 + 0.601086i \(0.205265\pi\)
−0.799184 + 0.601086i \(0.794735\pi\)
\(308\) 7.09944 4.43893i 0.404528 0.252932i
\(309\) −4.31799 + 2.37601i −0.245642 + 0.135166i
\(310\) 9.42905 16.3316i 0.535534 0.927572i
\(311\) −6.81985 11.8123i −0.386718 0.669815i 0.605288 0.796007i \(-0.293058\pi\)
−0.992006 + 0.126191i \(0.959725\pi\)
\(312\) −1.93110 + 3.19141i −0.109327 + 0.180678i
\(313\) −15.2224 8.78864i −0.860419 0.496763i 0.00373350 0.999993i \(-0.498812\pi\)
−0.864153 + 0.503230i \(0.832145\pi\)
\(314\) −15.3696 −0.867354
\(315\) −9.53972 + 16.2991i −0.537502 + 0.918351i
\(316\) 2.80820 0.157973
\(317\) 23.7882 + 13.7341i 1.33608 + 0.771386i 0.986224 0.165417i \(-0.0528971\pi\)
0.349856 + 0.936803i \(0.386230\pi\)
\(318\) −1.96911 + 3.25422i −0.110422 + 0.182488i
\(319\) 11.7574 + 20.3644i 0.658287 + 1.14019i
\(320\) −1.18968 + 2.06059i −0.0665053 + 0.115191i
\(321\) 18.6870 10.2827i 1.04301 0.573923i
\(322\) 2.64411 0.0930622i 0.147351 0.00518616i
\(323\) 62.6757i 3.48737i
\(324\) −8.96959 0.739257i −0.498310 0.0410698i
\(325\) 1.23355 0.712190i 0.0684250 0.0395052i
\(326\) −15.9746 + 9.22292i −0.884750 + 0.510810i
\(327\) −18.5392 0.381185i −1.02522 0.0210796i
\(328\) 5.77496i 0.318869i
\(329\) −5.41751 8.66453i −0.298677 0.477691i
\(330\) −6.28754 11.4265i −0.346118 0.629011i
\(331\) −2.12473 + 3.68015i −0.116786 + 0.202279i −0.918492 0.395439i \(-0.870592\pi\)
0.801706 + 0.597718i \(0.203926\pi\)
\(332\) 5.36193 + 9.28713i 0.294274 + 0.509698i
\(333\) 8.95610 + 0.368448i 0.490791 + 0.0201908i
\(334\) 6.52906 + 3.76955i 0.357254 + 0.206261i
\(335\) −10.7431 −0.586958
\(336\) −4.58209 + 0.0670104i −0.249973 + 0.00365572i
\(337\) −34.5800 −1.88370 −0.941848 0.336040i \(-0.890912\pi\)
−0.941848 + 0.336040i \(0.890912\pi\)
\(338\) −7.24164 4.18096i −0.393893 0.227414i
\(339\) 8.60275 + 5.20547i 0.467237 + 0.282722i
\(340\) −8.79716 15.2371i −0.477093 0.826350i
\(341\) −12.5411 + 21.7218i −0.679138 + 1.17630i
\(342\) 13.6083 21.4799i 0.735855 1.16150i
\(343\) −18.4172 + 1.95108i −0.994435 + 0.105349i
\(344\) 9.96100i 0.537061i
\(345\) 0.0847177 4.12031i 0.00456105 0.221830i
\(346\) −7.38048 + 4.26112i −0.396777 + 0.229079i
\(347\) 3.59047 2.07296i 0.192746 0.111282i −0.400521 0.916287i \(-0.631171\pi\)
0.593268 + 0.805005i \(0.297838\pi\)
\(348\) 0.264560 12.8671i 0.0141819 0.689749i
\(349\) 31.4937i 1.68582i −0.538056 0.842909i \(-0.680841\pi\)
0.538056 0.842909i \(-0.319159\pi\)
\(350\) 1.54527 + 0.821090i 0.0825982 + 0.0438891i
\(351\) −0.689730 + 11.1693i −0.0368151 + 0.596171i
\(352\) 1.58234 2.74069i 0.0843388 0.146079i
\(353\) −16.9764 29.4040i −0.903563 1.56502i −0.822835 0.568280i \(-0.807609\pi\)
−0.0807276 0.996736i \(-0.525724\pi\)
\(354\) −12.8578 7.78016i −0.683383 0.413511i
\(355\) −10.1280 5.84738i −0.537536 0.310347i
\(356\) 10.0760 0.534027
\(357\) 16.5121 29.5908i 0.873912 1.56611i
\(358\) −0.102046 −0.00539328
\(359\) −14.0407 8.10639i −0.741039 0.427839i 0.0814082 0.996681i \(-0.474058\pi\)
−0.822447 + 0.568842i \(0.807392\pi\)
\(360\) −0.293409 + 7.13207i −0.0154640 + 0.375893i
\(361\) 26.4208 + 45.7622i 1.39057 + 2.40854i
\(362\) −4.18941 + 7.25627i −0.220190 + 0.381381i
\(363\) −0.822350 1.49448i −0.0431622 0.0784400i
\(364\) 0.200421 + 5.69442i 0.0105049 + 0.298468i
\(365\) 20.7960i 1.08851i
\(366\) −0.942921 0.0193874i −0.0492873 0.00101339i
\(367\) 8.33538 4.81244i 0.435104 0.251207i −0.266415 0.963858i \(-0.585839\pi\)
0.701518 + 0.712651i \(0.252506\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) −8.03839 15.3472i −0.418462 0.798941i
\(370\) 7.10929i 0.369595i
\(371\) 0.204365 + 5.80650i 0.0106101 + 0.301458i
\(372\) 12.0271 6.61800i 0.623576 0.343127i
\(373\) −7.73610 + 13.3993i −0.400560 + 0.693791i −0.993794 0.111240i \(-0.964518\pi\)
0.593233 + 0.805031i \(0.297851\pi\)
\(374\) 11.7007 + 20.2661i 0.605026 + 1.04794i
\(375\) −9.25653 + 15.2977i −0.478005 + 0.789968i
\(376\) −3.34488 1.93117i −0.172499 0.0995923i
\(377\) −16.0022 −0.824157
\(378\) −12.0838 + 6.55607i −0.621523 + 0.337208i
\(379\) 28.2401 1.45060 0.725298 0.688435i \(-0.241702\pi\)
0.725298 + 0.688435i \(0.241702\pi\)
\(380\) −17.4655 10.0837i −0.895960 0.517283i
\(381\) −12.0547 + 19.9220i −0.617580 + 1.02063i
\(382\) 5.11075 + 8.85208i 0.261489 + 0.452912i
\(383\) 13.6450 23.6339i 0.697229 1.20764i −0.272194 0.962242i \(-0.587749\pi\)
0.969423 0.245394i \(-0.0789175\pi\)
\(384\) −1.51749 + 0.835007i −0.0774389 + 0.0426113i
\(385\) −17.5929 9.34812i −0.896618 0.476424i
\(386\) 9.15801i 0.466130i
\(387\) 13.8651 + 26.4717i 0.704803 + 1.34563i
\(388\) 4.42437 2.55441i 0.224614 0.129681i
\(389\) 12.4398 7.18213i 0.630724 0.364148i −0.150309 0.988639i \(-0.548027\pi\)
0.781032 + 0.624491i \(0.214693\pi\)
\(390\) 8.87359 + 0.182450i 0.449332 + 0.00923870i
\(391\) 7.39454i 0.373958i
\(392\) −5.80111 + 3.91754i −0.293000 + 0.197866i
\(393\) −8.69073 15.7939i −0.438389 0.796699i
\(394\) 5.58618 9.67556i 0.281428 0.487447i
\(395\) −3.34087 5.78655i −0.168097 0.291153i
\(396\) 0.390248 9.48600i 0.0196107 0.476689i
\(397\) −7.53542 4.35058i −0.378192 0.218349i 0.298839 0.954303i \(-0.403401\pi\)
−0.677031 + 0.735954i \(0.736734\pi\)
\(398\) 14.7349 0.738592
\(399\) −0.567977 38.8375i −0.0284344 1.94431i
\(400\) 0.661389 0.0330695
\(401\) 16.0880 + 9.28840i 0.803396 + 0.463841i 0.844657 0.535308i \(-0.179804\pi\)
−0.0412616 + 0.999148i \(0.513138\pi\)
\(402\) −6.69084 4.04859i −0.333709 0.201925i
\(403\) −8.53445 14.7821i −0.425131 0.736349i
\(404\) 3.98342 6.89948i 0.198182 0.343262i
\(405\) 9.14766 + 19.3621i 0.454551 + 0.962113i
\(406\) −10.4222 16.6689i −0.517247 0.827263i
\(407\) 9.45570i 0.468702i
\(408\) 0.263284 12.8050i 0.0130345 0.633943i
\(409\) −21.1380 + 12.2040i −1.04520 + 0.603449i −0.921303 0.388845i \(-0.872874\pi\)
−0.123902 + 0.992295i \(0.539541\pi\)
\(410\) −11.8998 + 6.87037i −0.587691 + 0.339303i
\(411\) −0.329258 + 16.0137i −0.0162411 + 0.789900i
\(412\) 2.84549i 0.140187i
\(413\) −22.9421 + 0.807469i −1.12891 + 0.0397330i
\(414\) 1.60553 2.53422i 0.0789073 0.124550i
\(415\) 12.7580 22.0975i 0.626265 1.08472i
\(416\) 1.07681 + 1.86509i 0.0527949 + 0.0914435i
\(417\) −22.8283 13.8133i −1.11791 0.676440i
\(418\) 23.2299 + 13.4118i 1.13621 + 0.655993i
\(419\) −24.2366 −1.18403 −0.592017 0.805926i \(-0.701668\pi\)
−0.592017 + 0.805926i \(0.701668\pi\)
\(420\) 5.58931 + 9.36209i 0.272731 + 0.456823i
\(421\) 10.2721 0.500630 0.250315 0.968164i \(-0.419466\pi\)
0.250315 + 0.968164i \(0.419466\pi\)
\(422\) 7.52247 + 4.34310i 0.366188 + 0.211419i
\(423\) −11.5772 0.476279i −0.562903 0.0231575i
\(424\) 1.09800 + 1.90180i 0.0533238 + 0.0923595i
\(425\) −2.44533 + 4.23544i −0.118616 + 0.205449i
\(426\) −4.10412 7.45855i −0.198845 0.361368i
\(427\) −1.22152 + 0.763759i −0.0591136 + 0.0369609i
\(428\) 12.3145i 0.595243i
\(429\) −11.8023 0.242667i −0.569820 0.0117161i
\(430\) 20.5256 11.8504i 0.989830 0.571479i
\(431\) −2.01532 + 1.16355i −0.0970747 + 0.0560461i −0.547751 0.836641i \(-0.684516\pi\)
0.450677 + 0.892687i \(0.351183\pi\)
\(432\) −2.87049 + 4.33131i −0.138107 + 0.208390i
\(433\) 6.88151i 0.330704i 0.986235 + 0.165352i \(0.0528760\pi\)
−0.986235 + 0.165352i \(0.947124\pi\)
\(434\) 9.83944 18.5176i 0.472308 0.888872i
\(435\) −26.8286 + 14.7626i −1.28633 + 0.707813i
\(436\) −5.35294 + 9.27157i −0.256360 + 0.444028i
\(437\) 4.23797 + 7.34038i 0.202730 + 0.351138i
\(438\) 7.83710 12.9519i 0.374471 0.618864i
\(439\) 30.2117 + 17.4427i 1.44192 + 0.832496i 0.997978 0.0635577i \(-0.0202447\pi\)
0.443946 + 0.896053i \(0.353578\pi\)
\(440\) −7.52992 −0.358975
\(441\) −9.96369 + 18.4858i −0.474461 + 0.880276i
\(442\) −15.9250 −0.757476
\(443\) −7.48212 4.31980i −0.355486 0.205240i 0.311613 0.950209i \(-0.399131\pi\)
−0.667099 + 0.744969i \(0.732464\pi\)
\(444\) 2.67917 4.42770i 0.127148 0.210129i
\(445\) −11.9873 20.7625i −0.568251 0.984239i
\(446\) −11.9382 + 20.6776i −0.565291 + 0.979112i
\(447\) 0.414369 0.228010i 0.0195990 0.0107845i
\(448\) −1.24146 + 2.33640i −0.0586536 + 0.110385i
\(449\) 11.9544i 0.564162i 0.959391 + 0.282081i \(0.0910247\pi\)
−0.959391 + 0.282081i \(0.908975\pi\)
\(450\) 1.75767 0.920613i 0.0828572 0.0433981i
\(451\) 15.8274 9.13793i 0.745281 0.430288i
\(452\) 5.02753 2.90265i 0.236475 0.136529i
\(453\) −34.5048 0.709453i −1.62118 0.0333330i
\(454\) 4.50353i 0.211361i
\(455\) 11.4954 7.18754i 0.538914 0.336957i
\(456\) −7.07748 12.8621i −0.331433 0.602324i
\(457\) 4.74729 8.22255i 0.222069 0.384634i −0.733367 0.679833i \(-0.762052\pi\)
0.955436 + 0.295198i \(0.0953857\pi\)
\(458\) −6.66014 11.5357i −0.311208 0.539028i
\(459\) −17.1241 34.3963i −0.799285 1.60548i
\(460\) −2.06059 1.18968i −0.0960756 0.0554693i
\(461\) −11.3596 −0.529072 −0.264536 0.964376i \(-0.585219\pi\)
−0.264536 + 0.964376i \(0.585219\pi\)
\(462\) −7.43406 12.4520i −0.345864 0.579321i
\(463\) −0.505861 −0.0235094 −0.0117547 0.999931i \(-0.503742\pi\)
−0.0117547 + 0.999931i \(0.503742\pi\)
\(464\) −6.43491 3.71519i −0.298733 0.172474i
\(465\) −27.9455 16.9096i −1.29594 0.784165i
\(466\) 0.685683 + 1.18764i 0.0317637 + 0.0550163i
\(467\) 5.68642 9.84917i 0.263136 0.455765i −0.703937 0.710262i \(-0.748576\pi\)
0.967074 + 0.254497i \(0.0819098\pi\)
\(468\) 5.45775 + 3.45769i 0.252285 + 0.159832i
\(469\) −11.9384 + 0.420186i −0.551266 + 0.0194024i
\(470\) 9.18991i 0.423899i
\(471\) −0.547235 + 26.6152i −0.0252153 + 1.22636i
\(472\) −7.51421 + 4.33833i −0.345869 + 0.199688i
\(473\) −27.3000 + 15.7617i −1.25525 + 0.724722i
\(474\) 0.0999862 4.86291i 0.00459252 0.223361i
\(475\) 5.60590i 0.257216i
\(476\) −10.3720 16.5885i −0.475398 0.760331i
\(477\) 5.56517 + 3.52575i 0.254812 + 0.161433i
\(478\) 3.85335 6.67419i 0.176248 0.305270i
\(479\) 19.5610 + 33.8807i 0.893767 + 1.54805i 0.835324 + 0.549758i \(0.185280\pi\)
0.0584429 + 0.998291i \(0.481386\pi\)
\(480\) 3.52594 + 2.13352i 0.160936 + 0.0973816i
\(481\) −5.57268 3.21739i −0.254093 0.146700i
\(482\) −26.5695 −1.21021
\(483\) −0.0670104 4.58209i −0.00304908 0.208492i
\(484\) −0.984842 −0.0447655
\(485\) −10.5272 6.07789i −0.478016 0.275983i
\(486\) −1.59952 + 15.5062i −0.0725559 + 0.703374i
\(487\) −12.9102 22.3612i −0.585018 1.01328i −0.994873 0.101130i \(-0.967754\pi\)
0.409855 0.912151i \(-0.365579\pi\)
\(488\) −0.272255 + 0.471560i −0.0123244 + 0.0213465i
\(489\) 15.4024 + 27.9913i 0.696521 + 1.26581i
\(490\) 14.9739 + 7.29309i 0.676454 + 0.329468i
\(491\) 27.9815i 1.26279i −0.775462 0.631394i \(-0.782483\pi\)
0.775462 0.631394i \(-0.217517\pi\)
\(492\) −10.0004 0.205618i −0.450853 0.00926998i
\(493\) 47.5832 27.4722i 2.14304 1.23728i
\(494\) −15.8084 + 9.12698i −0.711253 + 0.410642i
\(495\) −20.0110 + 10.4812i −0.899430 + 0.471095i
\(496\) 7.92568i 0.355874i
\(497\) −11.4836 6.10187i −0.515109 0.273706i
\(498\) 16.2733 8.95450i 0.729224 0.401261i
\(499\) 0.270193 0.467987i 0.0120955 0.0209500i −0.859914 0.510438i \(-0.829483\pi\)
0.872010 + 0.489488i \(0.162816\pi\)
\(500\) 5.16157 + 8.94011i 0.230833 + 0.399814i
\(501\) 6.76015 11.1721i 0.302021 0.499131i
\(502\) 13.5332 + 7.81340i 0.604016 + 0.348729i
\(503\) −19.0928 −0.851304 −0.425652 0.904887i \(-0.639955\pi\)
−0.425652 + 0.904887i \(0.639955\pi\)
\(504\) −0.0471049 + 7.93711i −0.00209822 + 0.353547i
\(505\) −18.9560 −0.843532
\(506\) 2.74069 + 1.58234i 0.121838 + 0.0703434i
\(507\) −7.49795 + 12.3914i −0.332996 + 0.550320i
\(508\) 6.72186 + 11.6426i 0.298234 + 0.516557i
\(509\) 8.43371 14.6076i 0.373818 0.647471i −0.616332 0.787487i \(-0.711382\pi\)
0.990149 + 0.140016i \(0.0447152\pi\)
\(510\) −26.6991 + 14.6914i −1.18226 + 0.650546i
\(511\) −0.813378 23.1100i −0.0359817 1.02232i
\(512\) 1.00000i 0.0441942i
\(513\) −36.7120 24.3302i −1.62087 1.07420i
\(514\) 0.521674 0.301189i 0.0230101 0.0132849i
\(515\) 5.86340 3.38524i 0.258372 0.149171i
\(516\) 17.2493 + 0.354663i 0.759358 + 0.0156132i
\(517\) 12.2230i 0.537568i
\(518\) −0.278060 7.90033i −0.0122173 0.347120i
\(519\) 7.11613 + 12.9324i 0.312364 + 0.567668i
\(520\) 2.56213 4.43773i 0.112357 0.194607i
\(521\) 21.7825 + 37.7285i 0.954310 + 1.65291i 0.735939 + 0.677048i \(0.236741\pi\)
0.218371 + 0.975866i \(0.429926\pi\)
\(522\) −22.2723 0.916269i −0.974833 0.0401040i
\(523\) 13.8025 + 7.96886i 0.603540 + 0.348454i 0.770433 0.637521i \(-0.220040\pi\)
−0.166893 + 0.985975i \(0.553374\pi\)
\(524\) −10.4080 −0.454674
\(525\) 1.47689 2.64669i 0.0644567 0.115511i
\(526\) −26.7113 −1.16467
\(527\) 50.7549 + 29.3034i 2.21092 + 1.27648i
\(528\) −4.68967 2.83769i −0.204092 0.123495i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 2.61255 4.52508i 0.113482 0.196557i
\(531\) −13.9306 + 21.9886i −0.604536 + 0.954224i
\(532\) −19.8032 10.5226i −0.858578 0.456211i
\(533\) 12.4371i 0.538709i
\(534\) 0.358758 17.4485i 0.0155250 0.755069i
\(535\) −25.3751 + 14.6503i −1.09706 + 0.633389i
\(536\) −3.91019 + 2.25755i −0.168895 + 0.0975114i
\(537\) −0.00363335 + 0.176711i −0.000156790 + 0.00762563i
\(538\) 7.67921i 0.331074i
\(539\) −19.9161 9.70016i −0.857846 0.417816i
\(540\) 12.3400 + 0.762030i 0.531031 + 0.0327925i
\(541\) 1.28371 2.22346i 0.0551911 0.0955939i −0.837110 0.547035i \(-0.815757\pi\)
0.892301 + 0.451441i \(0.149090\pi\)
\(542\) 6.47133 + 11.2087i 0.277967 + 0.481453i
\(543\) 12.4164 + 7.51309i 0.532839 + 0.322418i
\(544\) −6.40386 3.69727i −0.274563 0.158519i
\(545\) 25.4732 1.09115
\(546\) 9.86807 0.144315i 0.422314 0.00617611i
\(547\) 22.3183 0.954263 0.477132 0.878832i \(-0.341676\pi\)
0.477132 + 0.878832i \(0.341676\pi\)
\(548\) 8.00856 + 4.62375i 0.342109 + 0.197517i
\(549\) −0.0671457 + 1.63215i −0.00286571 + 0.0696585i
\(550\) 1.04654 + 1.81266i 0.0446246 + 0.0772921i
\(551\) 31.4898 54.5419i 1.34151 2.32356i
\(552\) −0.835007 1.51749i −0.0355403 0.0645885i
\(553\) −3.93892 6.29974i −0.167500 0.267892i
\(554\) 24.9871i 1.06160i
\(555\) −12.3111 0.253127i −0.522575 0.0107447i
\(556\) −13.3411 + 7.70249i −0.565789 + 0.326658i
\(557\) 38.0232 21.9527i 1.61110 0.930166i 0.621978 0.783034i \(-0.286329\pi\)
0.989117 0.147132i \(-0.0470041\pi\)
\(558\) −11.0321 21.0628i −0.467025 0.891659i
\(559\) 21.4522i 0.907331i
\(560\) 6.29132 0.221429i 0.265857 0.00935709i
\(561\) 35.5111 19.5403i 1.49928 0.824991i
\(562\) −0.592004 + 1.02538i −0.0249722 + 0.0432531i
\(563\) 20.3426 + 35.2344i 0.857339 + 1.48495i 0.874458 + 0.485101i \(0.161217\pi\)
−0.0171193 + 0.999853i \(0.505450\pi\)
\(564\) −3.46327 + 5.72352i −0.145830 + 0.241004i
\(565\) −11.9623 6.90646i −0.503259 0.290557i
\(566\) −7.51433 −0.315851
\(567\) 10.9228 + 21.1587i 0.458714 + 0.888584i
\(568\) −4.91507 −0.206232
\(569\) 1.64947 + 0.952322i 0.0691494 + 0.0399234i 0.534176 0.845373i \(-0.320622\pi\)
−0.465027 + 0.885297i \(0.653955\pi\)
\(570\) −18.0836 + 29.8857i −0.757440 + 1.25177i
\(571\) 9.96302 + 17.2565i 0.416939 + 0.722160i 0.995630 0.0933870i \(-0.0297694\pi\)
−0.578690 + 0.815547i \(0.696436\pi\)
\(572\) −3.40775 + 5.90240i −0.142485 + 0.246792i
\(573\) 15.5110 8.53503i 0.647980 0.356556i
\(574\) −12.9552 + 8.10025i −0.540739 + 0.338098i
\(575\) 0.661389i 0.0275818i
\(576\) 1.39194 + 2.65754i 0.0579975 + 0.110731i
\(577\) 33.6543 19.4303i 1.40105 0.808895i 0.406547 0.913630i \(-0.366733\pi\)
0.994500 + 0.104735i \(0.0333996\pi\)
\(578\) 32.6312 18.8396i 1.35728 0.783624i
\(579\) 15.8588 + 0.326072i 0.659069 + 0.0135511i
\(580\) 17.6796i 0.734106i
\(581\) 13.3133 25.0552i 0.552327 1.03947i
\(582\) −4.26591 7.75257i −0.176828 0.321354i
\(583\) −3.47482 + 6.01857i −0.143913 + 0.249264i
\(584\) −4.37008 7.56919i −0.180835 0.313215i
\(585\) 0.631891 15.3598i 0.0261255 0.635048i
\(586\) −17.2524 9.96070i −0.712692 0.411473i
\(587\) −38.1409 −1.57425 −0.787123 0.616797i \(-0.788430\pi\)
−0.787123 + 0.616797i \(0.788430\pi\)
\(588\) 6.57740 + 10.1852i 0.271247 + 0.420030i
\(589\) 67.1776 2.76801
\(590\) 17.8791 + 10.3225i 0.736069 + 0.424970i
\(591\) −16.5561 10.0180i −0.681028 0.412086i
\(592\) −1.49395 2.58759i −0.0614008 0.106349i
\(593\) −20.2256 + 35.0317i −0.830565 + 1.43858i 0.0670256 + 0.997751i \(0.478649\pi\)
−0.897591 + 0.440830i \(0.854684\pi\)
\(594\) −16.4129 1.01354i −0.673428 0.0415859i
\(595\) −21.8427 + 41.1074i −0.895463 + 1.68524i
\(596\) 0.273063i 0.0111851i
\(597\) 0.524637 25.5161i 0.0214719 1.04431i
\(598\) −1.86509 + 1.07681i −0.0762692 + 0.0440340i
\(599\) 2.47759 1.43043i 0.101231 0.0584460i −0.448530 0.893768i \(-0.648052\pi\)
0.549761 + 0.835322i \(0.314719\pi\)
\(600\) 0.0235488 1.14532i 0.000961378 0.0467574i
\(601\) 22.3918i 0.913380i −0.889626 0.456690i \(-0.849035\pi\)
0.889626 0.456690i \(-0.150965\pi\)
\(602\) 22.3459 13.9718i 0.910751 0.569448i
\(603\) −7.24911 + 11.4423i −0.295207 + 0.465966i
\(604\) −9.96279 + 17.2561i −0.405380 + 0.702139i
\(605\) 1.17165 + 2.02936i 0.0476344 + 0.0825051i
\(606\) −11.8059 7.14368i −0.479582 0.290192i
\(607\) −22.0852 12.7509i −0.896413 0.517544i −0.0203780 0.999792i \(-0.506487\pi\)
−0.876035 + 0.482248i \(0.839820\pi\)
\(608\) −8.47594 −0.343745
\(609\) −29.2363 + 17.4545i −1.18472 + 0.707294i
\(610\) 1.29559 0.0524569
\(611\) 7.20360 + 4.15900i 0.291426 + 0.168255i
\(612\) −22.1649 0.911848i −0.895962 0.0368593i
\(613\) 14.6707 + 25.4104i 0.592545 + 1.02632i 0.993888 + 0.110390i \(0.0352101\pi\)
−0.401343 + 0.915928i \(0.631457\pi\)
\(614\) 10.5319 18.2418i 0.425032 0.736177i
\(615\) 11.4736 + 20.8514i 0.462661 + 0.840809i
\(616\) −8.36776 + 0.294512i −0.337147 + 0.0118662i
\(617\) 13.9616i 0.562074i −0.959697 0.281037i \(-0.909322\pi\)
0.959697 0.281037i \(-0.0906784\pi\)
\(618\) 4.92750 + 0.101314i 0.198213 + 0.00407545i
\(619\) −19.9475 + 11.5167i −0.801757 + 0.462894i −0.844085 0.536209i \(-0.819856\pi\)
0.0423285 + 0.999104i \(0.486522\pi\)
\(620\) −16.3316 + 9.42905i −0.655893 + 0.378680i
\(621\) −4.33131 2.87049i −0.173810 0.115189i
\(622\) 13.6397i 0.546902i
\(623\) −14.1331 22.6039i −0.566232 0.905606i
\(624\) 3.26809 1.79829i 0.130828 0.0719891i
\(625\) 13.9348 24.1357i 0.557390 0.965428i
\(626\) 8.78864 + 15.2224i 0.351265 + 0.608408i
\(627\) 24.0521 39.7494i 0.960549 1.58744i
\(628\) 13.3104 + 7.68478i 0.531144 + 0.306656i
\(629\) 22.0941 0.880949
\(630\) 16.4112 9.34559i 0.653838 0.372337i
\(631\) −27.1666 −1.08149 −0.540744 0.841187i \(-0.681857\pi\)
−0.540744 + 0.841187i \(0.681857\pi\)
\(632\) −2.43197 1.40410i −0.0967386 0.0558520i
\(633\) 7.78872 12.8719i 0.309574 0.511613i
\(634\) −13.7341 23.7882i −0.545452 0.944751i
\(635\) 15.9938 27.7020i 0.634693 1.09932i
\(636\) 3.33241 1.83368i 0.132139 0.0727103i
\(637\) 12.4934 8.43689i 0.495006 0.334282i
\(638\) 23.5148i 0.930958i
\(639\) −13.0620 + 6.84148i −0.516724 + 0.270645i
\(640\) 2.06059 1.18968i 0.0814521 0.0470264i
\(641\) 9.92364 5.72941i 0.391960 0.226298i −0.291049 0.956708i \(-0.594004\pi\)
0.683009 + 0.730410i \(0.260671\pi\)
\(642\) −21.3248 0.438459i −0.841623 0.0173046i
\(643\) 7.46184i 0.294266i −0.989117 0.147133i \(-0.952995\pi\)
0.989117 0.147133i \(-0.0470045\pi\)
\(644\) −2.33640 1.24146i −0.0920671 0.0489205i
\(645\) −19.7904 35.9657i −0.779246 1.41615i
\(646\) 31.3379 54.2788i 1.23297 2.13557i
\(647\) −11.1984 19.3962i −0.440255 0.762543i 0.557454 0.830208i \(-0.311778\pi\)
−0.997708 + 0.0676648i \(0.978445\pi\)
\(648\) 7.39826 + 5.12501i 0.290631 + 0.201329i
\(649\) −23.7800 13.7294i −0.933447 0.538926i
\(650\) −1.42438 −0.0558688
\(651\) −31.7163 17.6981i −1.24306 0.693644i
\(652\) 18.4458 0.722395
\(653\) −32.5247 18.7781i −1.27279 0.734846i −0.297278 0.954791i \(-0.596079\pi\)
−0.975512 + 0.219945i \(0.929412\pi\)
\(654\) 15.8648 + 9.59973i 0.620365 + 0.375379i
\(655\) 12.3822 + 21.4466i 0.483812 + 0.837987i
\(656\) −2.88748 + 5.00126i −0.112737 + 0.195266i
\(657\) −22.1495 14.0325i −0.864134 0.547461i
\(658\) 0.359437 + 10.2125i 0.0140123 + 0.398123i
\(659\) 29.2622i 1.13989i −0.821682 0.569947i \(-0.806964\pi\)
0.821682 0.569947i \(-0.193036\pi\)
\(660\) −0.268104 + 13.0394i −0.0104359 + 0.507560i
\(661\) −27.3483 + 15.7895i −1.06372 + 0.614142i −0.926460 0.376393i \(-0.877164\pi\)
−0.137264 + 0.990534i \(0.543831\pi\)
\(662\) 3.68015 2.12473i 0.143033 0.0825801i
\(663\) −0.567013 + 27.5771i −0.0220209 + 1.07101i
\(664\) 10.7239i 0.416166i
\(665\) 1.87682 + 53.3249i 0.0727800 + 2.06785i
\(666\) −7.57199 4.79714i −0.293408 0.185885i
\(667\) 3.71519 6.43491i 0.143853 0.249161i
\(668\) −3.76955 6.52906i −0.145848 0.252617i
\(669\) 35.3820 + 21.4094i 1.36795 + 0.827737i
\(670\) 9.30379 + 5.37154i 0.359437 + 0.207521i
\(671\) −1.72320 −0.0665233
\(672\) 4.00171 + 2.23301i 0.154369 + 0.0861402i
\(673\) 11.0049 0.424208 0.212104 0.977247i \(-0.431968\pi\)
0.212104 + 0.977247i \(0.431968\pi\)
\(674\) 29.9472 + 17.2900i 1.15352 + 0.665987i
\(675\) −1.53163 3.07650i −0.0589525 0.118415i
\(676\) 4.18096 + 7.24164i 0.160806 + 0.278525i
\(677\) −14.6665 + 25.4031i −0.563679 + 0.976321i 0.433492 + 0.901157i \(0.357281\pi\)
−0.997171 + 0.0751634i \(0.976052\pi\)
\(678\) −4.84746 8.80944i −0.186166 0.338325i
\(679\) −11.9363 6.34242i −0.458072 0.243400i
\(680\) 17.5943i 0.674712i
\(681\) 7.79870 + 0.160349i 0.298847 + 0.00614458i
\(682\) 21.7218 12.5411i 0.831771 0.480223i
\(683\) 12.2442 7.06921i 0.468513 0.270496i −0.247104 0.968989i \(-0.579479\pi\)
0.715617 + 0.698493i \(0.246146\pi\)
\(684\) −22.5251 + 11.7980i −0.861270 + 0.451108i
\(685\) 22.0032i 0.840698i
\(686\) 16.9253 + 7.51891i 0.646211 + 0.287073i
\(687\) −20.2133 + 11.1225i −0.771186 + 0.424351i
\(688\) 4.98050 8.62648i 0.189880 0.328881i
\(689\) −2.36468 4.09575i −0.0900872 0.156036i
\(690\) −2.13352 + 3.52594i −0.0812219 + 0.134230i
\(691\) 1.53052 + 0.883644i 0.0582236 + 0.0336154i 0.528829 0.848728i \(-0.322631\pi\)
−0.470606 + 0.882344i \(0.655965\pi\)
\(692\) 8.52224 0.323967
\(693\) −21.8277 + 12.4301i −0.829165 + 0.472180i
\(694\) −4.14591 −0.157377
\(695\) 31.7434 + 18.3271i 1.20410 + 0.695185i
\(696\) −6.66266 + 11.0109i −0.252548 + 0.417369i
\(697\) −21.3516 36.9820i −0.808748 1.40079i
\(698\) −15.7468 + 27.2743i −0.596027 + 1.03235i
\(699\) 2.08103 1.14510i 0.0787117 0.0433117i
\(700\) −0.927698 1.48372i −0.0350637 0.0560793i
\(701\) 10.6445i 0.402035i 0.979588 + 0.201018i \(0.0644249\pi\)
−0.979588 + 0.201018i \(0.935575\pi\)
\(702\) 6.18195 9.32800i 0.233323 0.352063i
\(703\) 21.9323 12.6626i 0.827191 0.477579i
\(704\) −2.74069 + 1.58234i −0.103294 + 0.0596366i
\(705\) 15.9140 + 0.327208i 0.599357 + 0.0123234i
\(706\) 33.9528i 1.27783i
\(707\) −21.0652 + 0.741412i −0.792239 + 0.0278836i
\(708\) 7.24508 + 13.1667i 0.272287 + 0.494835i
\(709\) −16.9546 + 29.3663i −0.636745 + 1.10287i 0.349398 + 0.936974i \(0.386386\pi\)
−0.986143 + 0.165900i \(0.946947\pi\)
\(710\) 5.84738 + 10.1280i 0.219448 + 0.380095i
\(711\) −8.41747 0.346289i −0.315680 0.0129869i
\(712\) −8.72608 5.03800i −0.327024 0.188807i
\(713\) 7.92568 0.296819
\(714\) −29.0953 + 17.3703i −1.08886 + 0.650068i
\(715\) 16.2166 0.606466
\(716\) 0.0883741 + 0.0510228i 0.00330269 + 0.00190681i
\(717\) −11.4204 6.91042i −0.426502 0.258074i
\(718\) 8.10639 + 14.0407i 0.302528 + 0.523993i
\(719\) −10.7366 + 18.5963i −0.400407 + 0.693526i −0.993775 0.111406i \(-0.964465\pi\)
0.593368 + 0.804931i \(0.297798\pi\)
\(720\) 3.82013 6.02985i 0.142368 0.224719i
\(721\) 6.38340 3.99123i 0.237730 0.148641i
\(722\) 52.8416i 1.96656i
\(723\) −0.946011 + 46.0100i −0.0351825 + 1.71113i
\(724\) 7.25627 4.18941i 0.269677 0.155698i
\(725\) 4.25598 2.45719i 0.158063 0.0912577i
\(726\) −0.0350654 + 1.70544i −0.00130140 + 0.0632946i
\(727\) 31.6065i 1.17222i −0.810231 0.586110i \(-0.800659\pi\)
0.810231 0.586110i \(-0.199341\pi\)
\(728\) 2.67364 5.03172i 0.0990916 0.186488i
\(729\) 26.7949 + 3.32197i 0.992402 + 0.123036i
\(730\) −10.3980 + 18.0099i −0.384848 + 0.666576i
\(731\) 36.8285 + 63.7888i 1.36215 + 2.35932i
\(732\) 0.806900 + 0.488250i 0.0298239 + 0.0180463i
\(733\) 13.2006 + 7.62135i 0.487574 + 0.281501i 0.723567 0.690254i \(-0.242501\pi\)
−0.235994 + 0.971755i \(0.575834\pi\)
\(734\) −9.62487 −0.355261
\(735\) 13.1625 25.6705i 0.485506 0.946870i
\(736\) −1.00000 −0.0368605
\(737\) −12.3745 7.14441i −0.455820 0.263168i
\(738\) −0.712131 + 17.3102i −0.0262139 + 0.637198i
\(739\) 19.6677 + 34.0655i 0.723489 + 1.25312i 0.959593 + 0.281392i \(0.0907960\pi\)
−0.236104 + 0.971728i \(0.575871\pi\)
\(740\) −3.55465 + 6.15683i −0.130671 + 0.226329i
\(741\) 15.2422 + 27.7001i 0.559936 + 1.01759i
\(742\) 2.72626 5.13076i 0.100084 0.188356i
\(743\) 29.2465i 1.07295i −0.843916 0.536475i \(-0.819755\pi\)
0.843916 0.536475i \(-0.180245\pi\)
\(744\) −13.7248 0.282195i −0.503175 0.0103458i
\(745\) −0.562672 + 0.324859i −0.0206147 + 0.0119019i
\(746\) 13.3993 7.73610i 0.490584 0.283239i
\(747\) −14.9270 28.4990i −0.546149 1.04273i
\(748\) 23.4013i 0.855636i
\(749\) −27.6256 + 17.2729i −1.00942 + 0.631139i
\(750\) 15.6652 8.61991i 0.572013 0.314754i
\(751\) 12.0682 20.9028i 0.440376 0.762753i −0.557341 0.830283i \(-0.688179\pi\)
0.997717 + 0.0675302i \(0.0215119\pi\)
\(752\) 1.93117 + 3.34488i 0.0704224 + 0.121975i
\(753\) 14.0122 23.1570i 0.510633 0.843889i
\(754\) 13.8583 + 8.00111i 0.504691 + 0.291383i
\(755\) 47.4103 1.72544
\(756\) 13.7429 + 0.364173i 0.499825 + 0.0132448i
\(757\) −20.7025 −0.752447 −0.376223 0.926529i \(-0.622777\pi\)
−0.376223 + 0.926529i \(0.622777\pi\)
\(758\) −24.4566 14.1200i −0.888305 0.512863i
\(759\) 2.83769 4.68967i 0.103002 0.170224i
\(760\) 10.0837 + 17.4655i 0.365774 + 0.633539i
\(761\) −3.82228 + 6.62038i −0.138558 + 0.239989i −0.926951 0.375183i \(-0.877580\pi\)
0.788393 + 0.615172i \(0.210913\pi\)
\(762\) 20.4006 11.2256i 0.739037 0.406661i
\(763\) 28.3076 0.996314i 1.02480 0.0360690i
\(764\) 10.2215i 0.369801i
\(765\) 24.4902 + 46.7576i 0.885446 + 1.69052i
\(766\) −23.6339 + 13.6450i −0.853928 + 0.493016i
\(767\) 16.1827 9.34311i 0.584325 0.337360i
\(768\) 1.73168 + 0.0356051i 0.0624868 + 0.00128479i
\(769\) 22.7337i 0.819797i 0.912131 + 0.409898i \(0.134436\pi\)
−0.912131 + 0.409898i \(0.865564\pi\)
\(770\) 10.5619 + 16.8922i 0.380623