Properties

Label 966.2.l.d.47.4
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.4
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.20460 + 1.24456i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.662008 - 1.14663i) q^{5} +(1.66550 - 0.475517i) q^{6} +(2.07946 + 1.63580i) q^{7} -1.00000i q^{8} +(-0.0978548 - 2.99840i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.20460 + 1.24456i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.662008 - 1.14663i) q^{5} +(1.66550 - 0.475517i) q^{6} +(2.07946 + 1.63580i) q^{7} -1.00000i q^{8} +(-0.0978548 - 2.99840i) q^{9} +(-1.14663 + 0.662008i) q^{10} +(-5.14427 + 2.97005i) q^{11} +(-1.68012 - 0.420939i) q^{12} -0.431364i q^{13} +(-0.982969 - 2.45637i) q^{14} +(0.629593 + 2.20515i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.767229 + 1.32888i) q^{17} +(-1.41446 + 2.64562i) q^{18} +(2.99058 + 1.72661i) q^{19} +1.32402 q^{20} +(-4.54078 + 0.617525i) q^{21} +5.94009 q^{22} +(-0.866025 - 0.500000i) q^{23} +(1.24456 + 1.20460i) q^{24} +(1.62349 + 2.81197i) q^{25} +(-0.215682 + 0.373572i) q^{26} +(3.84957 + 3.49011i) q^{27} +(-0.376911 + 2.61877i) q^{28} -4.54331i q^{29} +(0.557330 - 2.22451i) q^{30} +(-6.56402 + 3.78974i) q^{31} +(0.866025 - 0.500000i) q^{32} +(2.50042 - 9.98008i) q^{33} -1.53446i q^{34} +(3.25228 - 1.30147i) q^{35} +(2.54777 - 1.58395i) q^{36} +(1.58338 - 2.74249i) q^{37} +(-1.72661 - 2.99058i) q^{38} +(0.536858 + 0.519623i) q^{39} +(-1.14663 - 0.662008i) q^{40} -0.950042 q^{41} +(4.24119 + 1.73560i) q^{42} -6.81513 q^{43} +(-5.14427 - 2.97005i) q^{44} +(-3.50284 - 1.87276i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-2.43049 + 4.20973i) q^{47} +(-0.475517 - 1.66550i) q^{48} +(1.64833 + 6.80316i) q^{49} -3.24698i q^{50} +(-2.57808 - 0.645913i) q^{51} +(0.373572 - 0.215682i) q^{52} +(-2.00861 + 1.15967i) q^{53} +(-1.58877 - 4.94730i) q^{54} +7.86478i q^{55} +(1.63580 - 2.07946i) q^{56} +(-5.75133 + 1.64207i) q^{57} +(-2.27166 + 3.93462i) q^{58} +(-1.84910 - 3.20274i) q^{59} +(-1.59492 + 1.64782i) q^{60} +(6.47975 + 3.74108i) q^{61} +7.57947 q^{62} +(4.70130 - 6.39514i) q^{63} -1.00000 q^{64} +(-0.494615 - 0.285566i) q^{65} +(-7.15547 + 7.39280i) q^{66} +(4.35534 + 7.54367i) q^{67} +(-0.767229 + 1.32888i) q^{68} +(1.66550 - 0.475517i) q^{69} +(-3.46729 - 0.499036i) q^{70} +13.2414i q^{71} +(-2.99840 + 0.0978548i) q^{72} +(-11.1193 + 6.41976i) q^{73} +(-2.74249 + 1.58338i) q^{74} +(-5.45533 - 1.36678i) q^{75} +3.45322i q^{76} +(-15.5557 - 2.23889i) q^{77} +(-0.205121 - 0.718436i) q^{78} +(-6.48480 + 11.2320i) q^{79} +(0.662008 + 1.14663i) q^{80} +(-8.98085 + 0.586816i) q^{81} +(0.822761 + 0.475021i) q^{82} -3.35408 q^{83} +(-2.80518 - 3.62367i) q^{84} +2.03165 q^{85} +(5.90208 + 3.40757i) q^{86} +(5.65442 + 5.47290i) q^{87} +(2.97005 + 5.14427i) q^{88} +(-8.29910 + 14.3745i) q^{89} +(2.09717 + 3.37328i) q^{90} +(0.705624 - 0.897005i) q^{91} -1.00000i q^{92} +(3.19049 - 12.7344i) q^{93} +(4.20973 - 2.43049i) q^{94} +(3.95957 - 2.28606i) q^{95} +(-0.420939 + 1.68012i) q^{96} -10.3531i q^{97} +(1.97408 - 6.71588i) q^{98} +(9.40879 + 15.1340i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −1.20460 + 1.24456i −0.695479 + 0.718547i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.662008 1.14663i 0.296059 0.512789i −0.679172 0.733979i \(-0.737661\pi\)
0.975231 + 0.221190i \(0.0709942\pi\)
\(6\) 1.66550 0.475517i 0.679937 0.194129i
\(7\) 2.07946 + 1.63580i 0.785963 + 0.618273i
\(8\) 1.00000i 0.353553i
\(9\) −0.0978548 2.99840i −0.0326183 0.999468i
\(10\) −1.14663 + 0.662008i −0.362597 + 0.209345i
\(11\) −5.14427 + 2.97005i −1.55106 + 0.895503i −0.553000 + 0.833181i \(0.686517\pi\)
−0.998056 + 0.0623219i \(0.980149\pi\)
\(12\) −1.68012 0.420939i −0.485009 0.121515i
\(13\) 0.431364i 0.119639i −0.998209 0.0598194i \(-0.980948\pi\)
0.998209 0.0598194i \(-0.0190525\pi\)
\(14\) −0.982969 2.45637i −0.262709 0.656494i
\(15\) 0.629593 + 2.20515i 0.162560 + 0.569366i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.767229 + 1.32888i 0.186080 + 0.322301i 0.943940 0.330117i \(-0.107088\pi\)
−0.757860 + 0.652418i \(0.773755\pi\)
\(18\) −1.41446 + 2.64562i −0.333391 + 0.623579i
\(19\) 2.99058 + 1.72661i 0.686085 + 0.396111i 0.802144 0.597131i \(-0.203693\pi\)
−0.116059 + 0.993242i \(0.537026\pi\)
\(20\) 1.32402 0.296059
\(21\) −4.54078 + 0.617525i −0.990879 + 0.134755i
\(22\) 5.94009 1.26643
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) 1.24456 + 1.20460i 0.254045 + 0.245889i
\(25\) 1.62349 + 2.81197i 0.324698 + 0.562394i
\(26\) −0.215682 + 0.373572i −0.0422987 + 0.0732635i
\(27\) 3.84957 + 3.49011i 0.740849 + 0.671671i
\(28\) −0.376911 + 2.61877i −0.0712295 + 0.494900i
\(29\) 4.54331i 0.843672i −0.906672 0.421836i \(-0.861386\pi\)
0.906672 0.421836i \(-0.138614\pi\)
\(30\) 0.557330 2.22451i 0.101754 0.406138i
\(31\) −6.56402 + 3.78974i −1.17893 + 0.680657i −0.955767 0.294124i \(-0.904972\pi\)
−0.223165 + 0.974781i \(0.571639\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 2.50042 9.98008i 0.435267 1.73731i
\(34\) 1.53446i 0.263157i
\(35\) 3.25228 1.30147i 0.549735 0.219988i
\(36\) 2.54777 1.58395i 0.424628 0.263991i
\(37\) 1.58338 2.74249i 0.260306 0.450863i −0.706017 0.708195i \(-0.749510\pi\)
0.966323 + 0.257332i \(0.0828432\pi\)
\(38\) −1.72661 2.99058i −0.280093 0.485135i
\(39\) 0.536858 + 0.519623i 0.0859661 + 0.0832063i
\(40\) −1.14663 0.662008i −0.181298 0.104673i
\(41\) −0.950042 −0.148372 −0.0741859 0.997244i \(-0.523636\pi\)
−0.0741859 + 0.997244i \(0.523636\pi\)
\(42\) 4.24119 + 1.73560i 0.654430 + 0.267808i
\(43\) −6.81513 −1.03930 −0.519649 0.854380i \(-0.673937\pi\)
−0.519649 + 0.854380i \(0.673937\pi\)
\(44\) −5.14427 2.97005i −0.775528 0.447751i
\(45\) −3.50284 1.87276i −0.522173 0.279175i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −2.43049 + 4.20973i −0.354523 + 0.614052i −0.987036 0.160497i \(-0.948690\pi\)
0.632513 + 0.774550i \(0.282023\pi\)
\(48\) −0.475517 1.66550i −0.0686350 0.240394i
\(49\) 1.64833 + 6.80316i 0.235476 + 0.971880i
\(50\) 3.24698i 0.459193i
\(51\) −2.57808 0.645913i −0.361003 0.0904459i
\(52\) 0.373572 0.215682i 0.0518051 0.0299097i
\(53\) −2.00861 + 1.15967i −0.275904 + 0.159293i −0.631568 0.775321i \(-0.717588\pi\)
0.355664 + 0.934614i \(0.384255\pi\)
\(54\) −1.58877 4.94730i −0.216204 0.673243i
\(55\) 7.86478i 1.06049i
\(56\) 1.63580 2.07946i 0.218593 0.277880i
\(57\) −5.75133 + 1.64207i −0.761782 + 0.217497i
\(58\) −2.27166 + 3.93462i −0.298283 + 0.516642i
\(59\) −1.84910 3.20274i −0.240733 0.416961i 0.720190 0.693776i \(-0.244054\pi\)
−0.960923 + 0.276815i \(0.910721\pi\)
\(60\) −1.59492 + 1.64782i −0.205903 + 0.212732i
\(61\) 6.47975 + 3.74108i 0.829647 + 0.478997i 0.853732 0.520713i \(-0.174334\pi\)
−0.0240850 + 0.999710i \(0.507667\pi\)
\(62\) 7.57947 0.962594
\(63\) 4.70130 6.39514i 0.592308 0.805712i
\(64\) −1.00000 −0.125000
\(65\) −0.494615 0.285566i −0.0613495 0.0354201i
\(66\) −7.15547 + 7.39280i −0.880777 + 0.909991i
\(67\) 4.35534 + 7.54367i 0.532089 + 0.921606i 0.999298 + 0.0374589i \(0.0119263\pi\)
−0.467209 + 0.884147i \(0.654740\pi\)
\(68\) −0.767229 + 1.32888i −0.0930402 + 0.161150i
\(69\) 1.66550 0.475517i 0.200502 0.0572456i
\(70\) −3.46729 0.499036i −0.414420 0.0596462i
\(71\) 13.2414i 1.57147i 0.618566 + 0.785733i \(0.287714\pi\)
−0.618566 + 0.785733i \(0.712286\pi\)
\(72\) −2.99840 + 0.0978548i −0.353365 + 0.0115323i
\(73\) −11.1193 + 6.41976i −1.30142 + 0.751376i −0.980648 0.195780i \(-0.937276\pi\)
−0.320773 + 0.947156i \(0.603943\pi\)
\(74\) −2.74249 + 1.58338i −0.318808 + 0.184064i
\(75\) −5.45533 1.36678i −0.629927 0.157822i
\(76\) 3.45322i 0.396111i
\(77\) −15.5557 2.23889i −1.77274 0.255145i
\(78\) −0.205121 0.718436i −0.0232254 0.0813468i
\(79\) −6.48480 + 11.2320i −0.729597 + 1.26370i 0.227457 + 0.973788i \(0.426959\pi\)
−0.957054 + 0.289911i \(0.906374\pi\)
\(80\) 0.662008 + 1.14663i 0.0740147 + 0.128197i
\(81\) −8.98085 + 0.586816i −0.997872 + 0.0652018i
\(82\) 0.822761 + 0.475021i 0.0908587 + 0.0524573i
\(83\) −3.35408 −0.368158 −0.184079 0.982911i \(-0.558930\pi\)
−0.184079 + 0.982911i \(0.558930\pi\)
\(84\) −2.80518 3.62367i −0.306070 0.395374i
\(85\) 2.03165 0.220363
\(86\) 5.90208 + 3.40757i 0.636438 + 0.367447i
\(87\) 5.65442 + 5.47290i 0.606218 + 0.586756i
\(88\) 2.97005 + 5.14427i 0.316608 + 0.548381i
\(89\) −8.29910 + 14.3745i −0.879703 + 1.52369i −0.0280365 + 0.999607i \(0.508925\pi\)
−0.851667 + 0.524084i \(0.824408\pi\)
\(90\) 2.09717 + 3.37328i 0.221061 + 0.355575i
\(91\) 0.705624 0.897005i 0.0739695 0.0940317i
\(92\) 1.00000i 0.104257i
\(93\) 3.19049 12.7344i 0.330839 1.32050i
\(94\) 4.20973 2.43049i 0.434201 0.250686i
\(95\) 3.95957 2.28606i 0.406243 0.234545i
\(96\) −0.420939 + 1.68012i −0.0429619 + 0.171477i
\(97\) 10.3531i 1.05120i −0.850732 0.525599i \(-0.823841\pi\)
0.850732 0.525599i \(-0.176159\pi\)
\(98\) 1.97408 6.71588i 0.199412 0.678406i
\(99\) 9.40879 + 15.1340i 0.945619 + 1.52102i
\(100\) −1.62349 + 2.81197i −0.162349 + 0.281197i
\(101\) −8.12460 14.0722i −0.808427 1.40024i −0.913953 0.405821i \(-0.866986\pi\)
0.105525 0.994417i \(-0.466348\pi\)
\(102\) 1.90972 + 1.84842i 0.189091 + 0.183020i
\(103\) −14.1321 8.15920i −1.39248 0.803949i −0.398892 0.916998i \(-0.630605\pi\)
−0.993589 + 0.113049i \(0.963938\pi\)
\(104\) −0.431364 −0.0422987
\(105\) −2.29796 + 5.61540i −0.224258 + 0.548007i
\(106\) 2.31934 0.225274
\(107\) 12.5081 + 7.22158i 1.20921 + 0.698137i 0.962586 0.270975i \(-0.0873461\pi\)
0.246622 + 0.969112i \(0.420679\pi\)
\(108\) −1.09774 + 5.07888i −0.105630 + 0.488715i
\(109\) 4.14273 + 7.17542i 0.396802 + 0.687281i 0.993329 0.115312i \(-0.0367868\pi\)
−0.596528 + 0.802592i \(0.703453\pi\)
\(110\) 3.93239 6.81110i 0.374939 0.649413i
\(111\) 1.50585 + 5.27423i 0.142929 + 0.500608i
\(112\) −2.45637 + 0.982969i −0.232106 + 0.0928818i
\(113\) 8.85205i 0.832731i 0.909197 + 0.416365i \(0.136696\pi\)
−0.909197 + 0.416365i \(0.863304\pi\)
\(114\) 5.80183 + 1.45359i 0.543391 + 0.136142i
\(115\) −1.14663 + 0.662008i −0.106924 + 0.0617326i
\(116\) 3.93462 2.27166i 0.365321 0.210918i
\(117\) −1.29340 + 0.0422110i −0.119575 + 0.00390241i
\(118\) 3.69821i 0.340448i
\(119\) −0.578354 + 4.01839i −0.0530176 + 0.368365i
\(120\) 2.20515 0.629593i 0.201301 0.0574737i
\(121\) 12.1424 21.0312i 1.10385 1.91193i
\(122\) −3.74108 6.47975i −0.338702 0.586649i
\(123\) 1.14443 1.18238i 0.103189 0.106612i
\(124\) −6.56402 3.78974i −0.589466 0.340328i
\(125\) 10.9191 0.976637
\(126\) −7.26901 + 3.18771i −0.647575 + 0.283983i
\(127\) −12.9091 −1.14550 −0.572749 0.819731i \(-0.694123\pi\)
−0.572749 + 0.819731i \(0.694123\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 8.20954 8.48184i 0.722810 0.746784i
\(130\) 0.285566 + 0.494615i 0.0250458 + 0.0433806i
\(131\) 6.44820 11.1686i 0.563381 0.975805i −0.433817 0.901001i \(-0.642833\pi\)
0.997198 0.0748042i \(-0.0238332\pi\)
\(132\) 9.89321 2.82462i 0.861094 0.245851i
\(133\) 3.39441 + 8.48240i 0.294332 + 0.735517i
\(134\) 8.71068i 0.752488i
\(135\) 6.55031 2.10356i 0.563761 0.181045i
\(136\) 1.32888 0.767229i 0.113951 0.0657894i
\(137\) −13.2390 + 7.64352i −1.13108 + 0.653030i −0.944207 0.329354i \(-0.893169\pi\)
−0.186874 + 0.982384i \(0.559836\pi\)
\(138\) −1.68012 0.420939i −0.143021 0.0358327i
\(139\) 11.6576i 0.988783i −0.869239 0.494391i \(-0.835391\pi\)
0.869239 0.494391i \(-0.164609\pi\)
\(140\) 2.75324 + 2.16582i 0.232691 + 0.183045i
\(141\) −2.31148 8.09595i −0.194662 0.681802i
\(142\) 6.62071 11.4674i 0.555597 0.962323i
\(143\) 1.28117 + 2.21905i 0.107137 + 0.185567i
\(144\) 2.64562 + 1.41446i 0.220468 + 0.117871i
\(145\) −5.20951 3.00771i −0.432626 0.249777i
\(146\) 12.8395 1.06261
\(147\) −10.4525 6.14367i −0.862110 0.506722i
\(148\) 3.16676 0.260306
\(149\) −4.78584 2.76311i −0.392072 0.226363i 0.290986 0.956727i \(-0.406017\pi\)
−0.683057 + 0.730365i \(0.739350\pi\)
\(150\) 4.04106 + 3.91133i 0.329951 + 0.319359i
\(151\) 4.94694 + 8.56835i 0.402576 + 0.697283i 0.994036 0.109052i \(-0.0347815\pi\)
−0.591460 + 0.806335i \(0.701448\pi\)
\(152\) 1.72661 2.99058i 0.140047 0.242568i
\(153\) 3.90944 2.43050i 0.316060 0.196494i
\(154\) 12.3522 + 9.71679i 0.995369 + 0.783001i
\(155\) 10.0353i 0.806058i
\(156\) −0.181578 + 0.724744i −0.0145379 + 0.0580260i
\(157\) −2.98159 + 1.72142i −0.237956 + 0.137384i −0.614237 0.789122i \(-0.710536\pi\)
0.376281 + 0.926506i \(0.377203\pi\)
\(158\) 11.2320 6.48480i 0.893570 0.515903i
\(159\) 0.976301 3.89678i 0.0774257 0.309035i
\(160\) 1.32402i 0.104673i
\(161\) −0.982969 2.45637i −0.0774688 0.193589i
\(162\) 8.07105 + 3.98223i 0.634122 + 0.312873i
\(163\) 8.75656 15.1668i 0.685867 1.18796i −0.287297 0.957842i \(-0.592757\pi\)
0.973164 0.230114i \(-0.0739100\pi\)
\(164\) −0.475021 0.822761i −0.0370929 0.0642468i
\(165\) −9.78818 9.47395i −0.762009 0.737546i
\(166\) 2.90472 + 1.67704i 0.225450 + 0.130164i
\(167\) −6.31100 −0.488360 −0.244180 0.969730i \(-0.578519\pi\)
−0.244180 + 0.969730i \(0.578519\pi\)
\(168\) 0.617525 + 4.54078i 0.0476431 + 0.350329i
\(169\) 12.8139 0.985687
\(170\) −1.75946 1.01582i −0.134944 0.0779101i
\(171\) 4.88443 9.13591i 0.373522 0.698641i
\(172\) −3.40757 5.90208i −0.259825 0.450029i
\(173\) −2.31313 + 4.00646i −0.175864 + 0.304606i −0.940460 0.339904i \(-0.889605\pi\)
0.764596 + 0.644510i \(0.222939\pi\)
\(174\) −2.16042 7.56688i −0.163781 0.573644i
\(175\) −1.22382 + 8.50309i −0.0925123 + 0.642773i
\(176\) 5.94009i 0.447751i
\(177\) 6.21344 + 1.55672i 0.467031 + 0.117010i
\(178\) 14.3745 8.29910i 1.07741 0.622044i
\(179\) 18.2428 10.5325i 1.36353 0.787236i 0.373441 0.927654i \(-0.378178\pi\)
0.990092 + 0.140417i \(0.0448444\pi\)
\(180\) −0.129561 3.96993i −0.00965693 0.295901i
\(181\) 6.37728i 0.474019i 0.971507 + 0.237010i \(0.0761673\pi\)
−0.971507 + 0.237010i \(0.923833\pi\)
\(182\) −1.05959 + 0.424017i −0.0785421 + 0.0314303i
\(183\) −12.4615 + 3.55790i −0.921183 + 0.263008i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) −2.09642 3.63110i −0.154132 0.266964i
\(186\) −9.13027 + 9.43310i −0.669464 + 0.691669i
\(187\) −7.89367 4.55741i −0.577242 0.333271i
\(188\) −4.86098 −0.354523
\(189\) 2.29593 + 13.5547i 0.167004 + 0.985956i
\(190\) −4.57212 −0.331696
\(191\) 6.66406 + 3.84750i 0.482195 + 0.278395i 0.721331 0.692591i \(-0.243531\pi\)
−0.239136 + 0.970986i \(0.576864\pi\)
\(192\) 1.20460 1.24456i 0.0869349 0.0898183i
\(193\) 5.99384 + 10.3816i 0.431446 + 0.747286i 0.996998 0.0774262i \(-0.0246702\pi\)
−0.565552 + 0.824713i \(0.691337\pi\)
\(194\) −5.17655 + 8.96605i −0.371655 + 0.643725i
\(195\) 0.951220 0.271584i 0.0681183 0.0194485i
\(196\) −5.06754 + 4.82908i −0.361967 + 0.344934i
\(197\) 15.1707i 1.08087i 0.841386 + 0.540435i \(0.181740\pi\)
−0.841386 + 0.540435i \(0.818260\pi\)
\(198\) −0.581267 17.8108i −0.0413088 1.26576i
\(199\) 20.9478 12.0942i 1.48495 0.857335i 0.485094 0.874462i \(-0.338785\pi\)
0.999853 + 0.0171271i \(0.00545199\pi\)
\(200\) 2.81197 1.62349i 0.198836 0.114798i
\(201\) −14.6350 3.66666i −1.03227 0.258626i
\(202\) 16.2492i 1.14329i
\(203\) 7.43194 9.44765i 0.521620 0.663095i
\(204\) −0.729662 2.55564i −0.0510865 0.178930i
\(205\) −0.628936 + 1.08935i −0.0439268 + 0.0760834i
\(206\) 8.15920 + 14.1321i 0.568478 + 0.984633i
\(207\) −1.41446 + 2.64562i −0.0983116 + 0.183883i
\(208\) 0.373572 + 0.215682i 0.0259026 + 0.0149549i
\(209\) −20.5125 −1.41888
\(210\) 4.79779 3.71410i 0.331079 0.256298i
\(211\) −2.61273 −0.179868 −0.0899340 0.995948i \(-0.528666\pi\)
−0.0899340 + 0.995948i \(0.528666\pi\)
\(212\) −2.00861 1.15967i −0.137952 0.0796466i
\(213\) −16.4797 15.9507i −1.12917 1.09292i
\(214\) −7.22158 12.5081i −0.493657 0.855039i
\(215\) −4.51167 + 7.81445i −0.307693 + 0.532941i
\(216\) 3.49011 3.84957i 0.237472 0.261930i
\(217\) −19.8489 2.85679i −1.34743 0.193931i
\(218\) 8.28546i 0.561162i
\(219\) 5.40465 21.5720i 0.365212 1.45770i
\(220\) −6.81110 + 3.93239i −0.459204 + 0.265122i
\(221\) 0.573231 0.330955i 0.0385597 0.0222624i
\(222\) 1.33301 5.32054i 0.0894659 0.357091i
\(223\) 0.232863i 0.0155936i −0.999970 0.00779682i \(-0.997518\pi\)
0.999970 0.00779682i \(-0.00248183\pi\)
\(224\) 2.61877 + 0.376911i 0.174974 + 0.0251834i
\(225\) 8.27255 5.14305i 0.551503 0.342870i
\(226\) 4.42603 7.66610i 0.294415 0.509941i
\(227\) −3.83498 6.64239i −0.254537 0.440871i 0.710233 0.703967i \(-0.248590\pi\)
−0.964770 + 0.263096i \(0.915256\pi\)
\(228\) −4.29774 4.15976i −0.284625 0.275487i
\(229\) 5.44588 + 3.14418i 0.359874 + 0.207773i 0.669025 0.743239i \(-0.266712\pi\)
−0.309152 + 0.951013i \(0.600045\pi\)
\(230\) 1.32402 0.0873030
\(231\) 21.5249 16.6630i 1.41624 1.09635i
\(232\) −4.54331 −0.298283
\(233\) 10.3737 + 5.98926i 0.679603 + 0.392369i 0.799706 0.600392i \(-0.204989\pi\)
−0.120102 + 0.992762i \(0.538322\pi\)
\(234\) 1.14123 + 0.610146i 0.0746043 + 0.0398865i
\(235\) 3.21801 + 5.57375i 0.209920 + 0.363591i
\(236\) 1.84910 3.20274i 0.120366 0.208481i
\(237\) −6.16727 21.6008i −0.400607 1.40313i
\(238\) 2.51006 3.19085i 0.162703 0.206832i
\(239\) 22.3020i 1.44260i 0.692623 + 0.721300i \(0.256455\pi\)
−0.692623 + 0.721300i \(0.743545\pi\)
\(240\) −2.22451 0.557330i −0.143591 0.0359755i
\(241\) 23.5248 13.5820i 1.51536 0.874896i 0.515526 0.856874i \(-0.327596\pi\)
0.999838 0.0180218i \(-0.00573684\pi\)
\(242\) −21.0312 + 12.1424i −1.35194 + 0.780540i
\(243\) 10.0880 11.8841i 0.647148 0.762364i
\(244\) 7.48217i 0.478997i
\(245\) 8.89193 + 2.61372i 0.568084 + 0.166984i
\(246\) −1.58229 + 0.451762i −0.100883 + 0.0288033i
\(247\) 0.744797 1.29003i 0.0473903 0.0820824i
\(248\) 3.78974 + 6.56402i 0.240648 + 0.416815i
\(249\) 4.04034 4.17435i 0.256046 0.264539i
\(250\) −9.45625 5.45957i −0.598066 0.345293i
\(251\) 8.74556 0.552015 0.276007 0.961155i \(-0.410989\pi\)
0.276007 + 0.961155i \(0.410989\pi\)
\(252\) 7.88900 + 0.873872i 0.496960 + 0.0550488i
\(253\) 5.94009 0.373451
\(254\) 11.1796 + 6.45455i 0.701471 + 0.404994i
\(255\) −2.44733 + 2.52850i −0.153258 + 0.158341i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.21182 7.29509i 0.262726 0.455055i −0.704239 0.709963i \(-0.748712\pi\)
0.966965 + 0.254907i \(0.0820450\pi\)
\(258\) −11.3506 + 3.24071i −0.706657 + 0.201758i
\(259\) 7.77874 3.11283i 0.483348 0.193422i
\(260\) 0.571133i 0.0354201i
\(261\) −13.6227 + 0.444585i −0.843223 + 0.0275191i
\(262\) −11.1686 + 6.44820i −0.689999 + 0.398371i
\(263\) 11.8646 6.85000i 0.731600 0.422389i −0.0874074 0.996173i \(-0.527858\pi\)
0.819007 + 0.573783i \(0.194525\pi\)
\(264\) −9.98008 2.50042i −0.614232 0.153890i
\(265\) 3.07085i 0.188641i
\(266\) 1.30156 9.04318i 0.0798035 0.554473i
\(267\) −7.89274 27.6443i −0.483028 1.69180i
\(268\) −4.35534 + 7.54367i −0.266045 + 0.460803i
\(269\) 1.16768 + 2.02248i 0.0711945 + 0.123313i 0.899425 0.437075i \(-0.143986\pi\)
−0.828231 + 0.560387i \(0.810652\pi\)
\(270\) −6.72451 1.45342i −0.409241 0.0884523i
\(271\) −1.51793 0.876376i −0.0922076 0.0532361i 0.453187 0.891415i \(-0.350287\pi\)
−0.545395 + 0.838179i \(0.683620\pi\)
\(272\) −1.53446 −0.0930402
\(273\) 0.266378 + 1.95873i 0.0161219 + 0.118548i
\(274\) 15.2870 0.923524
\(275\) −16.7034 9.64369i −1.00725 0.581536i
\(276\) 1.24456 + 1.20460i 0.0749137 + 0.0725087i
\(277\) 3.92403 + 6.79662i 0.235772 + 0.408370i 0.959497 0.281719i \(-0.0909047\pi\)
−0.723725 + 0.690089i \(0.757571\pi\)
\(278\) −5.82879 + 10.0958i −0.349588 + 0.605503i
\(279\) 12.0055 + 19.3107i 0.718749 + 1.15610i
\(280\) −1.30147 3.25228i −0.0777775 0.194361i
\(281\) 7.04104i 0.420033i −0.977698 0.210016i \(-0.932648\pi\)
0.977698 0.210016i \(-0.0673518\pi\)
\(282\) −2.04617 + 8.16704i −0.121848 + 0.486340i
\(283\) 4.79548 2.76867i 0.285062 0.164580i −0.350651 0.936506i \(-0.614040\pi\)
0.635713 + 0.771926i \(0.280706\pi\)
\(284\) −11.4674 + 6.62071i −0.680465 + 0.392867i
\(285\) −1.92458 + 7.68172i −0.114002 + 0.455026i
\(286\) 2.56234i 0.151514i
\(287\) −1.97558 1.55408i −0.116615 0.0917343i
\(288\) −1.58395 2.54777i −0.0933349 0.150129i
\(289\) 7.32272 12.6833i 0.430748 0.746078i
\(290\) 3.00771 + 5.20951i 0.176619 + 0.305913i
\(291\) 12.8850 + 12.4714i 0.755335 + 0.731086i
\(292\) −11.1193 6.41976i −0.650711 0.375688i
\(293\) −0.902583 −0.0527294 −0.0263647 0.999652i \(-0.508393\pi\)
−0.0263647 + 0.999652i \(0.508393\pi\)
\(294\) 5.98032 + 10.5468i 0.348779 + 0.615104i
\(295\) −4.89648 −0.285084
\(296\) −2.74249 1.58338i −0.159404 0.0920320i
\(297\) −30.1690 6.52066i −1.75058 0.378367i
\(298\) 2.76311 + 4.78584i 0.160063 + 0.277236i
\(299\) −0.215682 + 0.373572i −0.0124732 + 0.0216042i
\(300\) −1.54400 5.40784i −0.0891427 0.312222i
\(301\) −14.1718 11.1482i −0.816850 0.642570i
\(302\) 9.89388i 0.569329i
\(303\) 27.3006 + 6.83991i 1.56838 + 0.392943i
\(304\) −2.99058 + 1.72661i −0.171521 + 0.0990279i
\(305\) 8.57929 4.95325i 0.491249 0.283622i
\(306\) −4.60093 + 0.150154i −0.263017 + 0.00858374i
\(307\) 28.2740i 1.61369i −0.590766 0.806843i \(-0.701175\pi\)
0.590766 0.806843i \(-0.298825\pi\)
\(308\) −5.83893 14.5911i −0.332704 0.831405i
\(309\) 27.1782 7.75968i 1.54612 0.441433i
\(310\) 5.01767 8.69086i 0.284985 0.493608i
\(311\) 7.92530 + 13.7270i 0.449403 + 0.778388i 0.998347 0.0574706i \(-0.0183035\pi\)
−0.548945 + 0.835859i \(0.684970\pi\)
\(312\) 0.519623 0.536858i 0.0294179 0.0303936i
\(313\) −28.5410 16.4782i −1.61323 0.931400i −0.988615 0.150470i \(-0.951921\pi\)
−0.624618 0.780931i \(-0.714745\pi\)
\(314\) 3.44284 0.194291
\(315\) −4.22057 9.62429i −0.237802 0.542267i
\(316\) −12.9696 −0.729597
\(317\) −18.1446 10.4758i −1.01910 0.588380i −0.105259 0.994445i \(-0.533567\pi\)
−0.913844 + 0.406065i \(0.866901\pi\)
\(318\) −2.79389 + 2.88656i −0.156674 + 0.161870i
\(319\) 13.4939 + 23.3720i 0.755511 + 1.30858i
\(320\) −0.662008 + 1.14663i −0.0370074 + 0.0640986i
\(321\) −24.0551 + 6.86798i −1.34262 + 0.383333i
\(322\) −0.376911 + 2.61877i −0.0210044 + 0.145938i
\(323\) 5.29882i 0.294834i
\(324\) −4.99862 7.48424i −0.277701 0.415791i
\(325\) 1.21298 0.700316i 0.0672841 0.0388465i
\(326\) −15.1668 + 8.75656i −0.840012 + 0.484981i
\(327\) −13.9206 3.48767i −0.769810 0.192869i
\(328\) 0.950042i 0.0524573i
\(329\) −11.9404 + 4.77819i −0.658294 + 0.263430i
\(330\) 3.73984 + 13.0988i 0.205871 + 0.721064i
\(331\) −11.2718 + 19.5234i −0.619556 + 1.07310i 0.370011 + 0.929027i \(0.379354\pi\)
−0.989567 + 0.144075i \(0.953979\pi\)
\(332\) −1.67704 2.90472i −0.0920395 0.159417i
\(333\) −8.37804 4.47924i −0.459114 0.245461i
\(334\) 5.46548 + 3.15550i 0.299058 + 0.172661i
\(335\) 11.5331 0.630119
\(336\) 1.73560 4.24119i 0.0946846 0.231376i
\(337\) 11.7877 0.642116 0.321058 0.947060i \(-0.395962\pi\)
0.321058 + 0.947060i \(0.395962\pi\)
\(338\) −11.0972 6.40696i −0.603607 0.348493i
\(339\) −11.0169 10.6632i −0.598356 0.579147i
\(340\) 1.01582 + 1.75946i 0.0550908 + 0.0954200i
\(341\) 22.5114 38.9909i 1.21906 2.11147i
\(342\) −8.79800 + 5.46972i −0.475741 + 0.295768i
\(343\) −7.70095 + 16.8433i −0.415812 + 0.909451i
\(344\) 6.81513i 0.367447i
\(345\) 0.557330 2.22451i 0.0300056 0.119763i
\(346\) 4.00646 2.31313i 0.215389 0.124355i
\(347\) −13.2116 + 7.62773i −0.709237 + 0.409478i −0.810778 0.585353i \(-0.800956\pi\)
0.101542 + 0.994831i \(0.467623\pi\)
\(348\) −1.91246 + 7.63332i −0.102518 + 0.409189i
\(349\) 3.90282i 0.208913i −0.994529 0.104457i \(-0.966690\pi\)
0.994529 0.104457i \(-0.0333103\pi\)
\(350\) 5.31141 6.75198i 0.283907 0.360908i
\(351\) 1.50551 1.66056i 0.0803580 0.0886344i
\(352\) −2.97005 + 5.14427i −0.158304 + 0.274191i
\(353\) 9.66433 + 16.7391i 0.514380 + 0.890933i 0.999861 + 0.0166851i \(0.00531129\pi\)
−0.485481 + 0.874247i \(0.661355\pi\)
\(354\) −4.60264 4.45488i −0.244627 0.236774i
\(355\) 15.1830 + 8.76592i 0.805831 + 0.465247i
\(356\) −16.5982 −0.879703
\(357\) −4.30443 5.56036i −0.227815 0.294286i
\(358\) −21.0650 −1.11332
\(359\) −11.3768 6.56842i −0.600446 0.346668i 0.168771 0.985655i \(-0.446020\pi\)
−0.769217 + 0.638988i \(0.779354\pi\)
\(360\) −1.87276 + 3.50284i −0.0987033 + 0.184616i
\(361\) −3.53764 6.12737i −0.186191 0.322493i
\(362\) 3.18864 5.52288i 0.167591 0.290276i
\(363\) 11.5478 + 40.4461i 0.606103 + 2.12287i
\(364\) 1.12964 + 0.162586i 0.0592093 + 0.00852181i
\(365\) 16.9997i 0.889806i
\(366\) 12.5710 + 3.14953i 0.657094 + 0.164629i
\(367\) 2.19574 1.26771i 0.114617 0.0661740i −0.441596 0.897214i \(-0.645587\pi\)
0.556212 + 0.831040i \(0.312254\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) 0.0929662 + 2.84861i 0.00483963 + 0.148293i
\(370\) 4.19284i 0.217975i
\(371\) −6.07382 0.874185i −0.315337 0.0453854i
\(372\) 12.6236 3.60417i 0.654503 0.186868i
\(373\) −14.6671 + 25.4042i −0.759433 + 1.31538i 0.183706 + 0.982981i \(0.441190\pi\)
−0.943140 + 0.332396i \(0.892143\pi\)
\(374\) 4.55741 + 7.89367i 0.235658 + 0.408172i
\(375\) −13.1532 + 13.5895i −0.679230 + 0.701759i
\(376\) 4.20973 + 2.43049i 0.217100 + 0.125343i
\(377\) −1.95982 −0.100936
\(378\) 4.78900 12.8866i 0.246319 0.662817i
\(379\) 23.0909 1.18610 0.593049 0.805166i \(-0.297924\pi\)
0.593049 + 0.805166i \(0.297924\pi\)
\(380\) 3.95957 + 2.28606i 0.203122 + 0.117272i
\(381\) 15.5504 16.0661i 0.796669 0.823093i
\(382\) −3.84750 6.66406i −0.196855 0.340963i
\(383\) 0.298968 0.517829i 0.0152766 0.0264598i −0.858286 0.513172i \(-0.828470\pi\)
0.873563 + 0.486712i \(0.161804\pi\)
\(384\) −1.66550 + 0.475517i −0.0849921 + 0.0242661i
\(385\) −12.8652 + 16.3545i −0.655671 + 0.833503i
\(386\) 11.9877i 0.610157i
\(387\) 0.666893 + 20.4345i 0.0339001 + 1.03875i
\(388\) 8.96605 5.17655i 0.455182 0.262800i
\(389\) 9.88043 5.70447i 0.500957 0.289228i −0.228151 0.973626i \(-0.573268\pi\)
0.729109 + 0.684398i \(0.239935\pi\)
\(390\) −0.959573 0.240412i −0.0485899 0.0121737i
\(391\) 1.53446i 0.0776009i
\(392\) 6.80316 1.64833i 0.343612 0.0832533i
\(393\) 6.13246 + 21.4789i 0.309342 + 1.08347i
\(394\) 7.58537 13.1383i 0.382146 0.661895i
\(395\) 8.58597 + 14.8713i 0.432007 + 0.748259i
\(396\) −8.40201 + 15.7152i −0.422217 + 0.789720i
\(397\) 14.5065 + 8.37532i 0.728059 + 0.420345i 0.817712 0.575628i \(-0.195242\pi\)
−0.0896524 + 0.995973i \(0.528576\pi\)
\(398\) −24.1884 −1.21245
\(399\) −14.6458 5.99340i −0.733205 0.300045i
\(400\) −3.24698 −0.162349
\(401\) 9.27098 + 5.35260i 0.462971 + 0.267296i 0.713293 0.700866i \(-0.247203\pi\)
−0.250322 + 0.968163i \(0.580536\pi\)
\(402\) 10.8410 + 10.4929i 0.540698 + 0.523340i
\(403\) 1.63476 + 2.83148i 0.0814330 + 0.141046i
\(404\) 8.12460 14.0722i 0.404214 0.700119i
\(405\) −5.27253 + 10.6862i −0.261994 + 0.531002i
\(406\) −11.1601 + 4.46594i −0.553865 + 0.221641i
\(407\) 18.8108i 0.932419i
\(408\) −0.645913 + 2.57808i −0.0319775 + 0.127634i
\(409\) 6.23426 3.59935i 0.308264 0.177976i −0.337885 0.941187i \(-0.609712\pi\)
0.646150 + 0.763211i \(0.276378\pi\)
\(410\) 1.08935 0.628936i 0.0537991 0.0310609i
\(411\) 6.43491 25.6841i 0.317411 1.26690i
\(412\) 16.3184i 0.803949i
\(413\) 1.39389 9.68474i 0.0685891 0.476555i
\(414\) 2.54777 1.58395i 0.125216 0.0778467i
\(415\) −2.22043 + 3.84589i −0.108996 + 0.188787i
\(416\) −0.215682 0.373572i −0.0105747 0.0183159i
\(417\) 14.5085 + 14.0428i 0.710487 + 0.687678i
\(418\) 17.7643 + 10.2562i 0.868880 + 0.501648i
\(419\) 13.9562 0.681804 0.340902 0.940099i \(-0.389268\pi\)
0.340902 + 0.940099i \(0.389268\pi\)
\(420\) −6.01206 + 0.817613i −0.293359 + 0.0398954i
\(421\) −28.5137 −1.38967 −0.694837 0.719168i \(-0.744523\pi\)
−0.694837 + 0.719168i \(0.744523\pi\)
\(422\) 2.26269 + 1.30637i 0.110146 + 0.0635930i
\(423\) 12.8603 + 6.87565i 0.625290 + 0.334305i
\(424\) 1.15967 + 2.00861i 0.0563186 + 0.0975467i
\(425\) −2.49118 + 4.31485i −0.120840 + 0.209301i
\(426\) 6.29652 + 22.0535i 0.305067 + 1.06850i
\(427\) 7.35474 + 18.3790i 0.355921 + 0.889422i
\(428\) 14.4432i 0.698137i
\(429\) −4.30505 1.07859i −0.207850 0.0520748i
\(430\) 7.81445 4.51167i 0.376846 0.217572i
\(431\) 35.4458 20.4647i 1.70737 0.985748i 0.769570 0.638562i \(-0.220470\pi\)
0.937796 0.347186i \(-0.112863\pi\)
\(432\) −4.94730 + 1.58877i −0.238027 + 0.0764397i
\(433\) 8.15508i 0.391908i −0.980613 0.195954i \(-0.937220\pi\)
0.980613 0.195954i \(-0.0627804\pi\)
\(434\) 15.7612 + 12.3985i 0.756563 + 0.595146i
\(435\) 10.0187 2.86044i 0.480358 0.137147i
\(436\) −4.14273 + 7.17542i −0.198401 + 0.343640i
\(437\) −1.72661 2.99058i −0.0825950 0.143059i
\(438\) −15.4665 + 15.9795i −0.739020 + 0.763532i
\(439\) −21.1201 12.1937i −1.00801 0.581973i −0.0973992 0.995245i \(-0.531052\pi\)
−0.910607 + 0.413272i \(0.864386\pi\)
\(440\) 7.86478 0.374939
\(441\) 20.2373 5.60809i 0.963682 0.267052i
\(442\) −0.661910 −0.0314838
\(443\) 24.9142 + 14.3842i 1.18371 + 0.683416i 0.956870 0.290516i \(-0.0938268\pi\)
0.226841 + 0.973932i \(0.427160\pi\)
\(444\) −3.81469 + 3.94122i −0.181037 + 0.187042i
\(445\) 10.9881 + 19.0320i 0.520888 + 0.902204i
\(446\) −0.116431 + 0.201665i −0.00551318 + 0.00954911i
\(447\) 9.20390 2.62781i 0.435330 0.124291i
\(448\) −2.07946 1.63580i −0.0982454 0.0772842i
\(449\) 10.5522i 0.497988i 0.968505 + 0.248994i \(0.0800999\pi\)
−0.968505 + 0.248994i \(0.919900\pi\)
\(450\) −9.73576 + 0.317733i −0.458948 + 0.0149781i
\(451\) 4.88728 2.82167i 0.230133 0.132867i
\(452\) −7.66610 + 4.42603i −0.360583 + 0.208183i
\(453\) −16.6229 4.16472i −0.781013 0.195676i
\(454\) 7.66997i 0.359970i
\(455\) −0.561406 1.40292i −0.0263191 0.0657697i
\(456\) 1.64207 + 5.75133i 0.0768968 + 0.269331i
\(457\) 8.83043 15.2948i 0.413070 0.715459i −0.582154 0.813079i \(-0.697790\pi\)
0.995224 + 0.0976203i \(0.0311231\pi\)
\(458\) −3.14418 5.44588i −0.146918 0.254469i
\(459\) −1.68443 + 7.79332i −0.0786225 + 0.363761i
\(460\) −1.14663 0.662008i −0.0534620 0.0308663i
\(461\) 17.3436 0.807771 0.403886 0.914810i \(-0.367659\pi\)
0.403886 + 0.914810i \(0.367659\pi\)
\(462\) −26.9726 + 3.66816i −1.25488 + 0.170658i
\(463\) −0.550380 −0.0255783 −0.0127892 0.999918i \(-0.504071\pi\)
−0.0127892 + 0.999918i \(0.504071\pi\)
\(464\) 3.93462 + 2.27166i 0.182660 + 0.105459i
\(465\) −12.4896 12.0886i −0.579190 0.560596i
\(466\) −5.98926 10.3737i −0.277447 0.480552i
\(467\) −3.14205 + 5.44218i −0.145397 + 0.251834i −0.929521 0.368770i \(-0.879779\pi\)
0.784124 + 0.620604i \(0.213112\pi\)
\(468\) −0.683258 1.09901i −0.0315836 0.0508020i
\(469\) −3.28315 + 22.8112i −0.151602 + 1.05333i
\(470\) 6.43601i 0.296871i
\(471\) 1.44922 5.78439i 0.0667767 0.266531i
\(472\) −3.20274 + 1.84910i −0.147418 + 0.0851119i
\(473\) 35.0589 20.2413i 1.61201 0.930694i
\(474\) −5.45941 + 21.7905i −0.250759 + 1.00087i
\(475\) 11.2125i 0.514467i
\(476\) −3.76920 + 1.50832i −0.172761 + 0.0691339i
\(477\) 3.67371 + 5.90914i 0.168208 + 0.270561i
\(478\) 11.1510 19.3141i 0.510036 0.883408i
\(479\) 8.68863 + 15.0491i 0.396994 + 0.687613i 0.993353 0.115104i \(-0.0367202\pi\)
−0.596360 + 0.802717i \(0.703387\pi\)
\(480\) 1.64782 + 1.59492i 0.0752122 + 0.0727976i
\(481\) −1.18301 0.683013i −0.0539407 0.0311427i
\(482\) −27.1641 −1.23729
\(483\) 4.24119 + 1.73560i 0.192981 + 0.0789724i
\(484\) 24.2847 1.10385
\(485\) −11.8712 6.85383i −0.539043 0.311217i
\(486\) −14.6785 + 5.24789i −0.665832 + 0.238049i
\(487\) −12.1339 21.0165i −0.549839 0.952350i −0.998285 0.0585397i \(-0.981356\pi\)
0.448446 0.893810i \(-0.351978\pi\)
\(488\) 3.74108 6.47975i 0.169351 0.293324i
\(489\) 8.32779 + 29.1681i 0.376596 + 1.31903i
\(490\) −6.39378 6.70951i −0.288841 0.303105i
\(491\) 8.38198i 0.378274i 0.981951 + 0.189137i \(0.0605690\pi\)
−0.981951 + 0.189137i \(0.939431\pi\)
\(492\) 1.59619 + 0.399910i 0.0719617 + 0.0180293i
\(493\) 6.03752 3.48576i 0.271916 0.156991i
\(494\) −1.29003 + 0.744797i −0.0580411 + 0.0335100i
\(495\) 23.5818 0.769606i 1.05992 0.0345912i
\(496\) 7.57947i 0.340328i
\(497\) −21.6603 + 27.5350i −0.971596 + 1.23511i
\(498\) −5.58621 + 1.59492i −0.250324 + 0.0714702i
\(499\) 14.8966 25.8017i 0.666863 1.15504i −0.311914 0.950110i \(-0.600970\pi\)
0.978777 0.204930i \(-0.0656967\pi\)
\(500\) 5.45957 + 9.45625i 0.244159 + 0.422896i
\(501\) 7.60226 7.85441i 0.339644 0.350909i
\(502\) −7.57388 4.37278i −0.338039 0.195167i
\(503\) −37.7983 −1.68534 −0.842671 0.538428i \(-0.819018\pi\)
−0.842671 + 0.538428i \(0.819018\pi\)
\(504\) −6.39514 4.70130i −0.284862 0.209412i
\(505\) −21.5142 −0.957369
\(506\) −5.14427 2.97005i −0.228691 0.132035i
\(507\) −15.4357 + 15.9477i −0.685524 + 0.708262i
\(508\) −6.45455 11.1796i −0.286374 0.496015i
\(509\) −20.1561 + 34.9114i −0.893403 + 1.54742i −0.0576334 + 0.998338i \(0.518355\pi\)
−0.835769 + 0.549081i \(0.814978\pi\)
\(510\) 3.38370 0.966083i 0.149833 0.0427789i
\(511\) −33.6237 4.83935i −1.48742 0.214080i
\(512\) 1.00000i 0.0441942i
\(513\) 5.48637 + 17.0841i 0.242229 + 0.754283i
\(514\) −7.29509 + 4.21182i −0.321773 + 0.185776i
\(515\) −18.7112 + 10.8029i −0.824513 + 0.476033i
\(516\) 11.4503 + 2.86875i 0.504069 + 0.126290i
\(517\) 28.8747i 1.26991i
\(518\) −8.29300 1.19359i −0.364374 0.0524431i
\(519\) −2.19987 7.70503i −0.0965636 0.338213i
\(520\) −0.285566 + 0.494615i −0.0125229 + 0.0216903i
\(521\) 7.27692 + 12.6040i 0.318808 + 0.552191i 0.980240 0.197814i \(-0.0633843\pi\)
−0.661432 + 0.750005i \(0.730051\pi\)
\(522\) 12.0199 + 6.42632i 0.526096 + 0.281272i
\(523\) 11.0289 + 6.36755i 0.482261 + 0.278433i 0.721358 0.692562i \(-0.243518\pi\)
−0.239097 + 0.970996i \(0.576852\pi\)
\(524\) 12.8964 0.563381
\(525\) −9.10837 11.7660i −0.397522 0.513510i
\(526\) −13.7000 −0.597349
\(527\) −10.0722 5.81519i −0.438752 0.253314i
\(528\) 7.39280 + 7.15547i 0.321730 + 0.311402i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 1.53542 2.65943i 0.0666945 0.115518i
\(531\) −9.42217 + 5.85776i −0.408887 + 0.254205i
\(532\) −5.64877 + 7.18084i −0.244905 + 0.311329i
\(533\) 0.409814i 0.0177510i
\(534\) −6.98683 + 27.8870i −0.302350 + 1.20679i
\(535\) 16.5610 9.56149i 0.715994 0.413379i
\(536\) 7.54367 4.35534i 0.325837 0.188122i
\(537\) −8.86708 + 35.3918i −0.382643 + 1.52727i
\(538\) 2.33535i 0.100684i
\(539\) −28.6852 30.1017i −1.23556 1.29657i
\(540\) 5.09689 + 4.62095i 0.219335 + 0.198854i
\(541\) 5.76926 9.99265i 0.248040 0.429618i −0.714942 0.699184i \(-0.753547\pi\)
0.962982 + 0.269566i \(0.0868803\pi\)
\(542\) 0.876376 + 1.51793i 0.0376436 + 0.0652006i
\(543\) −7.93690 7.68210i −0.340605 0.329670i
\(544\) 1.32888 + 0.767229i 0.0569753 + 0.0328947i
\(545\) 10.9701 0.469907
\(546\) 0.748674 1.82950i 0.0320403 0.0782953i
\(547\) −34.2942 −1.46631 −0.733156 0.680060i \(-0.761954\pi\)
−0.733156 + 0.680060i \(0.761954\pi\)
\(548\) −13.2390 7.64352i −0.565540 0.326515i
\(549\) 10.5832 19.7950i 0.451680 0.844829i
\(550\) 9.64369 + 16.7034i 0.411208 + 0.712234i
\(551\) 7.84453 13.5871i 0.334188 0.578831i
\(552\) −0.475517 1.66550i −0.0202394 0.0708883i
\(553\) −31.8582 + 12.7487i −1.35475 + 0.542130i
\(554\) 7.84807i 0.333432i
\(555\) 7.04448 + 1.76493i 0.299022 + 0.0749170i
\(556\) 10.0958 5.82879i 0.428156 0.247196i
\(557\) 7.99915 4.61831i 0.338935 0.195684i −0.320866 0.947125i \(-0.603974\pi\)
0.659801 + 0.751440i \(0.270641\pi\)
\(558\) −0.741687 22.7263i −0.0313981 0.962082i
\(559\) 2.93980i 0.124340i
\(560\) −0.499036 + 3.46729i −0.0210881 + 0.146520i
\(561\) 15.1807 4.33426i 0.640931 0.182993i
\(562\) −3.52052 + 6.09772i −0.148504 + 0.257217i
\(563\) 0.0487491 + 0.0844359i 0.00205453 + 0.00355855i 0.867051 0.498220i \(-0.166013\pi\)
−0.864996 + 0.501778i \(0.832679\pi\)
\(564\) 5.85556 6.04977i 0.246563 0.254741i
\(565\) 10.1500 + 5.86013i 0.427015 + 0.246537i
\(566\) −5.53734 −0.232752
\(567\) −19.6353 13.4706i −0.824603 0.565712i
\(568\) 13.2414 0.555597
\(569\) 10.1195 + 5.84250i 0.424231 + 0.244930i 0.696886 0.717182i \(-0.254568\pi\)
−0.272655 + 0.962112i \(0.587902\pi\)
\(570\) 5.50759 5.69027i 0.230688 0.238339i
\(571\) 6.08543 + 10.5403i 0.254667 + 0.441096i 0.964805 0.262966i \(-0.0847008\pi\)
−0.710138 + 0.704063i \(0.751367\pi\)
\(572\) −1.28117 + 2.21905i −0.0535685 + 0.0927833i
\(573\) −12.8160 + 3.65911i −0.535396 + 0.152861i
\(574\) 0.933862 + 2.33366i 0.0389787 + 0.0974051i
\(575\) 3.24698i 0.135409i
\(576\) 0.0978548 + 2.99840i 0.00407728 + 0.124933i
\(577\) 6.38984 3.68918i 0.266013 0.153582i −0.361062 0.932542i \(-0.617586\pi\)
0.627074 + 0.778960i \(0.284252\pi\)
\(578\) −12.6833 + 7.32272i −0.527557 + 0.304585i
\(579\) −20.1408 5.04608i −0.837022 0.209708i
\(580\) 6.01542i 0.249777i
\(581\) −6.97468 5.48659i −0.289359 0.227622i
\(582\) −4.92308 17.2431i −0.204068 0.714748i
\(583\) 6.88856 11.9313i 0.285295 0.494145i
\(584\) 6.41976 + 11.1193i 0.265652 + 0.460122i
\(585\) −0.807843 + 1.51100i −0.0334002 + 0.0624722i
\(586\) 0.781660 + 0.451291i 0.0322901 + 0.0186427i
\(587\) −21.3626 −0.881728 −0.440864 0.897574i \(-0.645328\pi\)
−0.440864 + 0.897574i \(0.645328\pi\)
\(588\) 0.0943147 12.1240i 0.00388947 0.499985i
\(589\) −26.1736 −1.07846
\(590\) 4.24048 + 2.44824i 0.174578 + 0.100793i
\(591\) −18.8809 18.2748i −0.776656 0.751723i
\(592\) 1.58338 + 2.74249i 0.0650765 + 0.112716i
\(593\) 15.5202 26.8817i 0.637338 1.10390i −0.348677 0.937243i \(-0.613369\pi\)
0.986015 0.166658i \(-0.0532976\pi\)
\(594\) 22.8668 + 20.7316i 0.938236 + 0.850626i
\(595\) 4.22473 + 3.32336i 0.173197 + 0.136245i
\(596\) 5.52622i 0.226363i
\(597\) −10.1818 + 40.6395i −0.416715 + 1.66326i
\(598\) 0.373572 0.215682i 0.0152765 0.00881989i
\(599\) 22.6228 13.0613i 0.924343 0.533669i 0.0393247 0.999226i \(-0.487479\pi\)
0.885018 + 0.465557i \(0.154146\pi\)
\(600\) −1.36678 + 5.45533i −0.0557986 + 0.222713i
\(601\) 31.4368i 1.28233i 0.767401 + 0.641167i \(0.221549\pi\)
−0.767401 + 0.641167i \(0.778451\pi\)
\(602\) 6.69906 + 16.7405i 0.273033 + 0.682292i
\(603\) 22.1928 13.7973i 0.903760 0.561868i
\(604\) −4.94694 + 8.56835i −0.201288 + 0.348641i
\(605\) −16.0767 27.8456i −0.653610 1.13209i
\(606\) −20.2231 19.5739i −0.821506 0.795133i
\(607\) −17.2647 9.96780i −0.700754 0.404580i 0.106874 0.994273i \(-0.465916\pi\)
−0.807628 + 0.589692i \(0.799249\pi\)
\(608\) 3.45322 0.140047
\(609\) 2.80561 + 20.6302i 0.113689 + 0.835977i
\(610\) −9.90651 −0.401103
\(611\) 1.81593 + 1.04843i 0.0734645 + 0.0424148i
\(612\) 4.05959 + 2.17043i 0.164099 + 0.0877342i
\(613\) −4.88790 8.46610i −0.197421 0.341942i 0.750271 0.661131i \(-0.229923\pi\)
−0.947691 + 0.319188i \(0.896590\pi\)
\(614\) −14.1370 + 24.4860i −0.570524 + 0.988176i
\(615\) −0.598140 2.09498i −0.0241193 0.0844778i
\(616\) −2.23889 + 15.5557i −0.0902073 + 0.626758i
\(617\) 46.6722i 1.87895i −0.342615 0.939476i \(-0.611313\pi\)
0.342615 0.939476i \(-0.388687\pi\)
\(618\) −27.4169 6.86904i −1.10287 0.276313i
\(619\) −11.1566 + 6.44124i −0.448420 + 0.258895i −0.707163 0.707051i \(-0.750025\pi\)
0.258743 + 0.965946i \(0.416692\pi\)
\(620\) −8.69086 + 5.01767i −0.349033 + 0.201514i
\(621\) −1.58877 4.94730i −0.0637551 0.198528i
\(622\) 15.8506i 0.635551i
\(623\) −40.7714 + 16.3155i −1.63347 + 0.653668i
\(624\) −0.718436 + 0.205121i −0.0287605 + 0.00821142i
\(625\) −0.888903 + 1.53962i −0.0355561 + 0.0615850i
\(626\) 16.4782 + 28.5410i 0.658599 + 1.14073i
\(627\) 24.7094 25.5290i 0.986798 1.01953i
\(628\) −2.98159 1.72142i −0.118978 0.0686921i
\(629\) 4.85926 0.193751
\(630\) −1.15702 + 10.4452i −0.0460968 + 0.416145i
\(631\) 25.4564 1.01340 0.506702 0.862121i \(-0.330864\pi\)
0.506702 + 0.862121i \(0.330864\pi\)
\(632\) 11.2320 + 6.48480i 0.446785 + 0.257951i
\(633\) 3.14731 3.25170i 0.125094 0.129244i
\(634\) 10.4758 + 18.1446i 0.416047 + 0.720615i
\(635\) −8.54593 + 14.8020i −0.339135 + 0.587399i
\(636\) 3.86286 1.10289i 0.153172 0.0437323i
\(637\) 2.93464 0.711031i 0.116275 0.0281721i
\(638\) 26.9877i 1.06845i
\(639\) 39.7031 1.29574i 1.57063 0.0512585i
\(640\) 1.14663 0.662008i 0.0453246 0.0261682i
\(641\) −11.3251 + 6.53858i −0.447316 + 0.258258i −0.706696 0.707517i \(-0.749815\pi\)
0.259380 + 0.965775i \(0.416482\pi\)
\(642\) 24.2663 + 6.07969i 0.957714 + 0.239946i
\(643\) 15.8515i 0.625123i 0.949898 + 0.312561i \(0.101187\pi\)
−0.949898 + 0.312561i \(0.898813\pi\)
\(644\) 1.63580 2.07946i 0.0644595 0.0819423i
\(645\) −4.29076 15.0284i −0.168948 0.591741i
\(646\) 2.64941 4.58891i 0.104240 0.180548i
\(647\) −1.08917 1.88651i −0.0428199 0.0741662i 0.843821 0.536624i \(-0.180301\pi\)
−0.886641 + 0.462458i \(0.846967\pi\)
\(648\) 0.586816 + 8.98085i 0.0230523 + 0.352801i
\(649\) 19.0246 + 10.9838i 0.746780 + 0.431154i
\(650\) −1.40063 −0.0549373
\(651\) 27.4655 21.2618i 1.07646 0.833315i
\(652\) 17.5131 0.685867
\(653\) 1.31906 + 0.761562i 0.0516190 + 0.0298022i 0.525587 0.850740i \(-0.323846\pi\)
−0.473968 + 0.880542i \(0.657179\pi\)
\(654\) 10.3117 + 9.98071i 0.403221 + 0.390276i
\(655\) −8.53751 14.7874i −0.333588 0.577792i
\(656\) 0.475021 0.822761i 0.0185465 0.0321234i
\(657\) 20.3371 + 32.7121i 0.793426 + 1.27622i
\(658\) 12.7298 + 1.83216i 0.496258 + 0.0714249i
\(659\) 0.495255i 0.0192924i −0.999953 0.00964620i \(-0.996929\pi\)
0.999953 0.00964620i \(-0.00307053\pi\)
\(660\) 3.31059 13.2138i 0.128865 0.514346i
\(661\) 12.5499 7.24567i 0.488133 0.281824i −0.235667 0.971834i \(-0.575727\pi\)
0.723800 + 0.690010i \(0.242394\pi\)
\(662\) 19.5234 11.2718i 0.758798 0.438092i
\(663\) −0.278624 + 1.11209i −0.0108208 + 0.0431900i
\(664\) 3.35408i 0.130164i
\(665\) 11.9733 + 1.72328i 0.464305 + 0.0668260i
\(666\) 5.01598 + 8.06816i 0.194365 + 0.312635i
\(667\) −2.27166 + 3.93462i −0.0879589 + 0.152349i
\(668\) −3.15550 5.46548i −0.122090 0.211466i
\(669\) 0.289811 + 0.280507i 0.0112048 + 0.0108450i
\(670\) −9.98794 5.76654i −0.385868 0.222781i
\(671\) −44.4448 −1.71577
\(672\) −3.62367 + 2.80518i −0.139786 + 0.108212i
\(673\) −17.2937 −0.666623 −0.333312 0.942817i \(-0.608166\pi\)
−0.333312 + 0.942817i \(0.608166\pi\)
\(674\) −10.2084 5.89384i −0.393214 0.227022i
\(675\) −3.56433 + 16.4910i −0.137191 + 0.634740i
\(676\) 6.40696 + 11.0972i 0.246422 + 0.426815i
\(677\) 14.2617 24.7019i 0.548120 0.949372i −0.450283 0.892886i \(-0.648677\pi\)
0.998403 0.0564865i \(-0.0179898\pi\)
\(678\) 4.20930 + 14.7431i 0.161657 + 0.566204i
\(679\) 16.9356 21.5289i 0.649928 0.826203i
\(680\) 2.03165i 0.0779101i
\(681\) 12.8865 + 3.22859i 0.493811 + 0.123720i
\(682\) −38.9909 + 22.5114i −1.49304 + 0.862006i
\(683\) −4.64981 + 2.68457i −0.177920 + 0.102722i −0.586315 0.810083i \(-0.699422\pi\)
0.408395 + 0.912805i \(0.366089\pi\)
\(684\) 10.3541 0.337914i 0.395901 0.0129205i
\(685\) 20.2403i 0.773341i
\(686\) 15.0908 10.7362i 0.576171 0.409911i
\(687\) −10.4733 + 2.99023i −0.399580 + 0.114084i
\(688\) 3.40757 5.90208i 0.129912 0.225015i
\(689\) 0.500240 + 0.866442i 0.0190576 + 0.0330088i
\(690\) −1.59492 + 1.64782i −0.0607174 + 0.0627313i
\(691\) −16.1930 9.34901i −0.616009 0.355653i 0.159304 0.987230i \(-0.449075\pi\)
−0.775314 + 0.631576i \(0.782408\pi\)
\(692\) −4.62626 −0.175864
\(693\) −5.19088 + 46.8614i −0.197185 + 1.78012i
\(694\) 15.2555 0.579089
\(695\) −13.3669 7.71741i −0.507037 0.292738i
\(696\) 5.47290 5.65442i 0.207450 0.214330i
\(697\) −0.728900 1.26249i −0.0276091 0.0478203i
\(698\) −1.95141 + 3.37994i −0.0738620 + 0.127933i
\(699\) −19.9502 + 5.69599i −0.754585 + 0.215442i
\(700\) −7.97580 + 3.19168i −0.301457 + 0.120634i
\(701\) 35.7422i 1.34996i −0.737834 0.674982i \(-0.764151\pi\)
0.737834 0.674982i \(-0.235849\pi\)
\(702\) −2.13409 + 0.685338i −0.0805460 + 0.0258664i
\(703\) 9.47043 5.46776i 0.357184 0.206220i
\(704\) 5.14427 2.97005i 0.193882 0.111938i
\(705\) −10.8133 2.70917i −0.407252 0.102033i
\(706\) 19.3287i 0.727443i
\(707\) 6.12450 42.5528i 0.230335 1.60036i
\(708\) 1.75856 + 6.15936i 0.0660908 + 0.231483i
\(709\) 3.25992 5.64635i 0.122429 0.212053i −0.798296 0.602265i \(-0.794265\pi\)
0.920725 + 0.390212i \(0.127598\pi\)
\(710\) −8.76592 15.1830i −0.328979 0.569808i
\(711\) 34.3126 + 18.3449i 1.28682 + 0.687989i
\(712\) 14.3745 + 8.29910i 0.538706 + 0.311022i
\(713\) 7.57947 0.283853
\(714\) 0.947566 + 6.96763i 0.0354618 + 0.260757i
\(715\) 3.39258 0.126875
\(716\) 18.2428 + 10.5325i 0.681767 + 0.393618i
\(717\) −27.7562 26.8651i −1.03657 1.00330i
\(718\) 6.56842 + 11.3768i 0.245131 + 0.424580i
\(719\) −10.1906 + 17.6506i −0.380045 + 0.658257i −0.991068 0.133355i \(-0.957425\pi\)
0.611023 + 0.791613i \(0.290758\pi\)
\(720\) 3.37328 2.09717i 0.125715 0.0781569i
\(721\) −16.0405 40.0841i −0.597378 1.49281i
\(722\) 7.07527i 0.263314i
\(723\) −11.4344 + 45.6390i −0.425250 + 1.69733i
\(724\) −5.52288 + 3.18864i −0.205256 + 0.118505i
\(725\) 12.7757 7.37603i 0.474476 0.273939i
\(726\) 10.2224 40.8013i 0.379388 1.51428i
\(727\) 10.5786i 0.392337i 0.980570 + 0.196169i \(0.0628500\pi\)
−0.980570 + 0.196169i \(0.937150\pi\)
\(728\) −0.897005 0.705624i −0.0332452 0.0261522i
\(729\) 2.63833 + 26.8708i 0.0977160 + 0.995214i
\(730\) 8.49986 14.7222i 0.314594 0.544893i
\(731\) −5.22877 9.05649i −0.193393 0.334967i
\(732\) −9.31200 9.01305i −0.344181 0.333132i
\(733\) 41.6777 + 24.0626i 1.53940 + 0.888774i 0.998874 + 0.0474473i \(0.0151086\pi\)
0.540527 + 0.841326i \(0.318225\pi\)
\(734\) −2.53542 −0.0935842
\(735\) −13.9642 + 7.91803i −0.515077 + 0.292061i
\(736\) −1.00000 −0.0368605
\(737\) −44.8101 25.8711i −1.65060 0.952975i
\(738\) 1.34379 2.51345i 0.0494658 0.0925215i
\(739\) 0.111573 + 0.193251i 0.00410430 + 0.00710885i 0.868070 0.496441i \(-0.165360\pi\)
−0.863966 + 0.503550i \(0.832027\pi\)
\(740\) 2.09642 3.63110i 0.0770659 0.133482i
\(741\) 0.708328 + 2.48092i 0.0260211 + 0.0911388i
\(742\) 4.82299 + 3.79398i 0.177057 + 0.139281i
\(743\) 9.67336i 0.354881i −0.984132 0.177441i \(-0.943218\pi\)
0.984132 0.177441i \(-0.0567818\pi\)
\(744\) −12.7344 3.19049i −0.466867 0.116969i
\(745\) −6.33653 + 3.65840i −0.232153 + 0.134033i
\(746\) 25.4042 14.6671i 0.930112 0.537001i
\(747\) 0.328213 + 10.0569i 0.0120087 + 0.367962i
\(748\) 9.11483i 0.333271i
\(749\) 14.1972 + 35.4778i 0.518754 + 1.29633i
\(750\) 18.1858 5.19224i 0.664051 0.189594i
\(751\) −4.08105 + 7.06859i −0.148920 + 0.257936i −0.930828 0.365456i \(-0.880913\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(752\) −2.43049 4.20973i −0.0886308 0.153513i
\(753\) −10.5349 + 10.8844i −0.383915 + 0.396648i
\(754\) 1.69726 + 0.979911i 0.0618104 + 0.0356863i
\(755\) 13.0997 0.476745
\(756\) −10.5907 + 8.76566i −0.385181 + 0.318804i
\(757\) −14.0515 −0.510710 −0.255355 0.966847i \(-0.582192\pi\)
−0.255355 + 0.966847i \(0.582192\pi\)
\(758\) −19.9973 11.5454i −0.726334 0.419349i
\(759\) −7.15547 + 7.39280i −0.259727 + 0.268342i
\(760\) −2.28606 3.95957i −0.0829241 0.143629i
\(761\) −22.1322 + 38.3341i −0.802291 + 1.38961i 0.115814 + 0.993271i \(0.463052\pi\)
−0.918105 + 0.396337i \(0.870281\pi\)
\(762\) −21.5001 + 6.13850i −0.778866 + 0.222374i
\(763\) −3.12288 + 21.6977i −0.113056 + 0.785509i
\(764\) 7.69500i 0.278395i
\(765\) −0.198806 6.09170i −0.00718786 0.220246i
\(766\) −0.517829 + 0.298968i −0.0187099 + 0.0108022i
\(767\) −1.38155 + 0.797637i −0.0498848 + 0.0288010i
\(768\) 1.68012 + 0.420939i 0.0606262 + 0.0151893i
\(769\) 37.9898i 1.36995i −0.728568 0.684974i \(-0.759814\pi\)
0.728568 0.684974i \(-0.240186\pi\)
\(770\) 19.3188 7.73083i 0.696202