Properties

Label 966.2.l.d.47.20
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.20
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.623408 + 1.61597i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.519082 - 0.899076i) q^{5} +(-1.34787 + 1.08777i) q^{6} +(2.02474 + 1.70307i) q^{7} +1.00000i q^{8} +(-2.22273 - 2.01482i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.623408 + 1.61597i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.519082 - 0.899076i) q^{5} +(-1.34787 + 1.08777i) q^{6} +(2.02474 + 1.70307i) q^{7} +1.00000i q^{8} +(-2.22273 - 2.01482i) q^{9} +(0.899076 - 0.519082i) q^{10} +(-2.40063 + 1.38601i) q^{11} +(-1.71118 + 0.268099i) q^{12} +3.51938i q^{13} +(0.901943 + 2.48727i) q^{14} +(1.12928 + 1.39931i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.776428 + 1.34481i) q^{17} +(-0.917529 - 2.85625i) q^{18} +(-3.05488 - 1.76373i) q^{19} +1.03816 q^{20} +(-4.01434 + 2.21022i) q^{21} -2.77201 q^{22} +(0.866025 + 0.500000i) q^{23} +(-1.61597 - 0.623408i) q^{24} +(1.96111 + 3.39674i) q^{25} +(-1.75969 + 3.04787i) q^{26} +(4.64155 - 2.33581i) q^{27} +(-0.462529 + 2.60501i) q^{28} +2.36300i q^{29} +(0.278331 + 1.77648i) q^{30} +(0.0566018 - 0.0326791i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-0.743173 - 4.74340i) q^{33} +1.55286i q^{34} +(2.58219 - 0.936364i) q^{35} +(0.633520 - 2.93235i) q^{36} +(-4.01507 + 6.95431i) q^{37} +(-1.76373 - 3.05488i) q^{38} +(-5.68722 - 2.19401i) q^{39} +(0.899076 + 0.519082i) q^{40} -2.05029 q^{41} +(-4.58163 - 0.0930679i) q^{42} +7.63283 q^{43} +(-2.40063 - 1.38601i) q^{44} +(-2.96525 + 0.952545i) q^{45} +(0.500000 + 0.866025i) q^{46} +(1.76952 - 3.06489i) q^{47} +(-1.08777 - 1.34787i) q^{48} +(1.19914 + 6.89653i) q^{49} +3.92222i q^{50} +(-2.65721 + 0.416319i) q^{51} +(-3.04787 + 1.75969i) q^{52} +(-1.91350 + 1.10476i) q^{53} +(5.18761 + 0.297905i) q^{54} +2.87780i q^{55} +(-1.70307 + 2.02474i) q^{56} +(4.75458 - 3.83707i) q^{57} +(-1.18150 + 2.04642i) q^{58} +(-5.54508 - 9.60436i) q^{59} +(-0.647199 + 1.67764i) q^{60} +(-9.49364 - 5.48115i) q^{61} +0.0653581 q^{62} +(-1.06907 - 7.86493i) q^{63} -1.00000 q^{64} +(3.16419 + 1.82685i) q^{65} +(1.72809 - 4.47949i) q^{66} +(4.75073 + 8.22851i) q^{67} +(-0.776428 + 1.34481i) q^{68} +(-1.34787 + 1.08777i) q^{69} +(2.70443 + 0.480180i) q^{70} -12.8419i q^{71} +(2.01482 - 2.22273i) q^{72} +(-2.11516 + 1.22119i) q^{73} +(-6.95431 + 4.01507i) q^{74} +(-6.71160 + 1.05154i) q^{75} -3.52747i q^{76} +(-7.22111 - 1.28213i) q^{77} +(-3.82827 - 4.74368i) q^{78} +(7.12919 - 12.3481i) q^{79} +(0.519082 + 0.899076i) q^{80} +(0.881023 + 8.95677i) q^{81} +(-1.77560 - 1.02514i) q^{82} +3.31082 q^{83} +(-3.92127 - 2.37141i) q^{84} +1.61212 q^{85} +(6.61023 + 3.81642i) q^{86} +(-3.81853 - 1.47311i) q^{87} +(-1.38601 - 2.40063i) q^{88} +(-0.0407245 + 0.0705368i) q^{89} +(-3.04426 - 0.657697i) q^{90} +(-5.99374 + 7.12583i) q^{91} +1.00000i q^{92} +(0.0175224 + 0.111839i) q^{93} +(3.06489 - 1.76952i) q^{94} +(-3.17146 + 1.83105i) q^{95} +(-0.268099 - 1.71118i) q^{96} +13.0003i q^{97} +(-2.40978 + 6.57213i) q^{98} +(8.12850 + 1.75612i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.623408 + 1.61597i −0.359924 + 0.932981i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.519082 0.899076i 0.232140 0.402079i −0.726297 0.687381i \(-0.758760\pi\)
0.958438 + 0.285302i \(0.0920938\pi\)
\(6\) −1.34787 + 1.08777i −0.550267 + 0.444080i
\(7\) 2.02474 + 1.70307i 0.765279 + 0.643698i
\(8\) 1.00000i 0.353553i
\(9\) −2.22273 2.01482i −0.740909 0.671606i
\(10\) 0.899076 0.519082i 0.284313 0.164148i
\(11\) −2.40063 + 1.38601i −0.723818 + 0.417896i −0.816156 0.577831i \(-0.803899\pi\)
0.0923384 + 0.995728i \(0.470566\pi\)
\(12\) −1.71118 + 0.268099i −0.493974 + 0.0773935i
\(13\) 3.51938i 0.976101i 0.872815 + 0.488050i \(0.162292\pi\)
−0.872815 + 0.488050i \(0.837708\pi\)
\(14\) 0.901943 + 2.48727i 0.241054 + 0.664750i
\(15\) 1.12928 + 1.39931i 0.291579 + 0.361301i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.776428 + 1.34481i 0.188311 + 0.326165i 0.944687 0.327972i \(-0.106365\pi\)
−0.756376 + 0.654137i \(0.773032\pi\)
\(18\) −0.917529 2.85625i −0.216264 0.673224i
\(19\) −3.05488 1.76373i −0.700837 0.404628i 0.106822 0.994278i \(-0.465932\pi\)
−0.807659 + 0.589650i \(0.799266\pi\)
\(20\) 1.03816 0.232140
\(21\) −4.01434 + 2.21022i −0.876001 + 0.482309i
\(22\) −2.77201 −0.590995
\(23\) 0.866025 + 0.500000i 0.180579 + 0.104257i
\(24\) −1.61597 0.623408i −0.329859 0.127253i
\(25\) 1.96111 + 3.39674i 0.392222 + 0.679348i
\(26\) −1.75969 + 3.04787i −0.345104 + 0.597737i
\(27\) 4.64155 2.33581i 0.893267 0.449527i
\(28\) −0.462529 + 2.60501i −0.0874097 + 0.492300i
\(29\) 2.36300i 0.438797i 0.975635 + 0.219399i \(0.0704096\pi\)
−0.975635 + 0.219399i \(0.929590\pi\)
\(30\) 0.278331 + 1.77648i 0.0508160 + 0.324340i
\(31\) 0.0566018 0.0326791i 0.0101660 0.00586933i −0.494908 0.868945i \(-0.664798\pi\)
0.505074 + 0.863076i \(0.331465\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −0.743173 4.74340i −0.129370 0.825720i
\(34\) 1.55286i 0.266313i
\(35\) 2.58219 0.936364i 0.436470 0.158274i
\(36\) 0.633520 2.93235i 0.105587 0.488724i
\(37\) −4.01507 + 6.95431i −0.660074 + 1.14328i 0.320522 + 0.947241i \(0.396142\pi\)
−0.980596 + 0.196041i \(0.937191\pi\)
\(38\) −1.76373 3.05488i −0.286115 0.495567i
\(39\) −5.68722 2.19401i −0.910684 0.351323i
\(40\) 0.899076 + 0.519082i 0.142156 + 0.0820741i
\(41\) −2.05029 −0.320201 −0.160101 0.987101i \(-0.551182\pi\)
−0.160101 + 0.987101i \(0.551182\pi\)
\(42\) −4.58163 0.0930679i −0.706961 0.0143607i
\(43\) 7.63283 1.16400 0.581998 0.813190i \(-0.302271\pi\)
0.581998 + 0.813190i \(0.302271\pi\)
\(44\) −2.40063 1.38601i −0.361909 0.208948i
\(45\) −2.96525 + 0.952545i −0.442034 + 0.141997i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 1.76952 3.06489i 0.258110 0.447060i −0.707625 0.706588i \(-0.750233\pi\)
0.965736 + 0.259527i \(0.0835668\pi\)
\(48\) −1.08777 1.34787i −0.157006 0.194549i
\(49\) 1.19914 + 6.89653i 0.171305 + 0.985218i
\(50\) 3.92222i 0.554685i
\(51\) −2.65721 + 0.416319i −0.372084 + 0.0582963i
\(52\) −3.04787 + 1.75969i −0.422664 + 0.244025i
\(53\) −1.91350 + 1.10476i −0.262839 + 0.151750i −0.625629 0.780121i \(-0.715158\pi\)
0.362790 + 0.931871i \(0.381824\pi\)
\(54\) 5.18761 + 0.297905i 0.705944 + 0.0405397i
\(55\) 2.87780i 0.388043i
\(56\) −1.70307 + 2.02474i −0.227582 + 0.270567i
\(57\) 4.75458 3.83707i 0.629759 0.508232i
\(58\) −1.18150 + 2.04642i −0.155138 + 0.268707i
\(59\) −5.54508 9.60436i −0.721908 1.25038i −0.960234 0.279195i \(-0.909932\pi\)
0.238327 0.971185i \(-0.423401\pi\)
\(60\) −0.647199 + 1.67764i −0.0835530 + 0.216583i
\(61\) −9.49364 5.48115i −1.21554 0.701790i −0.251576 0.967838i \(-0.580949\pi\)
−0.963960 + 0.266048i \(0.914282\pi\)
\(62\) 0.0653581 0.00830049
\(63\) −1.06907 7.86493i −0.134691 0.990888i
\(64\) −1.00000 −0.125000
\(65\) 3.16419 + 1.82685i 0.392470 + 0.226592i
\(66\) 1.72809 4.47949i 0.212714 0.551387i
\(67\) 4.75073 + 8.22851i 0.580394 + 1.00527i 0.995432 + 0.0954685i \(0.0304349\pi\)
−0.415038 + 0.909804i \(0.636232\pi\)
\(68\) −0.776428 + 1.34481i −0.0941557 + 0.163083i
\(69\) −1.34787 + 1.08777i −0.162265 + 0.130952i
\(70\) 2.70443 + 0.480180i 0.323241 + 0.0573925i
\(71\) 12.8419i 1.52405i −0.647547 0.762026i \(-0.724205\pi\)
0.647547 0.762026i \(-0.275795\pi\)
\(72\) 2.01482 2.22273i 0.237448 0.261951i
\(73\) −2.11516 + 1.22119i −0.247560 + 0.142929i −0.618647 0.785669i \(-0.712319\pi\)
0.371086 + 0.928598i \(0.378985\pi\)
\(74\) −6.95431 + 4.01507i −0.808423 + 0.466743i
\(75\) −6.71160 + 1.05154i −0.774989 + 0.121422i
\(76\) 3.52747i 0.404628i
\(77\) −7.22111 1.28213i −0.822922 0.146113i
\(78\) −3.82827 4.74368i −0.433466 0.537116i
\(79\) 7.12919 12.3481i 0.802097 1.38927i −0.116137 0.993233i \(-0.537051\pi\)
0.918234 0.396039i \(-0.129615\pi\)
\(80\) 0.519082 + 0.899076i 0.0580351 + 0.100520i
\(81\) 0.881023 + 8.95677i 0.0978915 + 0.995197i
\(82\) −1.77560 1.02514i −0.196082 0.113208i
\(83\) 3.31082 0.363410 0.181705 0.983353i \(-0.441838\pi\)
0.181705 + 0.983353i \(0.441838\pi\)
\(84\) −3.92127 2.37141i −0.427846 0.258743i
\(85\) 1.61212 0.174859
\(86\) 6.61023 + 3.81642i 0.712799 + 0.411535i
\(87\) −3.81853 1.47311i −0.409390 0.157934i
\(88\) −1.38601 2.40063i −0.147749 0.255908i
\(89\) −0.0407245 + 0.0705368i −0.00431678 + 0.00747689i −0.868176 0.496257i \(-0.834707\pi\)
0.863859 + 0.503734i \(0.168041\pi\)
\(90\) −3.04426 0.657697i −0.320893 0.0693274i
\(91\) −5.99374 + 7.12583i −0.628314 + 0.746990i
\(92\) 1.00000i 0.104257i
\(93\) 0.0175224 + 0.111839i 0.00181699 + 0.0115972i
\(94\) 3.06489 1.76952i 0.316119 0.182512i
\(95\) −3.17146 + 1.83105i −0.325385 + 0.187861i
\(96\) −0.268099 1.71118i −0.0273627 0.174646i
\(97\) 13.0003i 1.31998i 0.751273 + 0.659991i \(0.229440\pi\)
−0.751273 + 0.659991i \(0.770560\pi\)
\(98\) −2.40978 + 6.57213i −0.243425 + 0.663886i
\(99\) 8.12850 + 1.75612i 0.816945 + 0.176497i
\(100\) −1.96111 + 3.39674i −0.196111 + 0.339674i
\(101\) −1.35070 2.33948i −0.134399 0.232787i 0.790968 0.611857i \(-0.209577\pi\)
−0.925368 + 0.379070i \(0.876244\pi\)
\(102\) −2.50937 0.968062i −0.248465 0.0958524i
\(103\) 10.2861 + 5.93867i 1.01352 + 0.585155i 0.912220 0.409701i \(-0.134367\pi\)
0.101298 + 0.994856i \(0.467700\pi\)
\(104\) −3.51938 −0.345104
\(105\) −0.0966197 + 4.75648i −0.00942911 + 0.464185i
\(106\) −2.20952 −0.214607
\(107\) 12.5558 + 7.24907i 1.21381 + 0.700794i 0.963587 0.267394i \(-0.0861626\pi\)
0.250224 + 0.968188i \(0.419496\pi\)
\(108\) 4.34365 + 2.85180i 0.417968 + 0.274414i
\(109\) 2.88058 + 4.98930i 0.275909 + 0.477889i 0.970364 0.241647i \(-0.0776878\pi\)
−0.694455 + 0.719536i \(0.744354\pi\)
\(110\) −1.43890 + 2.49225i −0.137194 + 0.237627i
\(111\) −8.73494 10.8236i −0.829084 1.02733i
\(112\) −2.48727 + 0.901943i −0.235025 + 0.0852256i
\(113\) 14.1240i 1.32867i −0.747433 0.664337i \(-0.768714\pi\)
0.747433 0.664337i \(-0.231286\pi\)
\(114\) 6.03612 0.945710i 0.565334 0.0885739i
\(115\) 0.899076 0.519082i 0.0838393 0.0484046i
\(116\) −2.04642 + 1.18150i −0.190005 + 0.109699i
\(117\) 7.09091 7.82262i 0.655555 0.723201i
\(118\) 11.0902i 1.02093i
\(119\) −0.718240 + 4.04520i −0.0658410 + 0.370823i
\(120\) −1.39931 + 1.12928i −0.127739 + 0.103089i
\(121\) −1.65798 + 2.87170i −0.150725 + 0.261064i
\(122\) −5.48115 9.49364i −0.496240 0.859514i
\(123\) 1.27817 3.31321i 0.115248 0.298742i
\(124\) 0.0566018 + 0.0326791i 0.00508299 + 0.00293467i
\(125\) 9.26272 0.828483
\(126\) 3.00662 7.34576i 0.267851 0.654413i
\(127\) 19.1111 1.69583 0.847916 0.530131i \(-0.177857\pi\)
0.847916 + 0.530131i \(0.177857\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −4.75836 + 12.3344i −0.418951 + 1.08599i
\(130\) 1.82685 + 3.16419i 0.160225 + 0.277518i
\(131\) 5.09224 8.82002i 0.444911 0.770609i −0.553135 0.833092i \(-0.686569\pi\)
0.998046 + 0.0624831i \(0.0199020\pi\)
\(132\) 3.73632 3.01531i 0.325205 0.262449i
\(133\) −3.18157 8.77376i −0.275877 0.760781i
\(134\) 9.50147i 0.820802i
\(135\) 0.309274 5.38558i 0.0266181 0.463517i
\(136\) −1.34481 + 0.776428i −0.115317 + 0.0665782i
\(137\) 10.7671 6.21642i 0.919900 0.531104i 0.0362965 0.999341i \(-0.488444\pi\)
0.883603 + 0.468237i \(0.155111\pi\)
\(138\) −1.71118 + 0.268099i −0.145665 + 0.0228221i
\(139\) 7.51294i 0.637239i −0.947883 0.318620i \(-0.896781\pi\)
0.947883 0.318620i \(-0.103219\pi\)
\(140\) 2.10201 + 1.76806i 0.177652 + 0.149428i
\(141\) 3.84965 + 4.77016i 0.324199 + 0.401720i
\(142\) 6.42094 11.1214i 0.538834 0.933287i
\(143\) −4.87788 8.44874i −0.407909 0.706519i
\(144\) 2.85625 0.917529i 0.238020 0.0764607i
\(145\) 2.12451 + 1.22659i 0.176431 + 0.101863i
\(146\) −2.44237 −0.202132
\(147\) −11.8921 2.36158i −0.980847 0.194780i
\(148\) −8.03015 −0.660074
\(149\) 20.9388 + 12.0890i 1.71537 + 0.990372i 0.926904 + 0.375299i \(0.122460\pi\)
0.788470 + 0.615073i \(0.210873\pi\)
\(150\) −6.33819 2.44514i −0.517511 0.199645i
\(151\) −2.17584 3.76866i −0.177067 0.306689i 0.763808 0.645444i \(-0.223328\pi\)
−0.940875 + 0.338755i \(0.889994\pi\)
\(152\) 1.76373 3.05488i 0.143058 0.247783i
\(153\) 0.983765 4.55351i 0.0795327 0.368130i
\(154\) −5.61260 4.72092i −0.452276 0.380422i
\(155\) 0.0678525i 0.00545004i
\(156\) −0.943542 6.02228i −0.0755438 0.482168i
\(157\) −2.90328 + 1.67621i −0.231707 + 0.133776i −0.611359 0.791353i \(-0.709377\pi\)
0.379652 + 0.925129i \(0.376044\pi\)
\(158\) 12.3481 7.12919i 0.982364 0.567168i
\(159\) −0.592369 3.78087i −0.0469779 0.299842i
\(160\) 1.03816i 0.0820741i
\(161\) 0.901943 + 2.48727i 0.0710830 + 0.196024i
\(162\) −3.71540 + 8.19731i −0.291909 + 0.644041i
\(163\) −3.86631 + 6.69665i −0.302833 + 0.524522i −0.976777 0.214261i \(-0.931266\pi\)
0.673943 + 0.738783i \(0.264599\pi\)
\(164\) −1.02514 1.77560i −0.0800503 0.138651i
\(165\) −4.65045 1.79404i −0.362037 0.139666i
\(166\) 2.86725 + 1.65541i 0.222542 + 0.128485i
\(167\) −4.95623 −0.383525 −0.191762 0.981441i \(-0.561420\pi\)
−0.191762 + 0.981441i \(0.561420\pi\)
\(168\) −2.21022 4.01434i −0.170522 0.309713i
\(169\) 0.613958 0.0472275
\(170\) 1.39614 + 0.806060i 0.107079 + 0.0618219i
\(171\) 3.23655 + 10.0753i 0.247505 + 0.770479i
\(172\) 3.81642 + 6.61023i 0.290999 + 0.504025i
\(173\) 10.4057 18.0232i 0.791130 1.37028i −0.134138 0.990963i \(-0.542827\pi\)
0.925268 0.379314i \(-0.123840\pi\)
\(174\) −2.57039 3.18502i −0.194861 0.241456i
\(175\) −1.81414 + 10.2174i −0.137136 + 0.772363i
\(176\) 2.77201i 0.208948i
\(177\) 18.9772 2.97326i 1.42641 0.223484i
\(178\) −0.0705368 + 0.0407245i −0.00528696 + 0.00305243i
\(179\) −12.7502 + 7.36131i −0.952992 + 0.550210i −0.894009 0.448049i \(-0.852119\pi\)
−0.0589832 + 0.998259i \(0.518786\pi\)
\(180\) −2.30755 2.09171i −0.171995 0.155907i
\(181\) 3.65408i 0.271605i 0.990736 + 0.135803i \(0.0433613\pi\)
−0.990736 + 0.135803i \(0.956639\pi\)
\(182\) −8.75364 + 3.17428i −0.648863 + 0.235293i
\(183\) 14.7758 11.9245i 1.09226 0.881481i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 4.16831 + 7.21972i 0.306460 + 0.530804i
\(186\) −0.0407448 + 0.105617i −0.00298755 + 0.00774420i
\(187\) −3.72784 2.15227i −0.272606 0.157389i
\(188\) 3.53903 0.258110
\(189\) 13.3760 + 3.17546i 0.972958 + 0.230981i
\(190\) −3.66209 −0.265676
\(191\) 14.7625 + 8.52311i 1.06817 + 0.616711i 0.927682 0.373371i \(-0.121798\pi\)
0.140492 + 0.990082i \(0.455131\pi\)
\(192\) 0.623408 1.61597i 0.0449906 0.116623i
\(193\) 9.09431 + 15.7518i 0.654622 + 1.13384i 0.981988 + 0.188942i \(0.0605057\pi\)
−0.327366 + 0.944898i \(0.606161\pi\)
\(194\) −6.50016 + 11.2586i −0.466684 + 0.808321i
\(195\) −4.92471 + 3.97437i −0.352666 + 0.284611i
\(196\) −5.37300 + 4.48675i −0.383786 + 0.320482i
\(197\) 9.58230i 0.682711i 0.939934 + 0.341355i \(0.110886\pi\)
−0.939934 + 0.341355i \(0.889114\pi\)
\(198\) 6.16142 + 5.58510i 0.437873 + 0.396916i
\(199\) 17.5748 10.1468i 1.24584 0.719288i 0.275566 0.961282i \(-0.411135\pi\)
0.970278 + 0.241994i \(0.0778014\pi\)
\(200\) −3.39674 + 1.96111i −0.240186 + 0.138671i
\(201\) −16.2587 + 2.54733i −1.14680 + 0.179675i
\(202\) 2.70140i 0.190070i
\(203\) −4.02434 + 4.78445i −0.282453 + 0.335803i
\(204\) −1.68915 2.09305i −0.118264 0.146543i
\(205\) −1.06427 + 1.84337i −0.0743317 + 0.128746i
\(206\) 5.93867 + 10.2861i 0.413767 + 0.716665i
\(207\) −0.917529 2.85625i −0.0637727 0.198523i
\(208\) −3.04787 1.75969i −0.211332 0.122013i
\(209\) 9.77818 0.676371
\(210\) −2.46192 + 4.07093i −0.169888 + 0.280921i
\(211\) −2.42751 −0.167116 −0.0835582 0.996503i \(-0.526628\pi\)
−0.0835582 + 0.996503i \(0.526628\pi\)
\(212\) −1.91350 1.10476i −0.131419 0.0758751i
\(213\) 20.7521 + 8.00573i 1.42191 + 0.548544i
\(214\) 7.24907 + 12.5558i 0.495536 + 0.858294i
\(215\) 3.96206 6.86250i 0.270211 0.468018i
\(216\) 2.33581 + 4.64155i 0.158932 + 0.315818i
\(217\) 0.170258 + 0.0302300i 0.0115579 + 0.00205215i
\(218\) 5.76115i 0.390195i
\(219\) −0.654797 4.17933i −0.0442471 0.282413i
\(220\) −2.49225 + 1.43890i −0.168027 + 0.0970107i
\(221\) −4.73291 + 2.73255i −0.318370 + 0.183811i
\(222\) −2.15287 13.7410i −0.144491 0.922235i
\(223\) 21.2791i 1.42496i −0.701695 0.712478i \(-0.747573\pi\)
0.701695 0.712478i \(-0.252427\pi\)
\(224\) −2.60501 0.462529i −0.174054 0.0309040i
\(225\) 2.48480 11.5013i 0.165653 0.766753i
\(226\) 7.06200 12.2317i 0.469757 0.813643i
\(227\) −2.34630 4.06391i −0.155729 0.269731i 0.777595 0.628766i \(-0.216439\pi\)
−0.933324 + 0.359034i \(0.883106\pi\)
\(228\) 5.70029 + 2.19905i 0.377511 + 0.145636i
\(229\) −4.48752 2.59087i −0.296544 0.171210i 0.344345 0.938843i \(-0.388101\pi\)
−0.640889 + 0.767633i \(0.721434\pi\)
\(230\) 1.03816 0.0684545
\(231\) 6.57359 10.8698i 0.432510 0.715182i
\(232\) −2.36300 −0.155138
\(233\) −1.86635 1.07754i −0.122269 0.0705919i 0.437618 0.899161i \(-0.355822\pi\)
−0.559887 + 0.828569i \(0.689155\pi\)
\(234\) 10.0522 3.22913i 0.657134 0.211095i
\(235\) −1.83705 3.18186i −0.119836 0.207562i
\(236\) 5.54508 9.60436i 0.360954 0.625190i
\(237\) 15.5098 + 19.2185i 1.00747 + 1.24837i
\(238\) −2.64462 + 3.14413i −0.171425 + 0.203804i
\(239\) 18.2071i 1.17772i 0.808235 + 0.588859i \(0.200423\pi\)
−0.808235 + 0.588859i \(0.799577\pi\)
\(240\) −1.77648 + 0.278331i −0.114671 + 0.0179662i
\(241\) −8.27557 + 4.77790i −0.533077 + 0.307772i −0.742268 0.670103i \(-0.766250\pi\)
0.209192 + 0.977875i \(0.432917\pi\)
\(242\) −2.87170 + 1.65798i −0.184600 + 0.106579i
\(243\) −15.0231 4.16001i −0.963734 0.266865i
\(244\) 10.9623i 0.701790i
\(245\) 6.82295 + 2.50175i 0.435902 + 0.159831i
\(246\) 2.76353 2.23024i 0.176196 0.142195i
\(247\) 6.20725 10.7513i 0.394958 0.684087i
\(248\) 0.0326791 + 0.0566018i 0.00207512 + 0.00359422i
\(249\) −2.06399 + 5.35019i −0.130800 + 0.339055i
\(250\) 8.02175 + 4.63136i 0.507340 + 0.292913i
\(251\) −14.6996 −0.927831 −0.463916 0.885879i \(-0.653556\pi\)
−0.463916 + 0.885879i \(0.653556\pi\)
\(252\) 6.27669 4.85831i 0.395394 0.306045i
\(253\) −2.77201 −0.174275
\(254\) 16.5507 + 9.55553i 1.03848 + 0.599567i
\(255\) −1.00501 + 2.60514i −0.0629360 + 0.163140i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 13.3558 23.1330i 0.833113 1.44299i −0.0624442 0.998048i \(-0.519890\pi\)
0.895557 0.444946i \(-0.146777\pi\)
\(258\) −10.2881 + 8.30275i −0.640508 + 0.516907i
\(259\) −19.9731 + 7.24273i −1.24107 + 0.450042i
\(260\) 3.65369i 0.226592i
\(261\) 4.76101 5.25229i 0.294699 0.325109i
\(262\) 8.82002 5.09224i 0.544903 0.314600i
\(263\) −18.8470 + 10.8813i −1.16216 + 0.670971i −0.951820 0.306658i \(-0.900789\pi\)
−0.210337 + 0.977629i \(0.567456\pi\)
\(264\) 4.74340 0.743173i 0.291936 0.0457391i
\(265\) 2.29384i 0.140909i
\(266\) 1.63155 9.18908i 0.100037 0.563419i
\(267\) −0.0885976 0.109783i −0.00542208 0.00671859i
\(268\) −4.75073 + 8.22851i −0.290197 + 0.502636i
\(269\) 5.68518 + 9.84702i 0.346632 + 0.600384i 0.985649 0.168809i \(-0.0539920\pi\)
−0.639017 + 0.769192i \(0.720659\pi\)
\(270\) 2.96063 4.50942i 0.180178 0.274434i
\(271\) −14.0982 8.13962i −0.856407 0.494447i 0.00640055 0.999980i \(-0.497963\pi\)
−0.862807 + 0.505533i \(0.831296\pi\)
\(272\) −1.55286 −0.0941557
\(273\) −7.77859 14.1280i −0.470782 0.855065i
\(274\) 12.4328 0.751095
\(275\) −9.41580 5.43621i −0.567794 0.327816i
\(276\) −1.61597 0.623408i −0.0972700 0.0375247i
\(277\) −11.0359 19.1147i −0.663082 1.14849i −0.979802 0.199972i \(-0.935915\pi\)
0.316720 0.948519i \(-0.397419\pi\)
\(278\) 3.75647 6.50639i 0.225298 0.390228i
\(279\) −0.191653 0.0414057i −0.0114739 0.00247889i
\(280\) 0.936364 + 2.58219i 0.0559585 + 0.154315i
\(281\) 15.1816i 0.905661i −0.891597 0.452830i \(-0.850414\pi\)
0.891597 0.452830i \(-0.149586\pi\)
\(282\) 0.948811 + 6.05591i 0.0565009 + 0.360624i
\(283\) 0.634885 0.366551i 0.0377400 0.0217892i −0.481011 0.876714i \(-0.659730\pi\)
0.518751 + 0.854925i \(0.326397\pi\)
\(284\) 11.1214 6.42094i 0.659934 0.381013i
\(285\) −0.981802 6.26648i −0.0581570 0.371194i
\(286\) 9.75576i 0.576870i
\(287\) −4.15130 3.49178i −0.245043 0.206113i
\(288\) 2.93235 + 0.633520i 0.172790 + 0.0373305i
\(289\) 7.29432 12.6341i 0.429078 0.743184i
\(290\) 1.22659 + 2.12451i 0.0720278 + 0.124756i
\(291\) −21.0081 8.10449i −1.23152 0.475094i
\(292\) −2.11516 1.22119i −0.123780 0.0714645i
\(293\) −26.1420 −1.52723 −0.763616 0.645671i \(-0.776578\pi\)
−0.763616 + 0.645671i \(0.776578\pi\)
\(294\) −9.11811 7.99126i −0.531779 0.466059i
\(295\) −11.5134 −0.670336
\(296\) −6.95431 4.01507i −0.404211 0.233371i
\(297\) −7.90521 + 12.0406i −0.458707 + 0.698669i
\(298\) 12.0890 + 20.9388i 0.700299 + 1.21295i
\(299\) −1.75969 + 3.04787i −0.101766 + 0.176263i
\(300\) −4.26646 5.28665i −0.246324 0.305225i
\(301\) 15.4545 + 12.9992i 0.890782 + 0.749262i
\(302\) 4.35168i 0.250411i
\(303\) 4.62256 0.724241i 0.265559 0.0416066i
\(304\) 3.05488 1.76373i 0.175209 0.101157i
\(305\) −9.85595 + 5.69034i −0.564350 + 0.325828i
\(306\) 3.12872 3.45157i 0.178857 0.197313i
\(307\) 7.15424i 0.408314i 0.978938 + 0.204157i \(0.0654453\pi\)
−0.978938 + 0.204157i \(0.934555\pi\)
\(308\) −2.50020 6.89473i −0.142462 0.392864i
\(309\) −16.0091 + 12.9198i −0.910729 + 0.734982i
\(310\) 0.0339262 0.0587619i 0.00192688 0.00333745i
\(311\) −2.09702 3.63215i −0.118911 0.205961i 0.800425 0.599433i \(-0.204607\pi\)
−0.919337 + 0.393472i \(0.871274\pi\)
\(312\) 2.19401 5.68722i 0.124211 0.321975i
\(313\) 12.0259 + 6.94315i 0.679743 + 0.392450i 0.799758 0.600322i \(-0.204961\pi\)
−0.120015 + 0.992772i \(0.538294\pi\)
\(314\) −3.35242 −0.189188
\(315\) −7.62611 3.12136i −0.429682 0.175869i
\(316\) 14.2584 0.802097
\(317\) −10.0947 5.82817i −0.566974 0.327343i 0.188966 0.981984i \(-0.439486\pi\)
−0.755940 + 0.654641i \(0.772820\pi\)
\(318\) 1.37743 3.57051i 0.0772424 0.200224i
\(319\) −3.27513 5.67269i −0.183372 0.317609i
\(320\) −0.519082 + 0.899076i −0.0290176 + 0.0502599i
\(321\) −19.5416 + 15.7706i −1.09071 + 0.880230i
\(322\) −0.462529 + 2.60501i −0.0257757 + 0.145171i
\(323\) 5.47765i 0.304785i
\(324\) −7.31628 + 5.24138i −0.406460 + 0.291188i
\(325\) −11.9544 + 6.90189i −0.663112 + 0.382848i
\(326\) −6.69665 + 3.86631i −0.370893 + 0.214135i
\(327\) −9.85835 + 1.54456i −0.545168 + 0.0854143i
\(328\) 2.05029i 0.113208i
\(329\) 8.80252 3.19200i 0.485299 0.175981i
\(330\) −3.13038 3.87891i −0.172322 0.213527i
\(331\) 2.09126 3.62217i 0.114946 0.199092i −0.802812 0.596232i \(-0.796664\pi\)
0.917758 + 0.397140i \(0.129997\pi\)
\(332\) 1.65541 + 2.86725i 0.0908525 + 0.157361i
\(333\) 22.9361 7.36789i 1.25689 0.403758i
\(334\) −4.29222 2.47811i −0.234860 0.135596i
\(335\) 9.86408 0.538932
\(336\) 0.0930679 4.58163i 0.00507727 0.249948i
\(337\) −3.52075 −0.191788 −0.0958938 0.995392i \(-0.530571\pi\)
−0.0958938 + 0.995392i \(0.530571\pi\)
\(338\) 0.531703 + 0.306979i 0.0289208 + 0.0166974i
\(339\) 22.8240 + 8.80501i 1.23963 + 0.478222i
\(340\) 0.806060 + 1.39614i 0.0437147 + 0.0757161i
\(341\) −0.0905868 + 0.156901i −0.00490555 + 0.00849666i
\(342\) −2.23472 + 10.3438i −0.120840 + 0.559326i
\(343\) −9.31730 + 16.0059i −0.503087 + 0.864236i
\(344\) 7.63283i 0.411535i
\(345\) 0.278331 + 1.77648i 0.0149848 + 0.0956425i
\(346\) 18.0232 10.4057i 0.968932 0.559413i
\(347\) 20.2883 11.7134i 1.08913 0.628810i 0.155786 0.987791i \(-0.450209\pi\)
0.933345 + 0.358981i \(0.116876\pi\)
\(348\) −0.633517 4.04350i −0.0339601 0.216755i
\(349\) 9.60514i 0.514151i −0.966391 0.257076i \(-0.917241\pi\)
0.966391 0.257076i \(-0.0827589\pi\)
\(350\) −6.67979 + 7.94146i −0.357050 + 0.424489i
\(351\) 8.22060 + 16.3354i 0.438783 + 0.871918i
\(352\) 1.38601 2.40063i 0.0738744 0.127954i
\(353\) 3.79482 + 6.57281i 0.201978 + 0.349836i 0.949166 0.314777i \(-0.101930\pi\)
−0.747188 + 0.664613i \(0.768596\pi\)
\(354\) 17.9214 + 6.91369i 0.952510 + 0.367458i
\(355\) −11.5458 6.66599i −0.612789 0.353794i
\(356\) −0.0814489 −0.00431678
\(357\) −6.08918 3.68247i −0.322273 0.194897i
\(358\) −14.7226 −0.778115
\(359\) −28.8047 16.6304i −1.52025 0.877719i −0.999715 0.0238810i \(-0.992398\pi\)
−0.520539 0.853838i \(-0.674269\pi\)
\(360\) −0.952545 2.96525i −0.0502035 0.156282i
\(361\) −3.27848 5.67850i −0.172552 0.298868i
\(362\) −1.82704 + 3.16452i −0.0960270 + 0.166324i
\(363\) −3.60699 4.46948i −0.189318 0.234587i
\(364\) −9.16802 1.62781i −0.480535 0.0853206i
\(365\) 2.53558i 0.132718i
\(366\) 18.7584 2.93898i 0.980519 0.153623i
\(367\) −0.914239 + 0.527836i −0.0477229 + 0.0275528i −0.523672 0.851920i \(-0.675438\pi\)
0.475949 + 0.879473i \(0.342105\pi\)
\(368\) −0.866025 + 0.500000i −0.0451447 + 0.0260643i
\(369\) 4.55723 + 4.13096i 0.237240 + 0.215049i
\(370\) 8.33661i 0.433400i
\(371\) −5.75581 1.02196i −0.298827 0.0530577i
\(372\) −0.0880944 + 0.0710945i −0.00456748 + 0.00368608i
\(373\) 11.2139 19.4231i 0.580635 1.00569i −0.414769 0.909927i \(-0.636138\pi\)
0.995404 0.0957628i \(-0.0305290\pi\)
\(374\) −2.15227 3.72784i −0.111291 0.192762i
\(375\) −5.77445 + 14.9683i −0.298191 + 0.772959i
\(376\) 3.06489 + 1.76952i 0.158060 + 0.0912558i
\(377\) −8.31629 −0.428311
\(378\) 9.99620 + 9.43801i 0.514149 + 0.485439i
\(379\) 14.4456 0.742019 0.371010 0.928629i \(-0.379012\pi\)
0.371010 + 0.928629i \(0.379012\pi\)
\(380\) −3.17146 1.83105i −0.162693 0.0939306i
\(381\) −11.9140 + 30.8829i −0.610371 + 1.58218i
\(382\) 8.52311 + 14.7625i 0.436080 + 0.755313i
\(383\) −1.66824 + 2.88947i −0.0852430 + 0.147645i −0.905495 0.424358i \(-0.860500\pi\)
0.820252 + 0.572003i \(0.193833\pi\)
\(384\) 1.34787 1.08777i 0.0687833 0.0555099i
\(385\) −4.90109 + 5.82680i −0.249782 + 0.296961i
\(386\) 18.1886i 0.925776i
\(387\) −16.9657 15.3788i −0.862415 0.781746i
\(388\) −11.2586 + 6.50016i −0.571569 + 0.329996i
\(389\) −27.6908 + 15.9873i −1.40398 + 0.810589i −0.994798 0.101864i \(-0.967519\pi\)
−0.409183 + 0.912452i \(0.634186\pi\)
\(390\) −6.25211 + 0.979551i −0.316588 + 0.0496015i
\(391\) 1.55286i 0.0785313i
\(392\) −6.89653 + 1.19914i −0.348327 + 0.0605655i
\(393\) 11.0784 + 13.7274i 0.558829 + 0.692455i
\(394\) −4.79115 + 8.29852i −0.241375 + 0.418073i
\(395\) −7.40127 12.8194i −0.372398 0.645013i
\(396\) 2.54340 + 7.91755i 0.127811 + 0.397872i
\(397\) 2.18819 + 1.26335i 0.109822 + 0.0634057i 0.553905 0.832580i \(-0.313137\pi\)
−0.444083 + 0.895986i \(0.646470\pi\)
\(398\) 20.2936 1.01723
\(399\) 16.1616 + 0.328294i 0.809090 + 0.0164353i
\(400\) −3.92222 −0.196111
\(401\) −3.55355 2.05164i −0.177456 0.102454i 0.408641 0.912695i \(-0.366003\pi\)
−0.586097 + 0.810241i \(0.699336\pi\)
\(402\) −15.3541 5.92328i −0.765793 0.295427i
\(403\) 0.115010 + 0.199203i 0.00572906 + 0.00992302i
\(404\) 1.35070 2.33948i 0.0671997 0.116393i
\(405\) 8.51015 + 3.85719i 0.422873 + 0.191665i
\(406\) −5.87741 + 2.13129i −0.291691 + 0.105774i
\(407\) 22.2597i 1.10337i
\(408\) −0.416319 2.65721i −0.0206109 0.131551i
\(409\) 11.1896 6.46032i 0.553290 0.319442i −0.197158 0.980372i \(-0.563171\pi\)
0.750448 + 0.660930i \(0.229838\pi\)
\(410\) −1.84337 + 1.06427i −0.0910374 + 0.0525604i
\(411\) 3.33323 + 21.2748i 0.164416 + 1.04941i
\(412\) 11.8773i 0.585155i
\(413\) 5.12951 28.8899i 0.252407 1.42158i
\(414\) 0.633520 2.93235i 0.0311358 0.144117i
\(415\) 1.71859 2.97668i 0.0843621 0.146119i
\(416\) −1.75969 3.04787i −0.0862759 0.149434i
\(417\) 12.1407 + 4.68362i 0.594532 + 0.229358i
\(418\) 8.46816 + 4.88909i 0.414191 + 0.239133i
\(419\) 12.2716 0.599509 0.299754 0.954016i \(-0.403095\pi\)
0.299754 + 0.954016i \(0.403095\pi\)
\(420\) −4.16754 + 2.29457i −0.203355 + 0.111963i
\(421\) −1.44396 −0.0703745 −0.0351873 0.999381i \(-0.511203\pi\)
−0.0351873 + 0.999381i \(0.511203\pi\)
\(422\) −2.10228 1.21375i −0.102338 0.0590846i
\(423\) −10.1083 + 3.24716i −0.491485 + 0.157883i
\(424\) −1.10476 1.91350i −0.0536518 0.0929276i
\(425\) −3.04532 + 5.27465i −0.147720 + 0.255858i
\(426\) 13.9690 + 17.3092i 0.676800 + 0.838635i
\(427\) −9.88737 27.2662i −0.478484 1.31950i
\(428\) 14.4981i 0.700794i
\(429\) 16.6938 2.61551i 0.805986 0.126278i
\(430\) 6.86250 3.96206i 0.330939 0.191068i
\(431\) −4.63522 + 2.67615i −0.223271 + 0.128906i −0.607464 0.794347i \(-0.707813\pi\)
0.384193 + 0.923253i \(0.374480\pi\)
\(432\) −0.297905 + 5.18761i −0.0143330 + 0.249589i
\(433\) 15.7434i 0.756580i −0.925687 0.378290i \(-0.876512\pi\)
0.925687 0.378290i \(-0.123488\pi\)
\(434\) 0.132333 + 0.111309i 0.00635220 + 0.00534301i
\(435\) −3.30657 + 2.66849i −0.158538 + 0.127944i
\(436\) −2.88058 + 4.98930i −0.137955 + 0.238944i
\(437\) −1.76373 3.05488i −0.0843709 0.146135i
\(438\) 1.52259 3.94680i 0.0727523 0.188586i
\(439\) 26.9099 + 15.5364i 1.28434 + 0.741513i 0.977638 0.210294i \(-0.0674420\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(440\) −2.87780 −0.137194
\(441\) 11.2299 17.7451i 0.534757 0.845006i
\(442\) −5.46509 −0.259948
\(443\) 5.62054 + 3.24502i 0.267040 + 0.154176i 0.627542 0.778583i \(-0.284061\pi\)
−0.360502 + 0.932759i \(0.617395\pi\)
\(444\) 5.00606 12.9765i 0.237577 0.615837i
\(445\) 0.0422787 + 0.0732288i 0.00200420 + 0.00347138i
\(446\) 10.6396 18.4283i 0.503798 0.872604i
\(447\) −32.5889 + 26.3001i −1.54140 + 1.24395i
\(448\) −2.02474 1.70307i −0.0956599 0.0804623i
\(449\) 5.38156i 0.253972i 0.991905 + 0.126986i \(0.0405303\pi\)
−0.991905 + 0.126986i \(0.959470\pi\)
\(450\) 7.90255 8.71801i 0.372530 0.410971i
\(451\) 4.92199 2.84171i 0.231767 0.133811i
\(452\) 12.2317 7.06200i 0.575333 0.332169i
\(453\) 7.44648 1.16668i 0.349866 0.0548154i
\(454\) 4.69260i 0.220235i
\(455\) 3.29542 + 9.08771i 0.154492 + 0.426039i
\(456\) 3.83707 + 4.75458i 0.179687 + 0.222653i
\(457\) −16.9922 + 29.4314i −0.794864 + 1.37674i 0.128062 + 0.991766i \(0.459124\pi\)
−0.922926 + 0.384978i \(0.874209\pi\)
\(458\) −2.59087 4.48752i −0.121064 0.209688i
\(459\) 6.74506 + 4.42843i 0.314832 + 0.206701i
\(460\) 0.899076 + 0.519082i 0.0419196 + 0.0242023i
\(461\) −10.8029 −0.503142 −0.251571 0.967839i \(-0.580947\pi\)
−0.251571 + 0.967839i \(0.580947\pi\)
\(462\) 11.1278 6.12674i 0.517712 0.285042i
\(463\) −6.55475 −0.304625 −0.152313 0.988332i \(-0.548672\pi\)
−0.152313 + 0.988332i \(0.548672\pi\)
\(464\) −2.04642 1.18150i −0.0950024 0.0548497i
\(465\) 0.109648 + 0.0422997i 0.00508479 + 0.00196160i
\(466\) −1.07754 1.86635i −0.0499160 0.0864571i
\(467\) −8.94633 + 15.4955i −0.413987 + 0.717046i −0.995322 0.0966182i \(-0.969197\pi\)
0.581335 + 0.813665i \(0.302531\pi\)
\(468\) 10.3200 + 2.22960i 0.477044 + 0.103063i
\(469\) −4.39470 + 24.7514i −0.202928 + 1.14291i
\(470\) 3.67410i 0.169473i
\(471\) −0.898780 5.73658i −0.0414136 0.264328i
\(472\) 9.60436 5.54508i 0.442076 0.255233i
\(473\) −18.3236 + 10.5791i −0.842521 + 0.486430i
\(474\) 3.82266 + 24.3986i 0.175580 + 1.12066i
\(475\) 13.8355i 0.634816i
\(476\) −3.86237 + 1.40059i −0.177031 + 0.0641958i
\(477\) 6.47906 + 1.39977i 0.296656 + 0.0640911i
\(478\) −9.10355 + 15.7678i −0.416387 + 0.721203i
\(479\) 14.6495 + 25.3737i 0.669352 + 1.15935i 0.978086 + 0.208203i \(0.0667615\pi\)
−0.308734 + 0.951149i \(0.599905\pi\)
\(480\) −1.67764 0.647199i −0.0765736 0.0295405i
\(481\) −24.4749 14.1306i −1.11596 0.644299i
\(482\) −9.55581 −0.435255
\(483\) −4.58163 0.0930679i −0.208471 0.00423473i
\(484\) −3.31595 −0.150725
\(485\) 11.6883 + 6.74823i 0.530737 + 0.306421i
\(486\) −10.9304 11.1142i −0.495813 0.504152i
\(487\) 2.56879 + 4.44928i 0.116403 + 0.201616i 0.918340 0.395793i \(-0.129530\pi\)
−0.801937 + 0.597409i \(0.796197\pi\)
\(488\) 5.48115 9.49364i 0.248120 0.429757i
\(489\) −8.41131 10.4226i −0.380373 0.471326i
\(490\) 4.65798 + 5.57805i 0.210426 + 0.251991i
\(491\) 20.6718i 0.932907i −0.884546 0.466454i \(-0.845531\pi\)
0.884546 0.466454i \(-0.154469\pi\)
\(492\) 3.50841 0.549680i 0.158171 0.0247815i
\(493\) −3.17779 + 1.83470i −0.143120 + 0.0826306i
\(494\) 10.7513 6.20725i 0.483723 0.279278i
\(495\) 5.79824 6.39657i 0.260612 0.287504i
\(496\) 0.0653581i 0.00293467i
\(497\) 21.8706 26.0015i 0.981029 1.16633i
\(498\) −4.46256 + 3.60141i −0.199972 + 0.161383i
\(499\) 3.46831 6.00729i 0.155263 0.268923i −0.777892 0.628398i \(-0.783711\pi\)
0.933155 + 0.359475i \(0.117044\pi\)
\(500\) 4.63136 + 8.02175i 0.207121 + 0.358744i
\(501\) 3.08975 8.00912i 0.138040 0.357821i
\(502\) −12.7302 7.34981i −0.568178 0.328038i
\(503\) −12.5293 −0.558653 −0.279327 0.960196i \(-0.590111\pi\)
−0.279327 + 0.960196i \(0.590111\pi\)
\(504\) 7.86493 1.06907i 0.350332 0.0476204i
\(505\) −2.80449 −0.124798
\(506\) −2.40063 1.38601i −0.106721 0.0616155i
\(507\) −0.382746 + 0.992138i −0.0169983 + 0.0440624i
\(508\) 9.55553 + 16.5507i 0.423958 + 0.734317i
\(509\) −1.83052 + 3.17056i −0.0811365 + 0.140533i −0.903738 0.428085i \(-0.859188\pi\)
0.822602 + 0.568618i \(0.192522\pi\)
\(510\) −2.17293 + 1.75361i −0.0962190 + 0.0776513i
\(511\) −6.36240 1.12967i −0.281456 0.0499735i
\(512\) 1.00000i 0.0441942i
\(513\) −18.2991 1.05085i −0.807926 0.0463962i
\(514\) 23.1330 13.3558i 1.02035 0.589100i
\(515\) 10.6786 6.16532i 0.470557 0.271676i
\(516\) −13.0611 + 2.04635i −0.574984 + 0.0900857i
\(517\) 9.81024i 0.431454i
\(518\) −20.9186 3.71417i −0.919111 0.163191i
\(519\) 22.6380 + 28.0511i 0.993696 + 1.23131i
\(520\) −1.82685 + 3.16419i −0.0801125 + 0.138759i
\(521\) −5.79442 10.0362i −0.253858 0.439695i 0.710726 0.703468i \(-0.248366\pi\)
−0.964585 + 0.263773i \(0.915033\pi\)
\(522\) 6.74930 2.16812i 0.295409 0.0948959i
\(523\) −27.2591 15.7381i −1.19196 0.688178i −0.233209 0.972427i \(-0.574923\pi\)
−0.958751 + 0.284249i \(0.908256\pi\)
\(524\) 10.1845 0.444911
\(525\) −15.3801 9.30120i −0.671242 0.405938i
\(526\) −21.7627 −0.948897
\(527\) 0.0878945 + 0.0507459i 0.00382874 + 0.00221053i
\(528\) 4.47949 + 1.72809i 0.194945 + 0.0752056i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) −1.14692 + 1.98652i −0.0498190 + 0.0862890i
\(531\) −7.02583 + 32.5202i −0.304895 + 1.41126i
\(532\) 6.00751 7.14220i 0.260459 0.309654i
\(533\) 7.21575i 0.312549i
\(534\) −0.0218364 0.139373i −0.000944952 0.00603128i
\(535\) 13.0349 7.52572i 0.563549 0.325365i
\(536\) −8.22851 + 4.75073i −0.355418 + 0.205200i
\(537\) −3.94712 25.1930i −0.170331 1.08716i
\(538\) 11.3704i 0.490211i
\(539\) −12.4373 14.8940i −0.535713 0.641531i
\(540\) 4.81869 2.42495i 0.207363 0.104353i
\(541\) 11.3203 19.6074i 0.486699 0.842987i −0.513184 0.858278i \(-0.671534\pi\)
0.999883 + 0.0152913i \(0.00486757\pi\)
\(542\) −8.13962 14.0982i −0.349627 0.605571i
\(543\) −5.90488 2.27798i −0.253403 0.0977575i
\(544\) −1.34481 0.776428i −0.0576584 0.0332891i
\(545\) 5.98102 0.256199
\(546\) 0.327541 16.1245i 0.0140175 0.690065i
\(547\) −24.0703 −1.02917 −0.514585 0.857439i \(-0.672054\pi\)
−0.514585 + 0.857439i \(0.672054\pi\)
\(548\) 10.7671 + 6.21642i 0.459950 + 0.265552i
\(549\) 10.0582 + 31.3111i 0.429275 + 1.33632i
\(550\) −5.43621 9.41580i −0.231801 0.401491i
\(551\) 4.16770 7.21867i 0.177550 0.307525i
\(552\) −1.08777 1.34787i −0.0462985 0.0573693i
\(553\) 35.4644 12.8602i 1.50810 0.546873i
\(554\) 22.0718i 0.937739i
\(555\) −14.2654 + 2.23504i −0.605533 + 0.0948720i
\(556\) 6.50639 3.75647i 0.275933 0.159310i
\(557\) −24.6485 + 14.2308i −1.04439 + 0.602979i −0.921074 0.389389i \(-0.872686\pi\)
−0.123316 + 0.992367i \(0.539353\pi\)
\(558\) −0.145273 0.131685i −0.00614991 0.00557466i
\(559\) 26.8628i 1.13618i
\(560\) −0.480180 + 2.70443i −0.0202913 + 0.114283i
\(561\) 5.80196 4.68234i 0.244959 0.197688i
\(562\) 7.59082 13.1477i 0.320199 0.554602i
\(563\) 13.6774 + 23.6900i 0.576435 + 0.998415i 0.995884 + 0.0906363i \(0.0288901\pi\)
−0.419449 + 0.907779i \(0.637777\pi\)
\(564\) −2.20626 + 5.71897i −0.0929003 + 0.240812i
\(565\) −12.6986 7.33151i −0.534232 0.308439i
\(566\) 0.733102 0.0308146
\(567\) −13.4701 + 19.6356i −0.565692 + 0.824616i
\(568\) 12.8419 0.538834
\(569\) −6.63343 3.82981i −0.278088 0.160554i 0.354470 0.935068i \(-0.384661\pi\)
−0.632557 + 0.774513i \(0.717995\pi\)
\(570\) 2.28297 5.91783i 0.0956233 0.247871i
\(571\) 5.23977 + 9.07555i 0.219278 + 0.379800i 0.954587 0.297931i \(-0.0962966\pi\)
−0.735310 + 0.677731i \(0.762963\pi\)
\(572\) 4.87788 8.44874i 0.203955 0.353260i
\(573\) −22.9761 + 18.5423i −0.959842 + 0.774618i
\(574\) −1.84924 5.09962i −0.0771859 0.212854i
\(575\) 3.92222i 0.163568i
\(576\) 2.22273 + 2.01482i 0.0926136 + 0.0839507i
\(577\) 17.6346 10.1813i 0.734138 0.423855i −0.0857958 0.996313i \(-0.527343\pi\)
0.819934 + 0.572458i \(0.194010\pi\)
\(578\) 12.6341 7.29432i 0.525511 0.303404i
\(579\) −31.1239 + 4.87635i −1.29347 + 0.202654i
\(580\) 2.45318i 0.101863i
\(581\) 6.70355 + 5.63854i 0.278110 + 0.233926i
\(582\) −14.1413 17.5228i −0.586177 0.726342i
\(583\) 3.06240 5.30423i 0.126832 0.219679i
\(584\) −1.22119 2.11516i −0.0505330 0.0875258i
\(585\) −3.35237 10.4358i −0.138603 0.431469i
\(586\) −22.6396 13.0710i −0.935235 0.539958i
\(587\) 22.0502 0.910109 0.455055 0.890464i \(-0.349620\pi\)
0.455055 + 0.890464i \(0.349620\pi\)
\(588\) −3.90088 11.4797i −0.160870 0.473414i
\(589\) −0.230549 −0.00949960
\(590\) −9.97089 5.75670i −0.410495 0.237000i
\(591\) −15.4847 5.97368i −0.636957 0.245724i
\(592\) −4.01507 6.95431i −0.165019 0.285821i
\(593\) −22.9733 + 39.7909i −0.943401 + 1.63402i −0.184478 + 0.982837i \(0.559059\pi\)
−0.758922 + 0.651181i \(0.774274\pi\)
\(594\) −12.8664 + 6.47489i −0.527916 + 0.265668i
\(595\) 3.26412 + 2.74554i 0.133816 + 0.112556i
\(596\) 24.1781i 0.990372i
\(597\) 5.44070 + 34.7259i 0.222673 + 1.42124i
\(598\) −3.04787 + 1.75969i −0.124637 + 0.0719591i
\(599\) 25.2636 14.5859i 1.03224 0.595965i 0.114616 0.993410i \(-0.463436\pi\)
0.917626 + 0.397445i \(0.130103\pi\)
\(600\) −1.05154 6.71160i −0.0429290 0.274000i
\(601\) 37.1659i 1.51603i −0.652237 0.758015i \(-0.726169\pi\)
0.652237 0.758015i \(-0.273831\pi\)
\(602\) 6.88438 + 18.9849i 0.280586 + 0.773767i
\(603\) 6.01937 27.8616i 0.245128 1.13461i
\(604\) 2.17584 3.76866i 0.0885336 0.153345i
\(605\) 1.72125 + 2.98129i 0.0699788 + 0.121207i
\(606\) 4.36538 + 1.68407i 0.177331 + 0.0684107i
\(607\) 33.9771 + 19.6167i 1.37909 + 0.796216i 0.992050 0.125847i \(-0.0401650\pi\)
0.387038 + 0.922064i \(0.373498\pi\)
\(608\) 3.52747 0.143058
\(609\) −5.22273 9.48588i −0.211636 0.384387i
\(610\) −11.3807 −0.460790
\(611\) 10.7865 + 6.22760i 0.436376 + 0.251942i
\(612\) 4.43534 1.42479i 0.179288 0.0575937i
\(613\) 4.44742 + 7.70315i 0.179629 + 0.311127i 0.941754 0.336304i \(-0.109177\pi\)
−0.762124 + 0.647431i \(0.775843\pi\)
\(614\) −3.57712 + 6.19575i −0.144361 + 0.250040i
\(615\) −2.31535 2.86899i −0.0933641 0.115689i
\(616\) 1.28213 7.22111i 0.0516587 0.290947i
\(617\) 23.1877i 0.933501i 0.884389 + 0.466750i \(0.154575\pi\)
−0.884389 + 0.466750i \(0.845425\pi\)
\(618\) −20.3242 + 3.18430i −0.817560 + 0.128091i
\(619\) −15.1746 + 8.76106i −0.609919 + 0.352137i −0.772934 0.634487i \(-0.781212\pi\)
0.163015 + 0.986624i \(0.447878\pi\)
\(620\) 0.0587619 0.0339262i 0.00235994 0.00136251i
\(621\) 5.18761 + 0.297905i 0.208171 + 0.0119545i
\(622\) 4.19405i 0.168166i
\(623\) −0.202585 + 0.0734623i −0.00811641 + 0.00294320i
\(624\) 4.74368 3.82827i 0.189899 0.153254i
\(625\) −4.99743 + 8.65580i −0.199897 + 0.346232i
\(626\) 6.94315 + 12.0259i 0.277504 + 0.480651i
\(627\) −6.09579 + 15.8013i −0.243443 + 0.631042i
\(628\) −2.90328 1.67621i −0.115853 0.0668880i
\(629\) −12.4697 −0.497198
\(630\) −5.04372 6.51623i −0.200947 0.259613i
\(631\) −4.26959 −0.169970 −0.0849848 0.996382i \(-0.527084\pi\)
−0.0849848 + 0.996382i \(0.527084\pi\)
\(632\) 12.3481 + 7.12919i 0.491182 + 0.283584i
\(633\) 1.51333 3.92278i 0.0601493 0.155917i
\(634\) −5.82817 10.0947i −0.231466 0.400911i
\(635\) 9.92020 17.1823i 0.393671 0.681859i
\(636\) 2.97814 2.40344i 0.118091 0.0953026i
\(637\) −24.2715 + 4.22022i −0.961672 + 0.167211i
\(638\) 6.55025i 0.259327i
\(639\) −25.8741 + 28.5440i −1.02356 + 1.12918i
\(640\) −0.899076 + 0.519082i −0.0355391 + 0.0205185i
\(641\) −15.6530 + 9.03723i −0.618254 + 0.356949i −0.776189 0.630500i \(-0.782850\pi\)
0.157935 + 0.987450i \(0.449516\pi\)
\(642\) −24.8089 + 3.88693i −0.979128 + 0.153405i
\(643\) 19.3134i 0.761647i 0.924648 + 0.380823i \(0.124359\pi\)
−0.924648 + 0.380823i \(0.875641\pi\)
\(644\) −1.70307 + 2.02474i −0.0671102 + 0.0797859i
\(645\) 8.61962 + 10.6807i 0.339397 + 0.420553i
\(646\) 2.73883 4.74379i 0.107758 0.186642i
\(647\) −13.9751 24.2056i −0.549418 0.951621i −0.998314 0.0580366i \(-0.981516\pi\)
0.448896 0.893584i \(-0.351817\pi\)
\(648\) −8.95677 + 0.881023i −0.351855 + 0.0346099i
\(649\) 26.6234 + 15.3710i 1.04506 + 0.603365i
\(650\) −13.8038 −0.541428
\(651\) −0.154991 + 0.256287i −0.00607459 + 0.0100447i
\(652\) −7.73263 −0.302833
\(653\) 4.50928 + 2.60343i 0.176462 + 0.101880i 0.585629 0.810579i \(-0.300847\pi\)
−0.409167 + 0.912459i \(0.634181\pi\)
\(654\) −9.30986 3.59155i −0.364044 0.140441i
\(655\) −5.28658 9.15662i −0.206564 0.357779i
\(656\) 1.02514 1.77560i 0.0400252 0.0693256i
\(657\) 7.16188 + 1.54729i 0.279412 + 0.0603656i
\(658\) 9.21921 + 1.63690i 0.359402 + 0.0638131i
\(659\) 6.25060i 0.243489i −0.992561 0.121744i \(-0.961151\pi\)
0.992561 0.121744i \(-0.0388488\pi\)
\(660\) −0.771536 4.92443i −0.0300320 0.191683i
\(661\) −30.4660 + 17.5896i −1.18499 + 0.684155i −0.957164 0.289546i \(-0.906496\pi\)
−0.227828 + 0.973702i \(0.573162\pi\)
\(662\) 3.62217 2.09126i 0.140779 0.0812791i
\(663\) −1.46519 9.35173i −0.0569031 0.363191i
\(664\) 3.31082i 0.128485i
\(665\) −9.53977 1.69382i −0.369937 0.0656836i
\(666\) 23.5472 + 5.08726i 0.912435 + 0.197127i
\(667\) −1.18150 + 2.04642i −0.0457478 + 0.0792375i
\(668\) −2.47811 4.29222i −0.0958811 0.166071i
\(669\) 34.3865 + 13.2656i 1.32946 + 0.512876i
\(670\) 8.54254 + 4.93204i 0.330027 + 0.190541i
\(671\) 30.3876 1.17310
\(672\) 2.37141 3.92127i 0.0914793 0.151266i
\(673\) −39.0874 −1.50671 −0.753355 0.657614i \(-0.771566\pi\)
−0.753355 + 0.657614i \(0.771566\pi\)
\(674\) −3.04906 1.76038i −0.117445 0.0678071i
\(675\) 17.0367 + 11.1854i 0.655744 + 0.430525i
\(676\) 0.306979 + 0.531703i 0.0118069 + 0.0204501i
\(677\) −4.37953 + 7.58557i −0.168319 + 0.291537i −0.937829 0.347098i \(-0.887167\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(678\) 15.3636 + 19.0374i 0.590037 + 0.731125i
\(679\) −22.1404 + 26.3222i −0.849670 + 1.01016i
\(680\) 1.61212i 0.0618219i
\(681\) 8.02987 1.25808i 0.307705 0.0482098i
\(682\) −0.156901 + 0.0905868i −0.00600804 + 0.00346875i
\(683\) −28.6098 + 16.5179i −1.09472 + 0.632038i −0.934830 0.355096i \(-0.884448\pi\)
−0.159893 + 0.987134i \(0.551115\pi\)
\(684\) −7.10720 + 7.84060i −0.271751 + 0.299793i
\(685\) 12.9073i 0.493163i
\(686\) −16.0720 + 9.20284i −0.613630 + 0.351366i
\(687\) 6.98433 5.63654i 0.266469 0.215047i
\(688\) −3.81642 + 6.61023i −0.145499 + 0.252013i
\(689\) −3.88806 6.73432i −0.148123 0.256557i
\(690\) −0.647199 + 1.67764i −0.0246384 + 0.0638668i
\(691\) −33.8241 19.5283i −1.28673 0.742893i −0.308659 0.951173i \(-0.599880\pi\)
−0.978069 + 0.208280i \(0.933214\pi\)
\(692\) 20.8114 0.791130
\(693\) 13.4673 + 17.3991i 0.511580 + 0.660935i
\(694\) 23.4269 0.889271
\(695\) −6.75470 3.89983i −0.256221 0.147929i
\(696\) 1.47311 3.81853i 0.0558381 0.144741i
\(697\) −1.59190 2.75726i −0.0602976 0.104438i
\(698\) 4.80257 8.31829i 0.181780 0.314852i
\(699\) 2.90477 2.34423i 0.109868 0.0886667i
\(700\) −9.75560 + 3.53761i −0.368727 + 0.133709i
\(701\) 11.0261i 0.416452i 0.978081 + 0.208226i \(0.0667689\pi\)
−0.978081 + 0.208226i \(0.933231\pi\)
\(702\) −1.04844 + 18.2572i −0.0395709 + 0.689072i
\(703\) 24.5311 14.1631i 0.925209 0.534170i
\(704\) 2.40063 1.38601i 0.0904772 0.0522371i
\(705\) 6.28702 0.985021i 0.236783 0.0370980i
\(706\) 7.58963i 0.285640i
\(707\) 1.24947 7.03716i 0.0469913 0.264660i
\(708\) 12.0635 + 14.9481i 0.453375 + 0.561784i
\(709\) 10.2605 17.7717i 0.385341 0.667431i −0.606475 0.795102i \(-0.707417\pi\)
0.991816 + 0.127672i \(0.0407504\pi\)
\(710\) −6.66599 11.5458i −0.250170 0.433307i
\(711\) −40.7254 + 13.0825i −1.52732 + 0.490631i
\(712\) −0.0705368 0.0407245i −0.00264348 0.00152621i
\(713\) 0.0653581 0.00244768
\(714\) −3.43215 6.23370i −0.128445 0.233290i
\(715\) −10.1281 −0.378769
\(716\) −12.7502 7.36131i −0.476496 0.275105i
\(717\) −29.4221 11.3504i −1.09879 0.423890i
\(718\) −16.6304 28.8047i −0.620641 1.07498i
\(719\) −13.4782 + 23.3450i −0.502653 + 0.870620i 0.497343 + 0.867554i \(0.334309\pi\)
−0.999995 + 0.00306580i \(0.999024\pi\)
\(720\) 0.657697 3.04426i 0.0245109 0.113453i
\(721\) 10.7127 + 29.5421i 0.398961 + 1.10021i
\(722\) 6.55696i 0.244025i
\(723\) −2.56190 16.3517i −0.0952782 0.608125i
\(724\) −3.16452 + 1.82704i −0.117609 + 0.0679014i
\(725\) −8.02648 + 4.63409i −0.298096 + 0.172106i
\(726\) −0.889003 5.67418i −0.0329940 0.210588i
\(727\) 8.87758i 0.329251i −0.986356 0.164626i \(-0.947358\pi\)
0.986356 0.164626i \(-0.0526416\pi\)
\(728\) −7.12583 5.99374i −0.264101 0.222143i
\(729\) 16.0880 21.6836i 0.595851 0.803095i
\(730\) −1.26779 + 2.19588i −0.0469231 + 0.0812731i
\(731\) 5.92635 + 10.2647i 0.219194 + 0.379655i
\(732\) 17.7148 + 6.83399i 0.654757 + 0.252591i
\(733\) 28.9408 + 16.7090i 1.06895 + 0.617160i 0.927895 0.372842i \(-0.121617\pi\)
0.141057 + 0.990002i \(0.454950\pi\)
\(734\) −1.05567 −0.0389656
\(735\) −8.29623 + 9.46609i −0.306011 + 0.349162i
\(736\) −1.00000 −0.0368605
\(737\) −22.8095 13.1691i −0.840200 0.485090i
\(738\) 1.88120 + 5.85613i 0.0692479 + 0.215567i
\(739\) 9.35345 + 16.2006i 0.344072 + 0.595950i 0.985185 0.171496i \(-0.0548602\pi\)
−0.641113 + 0.767447i \(0.721527\pi\)
\(740\) −4.16831 + 7.21972i −0.153230 + 0.265402i
\(741\) 13.5041 + 16.7332i 0.496086 + 0.614708i
\(742\) −4.47369 3.76295i −0.164234 0.138142i
\(743\) 7.26211i 0.266421i 0.991088 + 0.133211i \(0.0425287\pi\)
−0.991088 + 0.133211i \(0.957471\pi\)
\(744\) −0.111839 + 0.0175224i −0.00410023 + 0.000642404i
\(745\) 21.7379 12.5504i 0.796416 0.459811i
\(746\) 19.4231 11.2139i 0.711130 0.410571i
\(747\) −7.35905 6.67070i −0.269253 0.244068i
\(748\) 4.30454i 0.157389i
\(749\) 13.0765 + 36.0607i 0.477805 + 1.31763i
\(750\) −12.4850 + 10.0757i −0.455887 + 0.367912i
\(751\) 24.0804 41.7086i 0.878708 1.52197i 0.0259481 0.999663i \(-0.491740\pi\)
0.852760 0.522303i \(-0.174927\pi\)
\(752\) 1.76952 + 3.06489i 0.0645276 + 0.111765i
\(753\) 9.16385 23.7541i 0.333949 0.865649i
\(754\) −7.20211 4.15814i −0.262286 0.151431i
\(755\) −4.51775 −0.164418
\(756\) 3.93795 + 13.1717i 0.143222 + 0.479049i
\(757\) −16.7442 −0.608578 −0.304289 0.952580i \(-0.598419\pi\)
−0.304289 + 0.952580i \(0.598419\pi\)
\(758\) 12.5102 + 7.22279i 0.454392 + 0.262343i
\(759\) 1.72809 4.47949i 0.0627258 0.162595i
\(760\) −1.83105 3.17146i −0.0664190 0.115041i
\(761\) 3.75154 6.49787i 0.135993 0.235547i −0.789983 0.613129i \(-0.789911\pi\)
0.925977 + 0.377581i \(0.123244\pi\)
\(762\) −25.7593 + 20.7884i −0.933160 + 0.753084i
\(763\) −2.66470 + 15.0079i −0.0964685 + 0.543321i
\(764\) 17.0462i 0.616711i
\(765\) −3.58330 3.24813i −0.129554 0.117436i
\(766\) −2.88947 + 1.66824i −0.104401 + 0.0602759i
\(767\) 33.8014 19.5152i 1.22050 0.704654i
\(768\) 1.71118 0.268099i 0.0617467 0.00967419i
\(769\) 27.2742i 0.983533i −0.870727 0.491766i \(-0.836351\pi\)
0.870727 0.491766i \(-0.163649\pi\)