Properties

Label 966.2.l.d.47.2
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.2
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.71118 - 0.268099i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.519082 + 0.899076i) q^{5} +(1.34787 + 1.08777i) q^{6} +(2.02474 + 1.70307i) q^{7} -1.00000i q^{8} +(2.85625 + 0.917529i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.71118 - 0.268099i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.519082 + 0.899076i) q^{5} +(1.34787 + 1.08777i) q^{6} +(2.02474 + 1.70307i) q^{7} -1.00000i q^{8} +(2.85625 + 0.917529i) q^{9} +(0.899076 - 0.519082i) q^{10} +(2.40063 - 1.38601i) q^{11} +(-0.623408 - 1.61597i) q^{12} +3.51938i q^{13} +(-0.901943 - 2.48727i) q^{14} +(1.12928 - 1.39931i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.776428 - 1.34481i) q^{17} +(-2.01482 - 2.22273i) q^{18} +(-3.05488 - 1.76373i) q^{19} -1.03816 q^{20} +(-3.00809 - 3.45707i) q^{21} -2.77201 q^{22} +(-0.866025 - 0.500000i) q^{23} +(-0.268099 + 1.71118i) q^{24} +(1.96111 + 3.39674i) q^{25} +(1.75969 - 3.04787i) q^{26} +(-4.64155 - 2.33581i) q^{27} +(-0.462529 + 2.60501i) q^{28} -2.36300i q^{29} +(-1.67764 + 0.647199i) q^{30} +(0.0566018 - 0.0326791i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-4.47949 + 1.72809i) q^{33} +1.55286i q^{34} +(-2.58219 + 0.936364i) q^{35} +(0.633520 + 2.93235i) q^{36} +(-4.01507 + 6.95431i) q^{37} +(1.76373 + 3.05488i) q^{38} +(0.943542 - 6.02228i) q^{39} +(0.899076 + 0.519082i) q^{40} +2.05029 q^{41} +(0.876549 + 4.49796i) q^{42} +7.63283 q^{43} +(2.40063 + 1.38601i) q^{44} +(-2.30755 + 2.09171i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-1.76952 + 3.06489i) q^{47} +(1.08777 - 1.34787i) q^{48} +(1.19914 + 6.89653i) q^{49} -3.92222i q^{50} +(0.968062 + 2.50937i) q^{51} +(-3.04787 + 1.75969i) q^{52} +(1.91350 - 1.10476i) q^{53} +(2.85180 + 4.34365i) q^{54} +2.87780i q^{55} +(1.70307 - 2.02474i) q^{56} +(4.75458 + 3.83707i) q^{57} +(-1.18150 + 2.04642i) q^{58} +(5.54508 + 9.60436i) q^{59} +(1.77648 + 0.278331i) q^{60} +(-9.49364 - 5.48115i) q^{61} -0.0653581 q^{62} +(4.22054 + 6.72213i) q^{63} -1.00000 q^{64} +(-3.16419 - 1.82685i) q^{65} +(4.74340 + 0.743173i) q^{66} +(4.75073 + 8.22851i) q^{67} +(0.776428 - 1.34481i) q^{68} +(1.34787 + 1.08777i) q^{69} +(2.70443 + 0.480180i) q^{70} +12.8419i q^{71} +(0.917529 - 2.85625i) q^{72} +(-2.11516 + 1.22119i) q^{73} +(6.95431 - 4.01507i) q^{74} +(-2.44514 - 6.33819i) q^{75} -3.52747i q^{76} +(7.22111 + 1.28213i) q^{77} +(-3.82827 + 4.74368i) q^{78} +(7.12919 - 12.3481i) q^{79} +(-0.519082 - 0.899076i) q^{80} +(7.31628 + 5.24138i) q^{81} +(-1.77560 - 1.02514i) q^{82} -3.31082 q^{83} +(1.48987 - 4.33362i) q^{84} +1.61212 q^{85} +(-6.61023 - 3.81642i) q^{86} +(-0.633517 + 4.04350i) q^{87} +(-1.38601 - 2.40063i) q^{88} +(0.0407245 - 0.0705368i) q^{89} +(3.04426 - 0.657697i) q^{90} +(-5.99374 + 7.12583i) q^{91} -1.00000i q^{92} +(-0.105617 + 0.0407448i) q^{93} +(3.06489 - 1.76952i) q^{94} +(3.17146 - 1.83105i) q^{95} +(-1.61597 + 0.623408i) q^{96} +13.0003i q^{97} +(2.40978 - 6.57213i) q^{98} +(8.12850 - 1.75612i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −1.71118 0.268099i −0.987948 0.154787i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.519082 + 0.899076i −0.232140 + 0.402079i −0.958438 0.285302i \(-0.907906\pi\)
0.726297 + 0.687381i \(0.241240\pi\)
\(6\) 1.34787 + 1.08777i 0.550267 + 0.444080i
\(7\) 2.02474 + 1.70307i 0.765279 + 0.643698i
\(8\) 1.00000i 0.353553i
\(9\) 2.85625 + 0.917529i 0.952082 + 0.305843i
\(10\) 0.899076 0.519082i 0.284313 0.164148i
\(11\) 2.40063 1.38601i 0.723818 0.417896i −0.0923384 0.995728i \(-0.529434\pi\)
0.816156 + 0.577831i \(0.196101\pi\)
\(12\) −0.623408 1.61597i −0.179962 0.466491i
\(13\) 3.51938i 0.976101i 0.872815 + 0.488050i \(0.162292\pi\)
−0.872815 + 0.488050i \(0.837708\pi\)
\(14\) −0.901943 2.48727i −0.241054 0.664750i
\(15\) 1.12928 1.39931i 0.291579 0.361301i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.776428 1.34481i −0.188311 0.326165i 0.756376 0.654137i \(-0.226968\pi\)
−0.944687 + 0.327972i \(0.893635\pi\)
\(18\) −2.01482 2.22273i −0.474897 0.523902i
\(19\) −3.05488 1.76373i −0.700837 0.404628i 0.106822 0.994278i \(-0.465932\pi\)
−0.807659 + 0.589650i \(0.799266\pi\)
\(20\) −1.03816 −0.232140
\(21\) −3.00809 3.45707i −0.656420 0.754396i
\(22\) −2.77201 −0.590995
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) −0.268099 + 1.71118i −0.0547255 + 0.349292i
\(25\) 1.96111 + 3.39674i 0.392222 + 0.679348i
\(26\) 1.75969 3.04787i 0.345104 0.597737i
\(27\) −4.64155 2.33581i −0.893267 0.449527i
\(28\) −0.462529 + 2.60501i −0.0874097 + 0.492300i
\(29\) 2.36300i 0.438797i −0.975635 0.219399i \(-0.929590\pi\)
0.975635 0.219399i \(-0.0704096\pi\)
\(30\) −1.67764 + 0.647199i −0.306294 + 0.118162i
\(31\) 0.0566018 0.0326791i 0.0101660 0.00586933i −0.494908 0.868945i \(-0.664798\pi\)
0.505074 + 0.863076i \(0.331465\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −4.47949 + 1.72809i −0.779779 + 0.300822i
\(34\) 1.55286i 0.266313i
\(35\) −2.58219 + 0.936364i −0.436470 + 0.158274i
\(36\) 0.633520 + 2.93235i 0.105587 + 0.488724i
\(37\) −4.01507 + 6.95431i −0.660074 + 1.14328i 0.320522 + 0.947241i \(0.396142\pi\)
−0.980596 + 0.196041i \(0.937191\pi\)
\(38\) 1.76373 + 3.05488i 0.286115 + 0.495567i
\(39\) 0.943542 6.02228i 0.151088 0.964337i
\(40\) 0.899076 + 0.519082i 0.142156 + 0.0820741i
\(41\) 2.05029 0.320201 0.160101 0.987101i \(-0.448818\pi\)
0.160101 + 0.987101i \(0.448818\pi\)
\(42\) 0.876549 + 4.49796i 0.135254 + 0.694051i
\(43\) 7.63283 1.16400 0.581998 0.813190i \(-0.302271\pi\)
0.581998 + 0.813190i \(0.302271\pi\)
\(44\) 2.40063 + 1.38601i 0.361909 + 0.208948i
\(45\) −2.30755 + 2.09171i −0.343990 + 0.311814i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −1.76952 + 3.06489i −0.258110 + 0.447060i −0.965736 0.259527i \(-0.916433\pi\)
0.707625 + 0.706588i \(0.249767\pi\)
\(48\) 1.08777 1.34787i 0.157006 0.194549i
\(49\) 1.19914 + 6.89653i 0.171305 + 0.985218i
\(50\) 3.92222i 0.554685i
\(51\) 0.968062 + 2.50937i 0.135556 + 0.351382i
\(52\) −3.04787 + 1.75969i −0.422664 + 0.244025i
\(53\) 1.91350 1.10476i 0.262839 0.151750i −0.362790 0.931871i \(-0.618176\pi\)
0.625629 + 0.780121i \(0.284842\pi\)
\(54\) 2.85180 + 4.34365i 0.388080 + 0.591095i
\(55\) 2.87780i 0.388043i
\(56\) 1.70307 2.02474i 0.227582 0.270567i
\(57\) 4.75458 + 3.83707i 0.629759 + 0.508232i
\(58\) −1.18150 + 2.04642i −0.155138 + 0.268707i
\(59\) 5.54508 + 9.60436i 0.721908 + 1.25038i 0.960234 + 0.279195i \(0.0900678\pi\)
−0.238327 + 0.971185i \(0.576599\pi\)
\(60\) 1.77648 + 0.278331i 0.229343 + 0.0359323i
\(61\) −9.49364 5.48115i −1.21554 0.701790i −0.251576 0.967838i \(-0.580949\pi\)
−0.963960 + 0.266048i \(0.914282\pi\)
\(62\) −0.0653581 −0.00830049
\(63\) 4.22054 + 6.72213i 0.531738 + 0.846909i
\(64\) −1.00000 −0.125000
\(65\) −3.16419 1.82685i −0.392470 0.226592i
\(66\) 4.74340 + 0.743173i 0.583872 + 0.0914783i
\(67\) 4.75073 + 8.22851i 0.580394 + 1.00527i 0.995432 + 0.0954685i \(0.0304349\pi\)
−0.415038 + 0.909804i \(0.636232\pi\)
\(68\) 0.776428 1.34481i 0.0941557 0.163083i
\(69\) 1.34787 + 1.08777i 0.162265 + 0.130952i
\(70\) 2.70443 + 0.480180i 0.323241 + 0.0573925i
\(71\) 12.8419i 1.52405i 0.647547 + 0.762026i \(0.275795\pi\)
−0.647547 + 0.762026i \(0.724205\pi\)
\(72\) 0.917529 2.85625i 0.108132 0.336612i
\(73\) −2.11516 + 1.22119i −0.247560 + 0.142929i −0.618647 0.785669i \(-0.712319\pi\)
0.371086 + 0.928598i \(0.378985\pi\)
\(74\) 6.95431 4.01507i 0.808423 0.466743i
\(75\) −2.44514 6.33819i −0.282340 0.731871i
\(76\) 3.52747i 0.404628i
\(77\) 7.22111 + 1.28213i 0.822922 + 0.146113i
\(78\) −3.82827 + 4.74368i −0.433466 + 0.537116i
\(79\) 7.12919 12.3481i 0.802097 1.38927i −0.116137 0.993233i \(-0.537051\pi\)
0.918234 0.396039i \(-0.129615\pi\)
\(80\) −0.519082 0.899076i −0.0580351 0.100520i
\(81\) 7.31628 + 5.24138i 0.812920 + 0.582375i
\(82\) −1.77560 1.02514i −0.196082 0.113208i
\(83\) −3.31082 −0.363410 −0.181705 0.983353i \(-0.558162\pi\)
−0.181705 + 0.983353i \(0.558162\pi\)
\(84\) 1.48987 4.33362i 0.162558 0.472837i
\(85\) 1.61212 0.174859
\(86\) −6.61023 3.81642i −0.712799 0.411535i
\(87\) −0.633517 + 4.04350i −0.0679201 + 0.433509i
\(88\) −1.38601 2.40063i −0.147749 0.255908i
\(89\) 0.0407245 0.0705368i 0.00431678 0.00747689i −0.863859 0.503734i \(-0.831959\pi\)
0.868176 + 0.496257i \(0.165293\pi\)
\(90\) 3.04426 0.657697i 0.320893 0.0693274i
\(91\) −5.99374 + 7.12583i −0.628314 + 0.746990i
\(92\) 1.00000i 0.104257i
\(93\) −0.105617 + 0.0407448i −0.0109520 + 0.00422503i
\(94\) 3.06489 1.76952i 0.316119 0.182512i
\(95\) 3.17146 1.83105i 0.325385 0.187861i
\(96\) −1.61597 + 0.623408i −0.164929 + 0.0636263i
\(97\) 13.0003i 1.31998i 0.751273 + 0.659991i \(0.229440\pi\)
−0.751273 + 0.659991i \(0.770560\pi\)
\(98\) 2.40978 6.57213i 0.243425 0.663886i
\(99\) 8.12850 1.75612i 0.816945 0.176497i
\(100\) −1.96111 + 3.39674i −0.196111 + 0.339674i
\(101\) 1.35070 + 2.33948i 0.134399 + 0.232787i 0.925368 0.379070i \(-0.123756\pi\)
−0.790968 + 0.611857i \(0.790423\pi\)
\(102\) 0.416319 2.65721i 0.0412217 0.263103i
\(103\) 10.2861 + 5.93867i 1.01352 + 0.585155i 0.912220 0.409701i \(-0.134367\pi\)
0.101298 + 0.994856i \(0.467700\pi\)
\(104\) 3.51938 0.345104
\(105\) 4.66962 0.910001i 0.455708 0.0888070i
\(106\) −2.20952 −0.214607
\(107\) −12.5558 7.24907i −1.21381 0.700794i −0.250224 0.968188i \(-0.580504\pi\)
−0.963587 + 0.267394i \(0.913837\pi\)
\(108\) −0.297905 5.18761i −0.0286659 0.499178i
\(109\) 2.88058 + 4.98930i 0.275909 + 0.477889i 0.970364 0.241647i \(-0.0776878\pi\)
−0.694455 + 0.719536i \(0.744354\pi\)
\(110\) 1.43890 2.49225i 0.137194 0.237627i
\(111\) 8.73494 10.8236i 0.829084 1.02733i
\(112\) −2.48727 + 0.901943i −0.235025 + 0.0852256i
\(113\) 14.1240i 1.32867i 0.747433 + 0.664337i \(0.231286\pi\)
−0.747433 + 0.664337i \(0.768714\pi\)
\(114\) −2.19905 5.70029i −0.205960 0.533881i
\(115\) 0.899076 0.519082i 0.0838393 0.0484046i
\(116\) 2.04642 1.18150i 0.190005 0.109699i
\(117\) −3.22913 + 10.0522i −0.298533 + 0.929328i
\(118\) 11.0902i 1.02093i
\(119\) 0.718240 4.04520i 0.0658410 0.370823i
\(120\) −1.39931 1.12928i −0.127739 0.103089i
\(121\) −1.65798 + 2.87170i −0.150725 + 0.261064i
\(122\) 5.48115 + 9.49364i 0.496240 + 0.859514i
\(123\) −3.50841 0.549680i −0.316342 0.0495630i
\(124\) 0.0566018 + 0.0326791i 0.00508299 + 0.00293467i
\(125\) −9.26272 −0.828483
\(126\) −0.294031 7.93181i −0.0261943 0.706621i
\(127\) 19.1111 1.69583 0.847916 0.530131i \(-0.177857\pi\)
0.847916 + 0.530131i \(0.177857\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −13.0611 2.04635i −1.14997 0.180171i
\(130\) 1.82685 + 3.16419i 0.160225 + 0.277518i
\(131\) −5.09224 + 8.82002i −0.444911 + 0.770609i −0.998046 0.0624831i \(-0.980098\pi\)
0.553135 + 0.833092i \(0.313431\pi\)
\(132\) −3.73632 3.01531i −0.325205 0.262449i
\(133\) −3.18157 8.77376i −0.275877 0.760781i
\(134\) 9.50147i 0.820802i
\(135\) 4.50942 2.96063i 0.388109 0.254811i
\(136\) −1.34481 + 0.776428i −0.115317 + 0.0665782i
\(137\) −10.7671 + 6.21642i −0.919900 + 0.531104i −0.883603 0.468237i \(-0.844889\pi\)
−0.0362965 + 0.999341i \(0.511556\pi\)
\(138\) −0.623408 1.61597i −0.0530680 0.137561i
\(139\) 7.51294i 0.637239i −0.947883 0.318620i \(-0.896781\pi\)
0.947883 0.318620i \(-0.103219\pi\)
\(140\) −2.10201 1.76806i −0.177652 0.149428i
\(141\) 3.84965 4.77016i 0.324199 0.401720i
\(142\) 6.42094 11.1214i 0.538834 0.933287i
\(143\) 4.87788 + 8.44874i 0.407909 + 0.706519i
\(144\) −2.22273 + 2.01482i −0.185227 + 0.167901i
\(145\) 2.12451 + 1.22659i 0.176431 + 0.101863i
\(146\) 2.44237 0.202132
\(147\) −0.202981 12.1227i −0.0167416 0.999860i
\(148\) −8.03015 −0.660074
\(149\) −20.9388 12.0890i −1.71537 0.990372i −0.926904 0.375299i \(-0.877540\pi\)
−0.788470 0.615073i \(-0.789127\pi\)
\(150\) −1.05154 + 6.71160i −0.0858580 + 0.548000i
\(151\) −2.17584 3.76866i −0.177067 0.306689i 0.763808 0.645444i \(-0.223328\pi\)
−0.940875 + 0.338755i \(0.889994\pi\)
\(152\) −1.76373 + 3.05488i −0.143058 + 0.247783i
\(153\) −0.983765 4.55351i −0.0795327 0.368130i
\(154\) −5.61260 4.72092i −0.452276 0.380422i
\(155\) 0.0678525i 0.00545004i
\(156\) 5.68722 2.19401i 0.455342 0.175661i
\(157\) −2.90328 + 1.67621i −0.231707 + 0.133776i −0.611359 0.791353i \(-0.709377\pi\)
0.379652 + 0.925129i \(0.376044\pi\)
\(158\) −12.3481 + 7.12919i −0.982364 + 0.567168i
\(159\) −3.57051 + 1.37743i −0.283160 + 0.109237i
\(160\) 1.03816i 0.0820741i
\(161\) −0.901943 2.48727i −0.0710830 0.196024i
\(162\) −3.71540 8.19731i −0.291909 0.644041i
\(163\) −3.86631 + 6.69665i −0.302833 + 0.524522i −0.976777 0.214261i \(-0.931266\pi\)
0.673943 + 0.738783i \(0.264599\pi\)
\(164\) 1.02514 + 1.77560i 0.0800503 + 0.138651i
\(165\) 0.771536 4.92443i 0.0600640 0.383366i
\(166\) 2.86725 + 1.65541i 0.222542 + 0.128485i
\(167\) 4.95623 0.383525 0.191762 0.981441i \(-0.438580\pi\)
0.191762 + 0.981441i \(0.438580\pi\)
\(168\) −3.45707 + 3.00809i −0.266719 + 0.232080i
\(169\) 0.613958 0.0472275
\(170\) −1.39614 0.806060i −0.107079 0.0618219i
\(171\) −7.10720 7.84060i −0.543502 0.599585i
\(172\) 3.81642 + 6.61023i 0.290999 + 0.504025i
\(173\) −10.4057 + 18.0232i −0.791130 + 1.37028i 0.134138 + 0.990963i \(0.457173\pi\)
−0.925268 + 0.379314i \(0.876160\pi\)
\(174\) 2.57039 3.18502i 0.194861 0.241456i
\(175\) −1.81414 + 10.2174i −0.137136 + 0.772363i
\(176\) 2.77201i 0.208948i
\(177\) −6.91369 17.9214i −0.519664 1.34705i
\(178\) −0.0705368 + 0.0407245i −0.00528696 + 0.00305243i
\(179\) 12.7502 7.36131i 0.952992 0.550210i 0.0589832 0.998259i \(-0.481214\pi\)
0.894009 + 0.448049i \(0.147881\pi\)
\(180\) −2.96525 0.952545i −0.221017 0.0709985i
\(181\) 3.65408i 0.271605i 0.990736 + 0.135803i \(0.0433613\pi\)
−0.990736 + 0.135803i \(0.956639\pi\)
\(182\) 8.75364 3.17428i 0.648863 0.235293i
\(183\) 14.7758 + 11.9245i 1.09226 + 0.881481i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) −4.16831 7.21972i −0.306460 0.530804i
\(186\) 0.111839 + 0.0175224i 0.00820045 + 0.00128481i
\(187\) −3.72784 2.15227i −0.272606 0.157389i
\(188\) −3.53903 −0.258110
\(189\) −5.41989 12.6343i −0.394239 0.919008i
\(190\) −3.66209 −0.265676
\(191\) −14.7625 8.52311i −1.06817 0.616711i −0.140492 0.990082i \(-0.544869\pi\)
−0.927682 + 0.373371i \(0.878202\pi\)
\(192\) 1.71118 + 0.268099i 0.123493 + 0.0193484i
\(193\) 9.09431 + 15.7518i 0.654622 + 1.13384i 0.981988 + 0.188942i \(0.0605057\pi\)
−0.327366 + 0.944898i \(0.606161\pi\)
\(194\) 6.50016 11.2586i 0.466684 0.808321i
\(195\) 4.92471 + 3.97437i 0.352666 + 0.284611i
\(196\) −5.37300 + 4.48675i −0.383786 + 0.320482i
\(197\) 9.58230i 0.682711i −0.939934 0.341355i \(-0.889114\pi\)
0.939934 0.341355i \(-0.110886\pi\)
\(198\) −7.91755 2.54340i −0.562676 0.180752i
\(199\) 17.5748 10.1468i 1.24584 0.719288i 0.275566 0.961282i \(-0.411135\pi\)
0.970278 + 0.241994i \(0.0778014\pi\)
\(200\) 3.39674 1.96111i 0.240186 0.138671i
\(201\) −5.92328 15.3541i −0.417796 1.08299i
\(202\) 2.70140i 0.190070i
\(203\) 4.02434 4.78445i 0.282453 0.335803i
\(204\) −1.68915 + 2.09305i −0.118264 + 0.146543i
\(205\) −1.06427 + 1.84337i −0.0743317 + 0.128746i
\(206\) −5.93867 10.2861i −0.413767 0.716665i
\(207\) −2.01482 2.22273i −0.140039 0.154490i
\(208\) −3.04787 1.75969i −0.211332 0.122013i
\(209\) −9.77818 −0.676371
\(210\) −4.49901 1.54673i −0.310461 0.106734i
\(211\) −2.42751 −0.167116 −0.0835582 0.996503i \(-0.526628\pi\)
−0.0835582 + 0.996503i \(0.526628\pi\)
\(212\) 1.91350 + 1.10476i 0.131419 + 0.0758751i
\(213\) 3.44290 21.9747i 0.235903 1.50568i
\(214\) 7.24907 + 12.5558i 0.495536 + 0.858294i
\(215\) −3.96206 + 6.86250i −0.270211 + 0.468018i
\(216\) −2.33581 + 4.64155i −0.158932 + 0.315818i
\(217\) 0.170258 + 0.0302300i 0.0115579 + 0.00205215i
\(218\) 5.76115i 0.390195i
\(219\) 3.94680 1.52259i 0.266700 0.102887i
\(220\) −2.49225 + 1.43890i −0.168027 + 0.0970107i
\(221\) 4.73291 2.73255i 0.318370 0.183811i
\(222\) −12.9765 + 5.00606i −0.870925 + 0.335984i
\(223\) 21.2791i 1.42496i −0.701695 0.712478i \(-0.747573\pi\)
0.701695 0.712478i \(-0.252427\pi\)
\(224\) 2.60501 + 0.462529i 0.174054 + 0.0309040i
\(225\) 2.48480 + 11.5013i 0.165653 + 0.766753i
\(226\) 7.06200 12.2317i 0.469757 0.813643i
\(227\) 2.34630 + 4.06391i 0.155729 + 0.269731i 0.933324 0.359034i \(-0.116894\pi\)
−0.777595 + 0.628766i \(0.783561\pi\)
\(228\) −0.945710 + 6.03612i −0.0626312 + 0.399752i
\(229\) −4.48752 2.59087i −0.296544 0.171210i 0.344345 0.938843i \(-0.388101\pi\)
−0.640889 + 0.767633i \(0.721434\pi\)
\(230\) −1.03816 −0.0684545
\(231\) −12.0129 4.12993i −0.790388 0.271729i
\(232\) −2.36300 −0.155138
\(233\) 1.86635 + 1.07754i 0.122269 + 0.0705919i 0.559887 0.828569i \(-0.310845\pi\)
−0.437618 + 0.899161i \(0.644178\pi\)
\(234\) 7.82262 7.09091i 0.511381 0.463547i
\(235\) −1.83705 3.18186i −0.119836 0.207562i
\(236\) −5.54508 + 9.60436i −0.360954 + 0.625190i
\(237\) −15.5098 + 19.2185i −1.00747 + 1.24837i
\(238\) −2.64462 + 3.14413i −0.171425 + 0.203804i
\(239\) 18.2071i 1.17772i −0.808235 0.588859i \(-0.799577\pi\)
0.808235 0.588859i \(-0.200423\pi\)
\(240\) 0.647199 + 1.67764i 0.0417765 + 0.108291i
\(241\) −8.27557 + 4.77790i −0.533077 + 0.307772i −0.742268 0.670103i \(-0.766250\pi\)
0.209192 + 0.977875i \(0.432917\pi\)
\(242\) 2.87170 1.65798i 0.184600 0.106579i
\(243\) −11.1142 10.9304i −0.712979 0.701186i
\(244\) 10.9623i 0.701790i
\(245\) −6.82295 2.50175i −0.435902 0.159831i
\(246\) 2.76353 + 2.23024i 0.176196 + 0.142195i
\(247\) 6.20725 10.7513i 0.394958 0.684087i
\(248\) −0.0326791 0.0566018i −0.00207512 0.00359422i
\(249\) 5.66540 + 0.887627i 0.359030 + 0.0562511i
\(250\) 8.02175 + 4.63136i 0.507340 + 0.292913i
\(251\) 14.6996 0.927831 0.463916 0.885879i \(-0.346444\pi\)
0.463916 + 0.885879i \(0.346444\pi\)
\(252\) −3.71127 + 7.01616i −0.233788 + 0.441977i
\(253\) −2.77201 −0.174275
\(254\) −16.5507 9.55553i −1.03848 0.599567i
\(255\) −2.75862 0.432207i −0.172751 0.0270659i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.3558 + 23.1330i −0.833113 + 1.44299i 0.0624442 + 0.998048i \(0.480110\pi\)
−0.895557 + 0.444946i \(0.853223\pi\)
\(258\) 10.2881 + 8.30275i 0.640508 + 0.516907i
\(259\) −19.9731 + 7.24273i −1.24107 + 0.450042i
\(260\) 3.65369i 0.226592i
\(261\) 2.16812 6.74930i 0.134203 0.417771i
\(262\) 8.82002 5.09224i 0.544903 0.314600i
\(263\) 18.8470 10.8813i 1.16216 0.670971i 0.210337 0.977629i \(-0.432544\pi\)
0.951820 + 0.306658i \(0.0992107\pi\)
\(264\) 1.72809 + 4.47949i 0.106357 + 0.275694i
\(265\) 2.29384i 0.140909i
\(266\) −1.63155 + 9.18908i −0.100037 + 0.563419i
\(267\) −0.0885976 + 0.109783i −0.00542208 + 0.00671859i
\(268\) −4.75073 + 8.22851i −0.290197 + 0.502636i
\(269\) −5.68518 9.84702i −0.346632 0.600384i 0.639017 0.769192i \(-0.279341\pi\)
−0.985649 + 0.168809i \(0.946008\pi\)
\(270\) −5.38558 + 0.309274i −0.327756 + 0.0188218i
\(271\) −14.0982 8.13962i −0.856407 0.494447i 0.00640055 0.999980i \(-0.497963\pi\)
−0.862807 + 0.505533i \(0.831296\pi\)
\(272\) 1.55286 0.0941557
\(273\) 12.1668 10.5866i 0.736366 0.640732i
\(274\) 12.4328 0.751095
\(275\) 9.41580 + 5.43621i 0.567794 + 0.327816i
\(276\) −0.268099 + 1.71118i −0.0161377 + 0.103001i
\(277\) −11.0359 19.1147i −0.663082 1.14849i −0.979802 0.199972i \(-0.935915\pi\)
0.316720 0.948519i \(-0.397419\pi\)
\(278\) −3.75647 + 6.50639i −0.225298 + 0.390228i
\(279\) 0.191653 0.0414057i 0.0114739 0.00247889i
\(280\) 0.936364 + 2.58219i 0.0559585 + 0.154315i
\(281\) 15.1816i 0.905661i 0.891597 + 0.452830i \(0.149586\pi\)
−0.891597 + 0.452830i \(0.850414\pi\)
\(282\) −5.71897 + 2.20626i −0.340560 + 0.131381i
\(283\) 0.634885 0.366551i 0.0377400 0.0217892i −0.481011 0.876714i \(-0.659730\pi\)
0.518751 + 0.854925i \(0.326397\pi\)
\(284\) −11.1214 + 6.42094i −0.659934 + 0.381013i
\(285\) −5.91783 + 2.28297i −0.350542 + 0.135232i
\(286\) 9.75576i 0.576870i
\(287\) 4.15130 + 3.49178i 0.245043 + 0.206113i
\(288\) 2.93235 0.633520i 0.172790 0.0373305i
\(289\) 7.29432 12.6341i 0.429078 0.743184i
\(290\) −1.22659 2.12451i −0.0720278 0.124756i
\(291\) 3.48537 22.2458i 0.204316 1.30407i
\(292\) −2.11516 1.22119i −0.123780 0.0714645i
\(293\) 26.1420 1.52723 0.763616 0.645671i \(-0.223422\pi\)
0.763616 + 0.645671i \(0.223422\pi\)
\(294\) −5.88554 + 10.6000i −0.343252 + 0.618206i
\(295\) −11.5134 −0.670336
\(296\) 6.95431 + 4.01507i 0.404211 + 0.233371i
\(297\) −14.3801 + 0.825796i −0.834418 + 0.0479176i
\(298\) 12.0890 + 20.9388i 0.700299 + 1.21295i
\(299\) 1.75969 3.04787i 0.101766 0.176263i
\(300\) 4.26646 5.28665i 0.246324 0.305225i
\(301\) 15.4545 + 12.9992i 0.890782 + 0.749262i
\(302\) 4.35168i 0.250411i
\(303\) −1.68407 4.36538i −0.0967473 0.250784i
\(304\) 3.05488 1.76373i 0.175209 0.101157i
\(305\) 9.85595 5.69034i 0.564350 0.325828i
\(306\) −1.42479 + 4.43534i −0.0814498 + 0.253551i
\(307\) 7.15424i 0.408314i 0.978938 + 0.204157i \(0.0654453\pi\)
−0.978938 + 0.204157i \(0.934555\pi\)
\(308\) 2.50020 + 6.89473i 0.142462 + 0.392864i
\(309\) −16.0091 12.9198i −0.910729 0.734982i
\(310\) 0.0339262 0.0587619i 0.00192688 0.00333745i
\(311\) 2.09702 + 3.63215i 0.118911 + 0.205961i 0.919337 0.393472i \(-0.128726\pi\)
−0.800425 + 0.599433i \(0.795393\pi\)
\(312\) −6.02228 0.943542i −0.340944 0.0534176i
\(313\) 12.0259 + 6.94315i 0.679743 + 0.392450i 0.799758 0.600322i \(-0.204961\pi\)
−0.120015 + 0.992772i \(0.538294\pi\)
\(314\) 3.35242 0.189188
\(315\) −8.23451 + 0.305252i −0.463962 + 0.0171990i
\(316\) 14.2584 0.802097
\(317\) 10.0947 + 5.82817i 0.566974 + 0.327343i 0.755940 0.654641i \(-0.227180\pi\)
−0.188966 + 0.981984i \(0.560514\pi\)
\(318\) 3.78087 + 0.592369i 0.212021 + 0.0332184i
\(319\) −3.27513 5.67269i −0.183372 0.317609i
\(320\) 0.519082 0.899076i 0.0290176 0.0502599i
\(321\) 19.5416 + 15.7706i 1.09071 + 0.880230i
\(322\) −0.462529 + 2.60501i −0.0257757 + 0.145171i
\(323\) 5.47765i 0.304785i
\(324\) −0.881023 + 8.95677i −0.0489457 + 0.497599i
\(325\) −11.9544 + 6.90189i −0.663112 + 0.382848i
\(326\) 6.69665 3.86631i 0.370893 0.214135i
\(327\) −3.59155 9.30986i −0.198613 0.514836i
\(328\) 2.05029i 0.113208i
\(329\) −8.80252 + 3.19200i −0.485299 + 0.175981i
\(330\) −3.13038 + 3.87891i −0.172322 + 0.213527i
\(331\) 2.09126 3.62217i 0.114946 0.199092i −0.802812 0.596232i \(-0.796664\pi\)
0.917758 + 0.397140i \(0.129997\pi\)
\(332\) −1.65541 2.86725i −0.0908525 0.157361i
\(333\) −17.8488 + 16.1793i −0.978110 + 0.886619i
\(334\) −4.29222 2.47811i −0.234860 0.135596i
\(335\) −9.86408 −0.538932
\(336\) 4.49796 0.876549i 0.245384 0.0478197i
\(337\) −3.52075 −0.191788 −0.0958938 0.995392i \(-0.530571\pi\)
−0.0958938 + 0.995392i \(0.530571\pi\)
\(338\) −0.531703 0.306979i −0.0289208 0.0166974i
\(339\) 3.78663 24.1686i 0.205661 1.31266i
\(340\) 0.806060 + 1.39614i 0.0437147 + 0.0757161i
\(341\) 0.0905868 0.156901i 0.00490555 0.00849666i
\(342\) 2.23472 + 10.3438i 0.120840 + 0.559326i
\(343\) −9.31730 + 16.0059i −0.503087 + 0.864236i
\(344\) 7.63283i 0.411535i
\(345\) −1.67764 + 0.647199i −0.0903213 + 0.0348440i
\(346\) 18.0232 10.4057i 0.968932 0.559413i
\(347\) −20.2883 + 11.7134i −1.08913 + 0.628810i −0.933345 0.358981i \(-0.883124\pi\)
−0.155786 + 0.987791i \(0.549791\pi\)
\(348\) −3.81853 + 1.47311i −0.204695 + 0.0789670i
\(349\) 9.60514i 0.514151i −0.966391 0.257076i \(-0.917241\pi\)
0.966391 0.257076i \(-0.0827589\pi\)
\(350\) 6.67979 7.94146i 0.357050 0.424489i
\(351\) 8.22060 16.3354i 0.438783 0.871918i
\(352\) 1.38601 2.40063i 0.0738744 0.127954i
\(353\) −3.79482 6.57281i −0.201978 0.349836i 0.747188 0.664613i \(-0.231404\pi\)
−0.949166 + 0.314777i \(0.898070\pi\)
\(354\) −2.97326 + 18.9772i −0.158027 + 1.00863i
\(355\) −11.5458 6.66599i −0.612789 0.353794i
\(356\) 0.0814489 0.00431678
\(357\) −2.31355 + 6.72949i −0.122446 + 0.356163i
\(358\) −14.7226 −0.778115
\(359\) 28.8047 + 16.6304i 1.52025 + 0.877719i 0.999715 + 0.0238810i \(0.00760229\pi\)
0.520539 + 0.853838i \(0.325731\pi\)
\(360\) 2.09171 + 2.30755i 0.110243 + 0.121619i
\(361\) −3.27848 5.67850i −0.172552 0.298868i
\(362\) 1.82704 3.16452i 0.0960270 0.166324i
\(363\) 3.60699 4.46948i 0.189318 0.234587i
\(364\) −9.16802 1.62781i −0.480535 0.0853206i
\(365\) 2.53558i 0.132718i
\(366\) −6.83399 17.7148i −0.357218 0.925966i
\(367\) −0.914239 + 0.527836i −0.0477229 + 0.0275528i −0.523672 0.851920i \(-0.675438\pi\)
0.475949 + 0.879473i \(0.342105\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) 5.85613 + 1.88120i 0.304858 + 0.0979313i
\(370\) 8.33661i 0.433400i
\(371\) 5.75581 + 1.02196i 0.298827 + 0.0530577i
\(372\) −0.0880944 0.0710945i −0.00456748 0.00368608i
\(373\) 11.2139 19.4231i 0.580635 1.00569i −0.414769 0.909927i \(-0.636138\pi\)
0.995404 0.0957628i \(-0.0305290\pi\)
\(374\) 2.15227 + 3.72784i 0.111291 + 0.192762i
\(375\) 15.8501 + 2.48333i 0.818498 + 0.128238i
\(376\) 3.06489 + 1.76952i 0.158060 + 0.0912558i
\(377\) 8.31629 0.428311
\(378\) −1.62337 + 13.6515i −0.0834972 + 0.702160i
\(379\) 14.4456 0.742019 0.371010 0.928629i \(-0.379012\pi\)
0.371010 + 0.928629i \(0.379012\pi\)
\(380\) 3.17146 + 1.83105i 0.162693 + 0.0939306i
\(381\) −32.7024 5.12365i −1.67539 0.262493i
\(382\) 8.52311 + 14.7625i 0.436080 + 0.755313i
\(383\) 1.66824 2.88947i 0.0852430 0.147645i −0.820252 0.572003i \(-0.806167\pi\)
0.905495 + 0.424358i \(0.139500\pi\)
\(384\) −1.34787 1.08777i −0.0687833 0.0555099i
\(385\) −4.90109 + 5.82680i −0.249782 + 0.296961i
\(386\) 18.1886i 0.925776i
\(387\) 21.8012 + 7.00334i 1.10822 + 0.356000i
\(388\) −11.2586 + 6.50016i −0.571569 + 0.329996i
\(389\) 27.6908 15.9873i 1.40398 0.810589i 0.409183 0.912452i \(-0.365814\pi\)
0.994798 + 0.101864i \(0.0324805\pi\)
\(390\) −2.27774 5.90426i −0.115338 0.298974i
\(391\) 1.55286i 0.0785313i
\(392\) 6.89653 1.19914i 0.348327 0.0605655i
\(393\) 11.0784 13.7274i 0.558829 0.692455i
\(394\) −4.79115 + 8.29852i −0.241375 + 0.418073i
\(395\) 7.40127 + 12.8194i 0.372398 + 0.645013i
\(396\) 5.58510 + 6.16142i 0.280662 + 0.309623i
\(397\) 2.18819 + 1.26335i 0.109822 + 0.0634057i 0.553905 0.832580i \(-0.313137\pi\)
−0.444083 + 0.895986i \(0.646470\pi\)
\(398\) −20.2936 −1.01723
\(399\) 3.09200 + 15.8664i 0.154794 + 0.794315i
\(400\) −3.92222 −0.196111
\(401\) 3.55355 + 2.05164i 0.177456 + 0.102454i 0.586097 0.810241i \(-0.300664\pi\)
−0.408641 + 0.912695i \(0.633997\pi\)
\(402\) −2.54733 + 16.2587i −0.127049 + 0.810909i
\(403\) 0.115010 + 0.199203i 0.00572906 + 0.00992302i
\(404\) −1.35070 + 2.33948i −0.0671997 + 0.116393i
\(405\) −8.51015 + 3.85719i −0.422873 + 0.191665i
\(406\) −5.87741 + 2.13129i −0.291691 + 0.105774i
\(407\) 22.2597i 1.10337i
\(408\) 2.50937 0.968062i 0.124232 0.0479262i
\(409\) 11.1896 6.46032i 0.553290 0.319442i −0.197158 0.980372i \(-0.563171\pi\)
0.750448 + 0.660930i \(0.229838\pi\)
\(410\) 1.84337 1.06427i 0.0910374 0.0525604i
\(411\) 20.0911 7.75072i 0.991021 0.382315i
\(412\) 11.8773i 0.585155i
\(413\) −5.12951 + 28.8899i −0.252407 + 1.42158i
\(414\) 0.633520 + 2.93235i 0.0311358 + 0.144117i
\(415\) 1.71859 2.97668i 0.0843621 0.146119i
\(416\) 1.75969 + 3.04787i 0.0862759 + 0.149434i
\(417\) −2.01421 + 12.8560i −0.0986363 + 0.629559i
\(418\) 8.46816 + 4.88909i 0.414191 + 0.239133i
\(419\) −12.2716 −0.599509 −0.299754 0.954016i \(-0.596905\pi\)
−0.299754 + 0.954016i \(0.596905\pi\)
\(420\) 3.12289 + 3.58901i 0.152382 + 0.175126i
\(421\) −1.44396 −0.0703745 −0.0351873 0.999381i \(-0.511203\pi\)
−0.0351873 + 0.999381i \(0.511203\pi\)
\(422\) 2.10228 + 1.21375i 0.102338 + 0.0590846i
\(423\) −7.86630 + 7.13050i −0.382473 + 0.346697i
\(424\) −1.10476 1.91350i −0.0536518 0.0929276i
\(425\) 3.04532 5.27465i 0.147720 0.255858i
\(426\) −13.9690 + 17.3092i −0.676800 + 0.838635i
\(427\) −9.88737 27.2662i −0.478484 1.31950i
\(428\) 14.4981i 0.700794i
\(429\) −6.08182 15.7650i −0.293633 0.761143i
\(430\) 6.86250 3.96206i 0.330939 0.191068i
\(431\) 4.63522 2.67615i 0.223271 0.128906i −0.384193 0.923253i \(-0.625520\pi\)
0.607464 + 0.794347i \(0.292187\pi\)
\(432\) 4.34365 2.85180i 0.208984 0.137207i
\(433\) 15.7434i 0.756580i −0.925687 0.378290i \(-0.876512\pi\)
0.925687 0.378290i \(-0.123488\pi\)
\(434\) −0.132333 0.111309i −0.00635220 0.00534301i
\(435\) −3.30657 2.66849i −0.158538 0.127944i
\(436\) −2.88058 + 4.98930i −0.137955 + 0.238944i
\(437\) 1.76373 + 3.05488i 0.0843709 + 0.146135i
\(438\) −4.17933 0.654797i −0.199696 0.0312874i
\(439\) 26.9099 + 15.5364i 1.28434 + 0.741513i 0.977638 0.210294i \(-0.0674420\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(440\) 2.87780 0.137194
\(441\) −2.90273 + 20.7984i −0.138225 + 0.990401i
\(442\) −5.46509 −0.259948
\(443\) −5.62054 3.24502i −0.267040 0.154176i 0.360502 0.932759i \(-0.382605\pi\)
−0.627542 + 0.778583i \(0.715939\pi\)
\(444\) 13.7410 + 2.15287i 0.652119 + 0.102171i
\(445\) 0.0422787 + 0.0732288i 0.00200420 + 0.00347138i
\(446\) −10.6396 + 18.4283i −0.503798 + 0.872604i
\(447\) 32.5889 + 26.3001i 1.54140 + 1.24395i
\(448\) −2.02474 1.70307i −0.0956599 0.0804623i
\(449\) 5.38156i 0.253972i −0.991905 0.126986i \(-0.959470\pi\)
0.991905 0.126986i \(-0.0405303\pi\)
\(450\) 3.59875 11.2028i 0.169647 0.528106i
\(451\) 4.92199 2.84171i 0.231767 0.133811i
\(452\) −12.2317 + 7.06200i −0.575333 + 0.332169i
\(453\) 2.71287 + 7.03218i 0.127462 + 0.330401i
\(454\) 4.69260i 0.220235i
\(455\) −3.29542 9.08771i −0.154492 0.426039i
\(456\) 3.83707 4.75458i 0.179687 0.222653i
\(457\) −16.9922 + 29.4314i −0.794864 + 1.37674i 0.128062 + 0.991766i \(0.459124\pi\)
−0.922926 + 0.384978i \(0.874209\pi\)
\(458\) 2.59087 + 4.48752i 0.121064 + 0.209688i
\(459\) 0.462604 + 8.05561i 0.0215925 + 0.376003i
\(460\) 0.899076 + 0.519082i 0.0419196 + 0.0242023i
\(461\) 10.8029 0.503142 0.251571 0.967839i \(-0.419053\pi\)
0.251571 + 0.967839i \(0.419053\pi\)
\(462\) 8.33847 + 9.58305i 0.387941 + 0.445844i
\(463\) −6.55475 −0.304625 −0.152313 0.988332i \(-0.548672\pi\)
−0.152313 + 0.988332i \(0.548672\pi\)
\(464\) 2.04642 + 1.18150i 0.0950024 + 0.0548497i
\(465\) 0.0181912 0.116107i 0.000843595 0.00538436i
\(466\) −1.07754 1.86635i −0.0499160 0.0864571i
\(467\) 8.94633 15.4955i 0.413987 0.717046i −0.581335 0.813665i \(-0.697469\pi\)
0.995322 + 0.0966182i \(0.0308026\pi\)
\(468\) −10.3200 + 2.22960i −0.477044 + 0.103063i
\(469\) −4.39470 + 24.7514i −0.202928 + 1.14291i
\(470\) 3.67410i 0.169473i
\(471\) 5.41741 2.08992i 0.249621 0.0962986i
\(472\) 9.60436 5.54508i 0.442076 0.255233i
\(473\) 18.3236 10.5791i 0.842521 0.486430i
\(474\) 23.0411 8.88878i 1.05831 0.408275i
\(475\) 13.8355i 0.634816i
\(476\) 3.86237 1.40059i 0.177031 0.0641958i
\(477\) 6.47906 1.39977i 0.296656 0.0640911i
\(478\) −9.10355 + 15.7678i −0.416387 + 0.721203i
\(479\) −14.6495 25.3737i −0.669352 1.15935i −0.978086 0.208203i \(-0.933238\pi\)
0.308734 0.951149i \(-0.400095\pi\)
\(480\) 0.278331 1.77648i 0.0127040 0.0810849i
\(481\) −24.4749 14.1306i −1.11596 0.644299i
\(482\) 9.55581 0.435255
\(483\) 0.876549 + 4.49796i 0.0398844 + 0.204664i
\(484\) −3.31595 −0.150725
\(485\) −11.6883 6.74823i −0.530737 0.306421i
\(486\) 4.16001 + 15.0231i 0.188702 + 0.681463i
\(487\) 2.56879 + 4.44928i 0.116403 + 0.201616i 0.918340 0.395793i \(-0.129530\pi\)
−0.801937 + 0.597409i \(0.796197\pi\)
\(488\) −5.48115 + 9.49364i −0.248120 + 0.429757i
\(489\) 8.41131 10.4226i 0.380373 0.471326i
\(490\) 4.65798 + 5.57805i 0.210426 + 0.251991i
\(491\) 20.6718i 0.932907i 0.884546 + 0.466454i \(0.154469\pi\)
−0.884546 + 0.466454i \(0.845531\pi\)
\(492\) −1.27817 3.31321i −0.0576242 0.149371i
\(493\) −3.17779 + 1.83470i −0.143120 + 0.0826306i
\(494\) −10.7513 + 6.20725i −0.483723 + 0.279278i
\(495\) −2.64047 + 8.21971i −0.118680 + 0.369449i
\(496\) 0.0653581i 0.00293467i
\(497\) −21.8706 + 26.0015i −0.981029 + 1.16633i
\(498\) −4.46256 3.60141i −0.199972 0.161383i
\(499\) 3.46831 6.00729i 0.155263 0.268923i −0.777892 0.628398i \(-0.783711\pi\)
0.933155 + 0.359475i \(0.117044\pi\)
\(500\) −4.63136 8.02175i −0.207121 0.358744i
\(501\) −8.48098 1.32876i −0.378902 0.0593646i
\(502\) −12.7302 7.34981i −0.568178 0.328038i
\(503\) 12.5293 0.558653 0.279327 0.960196i \(-0.409889\pi\)
0.279327 + 0.960196i \(0.409889\pi\)
\(504\) 6.72213 4.22054i 0.299427 0.187998i
\(505\) −2.80449 −0.124798
\(506\) 2.40063 + 1.38601i 0.106721 + 0.0616155i
\(507\) −1.05059 0.164601i −0.0466583 0.00731020i
\(508\) 9.55553 + 16.5507i 0.423958 + 0.734317i
\(509\) 1.83052 3.17056i 0.0811365 0.140533i −0.822602 0.568618i \(-0.807478\pi\)
0.903738 + 0.428085i \(0.140812\pi\)
\(510\) 2.17293 + 1.75361i 0.0962190 + 0.0776513i
\(511\) −6.36240 1.12967i −0.281456 0.0499735i
\(512\) 1.00000i 0.0441942i
\(513\) 10.0596 + 15.3221i 0.444143 + 0.676486i
\(514\) 23.1330 13.3558i 1.02035 0.589100i
\(515\) −10.6786 + 6.16532i −0.470557 + 0.271676i
\(516\) −4.75836 12.3344i −0.209475 0.542993i
\(517\) 9.81024i 0.431454i
\(518\) 20.9186 + 3.71417i 0.919111 + 0.163191i
\(519\) 22.6380 28.0511i 0.993696 1.23131i
\(520\) −1.82685 + 3.16419i −0.0801125 + 0.138759i
\(521\) 5.79442 + 10.0362i 0.253858 + 0.439695i 0.964585 0.263773i \(-0.0849670\pi\)
−0.710726 + 0.703468i \(0.751634\pi\)
\(522\) −5.25229 + 4.76101i −0.229887 + 0.208384i
\(523\) −27.2591 15.7381i −1.19196 0.688178i −0.233209 0.972427i \(-0.574923\pi\)
−0.958751 + 0.284249i \(0.908256\pi\)
\(524\) −10.1845 −0.444911
\(525\) 5.84358 16.9974i 0.255035 0.741828i
\(526\) −21.7627 −0.948897
\(527\) −0.0878945 0.0507459i −0.00382874 0.00221053i
\(528\) 0.743173 4.74340i 0.0323425 0.206430i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 1.14692 1.98652i 0.0498190 0.0862890i
\(531\) 7.02583 + 32.5202i 0.304895 + 1.41126i
\(532\) 6.00751 7.14220i 0.260459 0.309654i
\(533\) 7.21575i 0.312549i
\(534\) 0.131619 0.0507759i 0.00569572 0.00219729i
\(535\) 13.0349 7.52572i 0.563549 0.325365i
\(536\) 8.22851 4.75073i 0.355418 0.205200i
\(537\) −23.7913 + 9.17820i −1.02667 + 0.396068i
\(538\) 11.3704i 0.490211i
\(539\) 12.4373 + 14.8940i 0.535713 + 0.641531i
\(540\) 4.81869 + 2.42495i 0.207363 + 0.104353i
\(541\) 11.3203 19.6074i 0.486699 0.842987i −0.513184 0.858278i \(-0.671534\pi\)
0.999883 + 0.0152913i \(0.00486757\pi\)
\(542\) 8.13962 + 14.0982i 0.349627 + 0.605571i
\(543\) 0.979654 6.25277i 0.0420410 0.268332i
\(544\) −1.34481 0.776428i −0.0576584 0.0332891i
\(545\) −5.98102 −0.256199
\(546\) −15.8300 + 3.08491i −0.677463 + 0.132022i
\(547\) −24.0703 −1.02917 −0.514585 0.857439i \(-0.672054\pi\)
−0.514585 + 0.857439i \(0.672054\pi\)
\(548\) −10.7671 6.21642i −0.459950 0.265552i
\(549\) −22.0870 24.3662i −0.942652 1.03992i
\(550\) −5.43621 9.41580i −0.231801 0.401491i
\(551\) −4.16770 + 7.21867i −0.177550 + 0.307525i
\(552\) 1.08777 1.34787i 0.0462985 0.0573693i
\(553\) 35.4644 12.8602i 1.50810 0.546873i
\(554\) 22.0718i 0.937739i
\(555\) 5.19711 + 13.4717i 0.220605 + 0.571843i
\(556\) 6.50639 3.75647i 0.275933 0.159310i
\(557\) 24.6485 14.2308i 1.04439 0.602979i 0.123316 0.992367i \(-0.460647\pi\)
0.921074 + 0.389389i \(0.127314\pi\)
\(558\) −0.186679 0.0599680i −0.00790275 0.00253865i
\(559\) 26.8628i 1.13618i
\(560\) 0.480180 2.70443i 0.0202913 0.114283i
\(561\) 5.80196 + 4.68234i 0.244959 + 0.197688i
\(562\) 7.59082 13.1477i 0.320199 0.554602i
\(563\) −13.6774 23.6900i −0.576435 0.998415i −0.995884 0.0906363i \(-0.971110\pi\)
0.419449 0.907779i \(-0.362223\pi\)
\(564\) 6.05591 + 0.948811i 0.255000 + 0.0399521i
\(565\) −12.6986 7.33151i −0.534232 0.308439i
\(566\) −0.733102 −0.0308146
\(567\) 5.88716 + 23.0725i 0.247237 + 0.968955i
\(568\) 12.8419 0.538834
\(569\) 6.63343 + 3.82981i 0.278088 + 0.160554i 0.632557 0.774513i \(-0.282005\pi\)
−0.354470 + 0.935068i \(0.615339\pi\)
\(570\) 6.26648 + 0.981802i 0.262474 + 0.0411232i
\(571\) 5.23977 + 9.07555i 0.219278 + 0.379800i 0.954587 0.297931i \(-0.0962966\pi\)
−0.735310 + 0.677731i \(0.762963\pi\)
\(572\) −4.87788 + 8.44874i −0.203955 + 0.353260i
\(573\) 22.9761 + 18.5423i 0.959842 + 0.774618i
\(574\) −1.84924 5.09962i −0.0771859 0.212854i
\(575\) 3.92222i 0.163568i
\(576\) −2.85625 0.917529i −0.119010 0.0382304i
\(577\) 17.6346 10.1813i 0.734138 0.423855i −0.0857958 0.996313i \(-0.527343\pi\)
0.819934 + 0.572458i \(0.194010\pi\)
\(578\) −12.6341 + 7.29432i −0.525511 + 0.303404i
\(579\) −11.3389 29.3923i −0.471229 1.22150i
\(580\) 2.45318i 0.101863i
\(581\) −6.70355 5.63854i −0.278110 0.233926i
\(582\) −14.1413 + 17.5228i −0.586177 + 0.726342i
\(583\) 3.06240 5.30423i 0.126832 0.219679i
\(584\) 1.22119 + 2.11516i 0.0505330 + 0.0875258i
\(585\) −7.36153 8.12116i −0.304362 0.335769i
\(586\) −22.6396 13.0710i −0.935235 0.539958i
\(587\) −22.0502 −0.910109 −0.455055 0.890464i \(-0.650380\pi\)
−0.455055 + 0.890464i \(0.650380\pi\)
\(588\) 10.3970 6.23712i 0.428767 0.257214i
\(589\) −0.230549 −0.00949960
\(590\) 9.97089 + 5.75670i 0.410495 + 0.237000i
\(591\) −2.56900 + 16.3970i −0.105675 + 0.674483i
\(592\) −4.01507 6.95431i −0.165019 0.285821i
\(593\) 22.9733 39.7909i 0.943401 1.63402i 0.184478 0.982837i \(-0.440941\pi\)
0.758922 0.651181i \(-0.225726\pi\)
\(594\) 12.8664 + 6.47489i 0.527916 + 0.265668i
\(595\) 3.26412 + 2.74554i 0.133816 + 0.112556i
\(596\) 24.1781i 0.990372i
\(597\) −32.7939 + 12.6512i −1.34217 + 0.517779i
\(598\) −3.04787 + 1.75969i −0.124637 + 0.0719591i
\(599\) −25.2636 + 14.5859i −1.03224 + 0.595965i −0.917626 0.397445i \(-0.869897\pi\)
−0.114616 + 0.993410i \(0.536564\pi\)
\(600\) −6.33819 + 2.44514i −0.258755 + 0.0998224i
\(601\) 37.1659i 1.51603i −0.652237 0.758015i \(-0.726169\pi\)
0.652237 0.758015i \(-0.273831\pi\)
\(602\) −6.88438 18.9849i −0.280586 0.773767i
\(603\) 6.01937 + 27.8616i 0.245128 + 1.13461i
\(604\) 2.17584 3.76866i 0.0885336 0.153345i
\(605\) −1.72125 2.98129i −0.0699788 0.121207i
\(606\) −0.724241 + 4.62256i −0.0294203 + 0.187779i
\(607\) 33.9771 + 19.6167i 1.37909 + 0.796216i 0.992050 0.125847i \(-0.0401650\pi\)
0.387038 + 0.922064i \(0.373498\pi\)
\(608\) −3.52747 −0.143058
\(609\) −8.16906 + 7.10812i −0.331027 + 0.288035i
\(610\) −11.3807 −0.460790
\(611\) −10.7865 6.22760i −0.436376 0.251942i
\(612\) 3.45157 3.12872i 0.139522 0.126471i
\(613\) 4.44742 + 7.70315i 0.179629 + 0.311127i 0.941754 0.336304i \(-0.109177\pi\)
−0.762124 + 0.647431i \(0.775843\pi\)
\(614\) 3.57712 6.19575i 0.144361 0.250040i
\(615\) 2.31535 2.86899i 0.0933641 0.115689i
\(616\) 1.28213 7.22111i 0.0516587 0.290947i
\(617\) 23.1877i 0.933501i −0.884389 0.466750i \(-0.845425\pi\)
0.884389 0.466750i \(-0.154575\pi\)
\(618\) 7.40443 + 19.1935i 0.297850 + 0.772074i
\(619\) −15.1746 + 8.76106i −0.609919 + 0.352137i −0.772934 0.634487i \(-0.781212\pi\)
0.163015 + 0.986624i \(0.447878\pi\)
\(620\) −0.0587619 + 0.0339262i −0.00235994 + 0.00136251i
\(621\) 2.85180 + 4.34365i 0.114439 + 0.174304i
\(622\) 4.19405i 0.168166i
\(623\) 0.202585 0.0734623i 0.00811641 0.00294320i
\(624\) 4.74368 + 3.82827i 0.189899 + 0.153254i
\(625\) −4.99743 + 8.65580i −0.199897 + 0.346232i
\(626\) −6.94315 12.0259i −0.277504 0.480651i
\(627\) 16.7322 + 2.62152i 0.668219 + 0.104693i
\(628\) −2.90328 1.67621i −0.115853 0.0668880i
\(629\) 12.4697 0.497198
\(630\) 7.28392 + 3.85290i 0.290198 + 0.153503i
\(631\) −4.26959 −0.169970 −0.0849848 0.996382i \(-0.527084\pi\)
−0.0849848 + 0.996382i \(0.527084\pi\)
\(632\) −12.3481 7.12919i −0.491182 0.283584i
\(633\) 4.15389 + 0.650812i 0.165102 + 0.0258674i
\(634\) −5.82817 10.0947i −0.231466 0.400911i
\(635\) −9.92020 + 17.1823i −0.393671 + 0.681859i
\(636\) −2.97814 2.40344i −0.118091 0.0953026i
\(637\) −24.2715 + 4.22022i −0.961672 + 0.167211i
\(638\) 6.55025i 0.259327i
\(639\) −11.7828 + 36.6796i −0.466120 + 1.45102i
\(640\) −0.899076 + 0.519082i −0.0355391 + 0.0205185i
\(641\) 15.6530 9.03723i 0.618254 0.356949i −0.157935 0.987450i \(-0.550484\pi\)
0.776189 + 0.630500i \(0.217150\pi\)
\(642\) −9.03825 23.4286i −0.356711 0.924652i
\(643\) 19.3134i 0.761647i 0.924648 + 0.380823i \(0.124359\pi\)
−0.924648 + 0.380823i \(0.875641\pi\)
\(644\) 1.70307 2.02474i 0.0671102 0.0797859i
\(645\) 8.61962 10.6807i 0.339397 0.420553i
\(646\) 2.73883 4.74379i 0.107758 0.186642i
\(647\) 13.9751 + 24.2056i 0.549418 + 0.951621i 0.998314 + 0.0580366i \(0.0184840\pi\)
−0.448896 + 0.893584i \(0.648183\pi\)
\(648\) 5.24138 7.31628i 0.205901 0.287411i
\(649\) 26.6234 + 15.3710i 1.04506 + 0.603365i
\(650\) 13.8038 0.541428
\(651\) −0.283238 0.0973750i −0.0111010 0.00381643i
\(652\) −7.73263 −0.302833
\(653\) −4.50928 2.60343i −0.176462 0.101880i 0.409167 0.912459i \(-0.365819\pi\)
−0.585629 + 0.810579i \(0.699153\pi\)
\(654\) −1.54456 + 9.85835i −0.0603970 + 0.385492i
\(655\) −5.28658 9.15662i −0.206564 0.357779i
\(656\) −1.02514 + 1.77560i −0.0400252 + 0.0693256i
\(657\) −7.16188 + 1.54729i −0.279412 + 0.0603656i
\(658\) 9.21921 + 1.63690i 0.359402 + 0.0638131i
\(659\) 6.25060i 0.243489i 0.992561 + 0.121744i \(0.0388488\pi\)
−0.992561 + 0.121744i \(0.961151\pi\)
\(660\) 4.65045 1.79404i 0.181018 0.0698330i
\(661\) −30.4660 + 17.5896i −1.18499 + 0.684155i −0.957164 0.289546i \(-0.906496\pi\)
−0.227828 + 0.973702i \(0.573162\pi\)
\(662\) −3.62217 + 2.09126i −0.140779 + 0.0812791i
\(663\) −8.83143 + 3.40698i −0.342984 + 0.132316i
\(664\) 3.31082i 0.128485i
\(665\) 9.53977 + 1.69382i 0.369937 + 0.0656836i
\(666\) 23.5472 5.08726i 0.912435 0.197127i
\(667\) −1.18150 + 2.04642i −0.0457478 + 0.0792375i
\(668\) 2.47811 + 4.29222i 0.0958811 + 0.166071i
\(669\) −5.70491 + 36.4123i −0.220565 + 1.40778i
\(670\) 8.54254 + 4.93204i 0.330027 + 0.190541i
\(671\) −30.3876 −1.17310
\(672\) −4.33362 1.48987i −0.167173 0.0574729i
\(673\) −39.0874 −1.50671 −0.753355 0.657614i \(-0.771566\pi\)
−0.753355 + 0.657614i \(0.771566\pi\)
\(674\) 3.04906 + 1.76038i 0.117445 + 0.0678071i
\(675\) −1.16845 20.3469i −0.0449736 0.783153i
\(676\) 0.306979 + 0.531703i 0.0118069 + 0.0204501i
\(677\) 4.37953 7.58557i 0.168319 0.291537i −0.769510 0.638635i \(-0.779499\pi\)
0.937829 + 0.347098i \(0.112833\pi\)
\(678\) −15.3636 + 19.0374i −0.590037 + 0.731125i
\(679\) −22.1404 + 26.3222i −0.849670 + 1.01016i
\(680\) 1.61212i 0.0618219i
\(681\) −2.92540 7.58311i −0.112102 0.290585i
\(682\) −0.156901 + 0.0905868i −0.00600804 + 0.00346875i
\(683\) 28.6098 16.5179i 1.09472 0.632038i 0.159893 0.987134i \(-0.448885\pi\)
0.934830 + 0.355096i \(0.115552\pi\)
\(684\) 3.23655 10.0753i 0.123753 0.385239i
\(685\) 12.9073i 0.493163i
\(686\) 16.0720 9.20284i 0.613630 0.351366i
\(687\) 6.98433 + 5.63654i 0.266469 + 0.215047i
\(688\) −3.81642 + 6.61023i −0.145499 + 0.252013i
\(689\) 3.88806 + 6.73432i 0.148123 + 0.256557i
\(690\) 1.77648 + 0.278331i 0.0676295 + 0.0105959i
\(691\) −33.8241 19.5283i −1.28673 0.742893i −0.308659 0.951173i \(-0.599880\pi\)
−0.978069 + 0.208280i \(0.933214\pi\)
\(692\) −20.8114 −0.791130
\(693\) 19.4489 + 10.2877i 0.738802 + 0.390796i
\(694\) 23.4269 0.889271
\(695\) 6.75470 + 3.89983i 0.256221 + 0.147929i
\(696\) 4.04350 + 0.633517i 0.153269 + 0.0240134i
\(697\) −1.59190 2.75726i −0.0602976 0.104438i
\(698\) −4.80257 + 8.31829i −0.181780 + 0.314852i
\(699\) −2.90477 2.34423i −0.109868 0.0886667i
\(700\) −9.75560 + 3.53761i −0.368727 + 0.133709i
\(701\) 11.0261i 0.416452i −0.978081 0.208226i \(-0.933231\pi\)
0.978081 0.208226i \(-0.0667689\pi\)
\(702\) −15.2869 + 10.0366i −0.576969 + 0.378805i
\(703\) 24.5311 14.1631i 0.925209 0.534170i
\(704\) −2.40063 + 1.38601i −0.0904772 + 0.0522371i
\(705\) 2.29046 + 5.93723i 0.0862637 + 0.223609i
\(706\) 7.58963i 0.285640i
\(707\) −1.24947 + 7.03716i −0.0469913 + 0.264660i
\(708\) 12.0635 14.9481i 0.453375 0.561784i
\(709\) 10.2605 17.7717i 0.385341 0.667431i −0.606475 0.795102i \(-0.707417\pi\)
0.991816 + 0.127672i \(0.0407504\pi\)
\(710\) 6.66599 + 11.5458i 0.250170 + 0.433307i
\(711\) 31.6925 28.7280i 1.18856 1.07739i
\(712\) −0.0705368 0.0407245i −0.00264348 0.00152621i
\(713\) −0.0653581 −0.00244768
\(714\) 5.36834 4.67114i 0.200905 0.174813i
\(715\) −10.1281 −0.378769
\(716\) 12.7502 + 7.36131i 0.476496 + 0.275105i
\(717\) −4.88130 + 31.1555i −0.182296 + 1.16352i
\(718\) −16.6304 28.8047i −0.620641 1.07498i
\(719\) 13.4782 23.3450i 0.502653 0.870620i −0.497343 0.867554i \(-0.665691\pi\)
0.999995 0.00306580i \(-0.000975875\pi\)
\(720\) −0.657697 3.04426i −0.0245109 0.113453i
\(721\) 10.7127 + 29.5421i 0.398961 + 1.10021i
\(722\) 6.55696i 0.244025i
\(723\) 15.4419 5.95716i 0.574291 0.221549i
\(724\) −3.16452 + 1.82704i −0.117609 + 0.0679014i
\(725\) 8.02648 4.63409i 0.298096 0.172106i
\(726\) −5.35848 + 2.06719i −0.198872 + 0.0767206i
\(727\) 8.87758i 0.329251i −0.986356 0.164626i \(-0.947358\pi\)
0.986356 0.164626i \(-0.0526416\pi\)
\(728\) 7.12583 + 5.99374i 0.264101 + 0.222143i
\(729\) 16.0880 + 21.6836i 0.595851 + 0.803095i
\(730\) −1.26779 + 2.19588i −0.0469231 + 0.0812731i
\(731\) −5.92635 10.2647i −0.219194 0.379655i
\(732\) −2.93898 + 18.7584i −0.108628 + 0.693332i
\(733\) 28.9408 + 16.7090i 1.06895 + 0.617160i 0.927895 0.372842i \(-0.121617\pi\)
0.141057 + 0.990002i \(0.454950\pi\)
\(734\) 1.05567 0.0389656
\(735\) 11.0046 + 6.11016i 0.405909 + 0.225376i
\(736\) −1.00000 −0.0368605
\(737\) 22.8095 + 13.1691i 0.840200 + 0.485090i
\(738\) −4.13096 4.55723i −0.152063 0.167754i
\(739\) 9.35345 + 16.2006i 0.344072 + 0.595950i 0.985185 0.171496i \(-0.0548602\pi\)
−0.641113 + 0.767447i \(0.721527\pi\)
\(740\) 4.16831 7.21972i 0.153230 0.265402i
\(741\) −13.5041 + 16.7332i −0.496086 + 0.614708i
\(742\) −4.47369 3.76295i −0.164234 0.138142i
\(743\) 7.26211i 0.266421i −0.991088 0.133211i \(-0.957471\pi\)
0.991088 0.133211i \(-0.0425287\pi\)
\(744\) 0.0407448 + 0.105617i 0.00149378 + 0.00387210i
\(745\) 21.7379 12.5504i 0.796416 0.459811i
\(746\) −19.4231 + 11.2139i −0.711130 + 0.410571i
\(747\) −9.45652 3.03777i −0.345996 0.111146i
\(748\) 4.30454i 0.157389i
\(749\) −13.0765 36.0607i −0.477805 1.31763i
\(750\) −12.4850 10.0757i −0.455887 0.367912i
\(751\) 24.0804 41.7086i 0.878708 1.52197i 0.0259481 0.999663i \(-0.491740\pi\)
0.852760 0.522303i \(-0.174927\pi\)
\(752\) −1.76952 3.06489i −0.0645276 0.111765i
\(753\) −25.1536 3.94095i −0.916649 0.143616i
\(754\) −7.20211 4.15814i −0.262286 0.151431i
\(755\) 4.51775 0.164418
\(756\) 8.23165 11.0109i 0.299382 0.400463i
\(757\) −16.7442 −0.608578 −0.304289 0.952580i \(-0.598419\pi\)
−0.304289 + 0.952580i \(0.598419\pi\)
\(758\) −12.5102 7.22279i −0.454392 0.262343i
\(759\) 4.74340 + 0.743173i 0.172174 + 0.0269755i
\(760\) −1.83105 3.17146i −0.0664190 0.115041i
\(761\) −3.75154 + 6.49787i −0.135993 + 0.235547i −0.925977 0.377581i \(-0.876756\pi\)
0.789983 + 0.613129i \(0.210089\pi\)
\(762\) 25.7593 + 20.7884i 0.933160 + 0.753084i
\(763\) −2.66470 + 15.0079i −0.0964685 + 0.543321i
\(764\) 17.0462i 0.616711i
\(765\) 4.60461 + 1.47917i 0.166480 + 0.0534793i
\(766\) −2.88947 + 1.66824i −0.104401 + 0.0602759i
\(767\) −33.8014 + 19.5152i −1.22050 + 0.704654i
\(768\) 0.623408 + 1.61597i 0.0224953 + 0.0583113i
\(769\) 27.2742i 0.983533i −0.870727 0.491766i \(-0.836351\pi\)
0.870727 0.491766i \(-0.163649\pi\)
\(770\) 7.15786 2.59561i 0.257951