# Properties

 Label 966.2.l.d.47.19 Level $966$ Weight $2$ Character 966.47 Analytic conductor $7.714$ Analytic rank $0$ Dimension $56$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [966,2,Mod(47,966)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(966, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 5, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("966.47");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$966 = 2 \cdot 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 966.l (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.71354883526$$ Analytic rank: $$0$$ Dimension: $$56$$ Relative dimension: $$28$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 47.19 Character $$\chi$$ $$=$$ 966.47 Dual form 966.2.l.d.185.19

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.866025 + 0.500000i) q^{2} +(-0.977444 + 1.42990i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.22807 + 2.12708i) q^{5} +(-1.56144 + 0.749605i) q^{6} +(-0.955407 - 2.46722i) q^{7} +1.00000i q^{8} +(-1.08921 - 2.79529i) q^{9} +O(q^{10})$$ $$q+(0.866025 + 0.500000i) q^{2} +(-0.977444 + 1.42990i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.22807 + 2.12708i) q^{5} +(-1.56144 + 0.749605i) q^{6} +(-0.955407 - 2.46722i) q^{7} +1.00000i q^{8} +(-1.08921 - 2.79529i) q^{9} +(-2.12708 + 1.22807i) q^{10} +(-3.22465 + 1.86175i) q^{11} +(-1.72705 - 0.131543i) q^{12} -6.32796i q^{13} +(0.406206 - 2.61438i) q^{14} +(-1.84114 - 3.83512i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.33399 - 5.77463i) q^{17} +(0.454363 - 2.96539i) q^{18} +(1.90728 + 1.10117i) q^{19} -2.45614 q^{20} +(4.46173 + 1.04544i) q^{21} -3.72351 q^{22} +(0.866025 + 0.500000i) q^{23} +(-1.42990 - 0.977444i) q^{24} +(-0.516322 - 0.894296i) q^{25} +(3.16398 - 5.48017i) q^{26} +(5.06161 + 1.17478i) q^{27} +(1.65898 - 2.06102i) q^{28} +5.16739i q^{29} +(0.323089 - 4.24188i) q^{30} +(-4.98193 + 2.87632i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(0.489802 - 6.43068i) q^{33} -6.66797i q^{34} +(6.42130 + 0.997701i) q^{35} +(1.87619 - 2.34092i) q^{36} +(2.95839 - 5.12408i) q^{37} +(1.10117 + 1.90728i) q^{38} +(9.04832 + 6.18522i) q^{39} +(-2.12708 - 1.22807i) q^{40} -6.65921 q^{41} +(3.34125 + 3.13624i) q^{42} +5.27855 q^{43} +(-3.22465 - 1.86175i) q^{44} +(7.28343 + 1.11598i) q^{45} +(0.500000 + 0.866025i) q^{46} +(0.476032 - 0.824512i) q^{47} +(-0.749605 - 1.56144i) q^{48} +(-5.17440 + 4.71441i) q^{49} -1.03264i q^{50} +(11.5159 + 0.877126i) q^{51} +(5.48017 - 3.16398i) q^{52} +(-7.33252 + 4.23343i) q^{53} +(3.79609 + 3.54820i) q^{54} -9.14547i q^{55} +(2.46722 - 0.955407i) q^{56} +(-3.43882 + 1.65088i) q^{57} +(-2.58370 + 4.47509i) q^{58} +(-4.16466 - 7.21340i) q^{59} +(2.40074 - 3.51203i) q^{60} +(-11.0545 - 6.38231i) q^{61} -5.75264 q^{62} +(-5.85597 + 5.35795i) q^{63} -1.00000 q^{64} +(13.4601 + 7.77119i) q^{65} +(3.63952 - 5.32423i) q^{66} +(-7.38097 - 12.7842i) q^{67} +(3.33399 - 5.77463i) q^{68} +(-1.56144 + 0.749605i) q^{69} +(5.06216 + 4.07468i) q^{70} -0.745937i q^{71} +(2.79529 - 1.08921i) q^{72} +(-8.54298 + 4.93229i) q^{73} +(5.12408 - 2.95839i) q^{74} +(1.78343 + 0.135837i) q^{75} +2.20234i q^{76} +(7.67422 + 6.17721i) q^{77} +(4.74347 + 9.88072i) q^{78} +(0.560876 - 0.971465i) q^{79} +(-1.22807 - 2.12708i) q^{80} +(-6.62726 + 6.08929i) q^{81} +(-5.76705 - 3.32961i) q^{82} +13.9447 q^{83} +(1.32549 + 4.38669i) q^{84} +16.3775 q^{85} +(4.57136 + 2.63928i) q^{86} +(-7.38884 - 5.05084i) q^{87} +(-1.86175 - 3.22465i) q^{88} +(1.15386 - 1.99854i) q^{89} +(5.74965 + 4.60818i) q^{90} +(-15.6125 + 6.04577i) q^{91} +1.00000i q^{92} +(0.756720 - 9.93509i) q^{93} +(0.824512 - 0.476032i) q^{94} +(-4.68456 + 2.70463i) q^{95} +(0.131543 - 1.72705i) q^{96} -15.2172i q^{97} +(-6.83836 + 1.49560i) q^{98} +(8.71645 + 6.98599i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10})$$ 56 * q + 28 * q^4 + 8 * q^7 + 10 * q^9 $$56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100})$$ 56 * q + 28 * q^4 + 8 * q^7 + 10 * q^9 + 12 * q^10 + 8 * q^15 - 28 * q^16 - 8 * q^18 - 24 * q^19 - 4 * q^21 - 12 * q^22 + 6 * q^24 - 8 * q^25 + 10 * q^28 + 6 * q^30 - 6 * q^31 + 30 * q^33 + 20 * q^36 + 4 * q^37 - 10 * q^39 + 12 * q^40 + 8 * q^42 - 104 * q^43 - 6 * q^45 + 28 * q^46 + 40 * q^49 - 22 * q^51 - 6 * q^52 + 18 * q^54 + 68 * q^57 - 30 * q^58 + 4 * q^60 - 84 * q^61 - 6 * q^63 - 56 * q^64 - 30 * q^66 + 2 * q^67 + 30 * q^70 + 8 * q^72 + 54 * q^73 - 24 * q^75 + 68 * q^78 - 6 * q^79 + 22 * q^81 + 4 * q^84 - 108 * q^85 - 126 * q^87 - 6 * q^88 - 42 * q^91 + 36 * q^93 - 18 * q^94 + 6 * q^96 + 48 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/966\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$829$$ $$925$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.866025 + 0.500000i 0.612372 + 0.353553i
$$3$$ −0.977444 + 1.42990i −0.564327 + 0.825551i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ −1.22807 + 2.12708i −0.549211 + 0.951261i 0.449118 + 0.893472i $$0.351738\pi$$
−0.998329 + 0.0577883i $$0.981595\pi$$
$$6$$ −1.56144 + 0.749605i −0.637455 + 0.306025i
$$7$$ −0.955407 2.46722i −0.361110 0.932523i
$$8$$ 1.00000i 0.353553i
$$9$$ −1.08921 2.79529i −0.363069 0.931762i
$$10$$ −2.12708 + 1.22807i −0.672643 + 0.388351i
$$11$$ −3.22465 + 1.86175i −0.972269 + 0.561340i −0.899927 0.436040i $$-0.856381\pi$$
−0.0723419 + 0.997380i $$0.523047\pi$$
$$12$$ −1.72705 0.131543i −0.498556 0.0379732i
$$13$$ 6.32796i 1.75506i −0.479522 0.877530i $$-0.659190\pi$$
0.479522 0.877530i $$-0.340810\pi$$
$$14$$ 0.406206 2.61438i 0.108563 0.698723i
$$15$$ −1.84114 3.83512i −0.475380 0.990224i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −3.33399 5.77463i −0.808611 1.40055i −0.913826 0.406105i $$-0.866887\pi$$
0.105216 0.994449i $$-0.466447\pi$$
$$18$$ 0.454363 2.96539i 0.107094 0.698950i
$$19$$ 1.90728 + 1.10117i 0.437560 + 0.252626i 0.702562 0.711622i $$-0.252039\pi$$
−0.265002 + 0.964248i $$0.585373\pi$$
$$20$$ −2.45614 −0.549211
$$21$$ 4.46173 + 1.04544i 0.973630 + 0.228134i
$$22$$ −3.72351 −0.793854
$$23$$ 0.866025 + 0.500000i 0.180579 + 0.104257i
$$24$$ −1.42990 0.977444i −0.291876 0.199520i
$$25$$ −0.516322 0.894296i −0.103264 0.178859i
$$26$$ 3.16398 5.48017i 0.620507 1.07475i
$$27$$ 5.06161 + 1.17478i 0.974107 + 0.226087i
$$28$$ 1.65898 2.06102i 0.313517 0.389496i
$$29$$ 5.16739i 0.959561i 0.877389 + 0.479780i $$0.159284\pi$$
−0.877389 + 0.479780i $$0.840716\pi$$
$$30$$ 0.323089 4.24188i 0.0589877 0.774458i
$$31$$ −4.98193 + 2.87632i −0.894781 + 0.516602i −0.875503 0.483212i $$-0.839470\pi$$
−0.0192779 + 0.999814i $$0.506137\pi$$
$$32$$ −0.866025 + 0.500000i −0.153093 + 0.0883883i
$$33$$ 0.489802 6.43068i 0.0852635 1.11944i
$$34$$ 6.66797i 1.14355i
$$35$$ 6.42130 + 0.997701i 1.08540 + 0.168642i
$$36$$ 1.87619 2.34092i 0.312698 0.390154i
$$37$$ 2.95839 5.12408i 0.486356 0.842393i −0.513521 0.858077i $$-0.671659\pi$$
0.999877 + 0.0156839i $$0.00499253\pi$$
$$38$$ 1.10117 + 1.90728i 0.178633 + 0.309402i
$$39$$ 9.04832 + 6.18522i 1.44889 + 0.990428i
$$40$$ −2.12708 1.22807i −0.336321 0.194175i
$$41$$ −6.65921 −1.03999 −0.519997 0.854168i $$-0.674067\pi$$
−0.519997 + 0.854168i $$0.674067\pi$$
$$42$$ 3.34125 + 3.13624i 0.515566 + 0.483933i
$$43$$ 5.27855 0.804972 0.402486 0.915426i $$-0.368146\pi$$
0.402486 + 0.915426i $$0.368146\pi$$
$$44$$ −3.22465 1.86175i −0.486135 0.280670i
$$45$$ 7.28343 + 1.11598i 1.08575 + 0.166360i
$$46$$ 0.500000 + 0.866025i 0.0737210 + 0.127688i
$$47$$ 0.476032 0.824512i 0.0694364 0.120267i −0.829217 0.558927i $$-0.811213\pi$$
0.898653 + 0.438659i $$0.144547\pi$$
$$48$$ −0.749605 1.56144i −0.108196 0.225374i
$$49$$ −5.17440 + 4.71441i −0.739199 + 0.673487i
$$50$$ 1.03264i 0.146038i
$$51$$ 11.5159 + 0.877126i 1.61255 + 0.122822i
$$52$$ 5.48017 3.16398i 0.759963 0.438765i
$$53$$ −7.33252 + 4.23343i −1.00720 + 0.581507i −0.910370 0.413794i $$-0.864203\pi$$
−0.0968287 + 0.995301i $$0.530870\pi$$
$$54$$ 3.79609 + 3.54820i 0.516582 + 0.482848i
$$55$$ 9.14547i 1.23318i
$$56$$ 2.46722 0.955407i 0.329697 0.127672i
$$57$$ −3.43882 + 1.65088i −0.455483 + 0.218665i
$$58$$ −2.58370 + 4.47509i −0.339256 + 0.587609i
$$59$$ −4.16466 7.21340i −0.542193 0.939105i −0.998778 0.0494256i $$-0.984261\pi$$
0.456585 0.889680i $$-0.349072\pi$$
$$60$$ 2.40074 3.51203i 0.309935 0.453401i
$$61$$ −11.0545 6.38231i −1.41538 0.817171i −0.419493 0.907759i $$-0.637792\pi$$
−0.995888 + 0.0905881i $$0.971125\pi$$
$$62$$ −5.75264 −0.730586
$$63$$ −5.85597 + 5.35795i −0.737782 + 0.675039i
$$64$$ −1.00000 −0.125000
$$65$$ 13.4601 + 7.77119i 1.66952 + 0.963897i
$$66$$ 3.63952 5.32423i 0.447994 0.655367i
$$67$$ −7.38097 12.7842i −0.901728 1.56184i −0.825250 0.564768i $$-0.808966\pi$$
−0.0764789 0.997071i $$-0.524368\pi$$
$$68$$ 3.33399 5.77463i 0.404305 0.700277i
$$69$$ −1.56144 + 0.749605i −0.187975 + 0.0902418i
$$70$$ 5.06216 + 4.07468i 0.605044 + 0.487018i
$$71$$ 0.745937i 0.0885265i −0.999020 0.0442632i $$-0.985906\pi$$
0.999020 0.0442632i $$-0.0140940\pi$$
$$72$$ 2.79529 1.08921i 0.329428 0.128364i
$$73$$ −8.54298 + 4.93229i −0.999880 + 0.577281i −0.908213 0.418509i $$-0.862553\pi$$
−0.0916673 + 0.995790i $$0.529220\pi$$
$$74$$ 5.12408 2.95839i 0.595662 0.343906i
$$75$$ 1.78343 + 0.135837i 0.205932 + 0.0156851i
$$76$$ 2.20234i 0.252626i
$$77$$ 7.67422 + 6.17721i 0.874558 + 0.703958i
$$78$$ 4.74347 + 9.88072i 0.537092 + 1.11877i
$$79$$ 0.560876 0.971465i 0.0631034 0.109298i −0.832748 0.553653i $$-0.813234\pi$$
0.895851 + 0.444354i $$0.146567\pi$$
$$80$$ −1.22807 2.12708i −0.137303 0.237815i
$$81$$ −6.62726 + 6.08929i −0.736362 + 0.676588i
$$82$$ −5.76705 3.32961i −0.636864 0.367694i
$$83$$ 13.9447 1.53063 0.765317 0.643653i $$-0.222582\pi$$
0.765317 + 0.643653i $$0.222582\pi$$
$$84$$ 1.32549 + 4.38669i 0.144622 + 0.478628i
$$85$$ 16.3775 1.77639
$$86$$ 4.57136 + 2.63928i 0.492943 + 0.284601i
$$87$$ −7.38884 5.05084i −0.792167 0.541507i
$$88$$ −1.86175 3.22465i −0.198464 0.343749i
$$89$$ 1.15386 1.99854i 0.122309 0.211845i −0.798369 0.602169i $$-0.794303\pi$$
0.920678 + 0.390323i $$0.127637\pi$$
$$90$$ 5.74965 + 4.60818i 0.606066 + 0.485745i
$$91$$ −15.6125 + 6.04577i −1.63663 + 0.633769i
$$92$$ 1.00000i 0.104257i
$$93$$ 0.756720 9.93509i 0.0784682 1.03022i
$$94$$ 0.824512 0.476032i 0.0850419 0.0490990i
$$95$$ −4.68456 + 2.70463i −0.480626 + 0.277489i
$$96$$ 0.131543 1.72705i 0.0134256 0.176266i
$$97$$ 15.2172i 1.54507i −0.634974 0.772534i $$-0.718989\pi$$
0.634974 0.772534i $$-0.281011\pi$$
$$98$$ −6.83836 + 1.49560i −0.690779 + 0.151078i
$$99$$ 8.71645 + 6.98599i 0.876036 + 0.702119i
$$100$$ 0.516322 0.894296i 0.0516322 0.0894296i
$$101$$ −0.415726 0.720059i −0.0413663 0.0716485i 0.844601 0.535396i $$-0.179838\pi$$
−0.885967 + 0.463748i $$0.846504\pi$$
$$102$$ 9.53451 + 6.51757i 0.944057 + 0.645336i
$$103$$ −5.60780 3.23766i −0.552553 0.319016i 0.197598 0.980283i $$-0.436686\pi$$
−0.750151 + 0.661267i $$0.770019\pi$$
$$104$$ 6.32796 0.620507
$$105$$ −7.70307 + 8.20660i −0.751743 + 0.800882i
$$106$$ −8.46686 −0.822375
$$107$$ 4.43340 + 2.55963i 0.428593 + 0.247448i 0.698747 0.715369i $$-0.253741\pi$$
−0.270154 + 0.962817i $$0.587075\pi$$
$$108$$ 1.51341 + 4.97087i 0.145628 + 0.478323i
$$109$$ 5.73238 + 9.92878i 0.549063 + 0.951004i 0.998339 + 0.0576116i $$0.0183485\pi$$
−0.449276 + 0.893393i $$0.648318\pi$$
$$110$$ 4.57274 7.92021i 0.435993 0.755162i
$$111$$ 4.43524 + 9.23868i 0.420974 + 0.876897i
$$112$$ 2.61438 + 0.406206i 0.247036 + 0.0383829i
$$113$$ 3.22150i 0.303054i −0.988453 0.151527i $$-0.951581\pi$$
0.988453 0.151527i $$-0.0484190\pi$$
$$114$$ −3.80355 0.289703i −0.356235 0.0271331i
$$115$$ −2.12708 + 1.22807i −0.198352 + 0.114518i
$$116$$ −4.47509 + 2.58370i −0.415502 + 0.239890i
$$117$$ −17.6885 + 6.89245i −1.63530 + 0.637208i
$$118$$ 8.32932i 0.766776i
$$119$$ −11.0620 + 13.7428i −1.01405 + 1.25980i
$$120$$ 3.83512 1.84114i 0.350097 0.168072i
$$121$$ 1.43225 2.48074i 0.130205 0.225521i
$$122$$ −6.38231 11.0545i −0.577827 1.00083i
$$123$$ 6.50901 9.52198i 0.586897 0.858568i
$$124$$ −4.98193 2.87632i −0.447391 0.258301i
$$125$$ −9.74440 −0.871565
$$126$$ −7.75039 + 1.71214i −0.690460 + 0.152530i
$$127$$ −7.78993 −0.691244 −0.345622 0.938374i $$-0.612332\pi$$
−0.345622 + 0.938374i $$0.612332\pi$$
$$128$$ −0.866025 0.500000i −0.0765466 0.0441942i
$$129$$ −5.15949 + 7.54779i −0.454268 + 0.664546i
$$130$$ 7.77119 + 13.4601i 0.681578 + 1.18053i
$$131$$ 2.54502 4.40810i 0.222359 0.385137i −0.733165 0.680051i $$-0.761958\pi$$
0.955524 + 0.294914i $$0.0952909\pi$$
$$132$$ 5.81403 2.79116i 0.506046 0.242939i
$$133$$ 0.894604 5.75776i 0.0775720 0.499261i
$$134$$ 14.7619i 1.27524i
$$135$$ −8.71488 + 9.32375i −0.750058 + 0.802460i
$$136$$ 5.77463 3.33399i 0.495171 0.285887i
$$137$$ −12.9825 + 7.49542i −1.10917 + 0.640377i −0.938613 0.344971i $$-0.887889\pi$$
−0.170553 + 0.985349i $$0.554555\pi$$
$$138$$ −1.72705 0.131543i −0.147016 0.0111977i
$$139$$ 8.76557i 0.743486i 0.928336 + 0.371743i $$0.121240\pi$$
−0.928336 + 0.371743i $$0.878760\pi$$
$$140$$ 2.34662 + 6.05986i 0.198325 + 0.512152i
$$141$$ 0.713672 + 1.48659i 0.0601020 + 0.125193i
$$142$$ 0.372969 0.646001i 0.0312988 0.0542112i
$$143$$ 11.7811 + 20.4055i 0.985185 + 1.70639i
$$144$$ 2.96539 + 0.454363i 0.247116 + 0.0378636i
$$145$$ −10.9915 6.34593i −0.912792 0.527001i
$$146$$ −9.86458 −0.816399
$$147$$ −1.68343 12.0069i −0.138847 0.990314i
$$148$$ 5.91677 0.486356
$$149$$ −7.66328 4.42440i −0.627801 0.362461i 0.152099 0.988365i $$-0.451397\pi$$
−0.779900 + 0.625904i $$0.784730\pi$$
$$150$$ 1.47657 + 1.00935i 0.120562 + 0.0824132i
$$151$$ 3.35914 + 5.81821i 0.273363 + 0.473479i 0.969721 0.244216i $$-0.0785306\pi$$
−0.696358 + 0.717695i $$0.745197\pi$$
$$152$$ −1.10117 + 1.90728i −0.0893167 + 0.154701i
$$153$$ −12.5104 + 15.6092i −1.01140 + 1.26193i
$$154$$ 3.55746 + 9.18673i 0.286669 + 0.740288i
$$155$$ 14.1293i 1.13489i
$$156$$ −0.832399 + 10.9287i −0.0666453 + 0.874995i
$$157$$ 3.39765 1.96163i 0.271162 0.156555i −0.358254 0.933624i $$-0.616628\pi$$
0.629416 + 0.777069i $$0.283294\pi$$
$$158$$ 0.971465 0.560876i 0.0772856 0.0446209i
$$159$$ 1.11376 14.6227i 0.0883267 1.15965i
$$160$$ 2.45614i 0.194175i
$$161$$ 0.406206 2.61438i 0.0320135 0.206042i
$$162$$ −8.78402 + 1.95985i −0.690138 + 0.153981i
$$163$$ −5.11496 + 8.85937i −0.400634 + 0.693919i −0.993803 0.111159i $$-0.964544\pi$$
0.593168 + 0.805079i $$0.297877\pi$$
$$164$$ −3.32961 5.76705i −0.259999 0.450331i
$$165$$ 13.0771 + 8.93918i 1.01805 + 0.695915i
$$166$$ 12.0765 + 6.97237i 0.937318 + 0.541161i
$$167$$ −9.37075 −0.725131 −0.362565 0.931958i $$-0.618099\pi$$
−0.362565 + 0.931958i $$0.618099\pi$$
$$168$$ −1.04544 + 4.46173i −0.0806576 + 0.344230i
$$169$$ −27.0430 −2.08023
$$170$$ 14.1833 + 8.18875i 1.08781 + 0.628049i
$$171$$ 1.00066 6.53080i 0.0765224 0.499423i
$$172$$ 2.63928 + 4.57136i 0.201243 + 0.348563i
$$173$$ −4.38197 + 7.58979i −0.333155 + 0.577041i −0.983129 0.182915i $$-0.941447\pi$$
0.649974 + 0.759957i $$0.274780\pi$$
$$174$$ −3.87350 8.06857i −0.293649 0.611677i
$$175$$ −1.71313 + 2.12830i −0.129501 + 0.160884i
$$176$$ 3.72351i 0.280670i
$$177$$ 14.3851 + 1.09566i 1.08125 + 0.0823552i
$$178$$ 1.99854 1.15386i 0.149797 0.0864854i
$$179$$ 13.7465 7.93657i 1.02746 0.593207i 0.111207 0.993797i $$-0.464528\pi$$
0.916257 + 0.400590i $$0.131195\pi$$
$$180$$ 2.67525 + 6.86563i 0.199401 + 0.511734i
$$181$$ 6.55965i 0.487575i 0.969829 + 0.243787i $$0.0783899\pi$$
−0.969829 + 0.243787i $$0.921610\pi$$
$$182$$ −16.5437 2.57045i −1.22630 0.190535i
$$183$$ 19.9312 9.56841i 1.47335 0.707317i
$$184$$ −0.500000 + 0.866025i −0.0368605 + 0.0638442i
$$185$$ 7.26623 + 12.5855i 0.534224 + 0.925302i
$$186$$ 5.62288 8.22568i 0.412290 0.603136i
$$187$$ 21.5019 + 12.4141i 1.57237 + 0.907811i
$$188$$ 0.952064 0.0694364
$$189$$ −1.93744 13.6105i −0.140928 0.990020i
$$190$$ −5.40926 −0.392429
$$191$$ −3.47679 2.00733i −0.251572 0.145245i 0.368912 0.929464i $$-0.379730\pi$$
−0.620484 + 0.784219i $$0.713064\pi$$
$$192$$ 0.977444 1.42990i 0.0705409 0.103194i
$$193$$ 5.44791 + 9.43605i 0.392149 + 0.679222i 0.992733 0.120340i $$-0.0383985\pi$$
−0.600584 + 0.799562i $$0.705065\pi$$
$$194$$ 7.60858 13.1784i 0.546264 0.946157i
$$195$$ −24.2685 + 11.6506i −1.73790 + 0.834319i
$$196$$ −6.66999 2.12396i −0.476428 0.151711i
$$197$$ 22.2345i 1.58414i −0.610428 0.792072i $$-0.709002\pi$$
0.610428 0.792072i $$-0.290998\pi$$
$$198$$ 4.05567 + 10.4083i 0.288224 + 0.739684i
$$199$$ −1.28109 + 0.739640i −0.0908143 + 0.0524317i −0.544719 0.838618i $$-0.683364\pi$$
0.453905 + 0.891050i $$0.350031\pi$$
$$200$$ 0.894296 0.516322i 0.0632363 0.0365095i
$$201$$ 25.4946 + 1.94183i 1.79825 + 0.136966i
$$202$$ 0.831452i 0.0585008i
$$203$$ 12.7491 4.93696i 0.894813 0.346507i
$$204$$ 4.99834 + 10.4116i 0.349954 + 0.728960i
$$205$$ 8.17799 14.1647i 0.571176 0.989306i
$$206$$ −3.23766 5.60780i −0.225579 0.390714i
$$207$$ 0.454363 2.96539i 0.0315804 0.206109i
$$208$$ 5.48017 + 3.16398i 0.379982 + 0.219382i
$$209$$ −8.20043 −0.567235
$$210$$ −10.7744 + 3.25559i −0.743501 + 0.224657i
$$211$$ 28.1433 1.93746 0.968732 0.248111i $$-0.0798097\pi$$
0.968732 + 0.248111i $$0.0798097\pi$$
$$212$$ −7.33252 4.23343i −0.503600 0.290753i
$$213$$ 1.06661 + 0.729112i 0.0730831 + 0.0499579i
$$214$$ 2.55963 + 4.43340i 0.174972 + 0.303061i
$$215$$ −6.48245 + 11.2279i −0.442099 + 0.765738i
$$216$$ −1.17478 + 5.06161i −0.0799339 + 0.344399i
$$217$$ 11.8563 + 9.54349i 0.804858 + 0.647854i
$$218$$ 11.4648i 0.776492i
$$219$$ 1.29762 17.0366i 0.0876849 1.15123i
$$220$$ 7.92021 4.57274i 0.533980 0.308294i
$$221$$ −36.5416 + 21.0973i −2.45806 + 1.41916i
$$222$$ −0.778311 + 10.2186i −0.0522368 + 0.685825i
$$223$$ 23.8880i 1.59966i 0.600227 + 0.799830i $$0.295077\pi$$
−0.600227 + 0.799830i $$0.704923\pi$$
$$224$$ 2.06102 + 1.65898i 0.137708 + 0.110845i
$$225$$ −1.93743 + 2.41734i −0.129162 + 0.161156i
$$226$$ 1.61075 2.78990i 0.107146 0.185582i
$$227$$ 8.77102 + 15.1918i 0.582153 + 1.00832i 0.995224 + 0.0976194i $$0.0311228\pi$$
−0.413071 + 0.910699i $$0.635544\pi$$
$$228$$ −3.14912 2.15266i −0.208555 0.142564i
$$229$$ −23.5057 13.5710i −1.55330 0.896799i −0.997870 0.0652377i $$-0.979219\pi$$
−0.555432 0.831562i $$-0.687447\pi$$
$$230$$ −2.45614 −0.161953
$$231$$ −16.3339 + 4.93546i −1.07469 + 0.324729i
$$232$$ −5.16739 −0.339256
$$233$$ 18.5749 + 10.7242i 1.21688 + 0.702568i 0.964250 0.264994i $$-0.0853700\pi$$
0.252634 + 0.967562i $$0.418703\pi$$
$$234$$ −18.7649 2.87519i −1.22670 0.187957i
$$235$$ 1.16920 + 2.02512i 0.0762704 + 0.132104i
$$236$$ 4.16466 7.21340i 0.271096 0.469553i
$$237$$ 0.840870 + 1.75155i 0.0546204 + 0.113775i
$$238$$ −16.4514 + 6.37063i −1.06639 + 0.412946i
$$239$$ 15.4123i 0.996941i 0.866907 + 0.498471i $$0.166105\pi$$
−0.866907 + 0.498471i $$0.833895\pi$$
$$240$$ 4.24188 + 0.323089i 0.273812 + 0.0208553i
$$241$$ 16.3943 9.46523i 1.05605 0.609709i 0.131711 0.991288i $$-0.457953\pi$$
0.924336 + 0.381579i $$0.124620\pi$$
$$242$$ 2.48074 1.43225i 0.159468 0.0920687i
$$243$$ −2.22928 15.4282i −0.143009 0.989721i
$$244$$ 12.7646i 0.817171i
$$245$$ −3.67340 16.7960i −0.234685 1.07306i
$$246$$ 10.3980 4.99178i 0.662950 0.318264i
$$247$$ 6.96815 12.0692i 0.443373 0.767945i
$$248$$ −2.87632 4.98193i −0.182646 0.316353i
$$249$$ −13.6302 + 19.9395i −0.863779 + 1.26362i
$$250$$ −8.43890 4.87220i −0.533723 0.308145i
$$251$$ −1.20028 −0.0757610 −0.0378805 0.999282i $$-0.512061\pi$$
−0.0378805 + 0.999282i $$0.512061\pi$$
$$252$$ −7.56811 2.39244i −0.476746 0.150709i
$$253$$ −3.72351 −0.234095
$$254$$ −6.74628 3.89496i −0.423299 0.244392i
$$255$$ −16.0081 + 23.4181i −1.00247 + 1.46650i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −3.06593 + 5.31035i −0.191248 + 0.331251i −0.945664 0.325146i $$-0.894587\pi$$
0.754416 + 0.656396i $$0.227920\pi$$
$$258$$ −8.24214 + 3.95683i −0.513133 + 0.246341i
$$259$$ −15.4687 2.40343i −0.961179 0.149342i
$$260$$ 15.5424i 0.963897i
$$261$$ 14.4443 5.62836i 0.894083 0.348387i
$$262$$ 4.40810 2.54502i 0.272333 0.157232i
$$263$$ −6.44235 + 3.71949i −0.397253 + 0.229354i −0.685298 0.728263i $$-0.740328\pi$$
0.288045 + 0.957617i $$0.406995\pi$$
$$264$$ 6.43068 + 0.489802i 0.395781 + 0.0301452i
$$265$$ 20.7958i 1.27748i
$$266$$ 3.65363 4.53906i 0.224018 0.278308i
$$267$$ 1.72988 + 3.60336i 0.105867 + 0.220522i
$$268$$ 7.38097 12.7842i 0.450864 0.780920i
$$269$$ −3.35273 5.80709i −0.204419 0.354065i 0.745528 0.666474i $$-0.232197\pi$$
−0.949948 + 0.312409i $$0.898864\pi$$
$$270$$ −12.2092 + 3.71716i −0.743027 + 0.226219i
$$271$$ 6.84766 + 3.95350i 0.415966 + 0.240158i 0.693350 0.720601i $$-0.256134\pi$$
−0.277384 + 0.960759i $$0.589467\pi$$
$$272$$ 6.66797 0.404305
$$273$$ 6.61551 28.2337i 0.400389 1.70878i
$$274$$ −14.9908 −0.905630
$$275$$ 3.32992 + 1.92253i 0.200802 + 0.115933i
$$276$$ −1.42990 0.977444i −0.0860696 0.0588352i
$$277$$ 5.82324 + 10.0861i 0.349885 + 0.606018i 0.986229 0.165387i $$-0.0528875\pi$$
−0.636344 + 0.771405i $$0.719554\pi$$
$$278$$ −4.38278 + 7.59121i −0.262862 + 0.455290i
$$279$$ 13.4665 + 10.7930i 0.806218 + 0.646161i
$$280$$ −0.997701 + 6.42130i −0.0596240 + 0.383746i
$$281$$ 27.9371i 1.66659i −0.552830 0.833294i $$-0.686452\pi$$
0.552830 0.833294i $$-0.313548\pi$$
$$282$$ −0.125237 + 1.64426i −0.00745778 + 0.0979143i
$$283$$ −20.2968 + 11.7184i −1.20652 + 0.696584i −0.961997 0.273060i $$-0.911964\pi$$
−0.244522 + 0.969644i $$0.578631\pi$$
$$284$$ 0.646001 0.372969i 0.0383331 0.0221316i
$$285$$ 0.711551 9.34206i 0.0421487 0.553376i
$$286$$ 23.5622i 1.39326i
$$287$$ 6.36226 + 16.4298i 0.375552 + 0.969819i
$$288$$ 2.34092 + 1.87619i 0.137940 + 0.110555i
$$289$$ −13.7309 + 23.7827i −0.807702 + 1.39898i
$$290$$ −6.34593 10.9915i −0.372646 0.645442i
$$291$$ 21.7590 + 14.8739i 1.27553 + 0.871924i
$$292$$ −8.54298 4.93229i −0.499940 0.288641i
$$293$$ −4.40479 −0.257330 −0.128665 0.991688i $$-0.541069\pi$$
−0.128665 + 0.991688i $$0.541069\pi$$
$$294$$ 4.54557 11.2400i 0.265103 0.655531i
$$295$$ 20.4580 1.19111
$$296$$ 5.12408 + 2.95839i 0.297831 + 0.171953i
$$297$$ −18.5091 + 5.63520i −1.07401 + 0.326988i
$$298$$ −4.42440 7.66328i −0.256298 0.443922i
$$299$$ 3.16398 5.48017i 0.182978 0.316927i
$$300$$ 0.774075 + 1.61241i 0.0446912 + 0.0930926i
$$301$$ −5.04317 13.0234i −0.290683 0.750655i
$$302$$ 6.71828i 0.386594i
$$303$$ 1.43596 + 0.109372i 0.0824936 + 0.00628325i
$$304$$ −1.90728 + 1.10117i −0.109390 + 0.0631564i
$$305$$ 27.1514 15.6759i 1.55468 0.897597i
$$306$$ −18.6389 + 7.26280i −1.06551 + 0.415187i
$$307$$ 10.9974i 0.627653i 0.949480 + 0.313826i $$0.101611\pi$$
−0.949480 + 0.313826i $$0.898389\pi$$
$$308$$ −1.51251 + 9.73467i −0.0861833 + 0.554684i
$$309$$ 10.1108 4.85393i 0.575185 0.276131i
$$310$$ 7.06466 12.2363i 0.401245 0.694978i
$$311$$ 14.5415 + 25.1866i 0.824572 + 1.42820i 0.902246 + 0.431222i $$0.141917\pi$$
−0.0776737 + 0.996979i $$0.524749\pi$$
$$312$$ −6.18522 + 9.04832i −0.350169 + 0.512260i
$$313$$ 5.12605 + 2.95953i 0.289741 + 0.167282i 0.637825 0.770181i $$-0.279834\pi$$
−0.348084 + 0.937463i $$0.613168\pi$$
$$314$$ 3.92327 0.221403
$$315$$ −4.20527 19.0361i −0.236940 1.07256i
$$316$$ 1.12175 0.0631034
$$317$$ 5.78820 + 3.34182i 0.325098 + 0.187695i 0.653662 0.756786i $$-0.273232\pi$$
−0.328565 + 0.944481i $$0.606565\pi$$
$$318$$ 8.27589 12.1067i 0.464089 0.678912i
$$319$$ −9.62041 16.6630i −0.538640 0.932951i
$$320$$ 1.22807 2.12708i 0.0686513 0.118908i
$$321$$ −7.99340 + 3.83741i −0.446148 + 0.214184i
$$322$$ 1.65898 2.06102i 0.0924511 0.114856i
$$323$$ 14.6851i 0.817103i
$$324$$ −8.58711 2.69473i −0.477062 0.149707i
$$325$$ −5.65907 + 3.26727i −0.313909 + 0.181235i
$$326$$ −8.85937 + 5.11496i −0.490675 + 0.283291i
$$327$$ −19.8002 1.50811i −1.09495 0.0833987i
$$328$$ 6.65921i 0.367694i
$$329$$ −2.48906 0.386734i −0.137226 0.0213213i
$$330$$ 6.85549 + 14.2801i 0.377382 + 0.786094i
$$331$$ 13.3392 23.1042i 0.733189 1.26992i −0.222325 0.974973i $$-0.571365\pi$$
0.955513 0.294947i $$-0.0953022\pi$$
$$332$$ 6.97237 + 12.0765i 0.382659 + 0.662784i
$$333$$ −17.5456 2.68836i −0.961491 0.147321i
$$334$$ −8.11531 4.68538i −0.444050 0.256372i
$$335$$ 36.2574 1.98096
$$336$$ −3.13624 + 3.34125i −0.171096 + 0.182280i
$$337$$ −17.4792 −0.952155 −0.476077 0.879403i $$-0.657942\pi$$
−0.476077 + 0.879403i $$0.657942\pi$$
$$338$$ −23.4200 13.5215i −1.27388 0.735474i
$$339$$ 4.60642 + 3.14884i 0.250186 + 0.171022i
$$340$$ 8.18875 + 14.1833i 0.444097 + 0.769199i
$$341$$ 10.7100 18.5503i 0.579979 1.00455i
$$342$$ 4.13200 5.15551i 0.223433 0.278778i
$$343$$ 16.5752 + 8.26223i 0.894974 + 0.446118i
$$344$$ 5.27855i 0.284601i
$$345$$ 0.323089 4.24188i 0.0173945 0.228375i
$$346$$ −7.58979 + 4.38197i −0.408030 + 0.235576i
$$347$$ −30.4637 + 17.5882i −1.63538 + 0.944186i −0.652984 + 0.757372i $$0.726483\pi$$
−0.982395 + 0.186814i $$0.940184\pi$$
$$348$$ 0.679735 8.92434i 0.0364376 0.478395i
$$349$$ 9.41797i 0.504132i −0.967710 0.252066i $$-0.918890\pi$$
0.967710 0.252066i $$-0.0811100\pi$$
$$350$$ −2.54777 + 0.986595i −0.136184 + 0.0527357i
$$351$$ 7.43398 32.0296i 0.396796 1.70962i
$$352$$ 1.86175 3.22465i 0.0992318 0.171875i
$$353$$ −1.25484 2.17345i −0.0667886 0.115681i 0.830697 0.556724i $$-0.187942\pi$$
−0.897486 + 0.441043i $$0.854609\pi$$
$$354$$ 11.9101 + 8.14145i 0.633013 + 0.432713i
$$355$$ 1.58667 + 0.916065i 0.0842117 + 0.0486197i
$$356$$ 2.30772 0.122309
$$357$$ −8.83831 29.2504i −0.467773 1.54809i
$$358$$ 15.8731 0.838921
$$359$$ −14.3293 8.27302i −0.756271 0.436633i 0.0716842 0.997427i $$-0.477163\pi$$
−0.827955 + 0.560794i $$0.810496\pi$$
$$360$$ −1.11598 + 7.28343i −0.0588173 + 0.383871i
$$361$$ −7.07485 12.2540i −0.372361 0.644947i
$$362$$ −3.27982 + 5.68082i −0.172384 + 0.298577i
$$363$$ 2.14725 + 4.47275i 0.112701 + 0.234759i
$$364$$ −13.0420 10.4979i −0.683589 0.550241i
$$365$$ 24.2288i 1.26820i
$$366$$ 22.0451 + 1.67910i 1.15232 + 0.0877678i
$$367$$ 18.0483 10.4202i 0.942114 0.543930i 0.0514919 0.998673i $$-0.483602\pi$$
0.890622 + 0.454743i $$0.150269\pi$$
$$368$$ −0.866025 + 0.500000i −0.0451447 + 0.0260643i
$$369$$ 7.25326 + 18.6144i 0.377590 + 0.969027i
$$370$$ 14.5325i 0.755506i
$$371$$ 17.4504 + 14.0463i 0.905978 + 0.729249i
$$372$$ 8.98240 4.31220i 0.465716 0.223577i
$$373$$ 14.1419 24.4944i 0.732238 1.26827i −0.223687 0.974661i $$-0.571809\pi$$
0.955925 0.293612i $$-0.0948575\pi$$
$$374$$ 12.4141 + 21.5019i 0.641919 + 1.11184i
$$375$$ 9.52460 13.9335i 0.491848 0.719522i
$$376$$ 0.824512 + 0.476032i 0.0425209 + 0.0245495i
$$377$$ 32.6990 1.68409
$$378$$ 5.12739 12.7558i 0.263724 0.656086i
$$379$$ 10.8302 0.556308 0.278154 0.960537i $$-0.410278\pi$$
0.278154 + 0.960537i $$0.410278\pi$$
$$380$$ −4.68456 2.70463i −0.240313 0.138745i
$$381$$ 7.61422 11.1388i 0.390088 0.570657i
$$382$$ −2.00733 3.47679i −0.102704 0.177888i
$$383$$ 11.1219 19.2637i 0.568302 0.984329i −0.428432 0.903574i $$-0.640934\pi$$
0.996734 0.0807544i $$-0.0257329\pi$$
$$384$$ 1.56144 0.749605i 0.0796819 0.0382531i
$$385$$ −22.5639 + 8.73764i −1.14996 + 0.445312i
$$386$$ 10.8958i 0.554582i
$$387$$ −5.74944 14.7551i −0.292260 0.750043i
$$388$$ 13.1784 7.60858i 0.669034 0.386267i
$$389$$ 7.21221 4.16397i 0.365674 0.211122i −0.305893 0.952066i $$-0.598955\pi$$
0.671567 + 0.740944i $$0.265622\pi$$
$$390$$ −26.8424 2.04449i −1.35922 0.103527i
$$391$$ 6.66797i 0.337214i
$$392$$ −4.71441 5.17440i −0.238113 0.261346i
$$393$$ 3.81551 + 7.94778i 0.192467 + 0.400913i
$$394$$ 11.1173 19.2557i 0.560079 0.970086i
$$395$$ 1.37759 + 2.38606i 0.0693142 + 0.120056i
$$396$$ −1.69182 + 11.0417i −0.0850173 + 0.554864i
$$397$$ 11.0618 + 6.38655i 0.555177 + 0.320532i 0.751207 0.660066i $$-0.229472\pi$$
−0.196030 + 0.980598i $$0.562805\pi$$
$$398$$ −1.47928 −0.0741496
$$399$$ 7.35857 + 6.90708i 0.368389 + 0.345786i
$$400$$ 1.03264 0.0516322
$$401$$ −24.8620 14.3541i −1.24155 0.716807i −0.272138 0.962258i $$-0.587731\pi$$
−0.969409 + 0.245451i $$0.921064\pi$$
$$402$$ 21.1080 + 14.4290i 1.05277 + 0.719651i
$$403$$ 18.2012 + 31.5254i 0.906668 + 1.57039i
$$404$$ 0.415726 0.720059i 0.0206831 0.0358243i
$$405$$ −4.81368 21.5748i −0.239194 1.07206i
$$406$$ 13.5095 + 2.09903i 0.670467 + 0.104173i
$$407$$ 22.0312i 1.09204i
$$408$$ −0.877126 + 11.5159i −0.0434242 + 0.570123i
$$409$$ 5.71982 3.30234i 0.282827 0.163290i −0.351876 0.936047i $$-0.614456\pi$$
0.634703 + 0.772757i $$0.281123\pi$$
$$410$$ 14.1647 8.17799i 0.699545 0.403882i
$$411$$ 1.97194 25.8899i 0.0972687 1.27706i
$$412$$ 6.47533i 0.319016i
$$413$$ −13.8181 + 17.1669i −0.679947 + 0.844727i
$$414$$ 1.87619 2.34092i 0.0922095 0.115050i
$$415$$ −17.1251 + 29.6616i −0.840640 + 1.45603i
$$416$$ 3.16398 + 5.48017i 0.155127 + 0.268688i
$$417$$ −12.5339 8.56785i −0.613785 0.419569i
$$418$$ −7.10178 4.10021i −0.347359 0.200548i
$$419$$ −15.9416 −0.778797 −0.389398 0.921069i $$-0.627317\pi$$
−0.389398 + 0.921069i $$0.627317\pi$$
$$420$$ −10.9587 2.56776i −0.534728 0.125294i
$$421$$ −18.2412 −0.889020 −0.444510 0.895774i $$-0.646622\pi$$
−0.444510 + 0.895774i $$0.646622\pi$$
$$422$$ 24.3728 + 14.0716i 1.18645 + 0.684997i
$$423$$ −2.82324 0.432582i −0.137271 0.0210329i
$$424$$ −4.23343 7.33252i −0.205594 0.356099i
$$425$$ −3.44282 + 5.96314i −0.167001 + 0.289255i
$$426$$ 0.559158 + 1.16474i 0.0270913 + 0.0564316i
$$427$$ −5.18506 + 33.3716i −0.250923 + 1.61496i
$$428$$ 5.11925i 0.247448i
$$429$$ −40.6931 3.09944i −1.96468 0.149643i
$$430$$ −11.2279 + 6.48245i −0.541459 + 0.312611i
$$431$$ −8.87858 + 5.12605i −0.427666 + 0.246913i −0.698352 0.715755i $$-0.746083\pi$$
0.270686 + 0.962668i $$0.412750\pi$$
$$432$$ −3.54820 + 3.79609i −0.170713 + 0.182639i
$$433$$ 35.9112i 1.72578i 0.505390 + 0.862891i $$0.331349\pi$$
−0.505390 + 0.862891i $$0.668651\pi$$
$$434$$ 5.49611 + 14.1931i 0.263822 + 0.681288i
$$435$$ 19.8176 9.51388i 0.950180 0.456156i
$$436$$ −5.73238 + 9.92878i −0.274531 + 0.475502i
$$437$$ 1.10117 + 1.90728i 0.0526761 + 0.0912377i
$$438$$ 9.64208 14.1053i 0.460716 0.673979i
$$439$$ −22.5828 13.0382i −1.07782 0.622277i −0.147510 0.989061i $$-0.547126\pi$$
−0.930306 + 0.366783i $$0.880459\pi$$
$$440$$ 9.14547 0.435993
$$441$$ 18.8141 + 9.32896i 0.895910 + 0.444236i
$$442$$ −42.1947 −2.00700
$$443$$ 3.36497 + 1.94277i 0.159875 + 0.0923036i 0.577803 0.816176i $$-0.303910\pi$$
−0.417928 + 0.908480i $$0.637244\pi$$
$$444$$ −5.78332 + 8.46037i −0.274464 + 0.401512i
$$445$$ 2.83405 + 4.90871i 0.134347 + 0.232695i
$$446$$ −11.9440 + 20.6876i −0.565565 + 0.979587i
$$447$$ 13.8169 6.63310i 0.653515 0.313735i
$$448$$ 0.955407 + 2.46722i 0.0451387 + 0.116565i
$$449$$ 9.51870i 0.449215i 0.974449 + 0.224608i $$0.0721100\pi$$
−0.974449 + 0.224608i $$0.927890\pi$$
$$450$$ −2.88654 + 1.12476i −0.136073 + 0.0530219i
$$451$$ 21.4736 12.3978i 1.01115 0.583790i
$$452$$ 2.78990 1.61075i 0.131226 0.0757634i
$$453$$ −11.6028 0.883744i −0.545147 0.0415219i
$$454$$ 17.5420i 0.823288i
$$455$$ 6.31341 40.6337i 0.295977 1.90494i
$$456$$ −1.65088 3.43882i −0.0773097 0.161037i
$$457$$ −4.44242 + 7.69450i −0.207808 + 0.359933i −0.951024 0.309118i $$-0.899966\pi$$
0.743216 + 0.669052i $$0.233299\pi$$
$$458$$ −13.5710 23.5057i −0.634133 1.09835i
$$459$$ −10.0914 33.1457i −0.471026 1.54711i
$$460$$ −2.12708 1.22807i −0.0991758 0.0572592i
$$461$$ 28.0831 1.30796 0.653980 0.756512i $$-0.273098\pi$$
0.653980 + 0.756512i $$0.273098\pi$$
$$462$$ −16.6133 3.89271i −0.772920 0.181105i
$$463$$ −4.54894 −0.211407 −0.105704 0.994398i $$-0.533709\pi$$
−0.105704 + 0.994398i $$0.533709\pi$$
$$464$$ −4.47509 2.58370i −0.207751 0.119945i
$$465$$ 20.2034 + 13.8106i 0.936912 + 0.640452i
$$466$$ 10.7242 + 18.5749i 0.496791 + 0.860467i
$$467$$ −0.840217 + 1.45530i −0.0388806 + 0.0673432i −0.884811 0.465950i $$-0.845713\pi$$
0.845930 + 0.533294i $$0.179046\pi$$
$$468$$ −14.8133 11.8724i −0.684744 0.548803i
$$469$$ −24.4897 + 30.4246i −1.13083 + 1.40488i
$$470$$ 2.33841i 0.107863i
$$471$$ −0.516079 + 6.77568i −0.0237797 + 0.312207i
$$472$$ 7.21340 4.16466i 0.332024 0.191694i
$$473$$ −17.0215 + 9.82737i −0.782649 + 0.451863i
$$474$$ −0.147559 + 1.93732i −0.00677759 + 0.0889840i
$$475$$ 2.27423i 0.104349i
$$476$$ −17.4326 2.70857i −0.799024 0.124147i
$$477$$ 19.8203 + 15.8854i 0.907509 + 0.727343i
$$478$$ −7.70617 + 13.3475i −0.352472 + 0.610499i
$$479$$ −19.2533 33.3477i −0.879707 1.52370i −0.851663 0.524090i $$-0.824406\pi$$
−0.0280437 0.999607i $$-0.508928\pi$$
$$480$$ 3.51203 + 2.40074i 0.160302 + 0.109578i
$$481$$ −32.4249 18.7205i −1.47845 0.853584i
$$482$$ 18.9305 0.862259
$$483$$ 3.34125 + 3.13624i 0.152032 + 0.142704i
$$484$$ 2.86451 0.130205
$$485$$ 32.3682 + 18.6878i 1.46976 + 0.848568i
$$486$$ 5.78350 14.4759i 0.262345 0.656639i
$$487$$ −10.2775 17.8012i −0.465719 0.806649i 0.533514 0.845791i $$-0.320871\pi$$
−0.999234 + 0.0391415i $$0.987538\pi$$
$$488$$ 6.38231 11.0545i 0.288913 0.500413i
$$489$$ −7.66839 15.9734i −0.346777 0.722342i
$$490$$ 5.21674 16.3825i 0.235668 0.740084i
$$491$$ 3.29864i 0.148866i 0.997226 + 0.0744328i $$0.0237146\pi$$
−0.997226 + 0.0744328i $$0.976285\pi$$
$$492$$ 11.5008 + 0.875973i 0.518495 + 0.0394919i
$$493$$ 29.8398 17.2280i 1.34392 0.775911i
$$494$$ 12.0692 6.96815i 0.543019 0.313512i
$$495$$ −25.5642 + 9.96131i −1.14903 + 0.447728i
$$496$$ 5.75264i 0.258301i
$$497$$ −1.84039 + 0.712673i −0.0825530 + 0.0319678i
$$498$$ −21.7739 + 10.4530i −0.975710 + 0.468412i
$$499$$ −5.23934 + 9.07480i −0.234545 + 0.406244i −0.959140 0.282931i $$-0.908693\pi$$
0.724595 + 0.689174i $$0.242027\pi$$
$$500$$ −4.87220 8.43890i −0.217891 0.377399i
$$501$$ 9.15939 13.3992i 0.409211 0.598632i
$$502$$ −1.03947 0.600140i −0.0463939 0.0267856i
$$503$$ 6.00823 0.267894 0.133947 0.990989i $$-0.457235\pi$$
0.133947 + 0.990989i $$0.457235\pi$$
$$504$$ −5.35795 5.85597i −0.238662 0.260845i
$$505$$ 2.04217 0.0908752
$$506$$ −3.22465 1.86175i −0.143353 0.0827650i
$$507$$ 26.4331 38.6688i 1.17393 1.71734i
$$508$$ −3.89496 6.74628i −0.172811 0.299318i
$$509$$ 9.35979 16.2116i 0.414865 0.718568i −0.580549 0.814225i $$-0.697162\pi$$
0.995414 + 0.0956576i $$0.0304954\pi$$
$$510$$ −25.5725 + 12.2767i −1.13237 + 0.543619i
$$511$$ 20.3311 + 16.3651i 0.899395 + 0.723950i
$$512$$ 1.00000i 0.0441942i
$$513$$ 8.36028 + 7.81433i 0.369115 + 0.345011i
$$514$$ −5.31035 + 3.06593i −0.234230 + 0.135233i
$$515$$ 13.7736 7.95217i 0.606935 0.350414i
$$516$$ −9.11632 0.694357i −0.401324 0.0305674i
$$517$$ 3.54502i 0.155910i
$$518$$ −12.1946 9.81579i −0.535799 0.431281i
$$519$$ −6.56949 13.6844i −0.288369 0.600677i
$$520$$ −7.77119 + 13.4601i −0.340789 + 0.590264i
$$521$$ 11.0534 + 19.1450i 0.484258 + 0.838759i 0.999836 0.0180832i $$-0.00575636\pi$$
−0.515579 + 0.856842i $$0.672423\pi$$
$$522$$ 15.3234 + 2.34787i 0.670685 + 0.102764i
$$523$$ 3.80741 + 2.19821i 0.166486 + 0.0961209i 0.580928 0.813955i $$-0.302690\pi$$
−0.414442 + 0.910076i $$0.636023\pi$$
$$524$$ 5.09003 0.222359
$$525$$ −1.36876 4.52990i −0.0597374 0.197701i
$$526$$ −7.43899 −0.324355
$$527$$ 33.2194 + 19.1792i 1.44706 + 0.835460i
$$528$$ 5.32423 + 3.63952i 0.231707 + 0.158390i
$$529$$ 0.500000 + 0.866025i 0.0217391 + 0.0376533i
$$530$$ 10.3979 18.0097i 0.451657 0.782293i
$$531$$ −15.6274 + 19.4983i −0.678170 + 0.846155i
$$532$$ 5.43367 2.10413i 0.235579 0.0912256i
$$533$$ 42.1392i 1.82525i
$$534$$ −0.303564 + 3.98554i −0.0131365 + 0.172471i
$$535$$ −10.8891 + 6.28681i −0.470776 + 0.271802i
$$536$$ 12.7842 7.38097i 0.552194 0.318809i
$$537$$ −2.08800 + 27.4137i −0.0901039 + 1.18299i
$$538$$ 6.70545i 0.289093i
$$539$$ 7.90857 24.8358i 0.340646 1.06975i
$$540$$ −12.4320 2.88544i −0.534990 0.124169i
$$541$$ 8.44144 14.6210i 0.362926 0.628606i −0.625515 0.780212i $$-0.715111\pi$$
0.988441 + 0.151606i $$0.0484445\pi$$
$$542$$ 3.95350 + 6.84766i 0.169817 + 0.294132i
$$543$$ −9.37962 6.41169i −0.402518 0.275152i
$$544$$ 5.77463 + 3.33399i 0.247585 + 0.142944i
$$545$$ −28.1591 −1.20620
$$546$$ 19.8460 21.1433i 0.849331 0.904850i
$$547$$ 37.4651 1.60189 0.800946 0.598737i $$-0.204330\pi$$
0.800946 + 0.598737i $$0.204330\pi$$
$$548$$ −12.9825 7.49542i −0.554583 0.320189i
$$549$$ −5.79976 + 37.8521i −0.247528 + 1.61549i
$$550$$ 1.92253 + 3.32992i 0.0819769 + 0.141988i
$$551$$ −5.69018 + 9.85568i −0.242410 + 0.419866i
$$552$$ −0.749605 1.56144i −0.0319053 0.0664593i
$$553$$ −2.93269 0.455662i −0.124711 0.0193767i
$$554$$ 11.6465i 0.494812i
$$555$$ −25.0982 1.91164i −1.06536 0.0811448i
$$556$$ −7.59121 + 4.38278i −0.321939 + 0.185871i
$$557$$ 30.8403 17.8057i 1.30675 0.754451i 0.325195 0.945647i $$-0.394570\pi$$
0.981552 + 0.191196i $$0.0612367\pi$$
$$558$$ 6.26581 + 16.0803i 0.265253 + 0.680732i
$$559$$ 33.4025i 1.41277i
$$560$$ −4.07468 + 5.06216i −0.172187 + 0.213915i
$$561$$ −38.7678 + 18.6114i −1.63678 + 0.785773i
$$562$$ 13.9686 24.1942i 0.589228 1.02057i
$$563$$ −9.13284 15.8185i −0.384903 0.666672i 0.606853 0.794814i $$-0.292432\pi$$
−0.991756 + 0.128142i $$0.959099\pi$$
$$564$$ −0.930589 + 1.36135i −0.0391849 + 0.0573233i
$$565$$ 6.85241 + 3.95624i 0.288283 + 0.166440i
$$566$$ −23.4367 −0.985119
$$567$$ 21.3554 + 10.5332i 0.896841 + 0.442352i
$$568$$ 0.745937 0.0312988
$$569$$ −11.3184 6.53466i −0.474491 0.273947i 0.243627 0.969869i $$-0.421663\pi$$
−0.718118 + 0.695922i $$0.754996\pi$$
$$570$$ 5.28725 7.73469i 0.221459 0.323970i
$$571$$ 11.3721 + 19.6970i 0.475907 + 0.824296i 0.999619 0.0275999i $$-0.00878644\pi$$
−0.523712 + 0.851896i $$0.675453\pi$$
$$572$$ −11.7811 + 20.4055i −0.492592 + 0.853195i
$$573$$ 6.26863 3.00940i 0.261876 0.125720i
$$574$$ −2.70501 + 17.4097i −0.112905 + 0.726668i
$$575$$ 1.03264i 0.0430643i
$$576$$ 1.08921 + 2.79529i 0.0453836 + 0.116470i
$$577$$ 32.6624 18.8576i 1.35975 0.785053i 0.370162 0.928967i $$-0.379302\pi$$
0.989590 + 0.143914i $$0.0459689\pi$$
$$578$$ −23.7827 + 13.7309i −0.989229 + 0.571132i
$$579$$ −18.8176 1.43327i −0.782033 0.0595646i
$$580$$ 12.6919i 0.527001i
$$581$$ −13.3229 34.4048i −0.552727 1.42735i
$$582$$ 11.4068 + 23.7607i 0.472829 + 0.984911i
$$583$$ 15.7632 27.3027i 0.652846 1.13076i
$$584$$ −4.93229 8.54298i −0.204100 0.353511i
$$585$$ 7.06187 46.0893i 0.291973 1.90556i
$$586$$ −3.81466 2.20239i −0.157582 0.0909800i
$$587$$ −22.4986 −0.928616 −0.464308 0.885674i $$-0.653697\pi$$
−0.464308 + 0.885674i $$0.653697\pi$$
$$588$$ 9.55658 7.46135i 0.394107 0.307701i
$$589$$ −12.6693 −0.522028
$$590$$ 17.7172 + 10.2290i 0.729404 + 0.421122i
$$591$$ 31.7931 + 21.7330i 1.30779 + 0.893976i
$$592$$ 2.95839 + 5.12408i 0.121589 + 0.210598i
$$593$$ 12.0502 20.8715i 0.494841 0.857089i −0.505142 0.863037i $$-0.668560\pi$$
0.999982 + 0.00594710i $$0.00189303\pi$$
$$594$$ −18.8469 4.37431i −0.773299 0.179480i
$$595$$ −15.6472 40.4070i −0.641472 1.65653i
$$596$$ 8.84880i 0.362461i
$$597$$ 0.194589 2.55479i 0.00796400 0.104560i
$$598$$ 5.48017 3.16398i 0.224101 0.129385i
$$599$$ −17.2060 + 9.93387i −0.703017 + 0.405887i −0.808470 0.588537i $$-0.799704\pi$$
0.105453 + 0.994424i $$0.466371\pi$$
$$600$$ −0.135837 + 1.78343i −0.00554553 + 0.0728081i
$$601$$ 42.9999i 1.75400i −0.480487 0.877002i $$-0.659540\pi$$
0.480487 0.877002i $$-0.340460\pi$$
$$602$$ 2.14418 13.8002i 0.0873903 0.562453i
$$603$$ −27.6961 + 34.5566i −1.12787 + 1.40725i
$$604$$ −3.35914 + 5.81821i −0.136682 + 0.236739i
$$605$$ 3.51782 + 6.09304i 0.143020 + 0.247717i
$$606$$ 1.18889 + 0.812698i 0.0482954 + 0.0330136i
$$607$$ −21.9347 12.6640i −0.890303 0.514016i −0.0162611 0.999868i $$-0.505176\pi$$
−0.874041 + 0.485851i $$0.838510\pi$$
$$608$$ −2.20234 −0.0893167
$$609$$ −5.40221 + 23.0555i −0.218909 + 0.934257i
$$610$$ 31.3517 1.26939
$$611$$ −5.21747 3.01231i −0.211076 0.121865i
$$612$$ −19.7732 3.02968i −0.799283 0.122467i
$$613$$ −0.300248 0.520045i −0.0121269 0.0210044i 0.859898 0.510465i $$-0.170527\pi$$
−0.872025 + 0.489461i $$0.837194\pi$$
$$614$$ −5.49868 + 9.52400i −0.221909 + 0.384357i
$$615$$ 12.2605 + 25.5389i 0.494392 + 1.02983i
$$616$$ −6.17721 + 7.67422i −0.248887 + 0.309203i
$$617$$ 5.30741i 0.213668i −0.994277 0.106834i $$-0.965929\pi$$
0.994277 0.106834i $$-0.0340714\pi$$
$$618$$ 11.1832 + 0.851784i 0.449854 + 0.0342638i
$$619$$ 21.1309 12.1999i 0.849321 0.490356i −0.0111004 0.999938i $$-0.503533\pi$$
0.860422 + 0.509582i $$0.170200\pi$$
$$620$$ 12.2363 7.06466i 0.491423 0.283723i
$$621$$ 3.79609 + 3.54820i 0.152332 + 0.142384i
$$622$$ 29.0830i 1.16612i
$$623$$ −6.03326 0.937409i −0.241717 0.0375565i
$$624$$ −9.88072 + 4.74347i −0.395545 + 0.189891i
$$625$$ 14.5484 25.1986i 0.581937 1.00795i
$$626$$ 2.95953 + 5.12605i 0.118286 + 0.204878i
$$627$$ 8.01546 11.7258i 0.320107 0.468282i
$$628$$ 3.39765 + 1.96163i 0.135581 + 0.0782777i
$$629$$ −39.4529 −1.57309
$$630$$ 5.87617 18.5884i 0.234112 0.740578i
$$631$$ 5.09746 0.202927 0.101463 0.994839i $$-0.467648\pi$$
0.101463 + 0.994839i $$0.467648\pi$$
$$632$$ 0.971465 + 0.560876i 0.0386428 + 0.0223104i
$$633$$ −27.5085 + 40.2420i −1.09336 + 1.59947i
$$634$$ 3.34182 + 5.78820i 0.132721 + 0.229879i
$$635$$ 9.56659 16.5698i 0.379639 0.657553i
$$636$$ 13.2205 6.34680i 0.524227 0.251667i
$$637$$ 29.8326 + 32.7434i 1.18201 + 1.29734i
$$638$$ 19.2408i 0.761752i
$$639$$ −2.08511 + 0.812480i −0.0824856 + 0.0321412i
$$640$$ 2.12708 1.22807i 0.0840803 0.0485438i
$$641$$ −26.5699 + 15.3401i −1.04945 + 0.605898i −0.922494 0.386010i $$-0.873853\pi$$
−0.126952 + 0.991909i $$0.540520\pi$$
$$642$$ −8.84119 0.673402i −0.348934 0.0265771i
$$643$$ 5.85046i 0.230720i −0.993324 0.115360i $$-0.963198\pi$$
0.993324 0.115360i $$-0.0368021\pi$$
$$644$$ 2.46722 0.955407i 0.0972223 0.0376483i
$$645$$ −9.71854 20.2439i −0.382667 0.797103i
$$646$$ 7.34257 12.7177i 0.288890 0.500371i
$$647$$ −20.4855 35.4820i −0.805370 1.39494i −0.916041 0.401084i $$-0.868634\pi$$
0.110672 0.993857i $$-0.464700\pi$$
$$648$$ −6.08929 6.62726i −0.239210 0.260343i
$$649$$ 26.8592 + 15.5071i 1.05431 + 0.608709i
$$650$$ −6.53453 −0.256305
$$651$$ −25.2351 + 7.62505i −0.989040 + 0.298849i
$$652$$ −10.2299 −0.400634
$$653$$ −23.9896 13.8504i −0.938784 0.542007i −0.0492052 0.998789i $$-0.515669\pi$$
−0.889579 + 0.456781i $$0.849002\pi$$
$$654$$ −16.3934 11.2062i −0.641034 0.438196i
$$655$$ 6.25093 + 10.8269i 0.244244 + 0.423043i
$$656$$ 3.32961 5.76705i 0.129999 0.225165i
$$657$$ 23.0922 + 18.5078i 0.900914 + 0.722058i
$$658$$ −1.96222 1.57945i −0.0764954 0.0615734i
$$659$$ 4.53069i 0.176491i 0.996099 + 0.0882454i $$0.0281260\pi$$
−0.996099 + 0.0882454i $$0.971874\pi$$
$$660$$ −1.20302 + 15.7947i −0.0468276 + 0.614807i
$$661$$ −7.70388 + 4.44784i −0.299646 + 0.173001i −0.642284 0.766467i $$-0.722013\pi$$
0.342638 + 0.939468i $$0.388680\pi$$
$$662$$ 23.1042 13.3392i 0.897969 0.518443i
$$663$$ 5.55042 72.8722i 0.215560 2.83012i
$$664$$ 13.9447i 0.541161i
$$665$$ 11.1486 + 8.97384i 0.432324 + 0.347991i
$$666$$ −13.8507 11.1010i −0.536705 0.430154i
$$667$$ −2.58370 + 4.47509i −0.100041 + 0.173276i
$$668$$ −4.68538 8.11531i −0.181283 0.313991i
$$669$$ −34.1574 23.3492i −1.32060 0.902732i
$$670$$ 31.3999 + 18.1287i 1.21308 + 0.700373i
$$671$$ 47.5291 1.83484
$$672$$ −4.38669 + 1.32549i −0.169220 + 0.0511318i
$$673$$ 9.36655 0.361054 0.180527 0.983570i $$-0.442220\pi$$
0.180527 + 0.983570i $$0.442220\pi$$
$$674$$ −15.1375 8.73962i −0.583073 0.336638i
$$675$$ −1.56282 5.13314i −0.0601528 0.197575i
$$676$$ −13.5215 23.4200i −0.520059 0.900768i
$$677$$ −5.75743 + 9.97216i −0.221276 + 0.383261i −0.955196 0.295975i $$-0.904355\pi$$
0.733920 + 0.679236i $$0.237689\pi$$
$$678$$ 2.41485 + 5.03018i 0.0927419 + 0.193183i
$$679$$ −37.5441 + 14.5386i −1.44081 + 0.557939i
$$680$$ 16.3775i 0.628049i
$$681$$ −30.2959 2.30753i −1.16094 0.0884249i
$$682$$ 18.5503 10.7100i 0.710326 0.410107i
$$683$$ −3.89871 + 2.25092i −0.149180 + 0.0861290i −0.572732 0.819743i $$-0.694116\pi$$
0.423552 + 0.905872i $$0.360783\pi$$
$$684$$ 6.15617 2.39880i 0.235387 0.0917205i
$$685$$ 36.8197i 1.40681i
$$686$$ 10.2234 + 15.4429i 0.390331 + 0.589612i
$$687$$ 42.3807 20.3458i 1.61692 0.776242i
$$688$$ −2.63928 + 4.57136i −0.100622 + 0.174282i
$$689$$ 26.7890 + 46.3999i 1.02058 + 1.76769i
$$690$$ 2.40074 3.51203i 0.0913947 0.133701i
$$691$$ 44.9506 + 25.9522i 1.71000 + 0.987270i 0.934527 + 0.355891i $$0.115823\pi$$
0.775474 + 0.631379i $$0.217511\pi$$
$$692$$ −8.76394 −0.333155
$$693$$ 8.90826 28.1799i 0.338397 1.07047i
$$694$$ −35.1765 −1.33528
$$695$$ −18.6451 10.7648i −0.707249 0.408330i
$$696$$ 5.05084 7.38884i 0.191452 0.280073i
$$697$$ 22.2017 + 38.4545i 0.840950 + 1.45657i
$$698$$ 4.70898 8.15620i 0.178238 0.308717i
$$699$$ −33.4905 + 16.0779i −1.26673 + 0.608121i
$$700$$ −2.69973 0.419466i −0.102040 0.0158543i
$$701$$ 7.74217i 0.292418i 0.989254 + 0.146209i $$0.0467071\pi$$
−0.989254 + 0.146209i $$0.953293\pi$$
$$702$$ 22.4528 24.0215i 0.847428 0.906633i
$$703$$ 11.2850 6.51537i 0.425620 0.245732i
$$704$$ 3.22465 1.86175i 0.121534 0.0701675i
$$705$$ −4.03854 0.307601i −0.152100 0.0115849i
$$706$$ 2.50969i 0.0944533i
$$707$$ −1.37936 + 1.71364i −0.0518761 + 0.0644480i
$$708$$ 6.24370 + 13.0057i 0.234653 + 0.488785i
$$709$$ −4.30667 + 7.45936i −0.161740 + 0.280142i −0.935493 0.353346i $$-0.885044\pi$$
0.773753 + 0.633488i $$0.218377\pi$$
$$710$$ 0.916065 + 1.58667i 0.0343793 + 0.0595467i
$$711$$ −3.32643 0.509682i −0.124751 0.0191146i
$$712$$ 1.99854 + 1.15386i 0.0748986 + 0.0432427i
$$713$$ −5.75264 −0.215438
$$714$$ 6.97098 29.7507i 0.260882 1.11339i
$$715$$ −57.8722 −2.16430
$$716$$ 13.7465 + 7.93657i 0.513732 + 0.296603i
$$717$$ −22.0380 15.0647i −0.823026 0.562601i
$$718$$ −8.27302 14.3293i −0.308746 0.534764i
$$719$$ −16.7519 + 29.0152i −0.624741 + 1.08208i 0.363850 + 0.931458i $$0.381462\pi$$
−0.988591 + 0.150626i $$0.951871\pi$$
$$720$$ −4.60818 + 5.74965i −0.171737 + 0.214277i
$$721$$ −2.63032 + 16.9290i −0.0979581 + 0.630468i
$$722$$ 14.1497i 0.526597i
$$723$$ −2.49017 + 32.6938i −0.0926105 + 1.21590i
$$724$$ −5.68082 + 3.27982i −0.211126 + 0.121894i
$$725$$ 4.62118 2.66804i 0.171626 0.0990885i
$$726$$ −0.376806 + 4.94714i −0.0139846 + 0.183606i
$$727$$ 41.7463i 1.54829i −0.633011 0.774143i $$-0.718181\pi$$
0.633011 0.774143i $$-0.281819\pi$$
$$728$$ −6.04577 15.6125i −0.224071 0.578638i
$$729$$ 24.2398 + 11.8926i 0.897769 + 0.440466i
$$730$$ 12.1144 20.9828i 0.448375 0.776608i
$$731$$ −17.5986 30.4817i −0.650909 1.12741i
$$732$$ 18.2521 + 12.4767i 0.674616 + 0.461152i
$$733$$ 15.6464 + 9.03346i 0.577913 + 0.333658i 0.760304 0.649568i $$-0.225050\pi$$
−0.182390 + 0.983226i $$0.558383\pi$$
$$734$$ 20.8404 0.769233
$$735$$ 27.6071 + 11.1646i 1.01830 + 0.411811i
$$736$$ −1.00000 −0.0368605
$$737$$ 47.6021 + 27.4831i 1.75345 + 1.01235i
$$738$$ −3.02570 + 19.7472i −0.111377 + 0.726904i
$$739$$ −1.60099 2.77300i −0.0588934 0.102006i 0.835076 0.550135i $$-0.185424\pi$$
−0.893969 + 0.448129i $$0.852091\pi$$
$$740$$ −7.26623 + 12.5855i −0.267112 + 0.462651i
$$741$$ 10.4467 + 21.7607i 0.383770 + 0.799399i
$$742$$ 8.08930 + 20.8897i 0.296967 + 0.766884i
$$743$$ 8.68537i 0.318635i −0.987227 0.159318i $$-0.949071\pi$$
0.987227 0.159318i $$-0.0509294\pi$$
$$744$$ 9.93509 + 0.756720i 0.364238 + 0.0277427i
$$745$$ 18.8221 10.8670i 0.689589 0.398135i
$$746$$ 24.4944 14.1419i 0.896805 0.517770i
$$747$$ −15.1887 38.9796i −0.555726 1.42619i
$$748$$ 24.8282i 0.907811i
$$749$$ 2.07947 13.3837i 0.0759822 0.489029i
$$750$$ 15.2153 7.30444i 0.555584 0.266721i
$$751$$ 19.5186 33.8072i 0.712243 1.23364i −0.251770 0.967787i $$-0.581013\pi$$
0.964013 0.265854i $$-0.0856540\pi$$
$$752$$ 0.476032 + 0.824512i 0.0173591 + 0.0300668i
$$753$$ 1.17321 1.71628i 0.0427540 0.0625446i
$$754$$ 28.3182 + 16.3495i 1.03129 + 0.595415i
$$755$$ −16.5011 −0.600536
$$756$$ 10.8183 8.48313i 0.393459 0.308529i
$$757$$ 37.4636 1.36164 0.680818 0.732453i $$-0.261624\pi$$
0.680818 + 0.732453i $$0.261624\pi$$
$$758$$ 9.37919 + 5.41508i 0.340667 + 0.196684i
$$759$$ 3.63952 5.32423i 0.132106 0.193257i
$$760$$ −2.70463 4.68456i −0.0981073 0.169927i
$$761$$ −7.33028 + 12.6964i −0.265722 + 0.460244i −0.967753 0.251903i $$-0.918944\pi$$
0.702030 + 0.712147i $$0.252277\pi$$
$$762$$ 12.1635 5.83937i 0.440637 0.211538i
$$763$$ 19.0198 23.6291i 0.688562 0.855431i
$$764$$ 4.01465i 0.145245i
$$765$$ −17.8385 45.7798i −0.644952 1.65517i
$$766$$ 19.2637 11.1219i 0.696025 0.401850i
$$767$$ −45.6461 + 26.3538i −1.64819 + 0.951581i
$$768$$ 1.72705 + 0.131543i 0.0623195 + 0.00474665i
$$769$$ 43.8994i 1.58305i 0.611135 + 0.791527i $$0.290713\pi$$
−0.611135 + 0.791527i $$0.709287\pi$$
$$770$$ −23.9098 3.71495i −0.861648 0.133877i