Properties

Label 966.2.l.d.47.15
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.15
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-1.73168 + 0.0356051i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.18968 + 2.06059i) q^{5} +(-1.51749 - 0.835007i) q^{6} +(1.24146 - 2.33640i) q^{7} +1.00000i q^{8} +(2.99746 - 0.123314i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(-1.73168 + 0.0356051i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.18968 + 2.06059i) q^{5} +(-1.51749 - 0.835007i) q^{6} +(1.24146 - 2.33640i) q^{7} +1.00000i q^{8} +(2.99746 - 0.123314i) q^{9} +(-2.06059 + 1.18968i) q^{10} +(-2.74069 + 1.58234i) q^{11} +(-0.896677 - 1.48188i) q^{12} +2.15362i q^{13} +(2.24334 - 1.40265i) q^{14} +(1.98679 - 3.61066i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.69727 + 6.40386i) q^{17} +(2.65754 + 1.39194i) q^{18} +(-7.34038 - 4.23797i) q^{19} -2.37937 q^{20} +(-2.06663 + 4.09011i) q^{21} -3.16467 q^{22} +(0.866025 + 0.500000i) q^{23} +(-0.0356051 - 1.73168i) q^{24} +(-0.330695 - 0.572780i) q^{25} +(-1.07681 + 1.86509i) q^{26} +(-5.18627 + 0.320266i) q^{27} +(2.64411 - 0.0930622i) q^{28} -7.43039i q^{29} +(3.52594 - 2.13352i) q^{30} +(-6.86384 + 3.96284i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(4.68967 - 2.83769i) q^{33} +7.39454i q^{34} +(3.33742 + 5.33773i) q^{35} +(1.60553 + 2.53422i) q^{36} +(-1.49395 + 2.58759i) q^{37} +(-4.23797 - 7.34038i) q^{38} +(-0.0766799 - 3.72939i) q^{39} +(-2.06059 - 1.18968i) q^{40} -5.77496 q^{41} +(-3.83481 + 2.50882i) q^{42} -9.96100 q^{43} +(-2.74069 - 1.58234i) q^{44} +(-3.31194 + 6.32326i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-1.93117 + 3.34488i) q^{47} +(0.835007 - 1.51749i) q^{48} +(-3.91754 - 5.80111i) q^{49} -0.661389i q^{50} +(-6.63052 - 10.9578i) q^{51} +(-1.86509 + 1.07681i) q^{52} +(1.90180 - 1.09800i) q^{53} +(-4.65158 - 2.31578i) q^{54} -7.52992i q^{55} +(2.33640 + 1.24146i) q^{56} +(12.8621 + 7.07748i) q^{57} +(3.71519 - 6.43491i) q^{58} +(4.33833 + 7.51421i) q^{59} +(4.12031 - 0.0847177i) q^{60} +(-0.471560 - 0.272255i) q^{61} -7.92568 q^{62} +(3.43313 - 7.15637i) q^{63} -1.00000 q^{64} +(-4.43773 - 2.56213i) q^{65} +(5.48022 - 0.112679i) q^{66} +(-2.25755 - 3.91019i) q^{67} +(-3.69727 + 6.40386i) q^{68} +(-1.51749 - 0.835007i) q^{69} +(0.221429 + 6.29132i) q^{70} +4.91507i q^{71} +(0.123314 + 2.99746i) q^{72} +(7.56919 - 4.37008i) q^{73} +(-2.58759 + 1.49395i) q^{74} +(0.593053 + 0.980100i) q^{75} -8.47594i q^{76} +(0.294512 + 8.36776i) q^{77} +(1.79829 - 3.26809i) q^{78} +(1.40410 - 2.43197i) q^{79} +(-1.18968 - 2.06059i) q^{80} +(8.96959 - 0.739257i) q^{81} +(-5.00126 - 2.88748i) q^{82} -10.7239 q^{83} +(-4.57546 + 0.255299i) q^{84} -17.5943 q^{85} +(-8.62648 - 4.98050i) q^{86} +(0.264560 + 12.8671i) q^{87} +(-1.58234 - 2.74069i) q^{88} +(-5.03800 + 8.72608i) q^{89} +(-6.02985 + 3.82013i) q^{90} +(5.03172 + 2.67364i) q^{91} +1.00000i q^{92} +(11.7449 - 7.10678i) q^{93} +(-3.34488 + 1.93117i) q^{94} +(17.4655 - 10.0837i) q^{95} +(1.48188 - 0.896677i) q^{96} -5.10883i q^{97} +(-0.492134 - 6.98268i) q^{98} +(-8.01999 + 5.08096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −1.73168 + 0.0356051i −0.999789 + 0.0205566i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.18968 + 2.06059i −0.532043 + 0.921525i 0.467258 + 0.884121i \(0.345242\pi\)
−0.999300 + 0.0374038i \(0.988091\pi\)
\(6\) −1.51749 0.835007i −0.619511 0.340890i
\(7\) 1.24146 2.33640i 0.469229 0.883077i
\(8\) 1.00000i 0.353553i
\(9\) 2.99746 0.123314i 0.999155 0.0411046i
\(10\) −2.06059 + 1.18968i −0.651617 + 0.376211i
\(11\) −2.74069 + 1.58234i −0.826348 + 0.477092i −0.852601 0.522563i \(-0.824976\pi\)
0.0262523 + 0.999655i \(0.491643\pi\)
\(12\) −0.896677 1.48188i −0.258848 0.427782i
\(13\) 2.15362i 0.597307i 0.954362 + 0.298653i \(0.0965374\pi\)
−0.954362 + 0.298653i \(0.903463\pi\)
\(14\) 2.24334 1.40265i 0.599558 0.374874i
\(15\) 1.98679 3.61066i 0.512987 0.932267i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.69727 + 6.40386i 0.896720 + 1.55316i 0.831662 + 0.555283i \(0.187390\pi\)
0.0650579 + 0.997881i \(0.479277\pi\)
\(18\) 2.65754 + 1.39194i 0.626388 + 0.328083i
\(19\) −7.34038 4.23797i −1.68400 0.972258i −0.958956 0.283554i \(-0.908486\pi\)
−0.725043 0.688703i \(-0.758180\pi\)
\(20\) −2.37937 −0.532043
\(21\) −2.06663 + 4.09011i −0.450977 + 0.892536i
\(22\) −3.16467 −0.674711
\(23\) 0.866025 + 0.500000i 0.180579 + 0.104257i
\(24\) −0.0356051 1.73168i −0.00726787 0.353479i
\(25\) −0.330695 0.572780i −0.0661389 0.114556i
\(26\) −1.07681 + 1.86509i −0.211180 + 0.365774i
\(27\) −5.18627 + 0.320266i −0.998099 + 0.0616352i
\(28\) 2.64411 0.0930622i 0.499691 0.0175871i
\(29\) 7.43039i 1.37979i −0.723910 0.689894i \(-0.757657\pi\)
0.723910 0.689894i \(-0.242343\pi\)
\(30\) 3.52594 2.13352i 0.643745 0.389527i
\(31\) −6.86384 + 3.96284i −1.23278 + 0.711747i −0.967609 0.252454i \(-0.918762\pi\)
−0.265173 + 0.964201i \(0.585429\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 4.68967 2.83769i 0.816366 0.493979i
\(34\) 7.39454i 1.26815i
\(35\) 3.33742 + 5.33773i 0.564127 + 0.902241i
\(36\) 1.60553 + 2.53422i 0.267588 + 0.422371i
\(37\) −1.49395 + 2.58759i −0.245603 + 0.425397i −0.962301 0.271987i \(-0.912319\pi\)
0.716698 + 0.697384i \(0.245653\pi\)
\(38\) −4.23797 7.34038i −0.687490 1.19077i
\(39\) −0.0766799 3.72939i −0.0122786 0.597180i
\(40\) −2.06059 1.18968i −0.325808 0.188106i
\(41\) −5.77496 −0.901897 −0.450948 0.892550i \(-0.648914\pi\)
−0.450948 + 0.892550i \(0.648914\pi\)
\(42\) −3.83481 + 2.50882i −0.591725 + 0.387120i
\(43\) −9.96100 −1.51904 −0.759519 0.650485i \(-0.774566\pi\)
−0.759519 + 0.650485i \(0.774566\pi\)
\(44\) −2.74069 1.58234i −0.413174 0.238546i
\(45\) −3.31194 + 6.32326i −0.493714 + 0.942616i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −1.93117 + 3.34488i −0.281690 + 0.487901i −0.971801 0.235802i \(-0.924228\pi\)
0.690111 + 0.723703i \(0.257562\pi\)
\(48\) 0.835007 1.51749i 0.120523 0.219030i
\(49\) −3.91754 5.80111i −0.559649 0.828730i
\(50\) 0.661389i 0.0935345i
\(51\) −6.63052 10.9578i −0.928458 1.53440i
\(52\) −1.86509 + 1.07681i −0.258641 + 0.149327i
\(53\) 1.90180 1.09800i 0.261232 0.150822i −0.363664 0.931530i \(-0.618474\pi\)
0.624896 + 0.780708i \(0.285141\pi\)
\(54\) −4.65158 2.31578i −0.632999 0.315138i
\(55\) 7.52992i 1.01533i
\(56\) 2.33640 + 1.24146i 0.312215 + 0.165897i
\(57\) 12.8621 + 7.07748i 1.70363 + 0.937435i
\(58\) 3.71519 6.43491i 0.487829 0.844945i
\(59\) 4.33833 + 7.51421i 0.564802 + 0.978267i 0.997068 + 0.0765202i \(0.0243810\pi\)
−0.432266 + 0.901746i \(0.642286\pi\)
\(60\) 4.12031 0.0847177i 0.531930 0.0109370i
\(61\) −0.471560 0.272255i −0.0603771 0.0348587i 0.469508 0.882928i \(-0.344431\pi\)
−0.529885 + 0.848070i \(0.677765\pi\)
\(62\) −7.92568 −1.00656
\(63\) 3.43313 7.15637i 0.432534 0.901618i
\(64\) −1.00000 −0.125000
\(65\) −4.43773 2.56213i −0.550433 0.317793i
\(66\) 5.48022 0.112679i 0.674568 0.0138698i
\(67\) −2.25755 3.91019i −0.275804 0.477706i 0.694534 0.719460i \(-0.255611\pi\)
−0.970338 + 0.241754i \(0.922277\pi\)
\(68\) −3.69727 + 6.40386i −0.448360 + 0.776582i
\(69\) −1.51749 0.835007i −0.182684 0.100523i
\(70\) 0.221429 + 6.29132i 0.0264659 + 0.751956i
\(71\) 4.91507i 0.583311i 0.956523 + 0.291656i \(0.0942061\pi\)
−0.956523 + 0.291656i \(0.905794\pi\)
\(72\) 0.123314 + 2.99746i 0.0145327 + 0.353255i
\(73\) 7.56919 4.37008i 0.885907 0.511479i 0.0133056 0.999911i \(-0.495765\pi\)
0.872602 + 0.488433i \(0.162431\pi\)
\(74\) −2.58759 + 1.49395i −0.300801 + 0.173668i
\(75\) 0.593053 + 0.980100i 0.0684798 + 0.113172i
\(76\) 8.47594i 0.972258i
\(77\) 0.294512 + 8.36776i 0.0335627 + 0.953595i
\(78\) 1.79829 3.26809i 0.203616 0.370038i
\(79\) 1.40410 2.43197i 0.157973 0.273618i −0.776164 0.630531i \(-0.782837\pi\)
0.934138 + 0.356913i \(0.116171\pi\)
\(80\) −1.18968 2.06059i −0.133011 0.230381i
\(81\) 8.96959 0.739257i 0.996621 0.0821397i
\(82\) −5.00126 2.88748i −0.552297 0.318869i
\(83\) −10.7239 −1.17710 −0.588548 0.808462i \(-0.700300\pi\)
−0.588548 + 0.808462i \(0.700300\pi\)
\(84\) −4.57546 + 0.255299i −0.499223 + 0.0278554i
\(85\) −17.5943 −1.90837
\(86\) −8.62648 4.98050i −0.930217 0.537061i
\(87\) 0.264560 + 12.8671i 0.0283638 + 1.37950i
\(88\) −1.58234 2.74069i −0.168678 0.292158i
\(89\) −5.03800 + 8.72608i −0.534027 + 0.924962i 0.465182 + 0.885215i \(0.345989\pi\)
−0.999210 + 0.0397476i \(0.987345\pi\)
\(90\) −6.02985 + 3.82013i −0.635602 + 0.402677i
\(91\) 5.03172 + 2.67364i 0.527467 + 0.280273i
\(92\) 1.00000i 0.104257i
\(93\) 11.7449 7.10678i 1.21789 0.736938i
\(94\) −3.34488 + 1.93117i −0.344998 + 0.199185i
\(95\) 17.4655 10.0837i 1.79192 1.03457i
\(96\) 1.48188 0.896677i 0.151244 0.0915167i
\(97\) 5.10883i 0.518723i −0.965780 0.259361i \(-0.916488\pi\)
0.965780 0.259361i \(-0.0835121\pi\)
\(98\) −0.492134 6.98268i −0.0497131 0.705357i
\(99\) −8.01999 + 5.08096i −0.806039 + 0.510656i
\(100\) 0.330695 0.572780i 0.0330695 0.0572780i
\(101\) 3.98342 + 6.89948i 0.396365 + 0.686524i 0.993274 0.115785i \(-0.0369382\pi\)
−0.596910 + 0.802309i \(0.703605\pi\)
\(102\) −0.263284 12.8050i −0.0260690 1.26789i
\(103\) 2.46427 + 1.42275i 0.242812 + 0.140187i 0.616468 0.787380i \(-0.288563\pi\)
−0.373657 + 0.927567i \(0.621896\pi\)
\(104\) −2.15362 −0.211180
\(105\) −5.96941 9.12443i −0.582555 0.890453i
\(106\) 2.19601 0.213295
\(107\) 10.6647 + 6.15724i 1.03099 + 0.595243i 0.917268 0.398270i \(-0.130389\pi\)
0.113723 + 0.993513i \(0.463722\pi\)
\(108\) −2.87049 4.33131i −0.276213 0.416781i
\(109\) 5.35294 + 9.27157i 0.512719 + 0.888056i 0.999891 + 0.0147496i \(0.00469511\pi\)
−0.487172 + 0.873306i \(0.661972\pi\)
\(110\) 3.76496 6.52110i 0.358975 0.621763i
\(111\) 2.49491 4.53408i 0.236807 0.430356i
\(112\) 1.40265 + 2.24334i 0.132538 + 0.211976i
\(113\) 5.80529i 0.546116i 0.961998 + 0.273058i \(0.0880351\pi\)
−0.961998 + 0.273058i \(0.911965\pi\)
\(114\) 7.60019 + 12.5603i 0.711823 + 1.17638i
\(115\) −2.06059 + 1.18968i −0.192151 + 0.110939i
\(116\) 6.43491 3.71519i 0.597466 0.344947i
\(117\) 0.265571 + 6.45540i 0.0245520 + 0.596802i
\(118\) 8.67666i 0.798751i
\(119\) 19.5520 0.688152i 1.79233 0.0630828i
\(120\) 3.61066 + 1.98679i 0.329606 + 0.181368i
\(121\) −0.492421 + 0.852898i −0.0447655 + 0.0775362i
\(122\) −0.272255 0.471560i −0.0246488 0.0426930i
\(123\) 10.0004 0.205618i 0.901706 0.0185400i
\(124\) −6.86384 3.96284i −0.616391 0.355874i
\(125\) −10.3231 −0.923331
\(126\) 6.55136 4.48103i 0.583642 0.399202i
\(127\) 13.4437 1.19294 0.596468 0.802637i \(-0.296570\pi\)
0.596468 + 0.802637i \(0.296570\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 17.2493 0.354663i 1.51872 0.0312263i
\(130\) −2.56213 4.43773i −0.224713 0.389215i
\(131\) 5.20398 9.01356i 0.454674 0.787519i −0.543995 0.839088i \(-0.683089\pi\)
0.998669 + 0.0515697i \(0.0164224\pi\)
\(132\) 4.80235 + 2.64253i 0.417991 + 0.230002i
\(133\) −19.0144 + 11.8888i −1.64876 + 1.03089i
\(134\) 4.51510i 0.390045i
\(135\) 5.51009 11.0678i 0.474233 0.952566i
\(136\) −6.40386 + 3.69727i −0.549126 + 0.317038i
\(137\) −8.00856 + 4.62375i −0.684218 + 0.395033i −0.801442 0.598072i \(-0.795934\pi\)
0.117225 + 0.993105i \(0.462600\pi\)
\(138\) −0.896677 1.48188i −0.0763302 0.126146i
\(139\) 15.4050i 1.30663i 0.757085 + 0.653317i \(0.226623\pi\)
−0.757085 + 0.653317i \(0.773377\pi\)
\(140\) −2.95390 + 5.55916i −0.249650 + 0.469834i
\(141\) 3.22508 5.86104i 0.271601 0.493588i
\(142\) −2.45753 + 4.25657i −0.206232 + 0.357204i
\(143\) −3.40775 5.90240i −0.284970 0.493583i
\(144\) −1.39194 + 2.65754i −0.115995 + 0.221461i
\(145\) 15.3110 + 8.83981i 1.27151 + 0.734106i
\(146\) 8.74015 0.723340
\(147\) 6.99049 + 9.90621i 0.576566 + 0.817050i
\(148\) −2.98789 −0.245603
\(149\) 0.236480 + 0.136532i 0.0193732 + 0.0111851i 0.509655 0.860379i \(-0.329773\pi\)
−0.490282 + 0.871564i \(0.663106\pi\)
\(150\) 0.0235488 + 1.14532i 0.00192276 + 0.0935148i
\(151\) 9.96279 + 17.2561i 0.810760 + 1.40428i 0.912333 + 0.409450i \(0.134279\pi\)
−0.101572 + 0.994828i \(0.532387\pi\)
\(152\) 4.23797 7.34038i 0.343745 0.595384i
\(153\) 11.8721 + 18.7394i 0.959804 + 1.51499i
\(154\) −3.92882 + 7.39395i −0.316594 + 0.595821i
\(155\) 18.8581i 1.51472i
\(156\) 3.19141 1.93110i 0.255517 0.154612i
\(157\) 13.3104 7.68478i 1.06229 0.613312i 0.136223 0.990678i \(-0.456504\pi\)
0.926064 + 0.377366i \(0.123170\pi\)
\(158\) 2.43197 1.40410i 0.193477 0.111704i
\(159\) −3.25422 + 1.96911i −0.258077 + 0.156161i
\(160\) 2.37937i 0.188106i
\(161\) 2.24334 1.40265i 0.176800 0.110544i
\(162\) 8.13752 + 3.84458i 0.639344 + 0.302059i
\(163\) 9.22292 15.9746i 0.722395 1.25122i −0.237642 0.971353i \(-0.576375\pi\)
0.960037 0.279872i \(-0.0902921\pi\)
\(164\) −2.88748 5.00126i −0.225474 0.390533i
\(165\) 0.268104 + 13.0394i 0.0208719 + 1.01512i
\(166\) −9.28713 5.36193i −0.720821 0.416166i
\(167\) 7.53911 0.583394 0.291697 0.956511i \(-0.405780\pi\)
0.291697 + 0.956511i \(0.405780\pi\)
\(168\) −4.09011 2.06663i −0.315559 0.159444i
\(169\) 8.36192 0.643225
\(170\) −15.2371 8.79716i −1.16863 0.674712i
\(171\) −22.5251 11.7980i −1.72254 0.902216i
\(172\) −4.98050 8.62648i −0.379759 0.657763i
\(173\) −4.26112 + 7.38048i −0.323967 + 0.561127i −0.981303 0.192471i \(-0.938350\pi\)
0.657336 + 0.753598i \(0.271683\pi\)
\(174\) −6.20443 + 11.2755i −0.470357 + 0.854794i
\(175\) −1.74879 + 0.0615503i −0.132196 + 0.00465277i
\(176\) 3.16467i 0.238546i
\(177\) −7.78016 12.8578i −0.584793 0.966449i
\(178\) −8.72608 + 5.03800i −0.654047 + 0.377614i
\(179\) −0.0883741 + 0.0510228i −0.00660539 + 0.00381362i −0.503299 0.864112i \(-0.667881\pi\)
0.496694 + 0.867926i \(0.334547\pi\)
\(180\) −7.13207 + 0.293409i −0.531593 + 0.0218694i
\(181\) 8.37882i 0.622793i −0.950280 0.311396i \(-0.899203\pi\)
0.950280 0.311396i \(-0.100797\pi\)
\(182\) 3.02078 + 4.83130i 0.223915 + 0.358120i
\(183\) 0.826287 + 0.454671i 0.0610809 + 0.0336102i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) −3.55465 6.15683i −0.261343 0.452659i
\(186\) 13.7248 0.282195i 1.00635 0.0206915i
\(187\) −20.2661 11.7007i −1.48201 0.855636i
\(188\) −3.86233 −0.281690
\(189\) −5.69030 + 12.5148i −0.413908 + 0.910319i
\(190\) 20.1674 1.46310
\(191\) 8.85208 + 5.11075i 0.640514 + 0.369801i 0.784812 0.619733i \(-0.212759\pi\)
−0.144299 + 0.989534i \(0.546093\pi\)
\(192\) 1.73168 0.0356051i 0.124974 0.00256958i
\(193\) −4.57900 7.93107i −0.329604 0.570891i 0.652829 0.757505i \(-0.273582\pi\)
−0.982433 + 0.186614i \(0.940249\pi\)
\(194\) 2.55441 4.42437i 0.183396 0.317652i
\(195\) 7.77598 + 4.27879i 0.556849 + 0.306410i
\(196\) 3.06514 6.29324i 0.218938 0.449517i
\(197\) 11.1724i 0.795998i −0.917386 0.397999i \(-0.869705\pi\)
0.917386 0.397999i \(-0.130295\pi\)
\(198\) −9.48600 + 0.390248i −0.674140 + 0.0277337i
\(199\) −12.7608 + 7.36743i −0.904586 + 0.522263i −0.878685 0.477401i \(-0.841579\pi\)
−0.0259010 + 0.999665i \(0.508245\pi\)
\(200\) 0.572780 0.330695i 0.0405016 0.0233836i
\(201\) 4.04859 + 6.69084i 0.285566 + 0.471936i
\(202\) 7.96683i 0.560545i
\(203\) −17.3604 9.22455i −1.21846 0.647437i
\(204\) 6.17450 11.2211i 0.432301 0.785635i
\(205\) 6.87037 11.8998i 0.479848 0.831120i
\(206\) 1.42275 + 2.46427i 0.0991274 + 0.171694i
\(207\) 2.65754 + 1.39194i 0.184712 + 0.0967465i
\(208\) −1.86509 1.07681i −0.129321 0.0746633i
\(209\) 26.8236 1.85543
\(210\) −0.607449 10.8867i −0.0419180 0.751253i
\(211\) −8.68620 −0.597983 −0.298991 0.954256i \(-0.596650\pi\)
−0.298991 + 0.954256i \(0.596650\pi\)
\(212\) 1.90180 + 1.09800i 0.130616 + 0.0754112i
\(213\) −0.175002 8.51135i −0.0119909 0.583188i
\(214\) 6.15724 + 10.6647i 0.420900 + 0.729021i
\(215\) 11.8504 20.5256i 0.808193 1.39983i
\(216\) −0.320266 5.18627i −0.0217913 0.352881i
\(217\) 0.737581 + 20.9564i 0.0500703 + 1.42261i
\(218\) 10.7059i 0.725094i
\(219\) −12.9519 + 7.83710i −0.875206 + 0.529582i
\(220\) 6.52110 3.76496i 0.439653 0.253834i
\(221\) −13.7915 + 7.96251i −0.927715 + 0.535617i
\(222\) 4.42770 2.67917i 0.297168 0.179814i
\(223\) 23.8764i 1.59888i −0.600744 0.799442i \(-0.705129\pi\)
0.600744 0.799442i \(-0.294871\pi\)
\(224\) 0.0930622 + 2.64411i 0.00621798 + 0.176667i
\(225\) −1.06188 1.67611i −0.0707918 0.111741i
\(226\) −2.90265 + 5.02753i −0.193081 + 0.334426i
\(227\) 2.25177 + 3.90017i 0.149455 + 0.258864i 0.931026 0.364952i \(-0.118915\pi\)
−0.781571 + 0.623816i \(0.785581\pi\)
\(228\) 0.301787 + 14.6777i 0.0199863 + 0.972052i
\(229\) 11.5357 + 6.66014i 0.762300 + 0.440114i 0.830121 0.557583i \(-0.188271\pi\)
−0.0678208 + 0.997698i \(0.521605\pi\)
\(230\) −2.37937 −0.156891
\(231\) −0.807936 14.4798i −0.0531583 0.952703i
\(232\) 7.43039 0.487829
\(233\) 1.18764 + 0.685683i 0.0778048 + 0.0449206i 0.538398 0.842691i \(-0.319030\pi\)
−0.460593 + 0.887612i \(0.652363\pi\)
\(234\) −2.99771 + 5.72332i −0.195966 + 0.374145i
\(235\) −4.59496 7.95870i −0.299742 0.519168i
\(236\) −4.33833 + 7.51421i −0.282401 + 0.489133i
\(237\) −2.34487 + 4.26140i −0.152315 + 0.276808i
\(238\) 17.2766 + 9.18005i 1.11988 + 0.595054i
\(239\) 7.70669i 0.498504i −0.968439 0.249252i \(-0.919815\pi\)
0.968439 0.249252i \(-0.0801848\pi\)
\(240\) 2.13352 + 3.52594i 0.137718 + 0.227598i
\(241\) 23.0099 13.2848i 1.48220 0.855746i 0.482400 0.875951i \(-0.339765\pi\)
0.999796 + 0.0202045i \(0.00643172\pi\)
\(242\) −0.852898 + 0.492421i −0.0548264 + 0.0316540i
\(243\) −15.5062 + 1.59952i −0.994722 + 0.102610i
\(244\) 0.544511i 0.0348587i
\(245\) 16.6144 1.17097i 1.06145 0.0748104i
\(246\) 8.76341 + 4.82213i 0.558735 + 0.307448i
\(247\) 9.12698 15.8084i 0.580736 1.00586i
\(248\) −3.96284 6.86384i −0.251641 0.435854i
\(249\) 18.5703 0.381824i 1.17685 0.0241971i
\(250\) −8.94011 5.16157i −0.565422 0.326447i
\(251\) 15.6268 0.986354 0.493177 0.869929i \(-0.335835\pi\)
0.493177 + 0.869929i \(0.335835\pi\)
\(252\) 7.91416 0.605006i 0.498545 0.0381118i
\(253\) −3.16467 −0.198961
\(254\) 11.6426 + 6.72186i 0.730521 + 0.421767i
\(255\) 30.4678 0.626448i 1.90797 0.0392297i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.301189 0.521674i 0.0187876 0.0325411i −0.856479 0.516182i \(-0.827353\pi\)
0.875266 + 0.483641i \(0.160686\pi\)
\(258\) 15.1157 + 8.31751i 0.941061 + 0.517825i
\(259\) 4.19097 + 6.70285i 0.260414 + 0.416495i
\(260\) 5.12425i 0.317793i
\(261\) −0.916269 22.2723i −0.0567156 1.37862i
\(262\) 9.01356 5.20398i 0.556860 0.321503i
\(263\) −23.1327 + 13.3557i −1.42642 + 0.823545i −0.996836 0.0794805i \(-0.974674\pi\)
−0.429586 + 0.903026i \(0.641341\pi\)
\(264\) 2.83769 + 4.68967i 0.174648 + 0.288629i
\(265\) 5.22511i 0.320976i
\(266\) −22.4114 + 0.788790i −1.37413 + 0.0483638i
\(267\) 8.41354 15.2902i 0.514900 0.935745i
\(268\) 2.25755 3.91019i 0.137902 0.238853i
\(269\) 3.83960 + 6.65039i 0.234105 + 0.405481i 0.959012 0.283365i \(-0.0914508\pi\)
−0.724907 + 0.688846i \(0.758117\pi\)
\(270\) 10.3058 6.82996i 0.627190 0.415658i
\(271\) −11.2087 6.47133i −0.680878 0.393105i 0.119308 0.992857i \(-0.461932\pi\)
−0.800186 + 0.599752i \(0.795266\pi\)
\(272\) −7.39454 −0.448360
\(273\) −8.80855 4.45074i −0.533117 0.269371i
\(274\) −9.24749 −0.558661
\(275\) 1.81266 + 1.04654i 0.109308 + 0.0631087i
\(276\) −0.0356051 1.73168i −0.00214318 0.104235i
\(277\) 12.4936 + 21.6395i 0.750666 + 1.30019i 0.947500 + 0.319754i \(0.103600\pi\)
−0.196835 + 0.980437i \(0.563066\pi\)
\(278\) −7.70249 + 13.3411i −0.461965 + 0.800147i
\(279\) −20.0854 + 12.7249i −1.20248 + 0.761818i
\(280\) −5.33773 + 3.33742i −0.318990 + 0.199449i
\(281\) 1.18401i 0.0706320i 0.999376 + 0.0353160i \(0.0112438\pi\)
−0.999376 + 0.0353160i \(0.988756\pi\)
\(282\) 5.72352 3.46327i 0.340831 0.206235i
\(283\) 6.50760 3.75716i 0.386837 0.223340i −0.293952 0.955820i \(-0.594971\pi\)
0.680789 + 0.732480i \(0.261637\pi\)
\(284\) −4.25657 + 2.45753i −0.252581 + 0.145828i
\(285\) −29.8857 + 18.0836i −1.77027 + 1.07118i
\(286\) 6.81550i 0.403009i
\(287\) −7.16939 + 13.4926i −0.423196 + 0.796444i
\(288\) −2.53422 + 1.60553i −0.149331 + 0.0946065i
\(289\) −18.8396 + 32.6312i −1.10821 + 1.91948i
\(290\) 8.83981 + 15.3110i 0.519092 + 0.899093i
\(291\) 0.181900 + 8.84688i 0.0106632 + 0.518613i
\(292\) 7.56919 + 4.37008i 0.442954 + 0.255739i
\(293\) −19.9214 −1.16382 −0.581911 0.813253i \(-0.697695\pi\)
−0.581911 + 0.813253i \(0.697695\pi\)
\(294\) 1.10084 + 12.0743i 0.0642023 + 0.704186i
\(295\) −20.6450 −1.20200
\(296\) −2.58759 1.49395i −0.150401 0.0868338i
\(297\) 13.7072 9.08418i 0.795372 0.527118i
\(298\) 0.136532 + 0.236480i 0.00790906 + 0.0136989i
\(299\) −1.07681 + 1.86509i −0.0622735 + 0.107861i
\(300\) −0.552265 + 1.00365i −0.0318850 + 0.0579457i
\(301\) −12.3662 + 23.2729i −0.712776 + 1.34143i
\(302\) 19.9256i 1.14659i
\(303\) −7.14368 11.8059i −0.410394 0.678231i
\(304\) 7.34038 4.23797i 0.421000 0.243064i
\(305\) 1.12201 0.647796i 0.0642464 0.0370927i
\(306\) 0.911848 + 22.1649i 0.0521269 + 1.26708i
\(307\) 21.0638i 1.20217i 0.799184 + 0.601086i \(0.205265\pi\)
−0.799184 + 0.601086i \(0.794735\pi\)
\(308\) −7.09944 + 4.43893i −0.404528 + 0.252932i
\(309\) −4.31799 2.37601i −0.245642 0.135166i
\(310\) 9.42905 16.3316i 0.535534 0.927572i
\(311\) 6.81985 + 11.8123i 0.386718 + 0.669815i 0.992006 0.126191i \(-0.0402753\pi\)
−0.605288 + 0.796007i \(0.706942\pi\)
\(312\) 3.72939 0.0766799i 0.211135 0.00434115i
\(313\) −15.2224 8.78864i −0.860419 0.496763i 0.00373350 0.999993i \(-0.498812\pi\)
−0.864153 + 0.503230i \(0.832145\pi\)
\(314\) 15.3696 0.867354
\(315\) 10.6620 + 15.5881i 0.600737 + 0.878290i
\(316\) 2.80820 0.157973
\(317\) −23.7882 13.7341i −1.33608 0.771386i −0.349856 0.936803i \(-0.613770\pi\)
−0.986224 + 0.165417i \(0.947103\pi\)
\(318\) −3.80279 + 0.0781892i −0.213250 + 0.00438463i
\(319\) 11.7574 + 20.3644i 0.658287 + 1.14019i
\(320\) 1.18968 2.06059i 0.0665053 0.115191i
\(321\) −18.6870 10.2827i −1.04301 0.573923i
\(322\) 2.64411 0.0930622i 0.147351 0.00518616i
\(323\) 62.6757i 3.48737i
\(324\) 5.12501 + 7.39826i 0.284723 + 0.411015i
\(325\) 1.23355 0.712190i 0.0684250 0.0395052i
\(326\) 15.9746 9.22292i 0.884750 0.510810i
\(327\) −9.59973 15.8648i −0.530866 0.877328i
\(328\) 5.77496i 0.318869i
\(329\) 5.41751 + 8.66453i 0.298677 + 0.477691i
\(330\) −6.28754 + 11.4265i −0.346118 + 0.629011i
\(331\) −2.12473 + 3.68015i −0.116786 + 0.202279i −0.918492 0.395439i \(-0.870592\pi\)
0.801706 + 0.597718i \(0.203926\pi\)
\(332\) −5.36193 9.28713i −0.294274 0.509698i
\(333\) −4.15896 + 7.94043i −0.227910 + 0.435133i
\(334\) 6.52906 + 3.76955i 0.357254 + 0.206261i
\(335\) 10.7431 0.586958
\(336\) −2.50882 3.83481i −0.136868 0.209206i
\(337\) −34.5800 −1.88370 −0.941848 0.336040i \(-0.890912\pi\)
−0.941848 + 0.336040i \(0.890912\pi\)
\(338\) 7.24164 + 4.18096i 0.393893 + 0.227414i
\(339\) −0.206698 10.0529i −0.0112263 0.546000i
\(340\) −8.79716 15.2371i −0.477093 0.826350i
\(341\) 12.5411 21.7218i 0.679138 1.17630i
\(342\) −13.6083 21.4799i −0.735855 1.16150i
\(343\) −18.4172 + 1.95108i −0.994435 + 0.105349i
\(344\) 9.96100i 0.537061i
\(345\) 3.52594 2.13352i 0.189830 0.114865i
\(346\) −7.38048 + 4.26112i −0.396777 + 0.229079i
\(347\) −3.59047 + 2.07296i −0.192746 + 0.111282i −0.593268 0.805005i \(-0.702162\pi\)
0.400521 + 0.916287i \(0.368829\pi\)
\(348\) −11.0109 + 6.66266i −0.590249 + 0.357156i
\(349\) 31.4937i 1.68582i −0.538056 0.842909i \(-0.680841\pi\)
0.538056 0.842909i \(-0.319159\pi\)
\(350\) −1.54527 0.821090i −0.0825982 0.0438891i
\(351\) −0.689730 11.1693i −0.0368151 0.596171i
\(352\) 1.58234 2.74069i 0.0843388 0.146079i
\(353\) 16.9764 + 29.4040i 0.903563 + 1.56502i 0.822835 + 0.568280i \(0.192391\pi\)
0.0807276 + 0.996736i \(0.474276\pi\)
\(354\) −0.308934 15.0252i −0.0164196 0.798582i
\(355\) −10.1280 5.84738i −0.537536 0.310347i
\(356\) −10.0760 −0.534027
\(357\) −33.8334 + 1.88781i −1.79065 + 0.0999138i
\(358\) −0.102046 −0.00539328
\(359\) 14.0407 + 8.10639i 0.741039 + 0.427839i 0.822447 0.568842i \(-0.192608\pi\)
−0.0814082 + 0.996681i \(0.525942\pi\)
\(360\) −6.32326 3.31194i −0.333265 0.174554i
\(361\) 26.4208 + 45.7622i 1.39057 + 2.40854i
\(362\) 4.18941 7.25627i 0.220190 0.381381i
\(363\) 0.822350 1.49448i 0.0431622 0.0784400i
\(364\) 0.200421 + 5.69442i 0.0105049 + 0.298468i
\(365\) 20.7960i 1.08851i
\(366\) 0.488250 + 0.806900i 0.0255213 + 0.0421773i
\(367\) 8.33538 4.81244i 0.435104 0.251207i −0.266415 0.963858i \(-0.585839\pi\)
0.701518 + 0.712651i \(0.252506\pi\)
\(368\) −0.866025 + 0.500000i −0.0451447 + 0.0260643i
\(369\) −17.3102 + 0.712131i −0.901134 + 0.0370721i
\(370\) 7.10929i 0.369595i
\(371\) −0.204365 5.80650i −0.0106101 0.301458i
\(372\) 12.0271 + 6.61800i 0.623576 + 0.343127i
\(373\) −7.73610 + 13.3993i −0.400560 + 0.693791i −0.993794 0.111240i \(-0.964518\pi\)
0.593233 + 0.805031i \(0.297851\pi\)
\(374\) −11.7007 20.2661i −0.605026 1.04794i
\(375\) 17.8764 0.367557i 0.923135 0.0189806i
\(376\) −3.34488 1.93117i −0.172499 0.0995923i
\(377\) 16.0022 0.824157
\(378\) −11.1853 + 7.99300i −0.575312 + 0.411115i
\(379\) 28.2401 1.45060 0.725298 0.688435i \(-0.241702\pi\)
0.725298 + 0.688435i \(0.241702\pi\)
\(380\) 17.4655 + 10.0837i 0.895960 + 0.517283i
\(381\) −23.2803 + 0.478665i −1.19268 + 0.0245228i
\(382\) 5.11075 + 8.85208i 0.261489 + 0.452912i
\(383\) −13.6450 + 23.6339i −0.697229 + 1.20764i 0.272194 + 0.962242i \(0.412251\pi\)
−0.969423 + 0.245394i \(0.921083\pi\)
\(384\) 1.51749 + 0.835007i 0.0774389 + 0.0426113i
\(385\) −17.5929 9.34812i −0.896618 0.476424i
\(386\) 9.15801i 0.466130i
\(387\) −29.8577 + 1.22833i −1.51775 + 0.0624394i
\(388\) 4.42437 2.55441i 0.224614 0.129681i
\(389\) −12.4398 + 7.18213i −0.630724 + 0.364148i −0.781032 0.624491i \(-0.785307\pi\)
0.150309 + 0.988639i \(0.451973\pi\)
\(390\) 4.59480 + 7.59353i 0.232667 + 0.384513i
\(391\) 7.39454i 0.373958i
\(392\) 5.80111 3.91754i 0.293000 0.197866i
\(393\) −8.69073 + 15.7939i −0.438389 + 0.796699i
\(394\) 5.58618 9.67556i 0.281428 0.487447i
\(395\) 3.34087 + 5.78655i 0.168097 + 0.291153i
\(396\) −8.41024 4.40503i −0.422630 0.221361i
\(397\) −7.53542 4.35058i −0.378192 0.218349i 0.298839 0.954303i \(-0.403401\pi\)
−0.677031 + 0.735954i \(0.736734\pi\)
\(398\) −14.7349 −0.738592
\(399\) 32.5037 21.2647i 1.62722 1.06456i
\(400\) 0.661389 0.0330695
\(401\) −16.0880 9.28840i −0.803396 0.463841i 0.0412616 0.999148i \(-0.486862\pi\)
−0.844657 + 0.535308i \(0.820196\pi\)
\(402\) 0.160761 + 7.81873i 0.00801802 + 0.389963i
\(403\) −8.53445 14.7821i −0.425131 0.736349i
\(404\) −3.98342 + 6.89948i −0.198182 + 0.343262i
\(405\) −9.14766 + 19.3621i −0.454551 + 0.962113i
\(406\) −10.4222 16.6689i −0.517247 0.827263i
\(407\) 9.45570i 0.468702i
\(408\) 10.9578 6.63052i 0.542493 0.328259i
\(409\) −21.1380 + 12.2040i −1.04520 + 0.603449i −0.921303 0.388845i \(-0.872874\pi\)
−0.123902 + 0.992295i \(0.539541\pi\)
\(410\) 11.8998 6.87037i 0.587691 0.339303i
\(411\) 13.7037 8.29202i 0.675953 0.409015i
\(412\) 2.84549i 0.140187i
\(413\) 22.9421 0.807469i 1.12891 0.0397330i
\(414\) 1.60553 + 2.53422i 0.0789073 + 0.124550i
\(415\) 12.7580 22.0975i 0.626265 1.08472i
\(416\) −1.07681 1.86509i −0.0527949 0.0914435i
\(417\) −0.548497 26.6766i −0.0268600 1.30636i
\(418\) 23.2299 + 13.4118i 1.13621 + 0.655993i
\(419\) 24.2366 1.18403 0.592017 0.805926i \(-0.298332\pi\)
0.592017 + 0.805926i \(0.298332\pi\)
\(420\) 4.91728 9.73188i 0.239939 0.474867i
\(421\) 10.2721 0.500630 0.250315 0.968164i \(-0.419466\pi\)
0.250315 + 0.968164i \(0.419466\pi\)
\(422\) −7.52247 4.34310i −0.366188 0.211419i
\(423\) −5.37614 + 10.2643i −0.261397 + 0.499067i
\(424\) 1.09800 + 1.90180i 0.0533238 + 0.0923595i
\(425\) 2.44533 4.23544i 0.118616 0.205449i
\(426\) 4.10412 7.45855i 0.198845 0.361368i
\(427\) −1.22152 + 0.763759i −0.0591136 + 0.0369609i
\(428\) 12.3145i 0.595243i
\(429\) 6.11131 + 10.0998i 0.295057 + 0.487621i
\(430\) 20.5256 11.8504i 0.989830 0.571479i
\(431\) 2.01532 1.16355i 0.0970747 0.0560461i −0.450677 0.892687i \(-0.648817\pi\)
0.547751 + 0.836641i \(0.315484\pi\)
\(432\) 2.31578 4.65158i 0.111418 0.223799i
\(433\) 6.88151i 0.330704i 0.986235 + 0.165352i \(0.0528760\pi\)
−0.986235 + 0.165352i \(0.947124\pi\)
\(434\) −9.83944 + 18.5176i −0.472308 + 0.888872i
\(435\) −26.8286 14.7626i −1.28633 0.707813i
\(436\) −5.35294 + 9.27157i −0.256360 + 0.444028i
\(437\) −4.23797 7.34038i −0.202730 0.351138i
\(438\) −15.1352 + 0.311194i −0.723187 + 0.0148694i
\(439\) 30.2117 + 17.4427i 1.44192 + 0.832496i 0.997978 0.0635577i \(-0.0202447\pi\)
0.443946 + 0.896053i \(0.353578\pi\)
\(440\) 7.52992 0.358975
\(441\) −12.4580 16.9055i −0.593240 0.805025i
\(442\) −15.9250 −0.757476
\(443\) 7.48212 + 4.31980i 0.355486 + 0.205240i 0.667099 0.744969i \(-0.267536\pi\)
−0.311613 + 0.950209i \(0.600869\pi\)
\(444\) 5.17409 0.106384i 0.245551 0.00504878i
\(445\) −11.9873 20.7625i −0.568251 0.984239i
\(446\) 11.9382 20.6776i 0.565291 0.979112i
\(447\) −0.414369 0.228010i −0.0195990 0.0107845i
\(448\) −1.24146 + 2.33640i −0.0586536 + 0.110385i
\(449\) 11.9544i 0.564162i −0.959391 0.282081i \(-0.908975\pi\)
0.959391 0.282081i \(-0.0910247\pi\)
\(450\) −0.0815584 1.98249i −0.00384470 0.0934555i
\(451\) 15.8274 9.13793i 0.745281 0.430288i
\(452\) −5.02753 + 2.90265i −0.236475 + 0.136529i
\(453\) −17.8668 29.5273i −0.839456 1.38731i
\(454\) 4.50353i 0.211361i
\(455\) −11.4954 + 7.18754i −0.538914 + 0.336957i
\(456\) −7.07748 + 12.8621i −0.331433 + 0.602324i
\(457\) 4.74729 8.22255i 0.222069 0.384634i −0.733367 0.679833i \(-0.762052\pi\)
0.955436 + 0.295198i \(0.0953857\pi\)
\(458\) 6.66014 + 11.5357i 0.311208 + 0.539028i
\(459\) −21.2260 32.0281i −0.990744 1.49494i
\(460\) −2.06059 1.18968i −0.0960756 0.0554693i
\(461\) 11.3596 0.529072 0.264536 0.964376i \(-0.414781\pi\)
0.264536 + 0.964376i \(0.414781\pi\)
\(462\) 6.54022 12.9439i 0.304279 0.602203i
\(463\) −0.505861 −0.0235094 −0.0117547 0.999931i \(-0.503742\pi\)
−0.0117547 + 0.999931i \(0.503742\pi\)
\(464\) 6.43491 + 3.71519i 0.298733 + 0.172474i
\(465\) 0.671445 + 32.6563i 0.0311375 + 1.51440i
\(466\) 0.685683 + 1.18764i 0.0317637 + 0.0550163i
\(467\) −5.68642 + 9.84917i −0.263136 + 0.455765i −0.967074 0.254497i \(-0.918090\pi\)
0.703937 + 0.710262i \(0.251424\pi\)
\(468\) −5.45775 + 3.45769i −0.252285 + 0.159832i
\(469\) −11.9384 + 0.420186i −0.551266 + 0.0194024i
\(470\) 9.18991i 0.423899i
\(471\) −22.7758 + 13.7815i −1.04946 + 0.635019i
\(472\) −7.51421 + 4.33833i −0.345869 + 0.199688i
\(473\) 27.3000 15.7617i 1.25525 0.724722i
\(474\) −4.16141 + 2.51805i −0.191140 + 0.115658i
\(475\) 5.60590i 0.257216i
\(476\) 10.3720 + 16.5885i 0.475398 + 0.760331i
\(477\) 5.56517 3.52575i 0.254812 0.161433i
\(478\) 3.85335 6.67419i 0.176248 0.305270i
\(479\) −19.5610 33.8807i −0.893767 1.54805i −0.835324 0.549758i \(-0.814720\pi\)
−0.0584429 0.998291i \(-0.518614\pi\)
\(480\) 0.0847177 + 4.12031i 0.00386682 + 0.188066i
\(481\) −5.57268 3.21739i −0.254093 0.146700i
\(482\) 26.5695 1.21021
\(483\) −3.83481 + 2.50882i −0.174490 + 0.114155i
\(484\) −0.984842 −0.0447655
\(485\) 10.5272 + 6.07789i 0.478016 + 0.275983i
\(486\) −14.2285 6.36786i −0.645418 0.288852i
\(487\) −12.9102 22.3612i −0.585018 1.01328i −0.994873 0.101130i \(-0.967754\pi\)
0.409855 0.912151i \(-0.365579\pi\)
\(488\) 0.272255 0.471560i 0.0123244 0.0213465i
\(489\) −15.4024 + 27.9913i −0.696521 + 1.26581i
\(490\) 14.9739 + 7.29309i 0.676454 + 0.329468i
\(491\) 27.9815i 1.26279i 0.775462 + 0.631394i \(0.217517\pi\)
−0.775462 + 0.631394i \(0.782483\pi\)
\(492\) 5.17827 + 8.55779i 0.233455 + 0.385815i
\(493\) 47.5832 27.4722i 2.14304 1.23728i
\(494\) 15.8084 9.12698i 0.711253 0.410642i
\(495\) −0.928543 22.5707i −0.0417349 1.01448i
\(496\) 7.92568i 0.355874i
\(497\) 11.4836 + 6.10187i 0.515109 + 0.273706i
\(498\) 16.2733 + 8.95450i 0.729224 + 0.401261i
\(499\) 0.270193 0.467987i 0.0120955 0.0209500i −0.859914 0.510438i \(-0.829483\pi\)
0.872010 + 0.489488i \(0.162816\pi\)
\(500\) −5.16157 8.94011i −0.230833 0.399814i
\(501\) −13.0554 + 0.268431i −0.583270 + 0.0119926i
\(502\) 13.5332 + 7.81340i 0.604016 + 0.348729i
\(503\) 19.0928 0.851304 0.425652 0.904887i \(-0.360045\pi\)
0.425652 + 0.904887i \(0.360045\pi\)
\(504\) 7.15637 + 3.43313i 0.318770 + 0.152924i
\(505\) −18.9560 −0.843532
\(506\) −2.74069 1.58234i −0.121838 0.0703434i
\(507\) −14.4802 + 0.297727i −0.643089 + 0.0132225i
\(508\) 6.72186 + 11.6426i 0.298234 + 0.516557i
\(509\) −8.43371 + 14.6076i −0.373818 + 0.647471i −0.990149 0.140016i \(-0.955285\pi\)
0.616332 + 0.787487i \(0.288618\pi\)
\(510\) 26.6991 + 14.6914i 1.18226 + 0.650546i
\(511\) −0.813378 23.1100i −0.0359817 1.02232i
\(512\) 1.00000i 0.0441942i
\(513\) 39.4265 + 19.6284i 1.74072 + 0.866615i
\(514\) 0.521674 0.301189i 0.0230101 0.0132849i
\(515\) −5.86340 + 3.38524i −0.258372 + 0.149171i
\(516\) 8.93180 + 14.7610i 0.393201 + 0.649817i
\(517\) 12.2230i 0.537568i
\(518\) 0.278060 + 7.90033i 0.0122173 + 0.347120i
\(519\) 7.11613 12.9324i 0.312364 0.567668i
\(520\) 2.56213 4.43773i 0.112357 0.194607i
\(521\) −21.7825 37.7285i −0.954310 1.65291i −0.735939 0.677048i \(-0.763259\pi\)
−0.218371 0.975866i \(-0.570074\pi\)
\(522\) 10.3427 19.7465i 0.452686 0.864282i
\(523\) 13.8025 + 7.96886i 0.603540 + 0.348454i 0.770433 0.637521i \(-0.220040\pi\)
−0.166893 + 0.985975i \(0.553374\pi\)
\(524\) 10.4080 0.454674
\(525\) 3.02616 0.168852i 0.132072 0.00736929i
\(526\) −26.7113 −1.16467
\(527\) −50.7549 29.3034i −2.21092 1.27648i
\(528\) 0.112679 + 5.48022i 0.00490371 + 0.238496i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) −2.61255 + 4.52508i −0.113482 + 0.196557i
\(531\) 13.9306 + 21.9886i 0.604536 + 0.954224i
\(532\) −19.8032 10.5226i −0.858578 0.456211i
\(533\) 12.4371i 0.538709i
\(534\) 14.9314 9.03493i 0.646147 0.390980i
\(535\) −25.3751 + 14.6503i −1.09706 + 0.633389i
\(536\) 3.91019 2.25755i 0.168895 0.0975114i
\(537\) 0.151219 0.0915020i 0.00652560 0.00394860i
\(538\) 7.67921i 0.331074i
\(539\) 19.9161 + 9.70016i 0.857846 + 0.417816i
\(540\) 12.3400 0.762030i 0.531031 0.0327925i
\(541\) 1.28371 2.22346i 0.0551911 0.0955939i −0.837110 0.547035i \(-0.815757\pi\)
0.892301 + 0.451441i \(0.149090\pi\)
\(542\) −6.47133 11.2087i −0.277967 0.481453i
\(543\) 0.298329 + 14.5095i 0.0128025 + 0.622661i
\(544\) −6.40386 3.69727i −0.274563 0.158519i
\(545\) −25.4732 −1.09115
\(546\) −5.40305 8.25873i −0.231229 0.353441i
\(547\) 22.3183 0.954263 0.477132 0.878832i \(-0.341676\pi\)
0.477132 + 0.878832i \(0.341676\pi\)
\(548\) −8.00856 4.62375i −0.342109 0.197517i
\(549\) −1.44706 0.757926i −0.0617589 0.0323475i
\(550\) 1.04654 + 1.81266i 0.0446246 + 0.0772921i
\(551\) −31.4898 + 54.5419i −1.34151 + 2.32356i
\(552\) 0.835007 1.51749i 0.0355403 0.0645885i
\(553\) −3.93892 6.29974i −0.167500 0.267892i
\(554\) 24.9871i 1.06160i
\(555\) 6.37474 + 10.5351i 0.270593 + 0.447191i
\(556\) −13.3411 + 7.70249i −0.565789 + 0.326658i
\(557\) −38.0232 + 21.9527i −1.61110 + 0.930166i −0.621978 + 0.783034i \(0.713671\pi\)
−0.989117 + 0.147132i \(0.952996\pi\)
\(558\) −23.7569 + 0.977345i −1.00571 + 0.0413743i
\(559\) 21.4522i 0.907331i
\(560\) −6.29132 + 0.221429i −0.265857 + 0.00935709i
\(561\) 35.5111 + 19.5403i 1.49928 + 0.824991i
\(562\) −0.592004 + 1.02538i −0.0249722 + 0.0432531i
\(563\) −20.3426 35.2344i −0.857339 1.48495i −0.874458 0.485101i \(-0.838783\pi\)
0.0171193 0.999853i \(-0.494550\pi\)
\(564\) 6.68835 0.137519i 0.281630 0.00579059i
\(565\) −11.9623 6.90646i −0.503259 0.290557i
\(566\) 7.51433 0.315851
\(567\) 9.40821 21.8743i 0.395108 0.918635i
\(568\) −4.91507 −0.206232
\(569\) −1.64947 0.952322i −0.0691494 0.0399234i 0.465027 0.885297i \(-0.346045\pi\)
−0.534176 + 0.845373i \(0.679378\pi\)
\(570\) −34.9236 + 0.718063i −1.46279 + 0.0300763i
\(571\) 9.96302 + 17.2565i 0.416939 + 0.722160i 0.995630 0.0933870i \(-0.0297694\pi\)
−0.578690 + 0.815547i \(0.696436\pi\)
\(572\) 3.40775 5.90240i 0.142485 0.246792i
\(573\) −15.5110 8.53503i −0.647980 0.356556i
\(574\) −12.9552 + 8.10025i −0.540739 + 0.338098i
\(575\) 0.661389i 0.0275818i
\(576\) −2.99746 + 0.123314i −0.124894 + 0.00513807i
\(577\) 33.6543 19.4303i 1.40105 0.808895i 0.406547 0.913630i \(-0.366733\pi\)
0.994500 + 0.104735i \(0.0333996\pi\)
\(578\) −32.6312 + 18.8396i −1.35728 + 0.783624i
\(579\) 8.21178 + 13.5711i 0.341270 + 0.563995i
\(580\) 17.6796i 0.734106i
\(581\) −13.3133 + 25.0552i −0.552327 + 1.03947i
\(582\) −4.26591 + 7.75257i −0.176828 + 0.321354i
\(583\) −3.47482 + 6.01857i −0.143913 + 0.249264i
\(584\) 4.37008 + 7.56919i 0.180835 + 0.313215i
\(585\) −13.6179 7.13265i −0.563030 0.294899i
\(586\) −17.2524 9.96070i −0.712692 0.411473i
\(587\) 38.1409 1.57425 0.787123 0.616797i \(-0.211570\pi\)
0.787123 + 0.616797i \(0.211570\pi\)
\(588\) −5.08378 + 11.0071i −0.209652 + 0.453923i
\(589\) 67.1776 2.76801
\(590\) −17.8791 10.3225i −0.736069 0.424970i
\(591\) 0.397794 + 19.3470i 0.0163630 + 0.795830i
\(592\) −1.49395 2.58759i −0.0614008 0.106349i
\(593\) 20.2256 35.0317i 0.830565 1.43858i −0.0670256 0.997751i \(-0.521351\pi\)
0.897591 0.440830i \(-0.145316\pi\)
\(594\) 16.4129 1.01354i 0.673428 0.0415859i
\(595\) −21.8427 + 41.1074i −0.895463 + 1.68524i
\(596\) 0.273063i 0.0111851i
\(597\) 21.8353 13.2124i 0.893659 0.540748i
\(598\) −1.86509 + 1.07681i −0.0762692 + 0.0440340i
\(599\) −2.47759 + 1.43043i −0.101231 + 0.0584460i −0.549761 0.835322i \(-0.685281\pi\)
0.448530 + 0.893768i \(0.351948\pi\)
\(600\) −0.980100 + 0.593053i −0.0400124 + 0.0242113i
\(601\) 22.3918i 0.913380i −0.889626 0.456690i \(-0.849035\pi\)
0.889626 0.456690i \(-0.150965\pi\)
\(602\) −22.3459 + 13.9718i −0.910751 + 0.569448i
\(603\) −7.24911 11.4423i −0.295207 0.465966i
\(604\) −9.96279 + 17.2561i −0.405380 + 0.702139i
\(605\) −1.17165 2.02936i −0.0476344 0.0825051i
\(606\) −0.283660 13.7960i −0.0115229 0.560426i
\(607\) −22.0852 12.7509i −0.896413 0.517544i −0.0203780 0.999792i \(-0.506487\pi\)
−0.876035 + 0.482248i \(0.839820\pi\)
\(608\) 8.47594 0.343745
\(609\) 30.3911 + 15.3559i 1.23151 + 0.622252i
\(610\) 1.29559 0.0524569
\(611\) −7.20360 4.15900i −0.291426 0.168255i
\(612\) −10.2928 + 19.6513i −0.416060 + 0.794355i
\(613\) 14.6707 + 25.4104i 0.592545 + 1.02632i 0.993888 + 0.110390i \(0.0352101\pi\)
−0.401343 + 0.915928i \(0.631457\pi\)
\(614\) −10.5319 + 18.2418i −0.425032 + 0.736177i
\(615\) −11.4736 + 20.8514i −0.462661 + 0.840809i
\(616\) −8.36776 + 0.294512i −0.337147 + 0.0118662i
\(617\) 13.9616i 0.562074i 0.959697 + 0.281037i \(0.0906784\pi\)
−0.959697 + 0.281037i \(0.909322\pi\)
\(618\) −2.55149 4.21668i −0.102636 0.169620i
\(619\) −19.9475 + 11.5167i −0.801757 + 0.462894i −0.844085 0.536209i \(-0.819856\pi\)
0.0423285 + 0.999104i \(0.486522\pi\)
\(620\) 16.3316 9.42905i 0.655893 0.378680i
\(621\) −4.65158 2.31578i −0.186661 0.0929290i
\(622\) 13.6397i 0.546902i
\(623\) 14.1331 + 22.6039i 0.566232 + 0.905606i
\(624\) 3.26809 + 1.79829i 0.130828 + 0.0719891i
\(625\) 13.9348 24.1357i 0.557390 0.965428i
\(626\) −8.78864 15.2224i −0.351265 0.608408i
\(627\) −46.4500 + 0.955058i −1.85503 + 0.0381413i
\(628\) 13.3104 + 7.68478i 0.531144 + 0.306656i
\(629\) −22.0941 −0.880949
\(630\) 1.43953 + 18.8307i 0.0573523 + 0.750233i
\(631\) −27.1666 −1.08149 −0.540744 0.841187i \(-0.681857\pi\)
−0.540744 + 0.841187i \(0.681857\pi\)
\(632\) 2.43197 + 1.40410i 0.0967386 + 0.0558520i
\(633\) 15.0418 0.309273i 0.597856 0.0122925i
\(634\) −13.7341 23.7882i −0.545452 0.944751i
\(635\) −15.9938 + 27.7020i −0.634693 + 1.09932i
\(636\) −3.33241 1.83368i −0.132139 0.0727103i
\(637\) 12.4934 8.43689i 0.495006 0.334282i
\(638\) 23.5148i 0.930958i
\(639\) 0.606096 + 14.7327i 0.0239768 + 0.582818i
\(640\) 2.06059 1.18968i 0.0814521 0.0470264i
\(641\) −9.92364 + 5.72941i −0.391960 + 0.226298i −0.683009 0.730410i \(-0.739329\pi\)
0.291049 + 0.956708i \(0.405996\pi\)
\(642\) −11.0421 18.2486i −0.435798 0.720214i
\(643\) 7.46184i 0.294266i −0.989117 0.147133i \(-0.952995\pi\)
0.989117 0.147133i \(-0.0470045\pi\)
\(644\) 2.33640 + 1.24146i 0.0920671 + 0.0489205i
\(645\) −19.7904 + 35.9657i −0.779246 + 1.41615i
\(646\) 31.3379 54.2788i 1.23297 2.13557i
\(647\) 11.1984 + 19.3962i 0.440255 + 0.762543i 0.997708 0.0676648i \(-0.0215548\pi\)
−0.557454 + 0.830208i \(0.688222\pi\)
\(648\) 0.739257 + 8.96959i 0.0290408 + 0.352359i
\(649\) −23.7800 13.7294i −0.933447 0.538926i
\(650\) 1.42438 0.0558688
\(651\) −2.02341 36.2636i −0.0793039 1.42128i
\(652\) 18.4458 0.722395
\(653\) 32.5247 + 18.7781i 1.27279 + 0.734846i 0.975512 0.219945i \(-0.0705880\pi\)
0.297278 + 0.954791i \(0.403921\pi\)
\(654\) −0.381185 18.5392i −0.0149055 0.724941i
\(655\) 12.3822 + 21.4466i 0.483812 + 0.837987i
\(656\) 2.88748 5.00126i 0.112737 0.195266i
\(657\) 22.1495 14.0325i 0.864134 0.547461i
\(658\) 0.359437 + 10.2125i 0.0140123 + 0.398123i
\(659\) 29.2622i 1.13989i 0.821682 + 0.569947i \(0.193036\pi\)
−0.821682 + 0.569947i \(0.806964\pi\)
\(660\) −11.1584 + 6.75191i −0.434342 + 0.262818i
\(661\) −27.3483 + 15.7895i −1.06372 + 0.614142i −0.926460 0.376393i \(-0.877164\pi\)
−0.137264 + 0.990534i \(0.543831\pi\)
\(662\) −3.68015 + 2.12473i −0.143033 + 0.0825801i
\(663\) 23.5990 14.2796i 0.916509 0.554574i
\(664\) 10.7239i 0.416166i
\(665\) −1.87682 53.3249i −0.0727800 2.06785i
\(666\) −7.57199 + 4.79714i −0.293408 + 0.185885i
\(667\) 3.71519 6.43491i 0.143853 0.249161i
\(668\) 3.76955 + 6.52906i 0.145848 + 0.252617i
\(669\) 0.850123 + 41.3464i 0.0328677 + 1.59855i
\(670\) 9.30379 + 5.37154i 0.359437 + 0.207521i
\(671\) 1.72320 0.0665233
\(672\) −0.255299 4.57546i −0.00984835 0.176502i
\(673\) 11.0049 0.424208 0.212104 0.977247i \(-0.431968\pi\)
0.212104 + 0.977247i \(0.431968\pi\)
\(674\) −29.9472 17.2900i −1.15352 0.665987i
\(675\) 1.89851 + 2.86468i 0.0730738 + 0.110262i
\(676\) 4.18096 + 7.24164i 0.160806 + 0.278525i
\(677\) 14.6665 25.4031i 0.563679 0.976321i −0.433492 0.901157i \(-0.642719\pi\)
0.997171 0.0751634i \(-0.0239478\pi\)
\(678\) 4.84746 8.80944i 0.186166 0.338325i
\(679\) −11.9363 6.34242i −0.458072 0.243400i
\(680\) 17.5943i 0.674712i
\(681\) −4.03822 6.67370i −0.154745 0.255737i
\(682\) 21.7218 12.5411i 0.831771 0.480223i
\(683\) −12.2442 + 7.06921i −0.468513 + 0.270496i −0.715617 0.698493i \(-0.753854\pi\)
0.247104 + 0.968989i \(0.420521\pi\)
\(684\) −1.04520 25.4063i −0.0399642 0.971436i
\(685\) 22.0032i 0.840698i
\(686\) −16.9253 7.51891i −0.646211 0.287073i
\(687\) −20.2133 11.1225i −0.771186 0.424351i
\(688\) 4.98050 8.62648i 0.189880 0.328881i
\(689\) 2.36468 + 4.09575i 0.0900872 + 0.156036i
\(690\) 4.12031 0.0847177i 0.156858 0.00322515i
\(691\) 1.53052 + 0.883644i 0.0582236 + 0.0336154i 0.528829 0.848728i \(-0.322631\pi\)
−0.470606 + 0.882344i \(0.655965\pi\)
\(692\) −8.52224 −0.323967
\(693\) 1.91465 + 25.0457i 0.0727315 + 0.951409i
\(694\) −4.14591 −0.157377
\(695\) −31.7434 18.3271i −1.20410 0.695185i
\(696\) −12.8671 + 0.264560i −0.487726 + 0.0100281i
\(697\) −21.3516 36.9820i −0.808748 1.40079i
\(698\) 15.7468 27.2743i 0.596027 1.03235i
\(699\) −2.08103 1.14510i −0.0787117 0.0433117i
\(700\) −0.927698 1.48372i −0.0350637 0.0560793i
\(701\) 10.6445i 0.402035i −0.979588 0.201018i \(-0.935575\pi\)
0.979588 0.201018i \(-0.0644249\pi\)
\(702\) 4.98731 10.0177i 0.188234 0.378095i
\(703\) 21.9323 12.6626i 0.827191 0.477579i
\(704\) 2.74069 1.58234i 0.103294 0.0596366i
\(705\) 8.24039 + 13.6184i 0.310351 + 0.512897i
\(706\) 33.9528i 1.27783i
\(707\) 21.0652 0.741412i 0.792239 0.0278836i
\(708\) 7.24508 13.1667i 0.272287 0.494835i
\(709\) −16.9546 + 29.3663i −0.636745 + 1.10287i 0.349398 + 0.936974i \(0.386386\pi\)
−0.986143 + 0.165900i \(0.946947\pi\)
\(710\) −5.84738 10.1280i −0.219448 0.380095i
\(711\) 3.90884 7.46289i 0.146593 0.279880i
\(712\) −8.72608 5.03800i −0.327024 0.188807i
\(713\) −7.92568 −0.296819
\(714\) −30.2445 15.2818i −1.13187 0.571907i
\(715\) 16.2166 0.606466
\(716\) −0.0883741 0.0510228i −0.00330269 0.00190681i
\(717\) 0.274398 + 13.3456i 0.0102476 + 0.498399i
\(718\) 8.10639 + 14.0407i 0.302528 + 0.523993i
\(719\) 10.7366 18.5963i 0.400407 0.693526i −0.593368 0.804931i \(-0.702202\pi\)
0.993775 + 0.111406i \(0.0355354\pi\)
\(720\) −3.82013 6.02985i −0.142368 0.224719i
\(721\) 6.38340 3.99123i 0.237730 0.148641i
\(722\) 52.8416i 1.96656i
\(723\) −39.3728 + 23.8243i −1.46429 + 0.886035i
\(724\) 7.25627 4.18941i 0.269677 0.155698i
\(725\) −4.25598 + 2.45719i −0.158063 + 0.0912577i
\(726\) 1.45942 0.883085i 0.0541641 0.0327744i
\(727\) 31.6065i 1.17222i −0.810231 0.586110i \(-0.800659\pi\)
0.810231 0.586110i \(-0.199341\pi\)
\(728\) −2.67364 + 5.03172i −0.0990916 + 0.186488i
\(729\) 26.7949 3.32197i 0.992402 0.123036i
\(730\) −10.3980 + 18.0099i −0.384848 + 0.666576i
\(731\) −36.8285 63.7888i −1.36215 2.35932i
\(732\) 0.0193874 + 0.942921i 0.000716578 + 0.0348514i
\(733\) 13.2006 + 7.62135i 0.487574 + 0.281501i 0.723567 0.690254i \(-0.242501\pi\)
−0.235994 + 0.971755i \(0.575834\pi\)
\(734\) 9.62487 0.355261
\(735\) −28.7291 + 2.61930i −1.05969 + 0.0966145i
\(736\) −1.00000 −0.0368605
\(737\) 12.3745 + 7.14441i 0.455820 + 0.263168i
\(738\) −15.3472 8.03839i −0.564937 0.295897i
\(739\) 19.6677 + 34.0655i 0.723489 + 1.25312i 0.959593 + 0.281392i \(0.0907960\pi\)
−0.236104 + 0.971728i \(0.575871\pi\)
\(740\) 3.55465 6.15683i 0.130671 0.226329i
\(741\) −15.2422 + 27.7001i −0.559936 + 1.01759i
\(742\) 2.72626 5.13076i 0.100084 0.188356i
\(743\) 29.2465i 1.07295i 0.843916 + 0.536475i \(0.180245\pi\)
−0.843916 + 0.536475i \(0.819755\pi\)
\(744\) 7.10678 + 11.7449i 0.260547 + 0.430589i
\(745\) −0.562672 + 0.324859i −0.0206147 + 0.0119019i
\(746\) −13.3993 + 7.73610i −0.490584 + 0.283239i
\(747\) −32.1444 + 1.32240i −1.17610 + 0.0483840i
\(748\) 23.4013i 0.855636i
\(749\) 27.6256 17.2729i 1.00942 0.631139i
\(750\) 15.6652 + 8.61991i 0.572013 + 0.314754i
\(751\) 12.0682 20.9028i 0.440376 0.762753i −0.557341 0.830283i \(-0.688179\pi\)
0.997717 + 0.0675302i \(0.0215119\pi\)
\(752\) −1.93117 3.34488i −0.0704224 0.121975i
\(753\) −27.0607 + 0.556394i −0.986146 + 0.0202761i
\(754\) 13.8583 + 8.00111i 0.504691 + 0.291383i
\(755\) −47.4103 −1.72544
\(756\) −13.6833 + 1.32947i −0.497657 + 0.0483522i
\(757\) −20.7025 −0.752447 −0.376223 0.926529i \(-0.622777\pi\)
−0.376223 + 0.926529i \(0.622777\pi\)
\(758\) 24.4566 + 14.1200i 0.888305 + 0.512863i
\(759\) 5.48022 0.112679i 0.198919 0.00408998i
\(760\) 10.0837 + 17.4655i 0.365774 + 0.633539i
\(761\) 3.82228 6.62038i 0.138558 0.239989i −0.788393 0.615172i \(-0.789087\pi\)
0.926951 + 0.375183i \(0.122420\pi\)
\(762\) −20.4006 11.2256i −0.739037 0.406661i
\(763\) 28.3076 0.996314i 1.02480 0.0360690i
\(764\) 10.2215i 0.369801i
\(765\) −52.7384 + 2.16962i −1.90676 + 0.0784429i
\(766\) −23.6339 + 13.6450i −0.853928 + 0.493016i
\(767\) −16.1827 + 9.34311i −0.584325 + 0.337360i
\(768\) 0.896677 + 1.48188i 0.0323561 + 0.0534728i
\(769\) 22.7337i 0.819797i 0.912131 + 0.409898i \(0.134436\pi\)
−0.912131 + 0.409898i \(0.865564\pi\)
\(770\) −10.5619 16.8922i −0.380623