Properties

Label 966.2.l.d.47.13
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.13
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.54271 + 0.787427i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.84945 - 3.20334i) q^{5} +(-0.942314 - 1.45329i) q^{6} +(1.61347 - 2.09684i) q^{7} -1.00000i q^{8} +(1.75992 + 2.42955i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.54271 + 0.787427i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.84945 - 3.20334i) q^{5} +(-0.942314 - 1.45329i) q^{6} +(1.61347 - 2.09684i) q^{7} -1.00000i q^{8} +(1.75992 + 2.42955i) q^{9} +(-3.20334 + 1.84945i) q^{10} +(0.256095 - 0.147857i) q^{11} +(0.0894236 + 1.72974i) q^{12} +4.93015i q^{13} +(-2.44572 + 1.00918i) q^{14} +(5.37556 - 3.48552i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.0911545 - 0.157884i) q^{17} +(-0.309359 - 2.98401i) q^{18} +(6.78866 + 3.91944i) q^{19} +3.69889 q^{20} +(4.14022 - 1.96432i) q^{21} -0.295714 q^{22} +(-0.866025 - 0.500000i) q^{23} +(0.787427 - 1.54271i) q^{24} +(-4.34091 - 7.51868i) q^{25} +(2.46507 - 4.26963i) q^{26} +(0.801952 + 5.13389i) q^{27} +(2.62265 + 0.348886i) q^{28} -7.16062i q^{29} +(-6.39813 + 0.330768i) q^{30} +(-0.177179 + 0.102294i) q^{31} +(0.866025 - 0.500000i) q^{32} +(0.511508 - 0.0264438i) q^{33} +0.182309i q^{34} +(-3.73285 - 9.04647i) q^{35} +(-1.22409 + 2.73891i) q^{36} +(-2.92312 + 5.06300i) q^{37} +(-3.91944 - 6.78866i) q^{38} +(-3.88213 + 7.60579i) q^{39} +(-3.20334 - 1.84945i) q^{40} -9.46289 q^{41} +(-4.56770 - 0.368955i) q^{42} -1.55653 q^{43} +(0.256095 + 0.147857i) q^{44} +(11.0375 - 1.14429i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-0.664609 + 1.15114i) q^{47} +(-1.45329 + 0.942314i) q^{48} +(-1.79345 - 6.76635i) q^{49} +8.68182i q^{50} +(-0.0163027 - 0.315347i) q^{51} +(-4.26963 + 2.46507i) q^{52} +(9.27639 - 5.35573i) q^{53} +(1.87244 - 4.84706i) q^{54} -1.09381i q^{55} +(-2.09684 - 1.61347i) q^{56} +(7.38667 + 11.3921i) q^{57} +(-3.58031 + 6.20128i) q^{58} +(-4.04242 - 7.00167i) q^{59} +(5.70633 + 2.91261i) q^{60} +(-8.26573 - 4.77222i) q^{61} +0.204588 q^{62} +(7.93393 + 0.229737i) q^{63} -1.00000 q^{64} +(15.7929 + 9.11805i) q^{65} +(-0.456201 - 0.232853i) q^{66} +(-2.80629 - 4.86064i) q^{67} +(0.0911545 - 0.157884i) q^{68} +(-0.942314 - 1.45329i) q^{69} +(-1.29049 + 9.70090i) q^{70} +9.39294i q^{71} +(2.42955 - 1.75992i) q^{72} +(12.1358 - 7.00663i) q^{73} +(5.06300 - 2.92312i) q^{74} +(-0.776360 - 15.0173i) q^{75} +7.83887i q^{76} +(0.103170 - 0.775552i) q^{77} +(7.16492 - 4.64575i) q^{78} +(-1.02727 + 1.77928i) q^{79} +(1.84945 + 3.20334i) q^{80} +(-2.80539 + 8.55160i) q^{81} +(8.19510 + 4.73144i) q^{82} -10.0584 q^{83} +(3.77127 + 2.60337i) q^{84} -0.674341 q^{85} +(1.34799 + 0.778263i) q^{86} +(5.63847 - 11.0468i) q^{87} +(-0.147857 - 0.256095i) q^{88} +(-4.85895 + 8.41595i) q^{89} +(-10.1309 - 4.52778i) q^{90} +(10.3377 + 7.95463i) q^{91} -1.00000i q^{92} +(-0.353885 + 0.0182950i) q^{93} +(1.15114 - 0.664609i) q^{94} +(25.1105 - 14.4976i) q^{95} +(1.72974 - 0.0894236i) q^{96} +10.0472i q^{97} +(-1.83001 + 6.75656i) q^{98} +(0.809931 + 0.361980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.54271 + 0.787427i 0.890685 + 0.454621i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.84945 3.20334i 0.827098 1.43258i −0.0732073 0.997317i \(-0.523323\pi\)
0.900305 0.435259i \(-0.143343\pi\)
\(6\) −0.942314 1.45329i −0.384698 0.593302i
\(7\) 1.61347 2.09684i 0.609833 0.792530i
\(8\) 1.00000i 0.353553i
\(9\) 1.75992 + 2.42955i 0.586639 + 0.809849i
\(10\) −3.20334 + 1.84945i −1.01298 + 0.584847i
\(11\) 0.256095 0.147857i 0.0772157 0.0445805i −0.460895 0.887455i \(-0.652472\pi\)
0.538111 + 0.842874i \(0.319138\pi\)
\(12\) 0.0894236 + 1.72974i 0.0258144 + 0.499333i
\(13\) 4.93015i 1.36738i 0.729774 + 0.683688i \(0.239625\pi\)
−0.729774 + 0.683688i \(0.760375\pi\)
\(14\) −2.44572 + 1.00918i −0.653647 + 0.269715i
\(15\) 5.37556 3.48552i 1.38796 0.899957i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.0911545 0.157884i −0.0221082 0.0382925i 0.854760 0.519024i \(-0.173704\pi\)
−0.876868 + 0.480732i \(0.840371\pi\)
\(18\) −0.309359 2.98401i −0.0729167 0.703337i
\(19\) 6.78866 + 3.91944i 1.55743 + 0.899180i 0.997502 + 0.0706358i \(0.0225028\pi\)
0.559923 + 0.828544i \(0.310831\pi\)
\(20\) 3.69889 0.827098
\(21\) 4.14022 1.96432i 0.903470 0.428651i
\(22\) −0.295714 −0.0630463
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) 0.787427 1.54271i 0.160733 0.314905i
\(25\) −4.34091 7.51868i −0.868182 1.50374i
\(26\) 2.46507 4.26963i 0.483441 0.837344i
\(27\) 0.801952 + 5.13389i 0.154336 + 0.988018i
\(28\) 2.62265 + 0.348886i 0.495634 + 0.0659332i
\(29\) 7.16062i 1.32969i −0.746980 0.664847i \(-0.768497\pi\)
0.746980 0.664847i \(-0.231503\pi\)
\(30\) −6.39813 + 0.330768i −1.16813 + 0.0603898i
\(31\) −0.177179 + 0.102294i −0.0318222 + 0.0183726i −0.515827 0.856693i \(-0.672515\pi\)
0.484004 + 0.875066i \(0.339182\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.511508 0.0264438i 0.0890421 0.00460327i
\(34\) 0.182309i 0.0312657i
\(35\) −3.73285 9.04647i −0.630967 1.52913i
\(36\) −1.22409 + 2.73891i −0.204015 + 0.456484i
\(37\) −2.92312 + 5.06300i −0.480558 + 0.832352i −0.999751 0.0223056i \(-0.992899\pi\)
0.519193 + 0.854657i \(0.326233\pi\)
\(38\) −3.91944 6.78866i −0.635816 1.10127i
\(39\) −3.88213 + 7.60579i −0.621639 + 1.21790i
\(40\) −3.20334 1.84945i −0.506492 0.292423i
\(41\) −9.46289 −1.47785 −0.738927 0.673785i \(-0.764667\pi\)
−0.738927 + 0.673785i \(0.764667\pi\)
\(42\) −4.56770 0.368955i −0.704811 0.0569310i
\(43\) −1.55653 −0.237368 −0.118684 0.992932i \(-0.537868\pi\)
−0.118684 + 0.992932i \(0.537868\pi\)
\(44\) 0.256095 + 0.147857i 0.0386078 + 0.0222902i
\(45\) 11.0375 1.14429i 1.64538 0.170580i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −0.664609 + 1.15114i −0.0969432 + 0.167911i −0.910418 0.413690i \(-0.864240\pi\)
0.813475 + 0.581600i \(0.197573\pi\)
\(48\) −1.45329 + 0.942314i −0.209764 + 0.136011i
\(49\) −1.79345 6.76635i −0.256206 0.966622i
\(50\) 8.68182i 1.22779i
\(51\) −0.0163027 0.315347i −0.00228284 0.0441574i
\(52\) −4.26963 + 2.46507i −0.592092 + 0.341844i
\(53\) 9.27639 5.35573i 1.27421 0.735666i 0.298433 0.954431i \(-0.403536\pi\)
0.975778 + 0.218765i \(0.0702029\pi\)
\(54\) 1.87244 4.84706i 0.254806 0.659601i
\(55\) 1.09381i 0.147490i
\(56\) −2.09684 1.61347i −0.280202 0.215609i
\(57\) 7.38667 + 11.3921i 0.978389 + 1.50893i
\(58\) −3.58031 + 6.20128i −0.470118 + 0.814268i
\(59\) −4.04242 7.00167i −0.526278 0.911540i −0.999531 0.0306138i \(-0.990254\pi\)
0.473253 0.880926i \(-0.343080\pi\)
\(60\) 5.70633 + 2.91261i 0.736684 + 0.376016i
\(61\) −8.26573 4.77222i −1.05832 0.611020i −0.133351 0.991069i \(-0.542574\pi\)
−0.924966 + 0.380049i \(0.875907\pi\)
\(62\) 0.204588 0.0259827
\(63\) 7.93393 + 0.229737i 0.999581 + 0.0289441i
\(64\) −1.00000 −0.125000
\(65\) 15.7929 + 9.11805i 1.95887 + 1.13095i
\(66\) −0.456201 0.232853i −0.0561544 0.0286622i
\(67\) −2.80629 4.86064i −0.342843 0.593821i 0.642116 0.766607i \(-0.278057\pi\)
−0.984959 + 0.172786i \(0.944723\pi\)
\(68\) 0.0911545 0.157884i 0.0110541 0.0191463i
\(69\) −0.942314 1.45329i −0.113441 0.174955i
\(70\) −1.29049 + 9.70090i −0.154243 + 1.15948i
\(71\) 9.39294i 1.11474i 0.830265 + 0.557368i \(0.188189\pi\)
−0.830265 + 0.557368i \(0.811811\pi\)
\(72\) 2.42955 1.75992i 0.286325 0.207408i
\(73\) 12.1358 7.00663i 1.42039 0.820064i 0.424060 0.905634i \(-0.360604\pi\)
0.996332 + 0.0855699i \(0.0272711\pi\)
\(74\) 5.06300 2.92312i 0.588561 0.339806i
\(75\) −0.776360 15.0173i −0.0896463 1.73405i
\(76\) 7.83887i 0.899180i
\(77\) 0.103170 0.775552i 0.0117573 0.0883824i
\(78\) 7.16492 4.64575i 0.811268 0.526027i
\(79\) −1.02727 + 1.77928i −0.115576 + 0.200184i −0.918010 0.396557i \(-0.870205\pi\)
0.802434 + 0.596741i \(0.203538\pi\)
\(80\) 1.84945 + 3.20334i 0.206774 + 0.358144i
\(81\) −2.80539 + 8.55160i −0.311710 + 0.950177i
\(82\) 8.19510 + 4.73144i 0.904997 + 0.522501i
\(83\) −10.0584 −1.10405 −0.552026 0.833827i \(-0.686145\pi\)
−0.552026 + 0.833827i \(0.686145\pi\)
\(84\) 3.77127 + 2.60337i 0.411479 + 0.284051i
\(85\) −0.674341 −0.0731426
\(86\) 1.34799 + 0.778263i 0.145358 + 0.0839222i
\(87\) 5.63847 11.0468i 0.604507 1.18434i
\(88\) −0.147857 0.256095i −0.0157616 0.0272999i
\(89\) −4.85895 + 8.41595i −0.515048 + 0.892089i 0.484800 + 0.874625i \(0.338892\pi\)
−0.999847 + 0.0174637i \(0.994441\pi\)
\(90\) −10.1309 4.52778i −1.06789 0.477270i
\(91\) 10.3377 + 7.95463i 1.08369 + 0.833872i
\(92\) 1.00000i 0.104257i
\(93\) −0.353885 + 0.0182950i −0.0366961 + 0.00189710i
\(94\) 1.15114 0.664609i 0.118731 0.0685492i
\(95\) 25.1105 14.4976i 2.57629 1.48742i
\(96\) 1.72974 0.0894236i 0.176541 0.00912676i
\(97\) 10.0472i 1.02013i 0.860135 + 0.510067i \(0.170379\pi\)
−0.860135 + 0.510067i \(0.829621\pi\)
\(98\) −1.83001 + 6.75656i −0.184859 + 0.682515i
\(99\) 0.809931 + 0.361980i 0.0814012 + 0.0363804i
\(100\) 4.34091 7.51868i 0.434091 0.751868i
\(101\) 5.39466 + 9.34383i 0.536789 + 0.929746i 0.999074 + 0.0430145i \(0.0136962\pi\)
−0.462286 + 0.886731i \(0.652971\pi\)
\(102\) −0.143555 + 0.281250i −0.0142141 + 0.0278479i
\(103\) −0.914364 0.527908i −0.0900949 0.0520163i 0.454276 0.890861i \(-0.349898\pi\)
−0.544371 + 0.838845i \(0.683231\pi\)
\(104\) 4.93015 0.483441
\(105\) 1.36473 16.8954i 0.133184 1.64883i
\(106\) −10.7115 −1.04039
\(107\) −4.74347 2.73864i −0.458568 0.264755i 0.252874 0.967499i \(-0.418624\pi\)
−0.711442 + 0.702745i \(0.751958\pi\)
\(108\) −4.04511 + 3.26146i −0.389241 + 0.313834i
\(109\) −1.99894 3.46227i −0.191464 0.331625i 0.754272 0.656563i \(-0.227990\pi\)
−0.945736 + 0.324937i \(0.894657\pi\)
\(110\) −0.546907 + 0.947270i −0.0521455 + 0.0903186i
\(111\) −8.49628 + 5.50900i −0.806431 + 0.522891i
\(112\) 1.00918 + 2.44572i 0.0953585 + 0.231099i
\(113\) 1.71660i 0.161484i 0.996735 + 0.0807419i \(0.0257289\pi\)
−0.996735 + 0.0807419i \(0.974271\pi\)
\(114\) −0.700980 13.5592i −0.0656528 1.26994i
\(115\) −3.20334 + 1.84945i −0.298713 + 0.172462i
\(116\) 6.20128 3.58031i 0.575774 0.332424i
\(117\) −11.9780 + 8.67665i −1.10737 + 0.802156i
\(118\) 8.08484i 0.744269i
\(119\) −0.478132 0.0636050i −0.0438303 0.00583066i
\(120\) −3.48552 5.37556i −0.318183 0.490719i
\(121\) −5.45628 + 9.45055i −0.496025 + 0.859141i
\(122\) 4.77222 + 8.26573i 0.432056 + 0.748344i
\(123\) −14.5985 7.45134i −1.31630 0.671864i
\(124\) −0.177179 0.102294i −0.0159111 0.00918628i
\(125\) −13.6187 −1.21809
\(126\) −6.75612 4.16592i −0.601883 0.371130i
\(127\) 2.35815 0.209252 0.104626 0.994512i \(-0.466635\pi\)
0.104626 + 0.994512i \(0.466635\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −2.40127 1.22565i −0.211420 0.107913i
\(130\) −9.11805 15.7929i −0.799706 1.38513i
\(131\) 4.51752 7.82457i 0.394697 0.683636i −0.598365 0.801223i \(-0.704183\pi\)
0.993062 + 0.117588i \(0.0375162\pi\)
\(132\) 0.278655 + 0.429757i 0.0242538 + 0.0374055i
\(133\) 19.1717 7.91083i 1.66240 0.685956i
\(134\) 5.61258i 0.484853i
\(135\) 17.9288 + 6.92595i 1.54306 + 0.596090i
\(136\) −0.157884 + 0.0911545i −0.0135385 + 0.00781643i
\(137\) −9.02447 + 5.21028i −0.771012 + 0.445144i −0.833236 0.552918i \(-0.813514\pi\)
0.0622233 + 0.998062i \(0.480181\pi\)
\(138\) 0.0894236 + 1.72974i 0.00761224 + 0.147245i
\(139\) 20.0486i 1.70050i −0.526379 0.850250i \(-0.676451\pi\)
0.526379 0.850250i \(-0.323549\pi\)
\(140\) 5.96805 7.75598i 0.504392 0.655500i
\(141\) −1.93174 + 1.25254i −0.162682 + 0.105483i
\(142\) 4.69647 8.13452i 0.394119 0.682634i
\(143\) 0.728956 + 1.26259i 0.0609583 + 0.105583i
\(144\) −2.98401 + 0.309359i −0.248667 + 0.0257799i
\(145\) −22.9379 13.2432i −1.90489 1.09979i
\(146\) −14.0133 −1.15975
\(147\) 2.56124 11.8507i 0.211248 0.977433i
\(148\) −5.84624 −0.480558
\(149\) 11.1687 + 6.44827i 0.914978 + 0.528263i 0.882030 0.471194i \(-0.156177\pi\)
0.0329488 + 0.999457i \(0.489510\pi\)
\(150\) −6.83630 + 13.3935i −0.558182 + 1.09358i
\(151\) −4.17685 7.23451i −0.339907 0.588736i 0.644508 0.764598i \(-0.277062\pi\)
−0.984415 + 0.175862i \(0.943729\pi\)
\(152\) 3.91944 6.78866i 0.317908 0.550633i
\(153\) 0.223163 0.499327i 0.0180416 0.0403682i
\(154\) −0.477124 + 0.620063i −0.0384478 + 0.0499661i
\(155\) 0.756750i 0.0607837i
\(156\) −8.52788 + 0.440872i −0.682777 + 0.0352980i
\(157\) −9.32095 + 5.38145i −0.743892 + 0.429487i −0.823483 0.567341i \(-0.807972\pi\)
0.0795904 + 0.996828i \(0.474639\pi\)
\(158\) 1.77928 1.02727i 0.141552 0.0817249i
\(159\) 18.5280 0.957856i 1.46937 0.0759630i
\(160\) 3.69889i 0.292423i
\(161\) −2.44572 + 1.00918i −0.192750 + 0.0795345i
\(162\) 6.70534 6.00321i 0.526821 0.471656i
\(163\) 5.96099 10.3247i 0.466900 0.808695i −0.532385 0.846503i \(-0.678704\pi\)
0.999285 + 0.0378073i \(0.0120373\pi\)
\(164\) −4.73144 8.19510i −0.369464 0.639930i
\(165\) 0.861298 1.68744i 0.0670520 0.131367i
\(166\) 8.71083 + 5.02920i 0.676092 + 0.390342i
\(167\) 9.05171 0.700442 0.350221 0.936667i \(-0.386106\pi\)
0.350221 + 0.936667i \(0.386106\pi\)
\(168\) −1.96432 4.14022i −0.151551 0.319425i
\(169\) −11.3064 −0.869720
\(170\) 0.583997 + 0.337171i 0.0447905 + 0.0258598i
\(171\) 2.42503 + 23.3912i 0.185446 + 1.78877i
\(172\) −0.778263 1.34799i −0.0593420 0.102783i
\(173\) −4.37008 + 7.56920i −0.332251 + 0.575476i −0.982953 0.183858i \(-0.941141\pi\)
0.650702 + 0.759333i \(0.274475\pi\)
\(174\) −10.4064 + 6.74755i −0.788910 + 0.511531i
\(175\) −22.7694 3.02896i −1.72120 0.228968i
\(176\) 0.295714i 0.0222902i
\(177\) −0.722975 13.9847i −0.0543421 1.05115i
\(178\) 8.41595 4.85895i 0.630802 0.364194i
\(179\) −19.1588 + 11.0613i −1.43200 + 0.826763i −0.997273 0.0738009i \(-0.976487\pi\)
−0.434723 + 0.900564i \(0.643154\pi\)
\(180\) 6.50975 + 8.98664i 0.485208 + 0.669824i
\(181\) 24.0857i 1.79027i 0.445792 + 0.895137i \(0.352922\pi\)
−0.445792 + 0.895137i \(0.647078\pi\)
\(182\) −4.97541 12.0578i −0.368802 0.893781i
\(183\) −8.99385 13.8708i −0.664845 1.02536i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 10.8123 + 18.7275i 0.794938 + 1.37687i
\(186\) 0.315621 + 0.161098i 0.0231424 + 0.0118123i
\(187\) −0.0466885 0.0269556i −0.00341420 0.00197119i
\(188\) −1.32922 −0.0969432
\(189\) 12.0589 + 6.60181i 0.877153 + 0.480211i
\(190\) −28.9952 −2.10353
\(191\) 18.5129 + 10.6885i 1.33955 + 0.773390i 0.986741 0.162306i \(-0.0518930\pi\)
0.352809 + 0.935695i \(0.385226\pi\)
\(192\) −1.54271 0.787427i −0.111336 0.0568277i
\(193\) 3.75899 + 6.51076i 0.270578 + 0.468655i 0.969010 0.247021i \(-0.0794518\pi\)
−0.698432 + 0.715677i \(0.746118\pi\)
\(194\) 5.02358 8.70109i 0.360672 0.624702i
\(195\) 17.1841 + 26.5023i 1.23058 + 1.89787i
\(196\) 4.96311 4.93635i 0.354508 0.352596i
\(197\) 2.13282i 0.151957i 0.997109 + 0.0759786i \(0.0242081\pi\)
−0.997109 + 0.0759786i \(0.975792\pi\)
\(198\) −0.520431 0.718450i −0.0369854 0.0510580i
\(199\) 13.8598 8.00194i 0.982493 0.567242i 0.0794709 0.996837i \(-0.474677\pi\)
0.903022 + 0.429595i \(0.141344\pi\)
\(200\) −7.51868 + 4.34091i −0.531651 + 0.306949i
\(201\) −0.501897 9.70831i −0.0354011 0.684772i
\(202\) 10.7893i 0.759134i
\(203\) −15.0147 11.5534i −1.05382 0.810892i
\(204\) 0.264947 0.171792i 0.0185500 0.0120279i
\(205\) −17.5011 + 30.3128i −1.22233 + 2.11714i
\(206\) 0.527908 + 0.914364i 0.0367811 + 0.0637067i
\(207\) −0.309359 2.98401i −0.0215020 0.207403i
\(208\) −4.26963 2.46507i −0.296046 0.170922i
\(209\) 2.31806 0.160344
\(210\) −9.62961 + 13.9495i −0.664506 + 0.962608i
\(211\) −28.7291 −1.97779 −0.988895 0.148614i \(-0.952519\pi\)
−0.988895 + 0.148614i \(0.952519\pi\)
\(212\) 9.27639 + 5.35573i 0.637105 + 0.367833i
\(213\) −7.39625 + 14.4906i −0.506783 + 0.992879i
\(214\) 2.73864 + 4.74347i 0.187210 + 0.324257i
\(215\) −2.87871 + 4.98608i −0.196327 + 0.340048i
\(216\) 5.13389 0.801952i 0.349317 0.0545659i
\(217\) −0.0713779 + 0.536563i −0.00484545 + 0.0364243i
\(218\) 3.99789i 0.270771i
\(219\) 24.2393 1.25312i 1.63794 0.0846777i
\(220\) 0.947270 0.546907i 0.0638649 0.0368724i
\(221\) 0.778392 0.449405i 0.0523603 0.0302302i
\(222\) 10.1125 0.522792i 0.678706 0.0350875i
\(223\) 10.1195i 0.677653i −0.940849 0.338827i \(-0.889970\pi\)
0.940849 0.338827i \(-0.110030\pi\)
\(224\) 0.348886 2.62265i 0.0233109 0.175233i
\(225\) 10.6273 23.7787i 0.708489 1.58525i
\(226\) 0.858298 1.48662i 0.0570931 0.0988882i
\(227\) −3.98053 6.89448i −0.264197 0.457603i 0.703156 0.711036i \(-0.251774\pi\)
−0.967353 + 0.253433i \(0.918440\pi\)
\(228\) −6.17254 + 12.0931i −0.408786 + 0.800886i
\(229\) 16.5622 + 9.56217i 1.09446 + 0.631886i 0.934760 0.355280i \(-0.115615\pi\)
0.159698 + 0.987166i \(0.448948\pi\)
\(230\) 3.69889 0.243898
\(231\) 0.769853 1.11521i 0.0506526 0.0733757i
\(232\) −7.16062 −0.470118
\(233\) −16.3316 9.42907i −1.06992 0.617719i −0.141761 0.989901i \(-0.545276\pi\)
−0.928160 + 0.372182i \(0.878610\pi\)
\(234\) 14.7116 1.52519i 0.961727 0.0997046i
\(235\) 2.45832 + 4.25793i 0.160363 + 0.277757i
\(236\) 4.04242 7.00167i 0.263139 0.455770i
\(237\) −2.98583 + 1.93601i −0.193950 + 0.125758i
\(238\) 0.382272 + 0.294150i 0.0247790 + 0.0190669i
\(239\) 20.4101i 1.32022i 0.751169 + 0.660110i \(0.229490\pi\)
−0.751169 + 0.660110i \(0.770510\pi\)
\(240\) 0.330768 + 6.39813i 0.0213510 + 0.412997i
\(241\) −17.8246 + 10.2910i −1.14818 + 0.662903i −0.948443 0.316947i \(-0.897342\pi\)
−0.199738 + 0.979849i \(0.564009\pi\)
\(242\) 9.45055 5.45628i 0.607504 0.350743i
\(243\) −11.0617 + 10.9836i −0.709606 + 0.704599i
\(244\) 9.54444i 0.611020i
\(245\) −24.9918 6.76901i −1.59667 0.432456i
\(246\) 8.91701 + 13.7523i 0.568528 + 0.876814i
\(247\) −19.3234 + 33.4691i −1.22952 + 2.12959i
\(248\) 0.102294 + 0.177179i 0.00649568 + 0.0112509i
\(249\) −15.5172 7.92026i −0.983363 0.501926i
\(250\) 11.7941 + 6.80933i 0.745925 + 0.430660i
\(251\) −9.97390 −0.629547 −0.314774 0.949167i \(-0.601929\pi\)
−0.314774 + 0.949167i \(0.601929\pi\)
\(252\) 3.76801 + 6.98585i 0.237362 + 0.440067i
\(253\) −0.295714 −0.0185913
\(254\) −2.04222 1.17908i −0.128140 0.0739819i
\(255\) −1.04031 0.530995i −0.0651470 0.0332522i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.66074 + 4.60853i −0.165972 + 0.287472i −0.937000 0.349329i \(-0.886410\pi\)
0.771028 + 0.636801i \(0.219743\pi\)
\(258\) 1.46674 + 2.26208i 0.0913149 + 0.140831i
\(259\) 5.89991 + 14.2983i 0.366603 + 0.888453i
\(260\) 18.2361i 1.13095i
\(261\) 17.3971 12.6021i 1.07685 0.780050i
\(262\) −7.82457 + 4.51752i −0.483403 + 0.279093i
\(263\) 3.88069 2.24052i 0.239294 0.138156i −0.375558 0.926799i \(-0.622549\pi\)
0.614852 + 0.788643i \(0.289216\pi\)
\(264\) −0.0264438 0.511508i −0.00162750 0.0314811i
\(265\) 39.6205i 2.43387i
\(266\) −20.5586 2.73487i −1.26053 0.167686i
\(267\) −14.1229 + 9.15731i −0.864308 + 0.560418i
\(268\) 2.80629 4.86064i 0.171422 0.296911i
\(269\) 9.53037 + 16.5071i 0.581077 + 1.00645i 0.995352 + 0.0963032i \(0.0307018\pi\)
−0.414275 + 0.910152i \(0.635965\pi\)
\(270\) −12.0638 14.9624i −0.734179 0.910584i
\(271\) 3.13852 + 1.81202i 0.190651 + 0.110073i 0.592287 0.805727i \(-0.298225\pi\)
−0.401636 + 0.915799i \(0.631558\pi\)
\(272\) 0.182309 0.0110541
\(273\) 9.68441 + 20.4119i 0.586127 + 1.23538i
\(274\) 10.4206 0.629529
\(275\) −2.22337 1.28367i −0.134075 0.0774080i
\(276\) 0.787427 1.54271i 0.0473976 0.0928603i
\(277\) 7.09819 + 12.2944i 0.426489 + 0.738701i 0.996558 0.0828959i \(-0.0264169\pi\)
−0.570069 + 0.821597i \(0.693084\pi\)
\(278\) −10.0243 + 17.3626i −0.601218 + 1.04134i
\(279\) −0.560348 0.250435i −0.0335472 0.0149931i
\(280\) −9.04647 + 3.73285i −0.540630 + 0.223080i
\(281\) 5.31709i 0.317191i −0.987344 0.158596i \(-0.949303\pi\)
0.987344 0.158596i \(-0.0506966\pi\)
\(282\) 2.29920 0.118863i 0.136916 0.00707822i
\(283\) 5.53052 3.19305i 0.328756 0.189807i −0.326533 0.945186i \(-0.605880\pi\)
0.655288 + 0.755379i \(0.272547\pi\)
\(284\) −8.13452 + 4.69647i −0.482695 + 0.278684i
\(285\) 50.1541 2.59285i 2.97087 0.153587i
\(286\) 1.45791i 0.0862081i
\(287\) −15.2681 + 19.8421i −0.901245 + 1.17124i
\(288\) 2.73891 + 1.22409i 0.161392 + 0.0721302i
\(289\) 8.48338 14.6936i 0.499022 0.864332i
\(290\) 13.2432 + 22.9379i 0.777667 + 1.34696i
\(291\) −7.91140 + 15.4999i −0.463775 + 0.908618i
\(292\) 12.1358 + 7.00663i 0.710196 + 0.410032i
\(293\) 5.90966 0.345246 0.172623 0.984988i \(-0.444776\pi\)
0.172623 + 0.984988i \(0.444776\pi\)
\(294\) −8.14347 + 8.98242i −0.474937 + 0.523865i
\(295\) −29.9050 −1.74113
\(296\) 5.06300 + 2.92312i 0.294281 + 0.169903i
\(297\) 0.964457 + 1.19619i 0.0559635 + 0.0694101i
\(298\) −6.44827 11.1687i −0.373538 0.646987i
\(299\) 2.46507 4.26963i 0.142559 0.246919i
\(300\) 12.6172 8.18100i 0.728453 0.472330i
\(301\) −2.51140 + 3.26378i −0.144755 + 0.188121i
\(302\) 8.35369i 0.480701i
\(303\) 0.964820 + 18.6627i 0.0554275 + 1.07215i
\(304\) −6.78866 + 3.91944i −0.389356 + 0.224795i
\(305\) −30.5741 + 17.6519i −1.75067 + 1.01075i
\(306\) −0.442928 + 0.320848i −0.0253205 + 0.0183417i
\(307\) 11.7177i 0.668767i 0.942437 + 0.334384i \(0.108528\pi\)
−0.942437 + 0.334384i \(0.891472\pi\)
\(308\) 0.723233 0.298428i 0.0412100 0.0170045i
\(309\) −0.994910 1.53440i −0.0565985 0.0872892i
\(310\) 0.378375 0.655365i 0.0214903 0.0372222i
\(311\) −14.8865 25.7841i −0.844133 1.46208i −0.886372 0.462975i \(-0.846782\pi\)
0.0422381 0.999108i \(-0.486551\pi\)
\(312\) 7.60579 + 3.88213i 0.430593 + 0.219783i
\(313\) 14.7481 + 8.51484i 0.833614 + 0.481287i 0.855088 0.518482i \(-0.173503\pi\)
−0.0214744 + 0.999769i \(0.506836\pi\)
\(314\) 10.7629 0.607386
\(315\) 15.4093 24.9902i 0.868216 1.40804i
\(316\) −2.05453 −0.115576
\(317\) 0.176090 + 0.101666i 0.00989020 + 0.00571011i 0.504937 0.863156i \(-0.331516\pi\)
−0.495047 + 0.868866i \(0.664849\pi\)
\(318\) −16.5247 8.43449i −0.926658 0.472983i
\(319\) −1.05875 1.83380i −0.0592784 0.102673i
\(320\) −1.84945 + 3.20334i −0.103387 + 0.179072i
\(321\) −5.16132 7.96007i −0.288077 0.444288i
\(322\) 2.62265 + 0.348886i 0.146154 + 0.0194426i
\(323\) 1.42910i 0.0795170i
\(324\) −8.80859 + 1.84626i −0.489366 + 0.102570i
\(325\) 37.0682 21.4013i 2.05617 1.18713i
\(326\) −10.3247 + 5.96099i −0.571834 + 0.330148i
\(327\) −0.357505 6.91531i −0.0197701 0.382417i
\(328\) 9.46289i 0.522501i
\(329\) 1.34142 + 3.25090i 0.0739549 + 0.179228i
\(330\) −1.58963 + 1.03071i −0.0875060 + 0.0567390i
\(331\) 7.45761 12.9170i 0.409907 0.709981i −0.584972 0.811054i \(-0.698894\pi\)
0.994879 + 0.101073i \(0.0322277\pi\)
\(332\) −5.02920 8.71083i −0.276013 0.478069i
\(333\) −17.4452 + 1.80859i −0.955993 + 0.0991101i
\(334\) −7.83901 4.52585i −0.428932 0.247644i
\(335\) −20.7603 −1.13426
\(336\) −0.368955 + 4.56770i −0.0201282 + 0.249188i
\(337\) 17.2725 0.940894 0.470447 0.882428i \(-0.344093\pi\)
0.470447 + 0.882428i \(0.344093\pi\)
\(338\) 9.79159 + 5.65318i 0.532592 + 0.307492i
\(339\) −1.35169 + 2.64821i −0.0734140 + 0.143831i
\(340\) −0.337171 0.583997i −0.0182857 0.0316717i
\(341\) −0.0302498 + 0.0523941i −0.00163812 + 0.00283730i
\(342\) 9.59549 21.4699i 0.518864 1.16096i
\(343\) −17.0816 7.15673i −0.922320 0.386427i
\(344\) 1.55653i 0.0839222i
\(345\) −6.39813 + 0.330768i −0.344464 + 0.0178080i
\(346\) 7.56920 4.37008i 0.406923 0.234937i
\(347\) −6.94991 + 4.01253i −0.373091 + 0.215404i −0.674808 0.737993i \(-0.735774\pi\)
0.301717 + 0.953397i \(0.402440\pi\)
\(348\) 12.3860 0.640329i 0.663960 0.0343252i
\(349\) 23.7303i 1.27025i −0.772409 0.635126i \(-0.780948\pi\)
0.772409 0.635126i \(-0.219052\pi\)
\(350\) 18.2044 + 14.0078i 0.973064 + 0.748750i
\(351\) −25.3109 + 3.95374i −1.35099 + 0.211035i
\(352\) 0.147857 0.256095i 0.00788079 0.0136499i
\(353\) −5.10782 8.84701i −0.271862 0.470879i 0.697477 0.716607i \(-0.254306\pi\)
−0.969339 + 0.245729i \(0.920973\pi\)
\(354\) −6.36622 + 12.4726i −0.338361 + 0.662909i
\(355\) 30.0887 + 17.3717i 1.59694 + 0.921996i
\(356\) −9.71790 −0.515048
\(357\) −0.687535 0.474618i −0.0363882 0.0251195i
\(358\) 22.1227 1.16922
\(359\) −29.8595 17.2394i −1.57593 0.909862i −0.995419 0.0956068i \(-0.969521\pi\)
−0.580507 0.814255i \(-0.697146\pi\)
\(360\) −1.14429 11.0375i −0.0603092 0.581729i
\(361\) 21.2239 + 36.7610i 1.11705 + 1.93479i
\(362\) 12.0428 20.8588i 0.632957 1.09631i
\(363\) −15.8591 + 10.2830i −0.832386 + 0.539720i
\(364\) −1.72006 + 12.9300i −0.0901555 + 0.677718i
\(365\) 51.8336i 2.71309i
\(366\) 0.853498 + 16.5094i 0.0446131 + 0.862960i
\(367\) 7.65645 4.42045i 0.399663 0.230746i −0.286675 0.958028i \(-0.592550\pi\)
0.686339 + 0.727282i \(0.259217\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) −16.6539 22.9905i −0.866967 1.19684i
\(370\) 21.6246i 1.12421i
\(371\) 3.73707 28.0924i 0.194019 1.45848i
\(372\) −0.192786 0.297326i −0.00999550 0.0154156i
\(373\) 8.69472 15.0597i 0.450196 0.779762i −0.548202 0.836346i \(-0.684688\pi\)
0.998398 + 0.0565840i \(0.0180209\pi\)
\(374\) 0.0269556 + 0.0466885i 0.00139384 + 0.00241420i
\(375\) −21.0097 10.7237i −1.08494 0.553770i
\(376\) 1.15114 + 0.664609i 0.0593653 + 0.0342746i
\(377\) 35.3029 1.81819
\(378\) −7.14237 11.7468i −0.367364 0.604188i
\(379\) −10.0943 −0.518509 −0.259254 0.965809i \(-0.583477\pi\)
−0.259254 + 0.965809i \(0.583477\pi\)
\(380\) 25.1105 + 14.4976i 1.28814 + 0.743710i
\(381\) 3.63795 + 1.85688i 0.186378 + 0.0951306i
\(382\) −10.6885 18.5129i −0.546869 0.947205i
\(383\) 10.3822 17.9826i 0.530508 0.918867i −0.468858 0.883273i \(-0.655334\pi\)
0.999366 0.0355936i \(-0.0113322\pi\)
\(384\) 0.942314 + 1.45329i 0.0480872 + 0.0741628i
\(385\) −2.29355 1.76483i −0.116890 0.0899442i
\(386\) 7.51798i 0.382655i
\(387\) −2.73935 3.78165i −0.139249 0.192232i
\(388\) −8.70109 + 5.02358i −0.441731 + 0.255034i
\(389\) −5.20118 + 3.00290i −0.263710 + 0.152253i −0.626026 0.779802i \(-0.715320\pi\)
0.362316 + 0.932055i \(0.381986\pi\)
\(390\) −1.63074 31.5437i −0.0825756 1.59728i
\(391\) 0.182309i 0.00921976i
\(392\) −6.76635 + 1.79345i −0.341753 + 0.0905827i
\(393\) 13.1305 8.51383i 0.662346 0.429466i
\(394\) 1.06641 1.84708i 0.0537250 0.0930544i
\(395\) 3.79975 + 6.58136i 0.191186 + 0.331144i
\(396\) 0.0914817 + 0.882411i 0.00459713 + 0.0443428i
\(397\) 23.3513 + 13.4819i 1.17197 + 0.676636i 0.954143 0.299352i \(-0.0967704\pi\)
0.217825 + 0.975988i \(0.430104\pi\)
\(398\) −16.0039 −0.802202
\(399\) 35.8056 + 2.89219i 1.79252 + 0.144791i
\(400\) 8.68182 0.434091
\(401\) −19.5020 11.2595i −0.973882 0.562271i −0.0734643 0.997298i \(-0.523406\pi\)
−0.900417 + 0.435027i \(0.856739\pi\)
\(402\) −4.41950 + 8.65859i −0.220425 + 0.431851i
\(403\) −0.504325 0.873517i −0.0251222 0.0435130i
\(404\) −5.39466 + 9.34383i −0.268394 + 0.464873i
\(405\) 22.2052 + 24.8023i 1.10339 + 1.23244i
\(406\) 7.22635 + 17.5129i 0.358638 + 0.869150i
\(407\) 1.72881i 0.0856941i
\(408\) −0.315347 + 0.0163027i −0.0156120 + 0.000807105i
\(409\) −29.9608 + 17.2979i −1.48147 + 0.855325i −0.999779 0.0210182i \(-0.993309\pi\)
−0.481687 + 0.876343i \(0.659976\pi\)
\(410\) 30.3128 17.5011i 1.49704 0.864318i
\(411\) −18.0249 + 0.931844i −0.889101 + 0.0459645i
\(412\) 1.05582i 0.0520163i
\(413\) −21.2037 2.82068i −1.04336 0.138797i
\(414\) −1.22409 + 2.73891i −0.0601608 + 0.134610i
\(415\) −18.6025 + 32.2204i −0.913160 + 1.58164i
\(416\) 2.46507 + 4.26963i 0.120860 + 0.209336i
\(417\) 15.7868 30.9292i 0.773084 1.51461i
\(418\) −2.00750 1.15903i −0.0981900 0.0566900i
\(419\) 26.2711 1.28342 0.641712 0.766945i \(-0.278224\pi\)
0.641712 + 0.766945i \(0.278224\pi\)
\(420\) 15.3142 7.26583i 0.747258 0.354536i
\(421\) −1.18952 −0.0579736 −0.0289868 0.999580i \(-0.509228\pi\)
−0.0289868 + 0.999580i \(0.509228\pi\)
\(422\) 24.8801 + 14.3645i 1.21114 + 0.699255i
\(423\) −3.96640 + 0.411206i −0.192853 + 0.0199935i
\(424\) −5.35573 9.27639i −0.260097 0.450501i
\(425\) −0.791387 + 1.37072i −0.0383879 + 0.0664898i
\(426\) 13.6506 8.85109i 0.661376 0.428837i
\(427\) −23.3430 + 9.63205i −1.12965 + 0.466128i
\(428\) 5.47729i 0.264755i
\(429\) 0.130372 + 2.52181i 0.00629440 + 0.121754i
\(430\) 4.98608 2.87871i 0.240450 0.138824i
\(431\) −20.2403 + 11.6857i −0.974941 + 0.562883i −0.900739 0.434361i \(-0.856974\pi\)
−0.0742023 + 0.997243i \(0.523641\pi\)
\(432\) −4.84706 1.87244i −0.233204 0.0900876i
\(433\) 24.0529i 1.15591i 0.816069 + 0.577955i \(0.196149\pi\)
−0.816069 + 0.577955i \(0.803851\pi\)
\(434\) 0.330097 0.428988i 0.0158451 0.0205921i
\(435\) −24.9585 38.4923i −1.19667 1.84557i
\(436\) 1.99894 3.46227i 0.0957320 0.165813i
\(437\) −3.91944 6.78866i −0.187492 0.324746i
\(438\) −21.6184 11.0344i −1.03297 0.527245i
\(439\) −4.48993 2.59227i −0.214293 0.123722i 0.389012 0.921233i \(-0.372816\pi\)
−0.603305 + 0.797511i \(0.706150\pi\)
\(440\) −1.09381 −0.0521455
\(441\) 13.2829 16.2655i 0.632517 0.774546i
\(442\) −0.898810 −0.0427520
\(443\) −6.81596 3.93519i −0.323836 0.186967i 0.329265 0.944237i \(-0.393199\pi\)
−0.653101 + 0.757271i \(0.726532\pi\)
\(444\) −9.01907 4.60349i −0.428026 0.218472i
\(445\) 17.9727 + 31.1297i 0.851990 + 1.47569i
\(446\) −5.05976 + 8.76376i −0.239587 + 0.414976i
\(447\) 12.1526 + 18.7424i 0.574798 + 0.886485i
\(448\) −1.61347 + 2.09684i −0.0762292 + 0.0990662i
\(449\) 29.8930i 1.41074i 0.708841 + 0.705369i \(0.249218\pi\)
−0.708841 + 0.705369i \(0.750782\pi\)
\(450\) −21.0929 + 15.2793i −0.994328 + 0.720272i
\(451\) −2.42340 + 1.39915i −0.114114 + 0.0658835i
\(452\) −1.48662 + 0.858298i −0.0699245 + 0.0403709i
\(453\) −0.747017 14.4497i −0.0350979 0.678907i
\(454\) 7.96106i 0.373631i
\(455\) 44.6004 18.4035i 2.09090 0.862769i
\(456\) 11.3921 7.38667i 0.533486 0.345913i
\(457\) 9.19570 15.9274i 0.430157 0.745053i −0.566730 0.823904i \(-0.691792\pi\)
0.996886 + 0.0788506i \(0.0251250\pi\)
\(458\) −9.56217 16.5622i −0.446811 0.773899i
\(459\) 0.737459 0.594593i 0.0344216 0.0277532i
\(460\) −3.20334 1.84945i −0.149356 0.0862309i
\(461\) −35.1517 −1.63718 −0.818588 0.574381i \(-0.805243\pi\)
−0.818588 + 0.574381i \(0.805243\pi\)
\(462\) −1.22432 + 0.580877i −0.0569605 + 0.0270249i
\(463\) 32.6776 1.51866 0.759328 0.650709i \(-0.225528\pi\)
0.759328 + 0.650709i \(0.225528\pi\)
\(464\) 6.20128 + 3.58031i 0.287887 + 0.166212i
\(465\) −0.595886 + 1.16745i −0.0276336 + 0.0541391i
\(466\) 9.42907 + 16.3316i 0.436793 + 0.756548i
\(467\) 18.3645 31.8082i 0.849806 1.47191i −0.0315757 0.999501i \(-0.510053\pi\)
0.881381 0.472405i \(-0.156614\pi\)
\(468\) −13.5032 6.03495i −0.624186 0.278966i
\(469\) −14.7198 1.95815i −0.679698 0.0904189i
\(470\) 4.91664i 0.226788i
\(471\) −18.6170 + 0.962457i −0.857827 + 0.0443477i
\(472\) −7.00167 + 4.04242i −0.322278 + 0.186067i
\(473\) −0.398619 + 0.230143i −0.0183285 + 0.0105820i
\(474\) 3.55381 0.183724i 0.163232 0.00843871i
\(475\) 68.0557i 3.12261i
\(476\) −0.183982 0.445877i −0.00843282 0.0204367i
\(477\) 29.3377 + 13.1118i 1.34328 + 0.600347i
\(478\) 10.2051 17.6757i 0.466768 0.808466i
\(479\) −8.50240 14.7266i −0.388485 0.672875i 0.603761 0.797165i \(-0.293668\pi\)
−0.992246 + 0.124290i \(0.960335\pi\)
\(480\) 2.91261 5.70633i 0.132942 0.260457i
\(481\) −24.9613 14.4114i −1.13814 0.657104i
\(482\) 20.5820 0.937486
\(483\) −4.56770 0.368955i −0.207837 0.0167880i
\(484\) −10.9126 −0.496025
\(485\) 32.1844 + 18.5817i 1.46142 + 0.843751i
\(486\) 15.0715 3.98125i 0.683656 0.180593i
\(487\) −6.76637 11.7197i −0.306614 0.531070i 0.671006 0.741452i \(-0.265863\pi\)
−0.977619 + 0.210382i \(0.932529\pi\)
\(488\) −4.77222 + 8.26573i −0.216028 + 0.374172i
\(489\) 17.3261 11.2342i 0.783511 0.508030i
\(490\) 18.2590 + 18.3580i 0.824859 + 0.829331i
\(491\) 3.33629i 0.150565i 0.997162 + 0.0752824i \(0.0239858\pi\)
−0.997162 + 0.0752824i \(0.976014\pi\)
\(492\) −0.846205 16.3683i −0.0381499 0.737942i
\(493\) −1.13055 + 0.652723i −0.0509174 + 0.0293971i
\(494\) 33.4691 19.3234i 1.50585 0.869401i
\(495\) 2.65747 1.92502i 0.119444 0.0865232i
\(496\) 0.204588i 0.00918628i
\(497\) 19.6955 + 15.1552i 0.883462 + 0.679804i
\(498\) 9.47817 + 14.6177i 0.424727 + 0.655037i
\(499\) 7.94612 13.7631i 0.355717 0.616120i −0.631523 0.775357i \(-0.717570\pi\)
0.987240 + 0.159237i \(0.0509034\pi\)
\(500\) −6.80933 11.7941i −0.304523 0.527449i
\(501\) 13.9642 + 7.12756i 0.623873 + 0.318436i
\(502\) 8.63765 + 4.98695i 0.385517 + 0.222579i
\(503\) 21.6349 0.964654 0.482327 0.875991i \(-0.339792\pi\)
0.482327 + 0.875991i \(0.339792\pi\)
\(504\) 0.229737 7.93393i 0.0102333 0.353405i
\(505\) 39.9086 1.77591
\(506\) 0.256095 + 0.147857i 0.0113848 + 0.00657303i
\(507\) −17.4424 8.90294i −0.774646 0.395393i
\(508\) 1.17908 + 2.04222i 0.0523131 + 0.0906089i
\(509\) −5.12759 + 8.88125i −0.227276 + 0.393654i −0.957000 0.290088i \(-0.906315\pi\)
0.729724 + 0.683742i \(0.239649\pi\)
\(510\) 0.635441 + 0.980012i 0.0281378 + 0.0433957i
\(511\) 4.88903 36.7518i 0.216278 1.62581i
\(512\) 1.00000i 0.0441942i
\(513\) −14.6778 + 37.9955i −0.648040 + 1.67754i
\(514\) 4.60853 2.66074i 0.203274 0.117360i
\(515\) −3.38214 + 1.95268i −0.149035 + 0.0860452i
\(516\) −0.139190 2.69239i −0.00612750 0.118526i
\(517\) 0.393068i 0.0172871i
\(518\) 2.03967 15.3326i 0.0896180 0.673677i
\(519\) −12.7020 + 8.23597i −0.557555 + 0.361519i
\(520\) 9.11805 15.7929i 0.399853 0.692566i
\(521\) 2.28316 + 3.95455i 0.100027 + 0.173252i 0.911696 0.410866i \(-0.134774\pi\)
−0.811668 + 0.584118i \(0.801440\pi\)
\(522\) −21.3673 + 2.21520i −0.935223 + 0.0969569i
\(523\) −12.1767 7.03020i −0.532449 0.307409i 0.209564 0.977795i \(-0.432795\pi\)
−0.742013 + 0.670386i \(0.766129\pi\)
\(524\) 9.03503 0.394697
\(525\) −32.7415 22.6020i −1.42895 0.986433i
\(526\) −4.48103 −0.195382
\(527\) 0.0323012 + 0.0186491i 0.00140706 + 0.000812369i
\(528\) −0.232853 + 0.456201i −0.0101336 + 0.0198536i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) −19.8103 + 34.3124i −0.860503 + 1.49043i
\(531\) 9.89657 22.1436i 0.429475 0.960950i
\(532\) 16.4368 + 12.6478i 0.712627 + 0.548350i
\(533\) 46.6534i 2.02078i
\(534\) 16.8095 0.869010i 0.727416 0.0376057i
\(535\) −17.5456 + 10.1300i −0.758562 + 0.437956i
\(536\) −4.86064 + 2.80629i −0.209948 + 0.121213i
\(537\) −38.2665 + 1.97829i −1.65132 + 0.0853695i
\(538\) 19.0607i 0.821767i
\(539\) −1.45974 1.46766i −0.0628756 0.0632166i
\(540\) 2.96634 + 18.9897i 0.127651 + 0.817188i
\(541\) −19.3204 + 33.4639i −0.830648 + 1.43872i 0.0668778 + 0.997761i \(0.478696\pi\)
−0.897525 + 0.440963i \(0.854637\pi\)
\(542\) −1.81202 3.13852i −0.0778330 0.134811i
\(543\) −18.9657 + 37.1572i −0.813896 + 1.59457i
\(544\) −0.157884 0.0911545i −0.00676923 0.00390822i
\(545\) −14.7878 −0.633438
\(546\) 1.81900 22.5194i 0.0778462 0.963743i
\(547\) 5.67084 0.242467 0.121234 0.992624i \(-0.461315\pi\)
0.121234 + 0.992624i \(0.461315\pi\)
\(548\) −9.02447 5.21028i −0.385506 0.222572i
\(549\) −2.95266 28.4807i −0.126016 1.21553i
\(550\) 1.28367 + 2.22337i 0.0547357 + 0.0948050i
\(551\) 28.0656 48.6110i 1.19563 2.07090i
\(552\) −1.45329 + 0.942314i −0.0618560 + 0.0401075i
\(553\) 2.07339 + 5.02482i 0.0881696 + 0.213677i
\(554\) 14.1964i 0.603147i
\(555\) 1.93375 + 37.4050i 0.0820833 + 1.58776i
\(556\) 17.3626 10.0243i 0.736338 0.425125i
\(557\) 2.61218 1.50815i 0.110682 0.0639022i −0.443637 0.896206i \(-0.646312\pi\)
0.554319 + 0.832304i \(0.312979\pi\)
\(558\) 0.360058 + 0.497057i 0.0152425 + 0.0210421i
\(559\) 7.67390i 0.324571i
\(560\) 9.70090 + 1.29049i 0.409938 + 0.0545332i
\(561\) −0.0508013 0.0783485i −0.00214483 0.00330788i
\(562\) −2.65855 + 4.60474i −0.112144 + 0.194239i
\(563\) 12.6295 + 21.8749i 0.532269 + 0.921918i 0.999290 + 0.0376712i \(0.0119940\pi\)
−0.467021 + 0.884246i \(0.654673\pi\)
\(564\) −2.05060 1.04666i −0.0863458 0.0440725i
\(565\) 5.49884 + 3.17475i 0.231338 + 0.133563i
\(566\) −6.38610 −0.268428
\(567\) 13.4049 + 19.6802i 0.562953 + 0.826489i
\(568\) 9.39294 0.394119
\(569\) 22.4781 + 12.9777i 0.942332 + 0.544055i 0.890690 0.454610i \(-0.150221\pi\)
0.0516412 + 0.998666i \(0.483555\pi\)
\(570\) −44.7312 22.8316i −1.87358 0.956310i
\(571\) −12.1640 21.0687i −0.509050 0.881700i −0.999945 0.0104813i \(-0.996664\pi\)
0.490895 0.871218i \(-0.336670\pi\)
\(572\) −0.728956 + 1.26259i −0.0304792 + 0.0527915i
\(573\) 20.1438 + 31.0668i 0.841517 + 1.29783i
\(574\) 23.1436 9.54975i 0.965995 0.398599i
\(575\) 8.68182i 0.362057i
\(576\) −1.75992 2.42955i −0.0733299 0.101231i
\(577\) 27.2463 15.7307i 1.13428 0.654876i 0.189272 0.981925i \(-0.439387\pi\)
0.945008 + 0.327048i \(0.106054\pi\)
\(578\) −14.6936 + 8.48338i −0.611175 + 0.352862i
\(579\) 0.672285 + 13.0042i 0.0279392 + 0.540435i
\(580\) 26.4864i 1.09979i
\(581\) −16.2289 + 21.0908i −0.673288 + 0.874995i
\(582\) 14.6014 9.46757i 0.605248 0.392443i
\(583\) 1.58376 2.74315i 0.0655927 0.113610i
\(584\) −7.00663 12.1358i −0.289936 0.502185i
\(585\) 5.64151 + 54.4166i 0.233248 + 2.24985i
\(586\) −5.11792 2.95483i −0.211419 0.122063i
\(587\) −20.2874 −0.837350 −0.418675 0.908136i \(-0.637505\pi\)
−0.418675 + 0.908136i \(0.637505\pi\)
\(588\) 11.5437 3.70727i 0.476053 0.152885i
\(589\) −1.60374 −0.0660810
\(590\) 25.8985 + 14.9525i 1.06622 + 0.615584i
\(591\) −1.67944 + 3.29033i −0.0690830 + 0.135346i
\(592\) −2.92312 5.06300i −0.120140 0.208088i
\(593\) 9.25286 16.0264i 0.379970 0.658126i −0.611088 0.791563i \(-0.709268\pi\)
0.991057 + 0.133436i \(0.0426011\pi\)
\(594\) −0.237148 1.51816i −0.00973030 0.0622909i
\(595\) −1.08803 + 1.41398i −0.0446048 + 0.0579677i
\(596\) 12.8965i 0.528263i
\(597\) 27.6826 1.43112i 1.13297 0.0585720i
\(598\) −4.26963 + 2.46507i −0.174598 + 0.100804i
\(599\) −1.22541 + 0.707493i −0.0500691 + 0.0289074i −0.524826 0.851210i \(-0.675869\pi\)
0.474757 + 0.880117i \(0.342536\pi\)
\(600\) −15.0173 + 0.776360i −0.613079 + 0.0316947i
\(601\) 40.1031i 1.63584i −0.575333 0.817919i \(-0.695128\pi\)
0.575333 0.817919i \(-0.304872\pi\)
\(602\) 3.80683 1.57081i 0.155155 0.0640216i
\(603\) 6.87031 15.3723i 0.279781 0.626010i
\(604\) 4.17685 7.23451i 0.169953 0.294368i
\(605\) 20.1822 + 34.9566i 0.820523 + 1.42119i
\(606\) 8.49581 16.6448i 0.345119 0.676149i
\(607\) 33.6463 + 19.4257i 1.36566 + 0.788465i 0.990371 0.138442i \(-0.0442093\pi\)
0.375291 + 0.926907i \(0.377543\pi\)
\(608\) 7.83887 0.317908
\(609\) −14.0658 29.6466i −0.569974 1.20134i
\(610\) 35.3039 1.42941
\(611\) −5.67527 3.27662i −0.229597 0.132558i
\(612\) 0.544011 0.0563990i 0.0219903 0.00227979i
\(613\) 7.29308 + 12.6320i 0.294565 + 0.510201i 0.974884 0.222715i \(-0.0714920\pi\)
−0.680319 + 0.732916i \(0.738159\pi\)
\(614\) 5.85887 10.1479i 0.236445 0.409535i
\(615\) −50.8683 + 32.9831i −2.05121 + 1.33001i
\(616\) −0.775552 0.103170i −0.0312479 0.00415685i
\(617\) 12.7657i 0.513927i 0.966421 + 0.256964i \(0.0827220\pi\)
−0.966421 + 0.256964i \(0.917278\pi\)
\(618\) 0.0944149 + 1.82629i 0.00379792 + 0.0734641i
\(619\) 29.7458 17.1737i 1.19558 0.690270i 0.236016 0.971749i \(-0.424158\pi\)
0.959567 + 0.281479i \(0.0908249\pi\)
\(620\) −0.655365 + 0.378375i −0.0263201 + 0.0151959i
\(621\) 1.87244 4.84706i 0.0751383 0.194506i
\(622\) 29.7729i 1.19379i
\(623\) 9.80711 + 23.7673i 0.392914 + 0.952216i
\(624\) −4.64575 7.16492i −0.185979 0.286826i
\(625\) −3.48246 + 6.03180i −0.139298 + 0.241272i
\(626\) −8.51484 14.7481i −0.340322 0.589454i
\(627\) 3.57610 + 1.82530i 0.142816 + 0.0728956i
\(628\) −9.32095 5.38145i −0.371946 0.214743i
\(629\) 1.06582 0.0424971
\(630\) −25.8399 + 13.9375i −1.02949 + 0.555282i
\(631\) −21.0279 −0.837108 −0.418554 0.908192i \(-0.637463\pi\)
−0.418554 + 0.908192i \(0.637463\pi\)
\(632\) 1.77928 + 1.02727i 0.0707758 + 0.0408625i
\(633\) −44.3207 22.6221i −1.76159 0.899146i
\(634\) −0.101666 0.176090i −0.00403766 0.00699343i
\(635\) 4.36128 7.55396i 0.173072 0.299770i
\(636\) 10.0935 + 15.5668i 0.400235 + 0.617265i
\(637\) 33.3591 8.84195i 1.32174 0.350331i
\(638\) 2.11749i 0.0838323i
\(639\) −22.8206 + 16.5308i −0.902768 + 0.653948i
\(640\) 3.20334 1.84945i 0.126623 0.0731058i
\(641\) 21.9068 12.6479i 0.865266 0.499562i −0.000505973 1.00000i \(-0.500161\pi\)
0.865772 + 0.500438i \(0.166828\pi\)
\(642\) 0.489799 + 9.47428i 0.0193308 + 0.373920i
\(643\) 45.5196i 1.79512i 0.440895 + 0.897559i \(0.354661\pi\)
−0.440895 + 0.897559i \(0.645339\pi\)
\(644\) −2.09684 1.61347i −0.0826269 0.0635795i
\(645\) −8.36719 + 5.42530i −0.329458 + 0.213621i
\(646\) −0.714548 + 1.23763i −0.0281135 + 0.0486940i
\(647\) 14.8888 + 25.7881i 0.585338 + 1.01383i 0.994833 + 0.101522i \(0.0323713\pi\)
−0.409496 + 0.912312i \(0.634295\pi\)
\(648\) 8.55160 + 2.80539i 0.335938 + 0.110206i
\(649\) −2.07049 1.19540i −0.0812738 0.0469235i
\(650\) −42.8027 −1.67886
\(651\) −0.532620 + 0.771557i −0.0208750 + 0.0302397i
\(652\) 11.9220 0.466900
\(653\) −2.63797 1.52303i −0.103232 0.0596009i 0.447495 0.894286i \(-0.352316\pi\)
−0.550727 + 0.834685i \(0.685649\pi\)
\(654\) −3.14804 + 6.16758i −0.123098 + 0.241172i
\(655\) −16.7098 28.9422i −0.652906 1.13087i
\(656\) 4.73144 8.19510i 0.184732 0.319965i
\(657\) 38.3810 + 17.1535i 1.49739 + 0.669222i
\(658\) 0.463745 3.48607i 0.0180787 0.135901i
\(659\) 42.9025i 1.67124i 0.549305 + 0.835622i \(0.314893\pi\)
−0.549305 + 0.835622i \(0.685107\pi\)
\(660\) 1.89201 0.0978127i 0.0736465 0.00380735i
\(661\) 1.07426 0.620222i 0.0417837 0.0241239i −0.478963 0.877835i \(-0.658987\pi\)
0.520746 + 0.853711i \(0.325654\pi\)
\(662\) −12.9170 + 7.45761i −0.502032 + 0.289848i
\(663\) 1.55471 0.0803748i 0.0603799 0.00312150i
\(664\) 10.0584i 0.390342i
\(665\) 10.1160 76.0441i 0.392281 2.94886i
\(666\) 16.0123 + 7.15633i 0.620464 + 0.277302i
\(667\) −3.58031 + 6.20128i −0.138630 + 0.240115i
\(668\) 4.52585 + 7.83901i 0.175111 + 0.303300i
\(669\) 7.96839 15.6115i 0.308076 0.603576i
\(670\) 17.9790 + 10.3802i 0.694589 + 0.401021i
\(671\) −2.82242 −0.108958
\(672\) 2.60337 3.77127i 0.100427 0.145480i
\(673\) −42.9095 −1.65404 −0.827020 0.562172i \(-0.809966\pi\)
−0.827020 + 0.562172i \(0.809966\pi\)
\(674\) −14.9584 8.63626i −0.576177 0.332656i
\(675\) 35.1189 28.3154i 1.35173 1.08986i
\(676\) −5.65318 9.79159i −0.217430 0.376600i
\(677\) 19.1128 33.1043i 0.734564 1.27230i −0.220350 0.975421i \(-0.570720\pi\)
0.954914 0.296882i \(-0.0959467\pi\)
\(678\) 2.49471 1.61757i 0.0958087 0.0621225i
\(679\) 21.0672 + 16.2108i 0.808486 + 0.622112i
\(680\) 0.674341i 0.0258598i
\(681\) −0.711906 13.7706i −0.0272803 0.527689i
\(682\) 0.0523941 0.0302498i 0.00200627 0.00115832i
\(683\) 19.4137 11.2085i 0.742844 0.428881i −0.0802582 0.996774i \(-0.525574\pi\)
0.823103 + 0.567893i \(0.192241\pi\)
\(684\) −19.0449 + 13.7958i −0.728200 + 0.527494i
\(685\) 38.5445i 1.47271i
\(686\) 11.2147 + 14.7387i 0.428181 + 0.562727i
\(687\) 18.0211 + 27.7932i 0.687549 + 1.06038i
\(688\) 0.778263 1.34799i 0.0296710 0.0513917i
\(689\) 26.4045 + 45.7340i 1.00593 + 1.74233i
\(690\) 5.70633 + 2.91261i 0.217236 + 0.110881i
\(691\) 20.8605 + 12.0438i 0.793570 + 0.458168i 0.841218 0.540696i \(-0.181839\pi\)
−0.0476479 + 0.998864i \(0.515173\pi\)
\(692\) −8.74016 −0.332251
\(693\) 2.06581 1.11425i 0.0784737 0.0423269i
\(694\) 8.02507 0.304627
\(695\) −64.2224 37.0788i −2.43610 1.40648i
\(696\) −11.0468 5.63847i −0.418727 0.213726i
\(697\) 0.862584 + 1.49404i 0.0326727 + 0.0565908i
\(698\) −11.8651 + 20.5510i −0.449102 + 0.777867i
\(699\) −17.7703 27.4063i −0.672134 1.03660i
\(700\) −8.76152 21.2333i −0.331154 0.802544i
\(701\) 41.4373i 1.56506i 0.622611 + 0.782532i \(0.286072\pi\)
−0.622611 + 0.782532i \(0.713928\pi\)
\(702\) 23.8967 + 9.23139i 0.901923 + 0.348416i
\(703\) −39.6882 + 22.9140i −1.49687 + 0.864217i
\(704\) −0.256095 + 0.147857i −0.00965196 + 0.00557256i
\(705\) 0.439663 + 8.50451i 0.0165587 + 0.320298i
\(706\) 10.2156i 0.384471i
\(707\) 28.2966 + 3.76424i 1.06420 + 0.141569i
\(708\) 11.7496 7.61845i 0.441577 0.286319i
\(709\) 7.26851 12.5894i 0.272975 0.472806i −0.696648 0.717414i \(-0.745326\pi\)
0.969622 + 0.244608i \(0.0786592\pi\)
\(710\) −17.3717 30.0887i −0.651950 1.12921i
\(711\) −6.13074 + 0.635589i −0.229921 + 0.0238364i
\(712\) 8.41595 + 4.85895i 0.315401 + 0.182097i
\(713\) 0.204588 0.00766189
\(714\) 0.358114 + 0.754799i 0.0134021 + 0.0282476i
\(715\) 5.39266 0.201674
\(716\) −19.1588 11.0613i −0.715998 0.413382i
\(717\) −16.0715 + 31.4869i −0.600200 + 1.17590i
\(718\) 17.2394 + 29.8595i 0.643369 + 1.11435i
\(719\) 4.15154 7.19067i 0.154826 0.268167i −0.778170 0.628054i \(-0.783852\pi\)
0.932996 + 0.359887i \(0.117185\pi\)
\(720\) −4.52778 + 10.1309i −0.168740 + 0.377557i
\(721\) −2.58223 + 1.06551i −0.0961674 + 0.0396816i
\(722\) 42.4479i 1.57975i
\(723\) −35.6016 + 1.84052i −1.32404 + 0.0684496i
\(724\) −20.8588 + 12.0428i −0.775211 + 0.447568i
\(725\) −53.8384 + 31.0836i −1.99951 + 1.15442i
\(726\) 18.8759 0.975840i 0.700550 0.0362168i
\(727\) 12.2893i 0.455784i −0.973686 0.227892i \(-0.926817\pi\)
0.973686 0.227892i \(-0.0731832\pi\)
\(728\) 7.95463 10.3377i 0.294818 0.383141i
\(729\) −25.7137 + 8.23427i −0.952361 + 0.304973i
\(730\) −25.9168 + 44.8892i −0.959223 + 1.66142i
\(731\) 0.141884 + 0.245751i 0.00524778 + 0.00908942i
\(732\) 7.51555 14.7243i 0.277783 0.544226i
\(733\) −17.6902 10.2134i −0.653402 0.377242i 0.136356 0.990660i \(-0.456461\pi\)
−0.789758 + 0.613418i \(0.789794\pi\)
\(734\) −8.84091 −0.326324
\(735\) −33.2250 30.1218i −1.22552 1.11106i
\(736\) −1.00000 −0.0368605
\(737\) −1.43736 0.829858i −0.0529457 0.0305682i
\(738\) 2.92743 + 28.2373i 0.107760 + 1.03943i
\(739\) 10.8266 + 18.7522i 0.398263 + 0.689813i 0.993512 0.113729i \(-0.0362796\pi\)
−0.595248 + 0.803542i \(0.702946\pi\)
\(740\) −10.8123 + 18.7275i −0.397469 + 0.688436i
\(741\) −56.1649 + 36.4174i −2.06327 + 1.33783i
\(742\) −17.2826 + 22.4602i −0.634463 + 0.824538i
\(743\) 17.8620i 0.655292i −0.944801 0.327646i \(-0.893745\pi\)
0.944801 0.327646i \(-0.106255\pi\)
\(744\) 0.0182950 + 0.353885i 0.000670728 + 0.0129740i
\(745\) 41.3120 23.8515i 1.51355 0.873851i
\(746\) −15.0597 + 8.69472i −0.551375 + 0.318336i
\(747\) −17.7019 24.4373i −0.647680 0.894116i
\(748\) 0.0539112i 0.00197119i
\(749\) −13.3959 + 5.52757i −0.489476 + 0.201973i
\(750\) 12.8331 + 19.7918i 0.468597 + 0.722696i
\(751\) −10.0327 + 17.3771i −0.366098 + 0.634101i −0.988952 0.148238i \(-0.952640\pi\)
0.622854 + 0.782338i \(0.285973\pi\)
\(752\) −0.664609 1.15114i −0.0242358 0.0419776i
\(753\) −15.3869 7.85372i −0.560728 0.286206i
\(754\) −30.5732 17.6515i −1.11341 0.642828i
\(755\) −30.8994 −1.12455
\(756\) 0.312095 + 13.7442i 0.0113508 + 0.499871i
\(757\) −20.9223 −0.760432 −0.380216 0.924898i \(-0.624150\pi\)
−0.380216 + 0.924898i \(0.624150\pi\)
\(758\) 8.74191 + 5.04714i 0.317520 + 0.183321i
\(759\) −0.456201 0.232853i −0.0165590 0.00845202i
\(760\) −14.4976 25.1105i −0.525882 0.910855i
\(761\) 0.313420 0.542859i 0.0113615 0.0196786i −0.860289 0.509807i \(-0.829717\pi\)
0.871650 + 0.490128i \(0.163050\pi\)
\(762\) −2.22212 3.42708i −0.0804989 0.124150i
\(763\) −10.4850 1.39481i −0.379584 0.0504953i
\(764\) 21.3769i 0.773390i
\(765\) −1.18678 1.63834i −0.0429083 0.0592344i
\(766\) −17.9826 + 10.3822i −0.649737 + 0.375126i
\(767\) 34.5193 19.9297i 1.24642 0.719620i
\(768\) −0.0894236 1.72974i −0.00322680 0.0624166i
\(769\) 35.9039i 1.29473i −0.762181 0.647365i \(-0.775871\pi\)
0.762181 0.647365i \(-0.224129\pi\)
\(770\) 1.10385 + 2.67516i