Properties

Label 966.2.l.d.47.12
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.12
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.45696 - 0.936628i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.06670 + 1.84758i) q^{5} +(-1.73008 + 0.0826645i) q^{6} +(2.47771 - 0.927868i) q^{7} -1.00000i q^{8} +(1.24546 - 2.72926i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.45696 - 0.936628i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.06670 + 1.84758i) q^{5} +(-1.73008 + 0.0826645i) q^{6} +(2.47771 - 0.927868i) q^{7} -1.00000i q^{8} +(1.24546 - 2.72926i) q^{9} +(1.84758 - 1.06670i) q^{10} +(1.50304 - 0.867779i) q^{11} +(1.53962 + 0.793449i) q^{12} +4.14068i q^{13} +(-2.60970 - 0.435299i) q^{14} +(0.176357 + 3.69095i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.34179 + 5.78814i) q^{17} +(-2.44322 + 1.74088i) q^{18} +(0.590910 + 0.341162i) q^{19} -2.13340 q^{20} +(2.74086 - 3.67256i) q^{21} -1.73556 q^{22} +(-0.866025 - 0.500000i) q^{23} +(-0.936628 - 1.45696i) q^{24} +(0.224303 + 0.388504i) q^{25} +(2.07034 - 3.58594i) q^{26} +(-0.741721 - 5.14294i) q^{27} +(2.04241 + 1.68183i) q^{28} -6.36078i q^{29} +(1.69274 - 3.28463i) q^{30} +(-6.85342 + 3.95682i) q^{31} +(0.866025 - 0.500000i) q^{32} +(1.37708 - 2.67210i) q^{33} -6.68357i q^{34} +(-0.928666 + 5.56753i) q^{35} +(2.98633 - 0.286032i) q^{36} +(3.17900 - 5.50620i) q^{37} +(-0.341162 - 0.590910i) q^{38} +(3.87828 + 6.03281i) q^{39} +(1.84758 + 1.06670i) q^{40} +7.21011 q^{41} +(-4.20993 + 1.81010i) q^{42} -2.28571 q^{43} +(1.50304 + 0.867779i) q^{44} +(3.71399 + 5.21237i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-2.60667 + 4.51489i) q^{47} +(0.0826645 + 1.73008i) q^{48} +(5.27812 - 4.59798i) q^{49} -0.448606i q^{50} +(10.2902 + 5.30307i) q^{51} +(-3.58594 + 2.07034i) q^{52} +(3.42253 - 1.97600i) q^{53} +(-1.92912 + 4.82478i) q^{54} +3.70264i q^{55} +(-0.927868 - 2.47771i) q^{56} +(1.18047 - 0.0564040i) q^{57} +(-3.18039 + 5.50859i) q^{58} +(3.33649 + 5.77897i) q^{59} +(-3.10827 + 1.99820i) q^{60} +(8.83197 + 5.09914i) q^{61} +7.91365 q^{62} +(0.553490 - 7.91793i) q^{63} -1.00000 q^{64} +(-7.65024 - 4.41687i) q^{65} +(-2.52863 + 1.62557i) q^{66} +(5.73414 + 9.93182i) q^{67} +(-3.34179 + 5.78814i) q^{68} +(-1.73008 + 0.0826645i) q^{69} +(3.58801 - 4.35729i) q^{70} -14.0712i q^{71} +(-2.72926 - 1.24546i) q^{72} +(5.31870 - 3.07075i) q^{73} +(-5.50620 + 3.17900i) q^{74} +(0.690684 + 0.355946i) q^{75} +0.682324i q^{76} +(2.91891 - 3.54473i) q^{77} +(-0.342288 - 7.16370i) q^{78} +(0.0682567 - 0.118224i) q^{79} +(-1.06670 - 1.84758i) q^{80} +(-5.89768 - 6.79834i) q^{81} +(-6.24414 - 3.60505i) q^{82} -2.92318 q^{83} +(4.55096 + 0.537371i) q^{84} -14.2587 q^{85} +(1.97948 + 1.14285i) q^{86} +(-5.95768 - 9.26739i) q^{87} +(-0.867779 - 1.50304i) q^{88} +(6.25586 - 10.8355i) q^{89} +(-0.610221 - 6.37104i) q^{90} +(3.84201 + 10.2594i) q^{91} -1.00000i q^{92} +(-6.27907 + 12.1840i) q^{93} +(4.51489 - 2.60667i) q^{94} +(-1.26065 + 0.727835i) q^{95} +(0.793449 - 1.53962i) q^{96} -7.10011i q^{97} +(-6.86998 + 1.34291i) q^{98} +(-0.496425 - 5.18295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.45696 0.936628i 0.841175 0.540762i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.06670 + 1.84758i −0.477043 + 0.826262i −0.999654 0.0263090i \(-0.991625\pi\)
0.522611 + 0.852571i \(0.324958\pi\)
\(6\) −1.73008 + 0.0826645i −0.706301 + 0.0337477i
\(7\) 2.47771 0.927868i 0.936487 0.350701i
\(8\) 1.00000i 0.353553i
\(9\) 1.24546 2.72926i 0.415152 0.909752i
\(10\) 1.84758 1.06670i 0.584256 0.337320i
\(11\) 1.50304 0.867779i 0.453183 0.261645i −0.255991 0.966679i \(-0.582402\pi\)
0.709173 + 0.705034i \(0.249068\pi\)
\(12\) 1.53962 + 0.793449i 0.444451 + 0.229049i
\(13\) 4.14068i 1.14842i 0.818708 + 0.574210i \(0.194691\pi\)
−0.818708 + 0.574210i \(0.805309\pi\)
\(14\) −2.60970 0.435299i −0.697471 0.116338i
\(15\) 0.176357 + 3.69095i 0.0455351 + 0.952998i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.34179 + 5.78814i 0.810502 + 1.40383i 0.912513 + 0.409048i \(0.134139\pi\)
−0.102011 + 0.994783i \(0.532528\pi\)
\(18\) −2.44322 + 1.74088i −0.575874 + 0.410329i
\(19\) 0.590910 + 0.341162i 0.135564 + 0.0782679i 0.566248 0.824235i \(-0.308394\pi\)
−0.430684 + 0.902503i \(0.641728\pi\)
\(20\) −2.13340 −0.477043
\(21\) 2.74086 3.67256i 0.598104 0.801419i
\(22\) −1.73556 −0.370022
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) −0.936628 1.45696i −0.191188 0.297400i
\(25\) 0.224303 + 0.388504i 0.0448606 + 0.0777009i
\(26\) 2.07034 3.58594i 0.406028 0.703260i
\(27\) −0.741721 5.14294i −0.142744 0.989760i
\(28\) 2.04241 + 1.68183i 0.385980 + 0.317836i
\(29\) 6.36078i 1.18117i −0.806977 0.590583i \(-0.798898\pi\)
0.806977 0.590583i \(-0.201102\pi\)
\(30\) 1.69274 3.28463i 0.309051 0.599689i
\(31\) −6.85342 + 3.95682i −1.23091 + 0.710666i −0.967220 0.253941i \(-0.918273\pi\)
−0.263691 + 0.964607i \(0.584940\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 1.37708 2.67210i 0.239718 0.465154i
\(34\) 6.68357i 1.14622i
\(35\) −0.928666 + 5.56753i −0.156973 + 0.941084i
\(36\) 2.98633 0.286032i 0.497722 0.0476720i
\(37\) 3.17900 5.50620i 0.522625 0.905213i −0.477029 0.878888i \(-0.658286\pi\)
0.999653 0.0263251i \(-0.00838050\pi\)
\(38\) −0.341162 0.590910i −0.0553438 0.0958582i
\(39\) 3.87828 + 6.03281i 0.621022 + 0.966022i
\(40\) 1.84758 + 1.06670i 0.292128 + 0.168660i
\(41\) 7.21011 1.12603 0.563015 0.826447i \(-0.309641\pi\)
0.563015 + 0.826447i \(0.309641\pi\)
\(42\) −4.20993 + 1.81010i −0.649607 + 0.279305i
\(43\) −2.28571 −0.348567 −0.174283 0.984696i \(-0.555761\pi\)
−0.174283 + 0.984696i \(0.555761\pi\)
\(44\) 1.50304 + 0.867779i 0.226591 + 0.130823i
\(45\) 3.71399 + 5.21237i 0.553649 + 0.777015i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −2.60667 + 4.51489i −0.380223 + 0.658565i −0.991094 0.133165i \(-0.957486\pi\)
0.610871 + 0.791730i \(0.290819\pi\)
\(48\) 0.0826645 + 1.73008i 0.0119316 + 0.249715i
\(49\) 5.27812 4.59798i 0.754017 0.656855i
\(50\) 0.448606i 0.0634425i
\(51\) 10.2902 + 5.30307i 1.44091 + 0.742579i
\(52\) −3.58594 + 2.07034i −0.497280 + 0.287105i
\(53\) 3.42253 1.97600i 0.470121 0.271424i −0.246170 0.969227i \(-0.579172\pi\)
0.716290 + 0.697803i \(0.245839\pi\)
\(54\) −1.92912 + 4.82478i −0.262520 + 0.656569i
\(55\) 3.70264i 0.499264i
\(56\) −0.927868 2.47771i −0.123992 0.331098i
\(57\) 1.18047 0.0564040i 0.156357 0.00747089i
\(58\) −3.18039 + 5.50859i −0.417605 + 0.723314i
\(59\) 3.33649 + 5.77897i 0.434374 + 0.752358i 0.997244 0.0741872i \(-0.0236362\pi\)
−0.562870 + 0.826545i \(0.690303\pi\)
\(60\) −3.10827 + 1.99820i −0.401277 + 0.257967i
\(61\) 8.83197 + 5.09914i 1.13082 + 0.652878i 0.944141 0.329543i \(-0.106895\pi\)
0.186678 + 0.982421i \(0.440228\pi\)
\(62\) 7.91365 1.00503
\(63\) 0.553490 7.91793i 0.0697332 0.997566i
\(64\) −1.00000 −0.125000
\(65\) −7.65024 4.41687i −0.948895 0.547845i
\(66\) −2.52863 + 1.62557i −0.311253 + 0.200094i
\(67\) 5.73414 + 9.93182i 0.700537 + 1.21337i 0.968278 + 0.249875i \(0.0803894\pi\)
−0.267741 + 0.963491i \(0.586277\pi\)
\(68\) −3.34179 + 5.78814i −0.405251 + 0.701916i
\(69\) −1.73008 + 0.0826645i −0.208277 + 0.00995164i
\(70\) 3.58801 4.35729i 0.428849 0.520795i
\(71\) 14.0712i 1.66995i −0.550288 0.834975i \(-0.685482\pi\)
0.550288 0.834975i \(-0.314518\pi\)
\(72\) −2.72926 1.24546i −0.321646 0.146778i
\(73\) 5.31870 3.07075i 0.622507 0.359404i −0.155338 0.987861i \(-0.549647\pi\)
0.777844 + 0.628457i \(0.216313\pi\)
\(74\) −5.50620 + 3.17900i −0.640082 + 0.369552i
\(75\) 0.690684 + 0.355946i 0.0797534 + 0.0411011i
\(76\) 0.682324i 0.0782679i
\(77\) 2.91891 3.54473i 0.332641 0.403959i
\(78\) −0.342288 7.16370i −0.0387565 0.811130i
\(79\) 0.0682567 0.118224i 0.00767948 0.0133013i −0.862160 0.506636i \(-0.830889\pi\)
0.869840 + 0.493335i \(0.164222\pi\)
\(80\) −1.06670 1.84758i −0.119261 0.206566i
\(81\) −5.89768 6.79834i −0.655298 0.755371i
\(82\) −6.24414 3.60505i −0.689549 0.398112i
\(83\) −2.92318 −0.320860 −0.160430 0.987047i \(-0.551288\pi\)
−0.160430 + 0.987047i \(0.551288\pi\)
\(84\) 4.55096 + 0.537371i 0.496550 + 0.0586320i
\(85\) −14.2587 −1.54658
\(86\) 1.97948 + 1.14285i 0.213453 + 0.123237i
\(87\) −5.95768 9.26739i −0.638731 0.993568i
\(88\) −0.867779 1.50304i −0.0925055 0.160224i
\(89\) 6.25586 10.8355i 0.663120 1.14856i −0.316672 0.948535i \(-0.602565\pi\)
0.979791 0.200022i \(-0.0641013\pi\)
\(90\) −0.610221 6.37104i −0.0643229 0.671567i
\(91\) 3.84201 + 10.2594i 0.402752 + 1.07548i
\(92\) 1.00000i 0.104257i
\(93\) −6.27907 + 12.1840i −0.651110 + 1.26343i
\(94\) 4.51489 2.60667i 0.465676 0.268858i
\(95\) −1.26065 + 0.727835i −0.129340 + 0.0746743i
\(96\) 0.793449 1.53962i 0.0809810 0.157137i
\(97\) 7.10011i 0.720907i −0.932777 0.360453i \(-0.882622\pi\)
0.932777 0.360453i \(-0.117378\pi\)
\(98\) −6.86998 + 1.34291i −0.693973 + 0.135654i
\(99\) −0.496425 5.18295i −0.0498926 0.520906i
\(100\) −0.224303 + 0.388504i −0.0224303 + 0.0388504i
\(101\) −1.52098 2.63441i −0.151343 0.262134i 0.780379 0.625307i \(-0.215026\pi\)
−0.931721 + 0.363174i \(0.881693\pi\)
\(102\) −6.26002 9.73769i −0.619835 0.964175i
\(103\) −12.8932 7.44389i −1.27040 0.733468i −0.295340 0.955392i \(-0.595433\pi\)
−0.975064 + 0.221924i \(0.928766\pi\)
\(104\) 4.14068 0.406028
\(105\) 3.86167 + 8.98147i 0.376861 + 0.876501i
\(106\) −3.95200 −0.383852
\(107\) −4.73604 2.73435i −0.457850 0.264340i 0.253290 0.967390i \(-0.418487\pi\)
−0.711140 + 0.703051i \(0.751821\pi\)
\(108\) 4.08306 3.21382i 0.392892 0.309250i
\(109\) −3.01896 5.22899i −0.289164 0.500846i 0.684447 0.729063i \(-0.260044\pi\)
−0.973610 + 0.228217i \(0.926711\pi\)
\(110\) 1.85132 3.20658i 0.176516 0.305735i
\(111\) −0.525582 10.9998i −0.0498860 1.04406i
\(112\) −0.435299 + 2.60970i −0.0411319 + 0.246593i
\(113\) 6.65996i 0.626516i 0.949668 + 0.313258i \(0.101420\pi\)
−0.949668 + 0.313258i \(0.898580\pi\)
\(114\) −1.05052 0.541389i −0.0983903 0.0507057i
\(115\) 1.84758 1.06670i 0.172288 0.0994703i
\(116\) 5.50859 3.18039i 0.511460 0.295292i
\(117\) 11.3010 + 5.15704i 1.04478 + 0.476768i
\(118\) 6.67298i 0.614298i
\(119\) 13.6506 + 11.2406i 1.25135 + 1.03043i
\(120\) 3.69095 0.176357i 0.336936 0.0160991i
\(121\) −3.99392 + 6.91767i −0.363084 + 0.628879i
\(122\) −5.09914 8.83197i −0.461655 0.799609i
\(123\) 10.5048 6.75319i 0.947188 0.608915i
\(124\) −6.85342 3.95682i −0.615455 0.355333i
\(125\) −11.6241 −1.03969
\(126\) −4.43830 + 6.58039i −0.395395 + 0.586227i
\(127\) −5.28700 −0.469146 −0.234573 0.972099i \(-0.575369\pi\)
−0.234573 + 0.972099i \(0.575369\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −3.33018 + 2.14086i −0.293206 + 0.188492i
\(130\) 4.41687 + 7.65024i 0.387385 + 0.670970i
\(131\) −3.71455 + 6.43379i −0.324542 + 0.562123i −0.981420 0.191874i \(-0.938543\pi\)
0.656878 + 0.753997i \(0.271877\pi\)
\(132\) 3.00265 0.143469i 0.261347 0.0124874i
\(133\) 1.78066 + 0.297015i 0.154403 + 0.0257544i
\(134\) 11.4683i 0.990709i
\(135\) 10.2932 + 4.11559i 0.885896 + 0.354213i
\(136\) 5.78814 3.34179i 0.496329 0.286556i
\(137\) 9.99153 5.76861i 0.853634 0.492846i −0.00824120 0.999966i \(-0.502623\pi\)
0.861875 + 0.507120i \(0.169290\pi\)
\(138\) 1.53962 + 0.793449i 0.131061 + 0.0675429i
\(139\) 7.90062i 0.670122i 0.942197 + 0.335061i \(0.108757\pi\)
−0.942197 + 0.335061i \(0.891243\pi\)
\(140\) −5.28595 + 1.97951i −0.446744 + 0.167299i
\(141\) 0.430959 + 9.01950i 0.0362933 + 0.759579i
\(142\) −7.03562 + 12.1861i −0.590416 + 1.02263i
\(143\) 3.59320 + 6.22360i 0.300478 + 0.520444i
\(144\) 1.74088 + 2.44322i 0.145073 + 0.203602i
\(145\) 11.7520 + 6.78504i 0.975953 + 0.563467i
\(146\) −6.14151 −0.508275
\(147\) 3.38340 11.6427i 0.279058 0.960274i
\(148\) 6.35801 0.522625
\(149\) −3.15492 1.82150i −0.258461 0.149223i 0.365171 0.930940i \(-0.381010\pi\)
−0.623633 + 0.781718i \(0.714344\pi\)
\(150\) −0.420177 0.653601i −0.0343073 0.0533663i
\(151\) 0.850655 + 1.47338i 0.0692253 + 0.119902i 0.898561 0.438850i \(-0.144614\pi\)
−0.829335 + 0.558751i \(0.811281\pi\)
\(152\) 0.341162 0.590910i 0.0276719 0.0479291i
\(153\) 19.9594 1.91172i 1.61362 0.154553i
\(154\) −4.30021 + 1.61037i −0.346521 + 0.129767i
\(155\) 16.8830i 1.35607i
\(156\) −3.28542 + 6.37509i −0.263044 + 0.510416i
\(157\) −10.3723 + 5.98843i −0.827797 + 0.477929i −0.853098 0.521751i \(-0.825279\pi\)
0.0253007 + 0.999680i \(0.491946\pi\)
\(158\) −0.118224 + 0.0682567i −0.00940540 + 0.00543021i
\(159\) 3.13571 6.08458i 0.248678 0.482539i
\(160\) 2.13340i 0.168660i
\(161\) −2.60970 0.435299i −0.205673 0.0343063i
\(162\) 1.70837 + 8.83637i 0.134223 + 0.694251i
\(163\) −6.33683 + 10.9757i −0.496339 + 0.859684i −0.999991 0.00422243i \(-0.998656\pi\)
0.503652 + 0.863906i \(0.331989\pi\)
\(164\) 3.60505 + 6.24414i 0.281507 + 0.487585i
\(165\) 3.46799 + 5.39459i 0.269983 + 0.419968i
\(166\) 2.53155 + 1.46159i 0.196486 + 0.113441i
\(167\) −16.4743 −1.27482 −0.637411 0.770524i \(-0.719995\pi\)
−0.637411 + 0.770524i \(0.719995\pi\)
\(168\) −3.67256 2.74086i −0.283344 0.211462i
\(169\) −4.14527 −0.318867
\(170\) 12.3484 + 7.12937i 0.947081 + 0.546797i
\(171\) 1.66707 1.18784i 0.127484 0.0908366i
\(172\) −1.14285 1.97948i −0.0871417 0.150934i
\(173\) 4.16224 7.20921i 0.316449 0.548106i −0.663295 0.748358i \(-0.730843\pi\)
0.979745 + 0.200251i \(0.0641759\pi\)
\(174\) 0.525811 + 11.0046i 0.0398616 + 0.834259i
\(175\) 0.916240 + 0.754478i 0.0692612 + 0.0570332i
\(176\) 1.73556i 0.130823i
\(177\) 10.2739 + 5.29467i 0.772232 + 0.397972i
\(178\) −10.8355 + 6.25586i −0.812152 + 0.468896i
\(179\) −5.86108 + 3.38389i −0.438078 + 0.252924i −0.702782 0.711405i \(-0.748059\pi\)
0.264704 + 0.964330i \(0.414726\pi\)
\(180\) −2.65705 + 5.82259i −0.198045 + 0.433991i
\(181\) 25.5939i 1.90238i −0.308612 0.951188i \(-0.599864\pi\)
0.308612 0.951188i \(-0.400136\pi\)
\(182\) 1.80243 10.8059i 0.133605 0.800989i
\(183\) 17.6438 0.843036i 1.30427 0.0623190i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 6.78208 + 11.7469i 0.498629 + 0.863650i
\(186\) 11.5299 7.41214i 0.845410 0.543485i
\(187\) 10.0457 + 5.79986i 0.734611 + 0.424128i
\(188\) −5.21335 −0.380223
\(189\) −6.60975 12.0545i −0.480788 0.876837i
\(190\) 1.45567 0.105605
\(191\) −5.02989 2.90401i −0.363950 0.210127i 0.306862 0.951754i \(-0.400721\pi\)
−0.670812 + 0.741627i \(0.734054\pi\)
\(192\) −1.45696 + 0.936628i −0.105147 + 0.0675953i
\(193\) −5.03338 8.71806i −0.362310 0.627540i 0.626030 0.779799i \(-0.284679\pi\)
−0.988341 + 0.152259i \(0.951345\pi\)
\(194\) −3.55005 + 6.14887i −0.254879 + 0.441463i
\(195\) −15.2830 + 0.730237i −1.09444 + 0.0522933i
\(196\) 6.62103 + 2.27199i 0.472931 + 0.162285i
\(197\) 15.2640i 1.08751i 0.839243 + 0.543756i \(0.182998\pi\)
−0.839243 + 0.543756i \(0.817002\pi\)
\(198\) −2.16156 + 4.73678i −0.153615 + 0.336628i
\(199\) −23.6888 + 13.6767i −1.67925 + 0.969517i −0.717115 + 0.696955i \(0.754538\pi\)
−0.962138 + 0.272563i \(0.912129\pi\)
\(200\) 0.388504 0.224303i 0.0274714 0.0158606i
\(201\) 17.6568 + 9.09950i 1.24542 + 0.641829i
\(202\) 3.04195i 0.214031i
\(203\) −5.90196 15.7602i −0.414237 1.10615i
\(204\) 0.552494 + 11.5631i 0.0386823 + 0.809579i
\(205\) −7.69102 + 13.3212i −0.537164 + 0.930396i
\(206\) 7.44389 + 12.8932i 0.518640 + 0.898311i
\(207\) −2.44322 + 1.74088i −0.169816 + 0.120999i
\(208\) −3.58594 2.07034i −0.248640 0.143552i
\(209\) 1.18421 0.0819137
\(210\) 1.14643 9.70902i 0.0791110 0.669986i
\(211\) −23.7837 −1.63734 −0.818668 0.574266i \(-0.805287\pi\)
−0.818668 + 0.574266i \(0.805287\pi\)
\(212\) 3.42253 + 1.97600i 0.235060 + 0.135712i
\(213\) −13.1795 20.5012i −0.903046 1.40472i
\(214\) 2.73435 + 4.73604i 0.186917 + 0.323749i
\(215\) 2.43816 4.22302i 0.166281 0.288008i
\(216\) −5.14294 + 0.741721i −0.349933 + 0.0504677i
\(217\) −13.3094 + 16.1629i −0.903500 + 1.09721i
\(218\) 6.03792i 0.408939i
\(219\) 4.87297 9.45560i 0.329285 0.638951i
\(220\) −3.20658 + 1.85132i −0.216187 + 0.124816i
\(221\) −23.9669 + 13.8373i −1.61219 + 0.930796i
\(222\) −5.04475 + 9.78893i −0.338582 + 0.656990i
\(223\) 20.2229i 1.35423i −0.735879 0.677113i \(-0.763231\pi\)
0.735879 0.677113i \(-0.236769\pi\)
\(224\) 1.68183 2.04241i 0.112372 0.136465i
\(225\) 1.33969 0.128316i 0.0893125 0.00855438i
\(226\) 3.32998 5.76769i 0.221507 0.383661i
\(227\) 1.49240 + 2.58491i 0.0990541 + 0.171567i 0.911293 0.411758i \(-0.135085\pi\)
−0.812239 + 0.583324i \(0.801752\pi\)
\(228\) 0.639084 + 0.994117i 0.0423243 + 0.0658370i
\(229\) −2.27128 1.31132i −0.150090 0.0866547i 0.423074 0.906095i \(-0.360951\pi\)
−0.573164 + 0.819440i \(0.694284\pi\)
\(230\) −2.13340 −0.140672
\(231\) 0.932638 7.89845i 0.0613631 0.519680i
\(232\) −6.36078 −0.417605
\(233\) 18.7374 + 10.8180i 1.22753 + 0.708713i 0.966512 0.256622i \(-0.0826094\pi\)
0.261015 + 0.965335i \(0.415943\pi\)
\(234\) −7.20843 10.1166i −0.471230 0.661344i
\(235\) −5.56108 9.63207i −0.362765 0.628327i
\(236\) −3.33649 + 5.77897i −0.217187 + 0.376179i
\(237\) −0.0112848 0.236179i −0.000733028 0.0153415i
\(238\) −6.20148 16.5600i −0.401982 1.07342i
\(239\) 15.9942i 1.03458i 0.855811 + 0.517288i \(0.173059\pi\)
−0.855811 + 0.517288i \(0.826941\pi\)
\(240\) −3.28463 1.69274i −0.212022 0.109266i
\(241\) −7.94984 + 4.58984i −0.512094 + 0.295658i −0.733694 0.679480i \(-0.762205\pi\)
0.221600 + 0.975138i \(0.428872\pi\)
\(242\) 6.91767 3.99392i 0.444685 0.256739i
\(243\) −14.9602 4.38096i −0.959696 0.281039i
\(244\) 10.1983i 0.652878i
\(245\) 2.86496 + 14.6564i 0.183036 + 0.936364i
\(246\) −12.4740 + 0.596020i −0.795316 + 0.0380009i
\(247\) −1.41264 + 2.44677i −0.0898844 + 0.155684i
\(248\) 3.95682 + 6.85342i 0.251259 + 0.435193i
\(249\) −4.25895 + 2.73793i −0.269900 + 0.173509i
\(250\) 10.0667 + 5.81203i 0.636676 + 0.367585i
\(251\) −26.6954 −1.68500 −0.842499 0.538698i \(-0.818916\pi\)
−0.842499 + 0.538698i \(0.818916\pi\)
\(252\) 7.13388 3.47963i 0.449392 0.219196i
\(253\) −1.73556 −0.109114
\(254\) 4.57868 + 2.64350i 0.287292 + 0.165868i
\(255\) −20.7744 + 13.3551i −1.30094 + 0.836331i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.62819 8.01626i 0.288698 0.500040i −0.684801 0.728730i \(-0.740111\pi\)
0.973499 + 0.228690i \(0.0734441\pi\)
\(258\) 3.95445 0.188947i 0.246193 0.0117633i
\(259\) 2.76763 16.5925i 0.171972 1.03101i
\(260\) 8.83374i 0.547845i
\(261\) −17.3602 7.92206i −1.07457 0.490363i
\(262\) 6.43379 3.71455i 0.397481 0.229486i
\(263\) 1.45417 0.839563i 0.0896677 0.0517696i −0.454496 0.890749i \(-0.650181\pi\)
0.544163 + 0.838979i \(0.316847\pi\)
\(264\) −2.67210 1.37708i −0.164457 0.0847532i
\(265\) 8.43119i 0.517924i
\(266\) −1.39359 1.14755i −0.0854463 0.0703609i
\(267\) −1.03428 21.6462i −0.0632966 1.32473i
\(268\) −5.73414 + 9.93182i −0.350268 + 0.606683i
\(269\) 7.80450 + 13.5178i 0.475849 + 0.824194i 0.999617 0.0276663i \(-0.00880758\pi\)
−0.523768 + 0.851861i \(0.675474\pi\)
\(270\) −6.85636 8.71079i −0.417265 0.530122i
\(271\) 18.4790 + 10.6689i 1.12252 + 0.648087i 0.942043 0.335493i \(-0.108903\pi\)
0.180476 + 0.983579i \(0.442236\pi\)
\(272\) −6.68357 −0.405251
\(273\) 15.2069 + 11.3490i 0.920365 + 0.686874i
\(274\) −11.5372 −0.696989
\(275\) 0.674272 + 0.389291i 0.0406601 + 0.0234751i
\(276\) −0.936628 1.45696i −0.0563784 0.0876986i
\(277\) −8.54358 14.7979i −0.513334 0.889121i −0.999880 0.0154661i \(-0.995077\pi\)
0.486546 0.873655i \(-0.338257\pi\)
\(278\) 3.95031 6.84214i 0.236924 0.410364i
\(279\) 2.26356 + 23.6328i 0.135516 + 1.41486i
\(280\) 5.56753 + 0.928666i 0.332723 + 0.0554984i
\(281\) 7.54243i 0.449944i −0.974365 0.224972i \(-0.927771\pi\)
0.974365 0.224972i \(-0.0722290\pi\)
\(282\) 4.13653 8.02659i 0.246327 0.477977i
\(283\) 10.0142 5.78171i 0.595283 0.343687i −0.171901 0.985114i \(-0.554991\pi\)
0.767184 + 0.641427i \(0.221657\pi\)
\(284\) 12.1861 7.03562i 0.723109 0.417487i
\(285\) −1.15500 + 2.24118i −0.0684162 + 0.132756i
\(286\) 7.18640i 0.424941i
\(287\) 17.8646 6.69003i 1.05451 0.394900i
\(288\) −0.286032 2.98633i −0.0168546 0.175971i
\(289\) −13.8351 + 23.9630i −0.813828 + 1.40959i
\(290\) −6.78504 11.7520i −0.398431 0.690103i
\(291\) −6.65016 10.3446i −0.389839 0.606409i
\(292\) 5.31870 + 3.07075i 0.311253 + 0.179702i
\(293\) −24.7212 −1.44423 −0.722114 0.691774i \(-0.756830\pi\)
−0.722114 + 0.691774i \(0.756830\pi\)
\(294\) −8.75146 + 8.39118i −0.510396 + 0.489383i
\(295\) −14.2361 −0.828860
\(296\) −5.50620 3.17900i −0.320041 0.184776i
\(297\) −5.57777 7.08638i −0.323655 0.411194i
\(298\) 1.82150 + 3.15492i 0.105516 + 0.182760i
\(299\) 2.07034 3.58594i 0.119731 0.207380i
\(300\) 0.0370838 + 0.776123i 0.00214104 + 0.0448095i
\(301\) −5.66332 + 2.12083i −0.326428 + 0.122243i
\(302\) 1.70131i 0.0978994i
\(303\) −4.68346 2.41364i −0.269058 0.138660i
\(304\) −0.590910 + 0.341162i −0.0338910 + 0.0195670i
\(305\) −18.8421 + 10.8785i −1.07890 + 0.622901i
\(306\) −18.2412 8.32409i −1.04278 0.475857i
\(307\) 5.94340i 0.339208i 0.985512 + 0.169604i \(0.0542488\pi\)
−0.985512 + 0.169604i \(0.945751\pi\)
\(308\) 4.52928 + 0.755486i 0.258080 + 0.0430478i
\(309\) −25.7570 + 1.23069i −1.46526 + 0.0700116i
\(310\) −8.44149 + 14.6211i −0.479444 + 0.830422i
\(311\) −16.2486 28.1435i −0.921376 1.59587i −0.797289 0.603598i \(-0.793733\pi\)
−0.124087 0.992271i \(-0.539600\pi\)
\(312\) 6.03281 3.87828i 0.341540 0.219564i
\(313\) 2.40899 + 1.39083i 0.136164 + 0.0786145i 0.566535 0.824038i \(-0.308284\pi\)
−0.430370 + 0.902652i \(0.641617\pi\)
\(314\) 11.9769 0.675894
\(315\) 14.0386 + 9.46867i 0.790985 + 0.533499i
\(316\) 0.136513 0.00767948
\(317\) 25.8733 + 14.9380i 1.45319 + 0.839001i 0.998661 0.0517306i \(-0.0164737\pi\)
0.454531 + 0.890731i \(0.349807\pi\)
\(318\) −5.75789 + 3.70155i −0.322887 + 0.207573i
\(319\) −5.51975 9.56048i −0.309046 0.535284i
\(320\) 1.06670 1.84758i 0.0596303 0.103283i
\(321\) −9.46128 + 0.452068i −0.528077 + 0.0252320i
\(322\) 2.04241 + 1.68183i 0.113819 + 0.0937246i
\(323\) 4.56036i 0.253745i
\(324\) 2.93869 8.50671i 0.163261 0.472595i
\(325\) −1.60867 + 0.928768i −0.0892332 + 0.0515188i
\(326\) 10.9757 6.33683i 0.607888 0.350965i
\(327\) −9.29612 4.79078i −0.514076 0.264931i
\(328\) 7.21011i 0.398112i
\(329\) −2.26936 + 13.6053i −0.125114 + 0.750082i
\(330\) −0.306077 6.40585i −0.0168490 0.352630i
\(331\) −6.02004 + 10.4270i −0.330892 + 0.573121i −0.982687 0.185274i \(-0.940683\pi\)
0.651795 + 0.758395i \(0.274016\pi\)
\(332\) −1.46159 2.53155i −0.0802151 0.138937i
\(333\) −11.0685 15.5340i −0.606551 0.851260i
\(334\) 14.2672 + 8.23717i 0.780666 + 0.450718i
\(335\) −24.4664 −1.33674
\(336\) 1.81010 + 4.20993i 0.0987492 + 0.229671i
\(337\) 21.9731 1.19695 0.598477 0.801140i \(-0.295773\pi\)
0.598477 + 0.801140i \(0.295773\pi\)
\(338\) 3.58991 + 2.07264i 0.195265 + 0.112737i
\(339\) 6.23790 + 9.70328i 0.338796 + 0.527010i
\(340\) −7.12937 12.3484i −0.386644 0.669687i
\(341\) −6.86729 + 11.8945i −0.371885 + 0.644123i
\(342\) −2.03765 + 0.195166i −0.110183 + 0.0105534i
\(343\) 8.81134 16.2899i 0.475768 0.879571i
\(344\) 2.28571i 0.123237i
\(345\) 1.69274 3.28463i 0.0911343 0.176839i
\(346\) −7.20921 + 4.16224i −0.387570 + 0.223764i
\(347\) 0.122755 0.0708726i 0.00658983 0.00380464i −0.496701 0.867921i \(-0.665456\pi\)
0.503291 + 0.864117i \(0.332122\pi\)
\(348\) 5.04695 9.79320i 0.270545 0.524970i
\(349\) 3.07630i 0.164671i 0.996605 + 0.0823354i \(0.0262379\pi\)
−0.996605 + 0.0823354i \(0.973762\pi\)
\(350\) −0.416248 1.11152i −0.0222494 0.0594131i
\(351\) 21.2953 3.07123i 1.13666 0.163930i
\(352\) 0.867779 1.50304i 0.0462528 0.0801121i
\(353\) 14.8236 + 25.6752i 0.788979 + 1.36655i 0.926593 + 0.376066i \(0.122723\pi\)
−0.137614 + 0.990486i \(0.543943\pi\)
\(354\) −6.25010 9.72226i −0.332189 0.516732i
\(355\) 25.9977 + 15.0098i 1.37982 + 0.796637i
\(356\) 12.5117 0.663120
\(357\) 30.4167 + 3.59156i 1.60982 + 0.190085i
\(358\) 6.76779 0.357689
\(359\) −19.8127 11.4389i −1.04567 0.603720i −0.124238 0.992252i \(-0.539649\pi\)
−0.921435 + 0.388533i \(0.872982\pi\)
\(360\) 5.21237 3.71399i 0.274716 0.195744i
\(361\) −9.26722 16.0513i −0.487748 0.844805i
\(362\) −12.7969 + 22.1649i −0.672591 + 1.16496i
\(363\) 0.660311 + 13.8196i 0.0346573 + 0.725340i
\(364\) −6.96392 + 8.45699i −0.365009 + 0.443267i
\(365\) 13.1023i 0.685805i
\(366\) −15.7015 8.09182i −0.820731 0.422966i
\(367\) 26.9035 15.5328i 1.40435 0.810803i 0.409517 0.912303i \(-0.365697\pi\)
0.994836 + 0.101500i \(0.0323641\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) 8.97987 19.6782i 0.467473 1.02441i
\(370\) 13.5642i 0.705168i
\(371\) 6.64658 8.07161i 0.345073 0.419057i
\(372\) −13.6912 + 0.654178i −0.709857 + 0.0339176i
\(373\) 6.35836 11.0130i 0.329223 0.570231i −0.653135 0.757242i \(-0.726546\pi\)
0.982358 + 0.187010i \(0.0598798\pi\)
\(374\) −5.79986 10.0457i −0.299904 0.519448i
\(375\) −16.9358 + 10.8874i −0.874559 + 0.562224i
\(376\) 4.51489 + 2.60667i 0.232838 + 0.134429i
\(377\) 26.3380 1.35647
\(378\) −0.303048 + 13.7444i −0.0155871 + 0.706935i
\(379\) 11.9651 0.614604 0.307302 0.951612i \(-0.400574\pi\)
0.307302 + 0.951612i \(0.400574\pi\)
\(380\) −1.26065 0.727835i −0.0646698 0.0373371i
\(381\) −7.70295 + 4.95196i −0.394634 + 0.253696i
\(382\) 2.90401 + 5.02989i 0.148582 + 0.257352i
\(383\) 9.15482 15.8566i 0.467789 0.810235i −0.531533 0.847037i \(-0.678384\pi\)
0.999323 + 0.0368025i \(0.0117172\pi\)
\(384\) 1.73008 0.0826645i 0.0882876 0.00421846i
\(385\) 3.43556 + 9.17407i 0.175092 + 0.467554i
\(386\) 10.0668i 0.512384i
\(387\) −2.84674 + 6.23828i −0.144708 + 0.317109i
\(388\) 6.14887 3.55005i 0.312162 0.180227i
\(389\) −17.4408 + 10.0695i −0.884285 + 0.510542i −0.872069 0.489383i \(-0.837222\pi\)
−0.0122161 + 0.999925i \(0.503889\pi\)
\(390\) 13.6006 + 7.00912i 0.688694 + 0.354920i
\(391\) 6.68357i 0.338003i
\(392\) −4.59798 5.27812i −0.232233 0.266585i
\(393\) 0.614124 + 12.8529i 0.0309784 + 0.648344i
\(394\) 7.63198 13.2190i 0.384494 0.665962i
\(395\) 0.145619 + 0.252219i 0.00732688 + 0.0126905i
\(396\) 4.24036 3.02139i 0.213086 0.151831i
\(397\) −11.1830 6.45652i −0.561259 0.324043i 0.192391 0.981318i \(-0.438376\pi\)
−0.753651 + 0.657275i \(0.771709\pi\)
\(398\) 27.3534 1.37110
\(399\) 2.87254 1.23508i 0.143807 0.0618311i
\(400\) −0.448606 −0.0224303
\(401\) −20.1611 11.6400i −1.00680 0.581276i −0.0965464 0.995328i \(-0.530780\pi\)
−0.910253 + 0.414053i \(0.864113\pi\)
\(402\) −10.7415 16.7088i −0.535738 0.833360i
\(403\) −16.3840 28.3779i −0.816143 1.41360i
\(404\) 1.52098 2.63441i 0.0756714 0.131067i
\(405\) 18.8515 3.64464i 0.936739 0.181104i
\(406\) −2.76884 + 16.5997i −0.137415 + 0.823829i
\(407\) 11.0347i 0.546969i
\(408\) 5.30307 10.2902i 0.262541 0.509440i
\(409\) 13.9549 8.05689i 0.690028 0.398388i −0.113595 0.993527i \(-0.536237\pi\)
0.803622 + 0.595139i \(0.202903\pi\)
\(410\) 13.3212 7.69102i 0.657889 0.379832i
\(411\) 9.15420 17.7630i 0.451543 0.876183i
\(412\) 14.8878i 0.733468i
\(413\) 13.6290 + 11.2228i 0.670639 + 0.552238i
\(414\) 2.98633 0.286032i 0.146770 0.0140577i
\(415\) 3.11815 5.40080i 0.153064 0.265115i
\(416\) 2.07034 + 3.58594i 0.101507 + 0.175815i
\(417\) 7.39994 + 11.5109i 0.362377 + 0.563690i
\(418\) −1.02556 0.592106i −0.0501617 0.0289609i
\(419\) 25.1113 1.22677 0.613383 0.789785i \(-0.289808\pi\)
0.613383 + 0.789785i \(0.289808\pi\)
\(420\) −5.84734 + 7.83504i −0.285321 + 0.382311i
\(421\) −35.3549 −1.72309 −0.861546 0.507680i \(-0.830503\pi\)
−0.861546 + 0.507680i \(0.830503\pi\)
\(422\) 20.5973 + 11.8918i 1.00266 + 0.578886i
\(423\) 9.07580 + 12.7374i 0.441281 + 0.619313i
\(424\) −1.97600 3.42253i −0.0959629 0.166213i
\(425\) −1.49915 + 2.59660i −0.0727193 + 0.125953i
\(426\) 1.16319 + 24.3443i 0.0563569 + 1.17949i
\(427\) 26.6144 + 4.43930i 1.28796 + 0.214833i
\(428\) 5.46871i 0.264340i
\(429\) 11.0643 + 5.70204i 0.534191 + 0.275297i
\(430\) −4.22302 + 2.43816i −0.203652 + 0.117579i
\(431\) 28.8334 16.6469i 1.38885 0.801855i 0.395667 0.918394i \(-0.370513\pi\)
0.993186 + 0.116539i \(0.0371800\pi\)
\(432\) 4.82478 + 1.92912i 0.232132 + 0.0928149i
\(433\) 9.97839i 0.479531i −0.970831 0.239765i \(-0.922929\pi\)
0.970831 0.239765i \(-0.0770705\pi\)
\(434\) 19.6077 7.34282i 0.941202 0.352467i
\(435\) 23.4773 1.12176i 1.12565 0.0537845i
\(436\) 3.01896 5.22899i 0.144582 0.250423i
\(437\) −0.341162 0.590910i −0.0163200 0.0282670i
\(438\) −8.94792 + 5.75231i −0.427548 + 0.274856i
\(439\) 21.2996 + 12.2973i 1.01657 + 0.586920i 0.913110 0.407714i \(-0.133674\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(440\) 3.70264 0.176516
\(441\) −5.97541 20.1319i −0.284543 0.958663i
\(442\) 27.6746 1.31634
\(443\) −32.7004 18.8796i −1.55364 0.896996i −0.997841 0.0656807i \(-0.979078\pi\)
−0.555802 0.831315i \(-0.687589\pi\)
\(444\) 9.26335 5.95509i 0.439619 0.282616i
\(445\) 13.3462 + 23.1164i 0.632673 + 1.09582i
\(446\) −10.1115 + 17.5136i −0.478791 + 0.829291i
\(447\) −6.30266 + 0.301146i −0.298105 + 0.0142437i
\(448\) −2.47771 + 0.927868i −0.117061 + 0.0438377i
\(449\) 5.08767i 0.240102i −0.992768 0.120051i \(-0.961694\pi\)
0.992768 0.120051i \(-0.0383058\pi\)
\(450\) −1.22436 0.558719i −0.0577169 0.0263383i
\(451\) 10.8371 6.25678i 0.510297 0.294620i
\(452\) −5.76769 + 3.32998i −0.271289 + 0.156629i
\(453\) 2.61937 + 1.34990i 0.123069 + 0.0634239i
\(454\) 2.98480i 0.140084i
\(455\) −23.0534 3.84531i −1.08076 0.180271i
\(456\) −0.0564040 1.18047i −0.00264136 0.0552807i
\(457\) 3.64221 6.30850i 0.170376 0.295099i −0.768176 0.640239i \(-0.778835\pi\)
0.938551 + 0.345140i \(0.112169\pi\)
\(458\) 1.31132 + 2.27128i 0.0612741 + 0.106130i
\(459\) 27.2894 21.4798i 1.27376 1.00259i
\(460\) 1.84758 + 1.06670i 0.0861438 + 0.0497351i
\(461\) −26.9180 −1.25369 −0.626847 0.779142i \(-0.715655\pi\)
−0.626847 + 0.779142i \(0.715655\pi\)
\(462\) −4.75691 + 6.37394i −0.221312 + 0.296543i
\(463\) 13.7591 0.639438 0.319719 0.947512i \(-0.396411\pi\)
0.319719 + 0.947512i \(0.396411\pi\)
\(464\) 5.50859 + 3.18039i 0.255730 + 0.147646i
\(465\) −15.8131 24.5978i −0.733313 1.14070i
\(466\) −10.8180 18.7374i −0.501136 0.867993i
\(467\) −7.91945 + 13.7169i −0.366468 + 0.634742i −0.989011 0.147844i \(-0.952767\pi\)
0.622542 + 0.782586i \(0.286100\pi\)
\(468\) 1.18437 + 12.3655i 0.0547475 + 0.571594i
\(469\) 23.4230 + 19.2877i 1.08157 + 0.890622i
\(470\) 11.1222i 0.513027i
\(471\) −9.50303 + 18.4399i −0.437877 + 0.849664i
\(472\) 5.77897 3.33649i 0.265999 0.153574i
\(473\) −3.43550 + 1.98349i −0.157964 + 0.0912008i
\(474\) −0.108316 + 0.210179i −0.00497514 + 0.00965385i
\(475\) 0.306095i 0.0140446i
\(476\) −2.90935 + 17.4421i −0.133350 + 0.799457i
\(477\) −1.13040 11.8020i −0.0517573 0.540375i
\(478\) 7.99709 13.8514i 0.365778 0.633546i
\(479\) 5.66529 + 9.81257i 0.258854 + 0.448348i 0.965935 0.258784i \(-0.0833219\pi\)
−0.707081 + 0.707132i \(0.749989\pi\)
\(480\) 1.99820 + 3.10827i 0.0912050 + 0.141873i
\(481\) 22.7994 + 13.1633i 1.03956 + 0.600193i
\(482\) 9.17968 0.418123
\(483\) −4.20993 + 1.81010i −0.191559 + 0.0823625i
\(484\) −7.98784 −0.363084
\(485\) 13.1180 + 7.57368i 0.595658 + 0.343903i
\(486\) 10.7654 + 11.2741i 0.488330 + 0.511404i
\(487\) 20.6558 + 35.7769i 0.936004 + 1.62121i 0.772833 + 0.634609i \(0.218839\pi\)
0.163171 + 0.986598i \(0.447828\pi\)
\(488\) 5.09914 8.83197i 0.230827 0.399805i
\(489\) 1.04766 + 21.9264i 0.0473769 + 0.991546i
\(490\) 4.84707 14.1253i 0.218968 0.638116i
\(491\) 16.0818i 0.725761i −0.931836 0.362881i \(-0.881793\pi\)
0.931836 0.362881i \(-0.118207\pi\)
\(492\) 11.1008 + 5.72085i 0.500465 + 0.257916i
\(493\) 36.8171 21.2564i 1.65816 0.957338i
\(494\) 2.44677 1.41264i 0.110085 0.0635578i
\(495\) 10.1054 + 4.61147i 0.454206 + 0.207270i
\(496\) 7.91365i 0.355333i
\(497\) −13.0563 34.8645i −0.585654 1.56389i
\(498\) 5.05732 0.241643i 0.226624 0.0108283i
\(499\) −21.5422 + 37.3122i −0.964362 + 1.67032i −0.253043 + 0.967455i \(0.581431\pi\)
−0.711319 + 0.702869i \(0.751902\pi\)
\(500\) −5.81203 10.0667i −0.259922 0.450198i
\(501\) −24.0024 + 15.4303i −1.07235 + 0.689376i
\(502\) 23.1189 + 13.3477i 1.03185 + 0.595737i
\(503\) −43.6946 −1.94825 −0.974123 0.226019i \(-0.927429\pi\)
−0.974123 + 0.226019i \(0.927429\pi\)
\(504\) −7.91793 0.553490i −0.352693 0.0246544i
\(505\) 6.48970 0.288788
\(506\) 1.50304 + 0.867779i 0.0668181 + 0.0385775i
\(507\) −6.03949 + 3.88258i −0.268223 + 0.172431i
\(508\) −2.64350 4.57868i −0.117286 0.203146i
\(509\) −16.8985 + 29.2690i −0.749012 + 1.29733i 0.199285 + 0.979942i \(0.436138\pi\)
−0.948297 + 0.317385i \(0.897195\pi\)
\(510\) 24.6687 1.17869i 1.09235 0.0521933i
\(511\) 10.3290 12.5435i 0.456926 0.554892i
\(512\) 1.00000i 0.0441942i
\(513\) 1.31629 3.29206i 0.0581154 0.145348i
\(514\) −8.01626 + 4.62819i −0.353582 + 0.204141i
\(515\) 27.5063 15.8808i 1.21207 0.699791i
\(516\) −3.51912 1.81359i −0.154921 0.0798389i
\(517\) 9.04807i 0.397934i
\(518\) −10.6931 + 12.9857i −0.469827 + 0.570558i
\(519\) −0.688140 14.4020i −0.0302060 0.632178i
\(520\) −4.41687 + 7.65024i −0.193692 + 0.335485i
\(521\) 12.8421 + 22.2431i 0.562621 + 0.974488i 0.997267 + 0.0738863i \(0.0235402\pi\)
−0.434646 + 0.900601i \(0.643126\pi\)
\(522\) 11.0733 + 15.5408i 0.484667 + 0.680202i
\(523\) −21.2889 12.2911i −0.930898 0.537454i −0.0438028 0.999040i \(-0.513947\pi\)
−0.887096 + 0.461586i \(0.847281\pi\)
\(524\) −7.42911 −0.324542
\(525\) 2.04159 + 0.241068i 0.0891022 + 0.0105211i
\(526\) −1.67913 −0.0732133
\(527\) −45.8053 26.4457i −1.99531 1.15199i
\(528\) 1.62557 + 2.52863i 0.0707439 + 0.110045i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) 4.21559 7.30162i 0.183114 0.317162i
\(531\) 19.9277 1.90869i 0.864791 0.0828300i
\(532\) 0.633107 + 1.69060i 0.0274487 + 0.0732969i
\(533\) 29.8548i 1.29315i
\(534\) −9.92741 + 19.2633i −0.429601 + 0.833606i
\(535\) 10.1039 5.83347i 0.436828 0.252203i
\(536\) 9.93182 5.73414i 0.428989 0.247677i
\(537\) −5.36990 + 10.4198i −0.231728 + 0.449649i
\(538\) 15.6090i 0.672952i
\(539\) 3.94318 11.4912i 0.169845 0.494960i
\(540\) 1.58239 + 10.9719i 0.0680951 + 0.472158i
\(541\) 16.2774 28.1933i 0.699820 1.21212i −0.268708 0.963222i \(-0.586597\pi\)
0.968528 0.248903i \(-0.0800699\pi\)
\(542\) −10.6689 18.4790i −0.458267 0.793741i
\(543\) −23.9719 37.2892i −1.02873 1.60023i
\(544\) 5.78814 + 3.34179i 0.248165 + 0.143278i
\(545\) 12.8813 0.551774
\(546\) −7.49507 17.4320i −0.320759 0.746021i
\(547\) −8.43294 −0.360567 −0.180283 0.983615i \(-0.557701\pi\)
−0.180283 + 0.983615i \(0.557701\pi\)
\(548\) 9.99153 + 5.76861i 0.426817 + 0.246423i
\(549\) 24.9167 17.7540i 1.06342 0.757721i
\(550\) −0.389291 0.674272i −0.0165994 0.0287510i
\(551\) 2.17005 3.75864i 0.0924474 0.160124i
\(552\) 0.0826645 + 1.73008i 0.00351844 + 0.0736370i
\(553\) 0.0594241 0.356259i 0.00252697 0.0151497i
\(554\) 17.0872i 0.725964i
\(555\) 20.8837 + 10.7625i 0.886464 + 0.456842i
\(556\) −6.84214 + 3.95031i −0.290171 + 0.167530i
\(557\) −22.5247 + 13.0046i −0.954402 + 0.551024i −0.894446 0.447177i \(-0.852429\pi\)
−0.0599563 + 0.998201i \(0.519096\pi\)
\(558\) 9.85610 21.5984i 0.417242 0.914332i
\(559\) 9.46439i 0.400301i
\(560\) −4.35729 3.58801i −0.184129 0.151621i
\(561\) 20.0684 0.958886i 0.847289 0.0404842i
\(562\) −3.77122 + 6.53194i −0.159079 + 0.275533i
\(563\) −1.73763 3.00966i −0.0732324 0.126842i 0.827084 0.562079i \(-0.189998\pi\)
−0.900316 + 0.435236i \(0.856665\pi\)
\(564\) −7.59563 + 4.88297i −0.319834 + 0.205610i
\(565\) −12.3048 7.10417i −0.517666 0.298875i
\(566\) −11.5634 −0.486047
\(567\) −20.9207 11.3720i −0.878588 0.477581i
\(568\) −14.0712 −0.590416
\(569\) −35.4871 20.4885i −1.48770 0.858922i −0.487795 0.872958i \(-0.662199\pi\)
−0.999901 + 0.0140363i \(0.995532\pi\)
\(570\) 2.12085 1.36342i 0.0888326 0.0571074i
\(571\) −15.6439 27.0960i −0.654677 1.13393i −0.981975 0.189013i \(-0.939471\pi\)
0.327297 0.944921i \(-0.393862\pi\)
\(572\) −3.59320 + 6.22360i −0.150239 + 0.260222i
\(573\) −10.0483 + 0.480117i −0.419774 + 0.0200572i
\(574\) −18.8162 3.13855i −0.785373 0.131001i
\(575\) 0.448606i 0.0187082i
\(576\) −1.24546 + 2.72926i −0.0518940 + 0.113719i
\(577\) 19.6864 11.3659i 0.819554 0.473170i −0.0307089 0.999528i \(-0.509776\pi\)
0.850263 + 0.526359i \(0.176443\pi\)
\(578\) 23.9630 13.8351i 0.996731 0.575463i
\(579\) −15.4990 7.98746i −0.644117 0.331947i
\(580\) 13.5701i 0.563467i
\(581\) −7.24280 + 2.71232i −0.300482 + 0.112526i
\(582\) 0.586927 + 12.2837i 0.0243289 + 0.509177i
\(583\) 3.42946 5.94000i 0.142034 0.246009i
\(584\) −3.07075 5.31870i −0.127069 0.220089i
\(585\) −21.5828 + 15.3785i −0.892339 + 0.635821i
\(586\) 21.4092 + 12.3606i 0.884406 + 0.510612i
\(587\) 13.2653 0.547516 0.273758 0.961799i \(-0.411733\pi\)
0.273758 + 0.961799i \(0.411733\pi\)
\(588\) 11.7746 2.89124i 0.485575 0.119233i
\(589\) −5.39967 −0.222489
\(590\) 12.3289 + 7.11807i 0.507571 + 0.293046i
\(591\) 14.2967 + 22.2390i 0.588086 + 0.914788i
\(592\) 3.17900 + 5.50620i 0.130656 + 0.226303i
\(593\) 17.0459 29.5243i 0.699990 1.21242i −0.268479 0.963285i \(-0.586521\pi\)
0.968469 0.249133i \(-0.0801455\pi\)
\(594\) 1.28730 + 8.92587i 0.0528186 + 0.366233i
\(595\) −35.3290 + 13.2302i −1.44835 + 0.542386i
\(596\) 3.64299i 0.149223i
\(597\) −21.7036 + 42.1140i −0.888268 + 1.72361i
\(598\) −3.58594 + 2.07034i −0.146640 + 0.0846626i
\(599\) 17.0797 9.86098i 0.697858 0.402909i −0.108691 0.994076i \(-0.534666\pi\)
0.806549 + 0.591167i \(0.201333\pi\)
\(600\) 0.355946 0.690684i 0.0145314 0.0281971i
\(601\) 31.6424i 1.29072i −0.763879 0.645360i \(-0.776707\pi\)
0.763879 0.645360i \(-0.223293\pi\)
\(602\) 5.96500 + 0.994965i 0.243115 + 0.0405517i
\(603\) 34.2481 3.28030i 1.39469 0.133584i
\(604\) −0.850655 + 1.47338i −0.0346126 + 0.0599509i
\(605\) −8.52063 14.7582i −0.346413 0.600005i
\(606\) 2.84918 + 4.43200i 0.115740 + 0.180038i
\(607\) 33.7632 + 19.4932i 1.37041 + 0.791204i 0.990979 0.134018i \(-0.0427880\pi\)
0.379426 + 0.925222i \(0.376121\pi\)
\(608\) 0.682324 0.0276719
\(609\) −23.3603 17.4340i −0.946609 0.706460i
\(610\) 21.7570 0.880916
\(611\) −18.6947 10.7934i −0.756309 0.436655i
\(612\) 11.6353 + 16.3295i 0.470328 + 0.660080i
\(613\) −13.8632 24.0118i −0.559931 0.969829i −0.997502 0.0706451i \(-0.977494\pi\)
0.437570 0.899184i \(-0.355839\pi\)
\(614\) 2.97170 5.14713i 0.119928 0.207721i
\(615\) 1.27155 + 26.6121i 0.0512738 + 1.07310i
\(616\) −3.54473 2.91891i −0.142821 0.117606i
\(617\) 2.92765i 0.117863i 0.998262 + 0.0589314i \(0.0187693\pi\)
−0.998262 + 0.0589314i \(0.981231\pi\)
\(618\) 22.9216 + 11.8127i 0.922041 + 0.475176i
\(619\) 21.0357 12.1450i 0.845497 0.488148i −0.0136322 0.999907i \(-0.504339\pi\)
0.859129 + 0.511759i \(0.171006\pi\)
\(620\) 14.6211 8.44149i 0.587197 0.339018i
\(621\) −1.92912 + 4.82478i −0.0774130 + 0.193612i
\(622\) 32.4973i 1.30302i
\(623\) 5.44633 32.6518i 0.218203 1.30817i
\(624\) −7.16370 + 0.342288i −0.286778 + 0.0137025i
\(625\) 11.2779 19.5338i 0.451114 0.781353i
\(626\) −1.39083 2.40899i −0.0555888 0.0962827i
\(627\) 1.72535 1.10917i 0.0689037 0.0442958i
\(628\) −10.3723 5.98843i −0.413899 0.238964i
\(629\) 42.4942 1.69435
\(630\) −7.42344 15.2194i −0.295757 0.606356i
\(631\) 1.19363 0.0475176 0.0237588 0.999718i \(-0.492437\pi\)
0.0237588 + 0.999718i \(0.492437\pi\)
\(632\) −0.118224 0.0682567i −0.00470270 0.00271511i
\(633\) −34.6519 + 22.2765i −1.37729 + 0.885410i
\(634\) −14.9380 25.8733i −0.593263 1.02756i
\(635\) 5.63965 9.76815i 0.223803 0.387637i
\(636\) 6.83726 0.326690i 0.271115 0.0129541i
\(637\) 19.0388 + 21.8550i 0.754345 + 0.865928i
\(638\) 11.0395i 0.437058i
\(639\) −38.4040 17.5251i −1.51924 0.693283i
\(640\) −1.84758 + 1.06670i −0.0730319 + 0.0421650i
\(641\) −9.77750 + 5.64504i −0.386188 + 0.222966i −0.680507 0.732741i \(-0.738240\pi\)
0.294319 + 0.955707i \(0.404907\pi\)
\(642\) 8.41975 + 4.33914i 0.332301 + 0.171252i
\(643\) 28.3471i 1.11790i −0.829201 0.558950i \(-0.811204\pi\)
0.829201 0.558950i \(-0.188796\pi\)
\(644\) −0.927868 2.47771i −0.0365631 0.0976356i
\(645\) −0.403099 8.43642i −0.0158720 0.332184i
\(646\) 2.28018 3.94939i 0.0897125 0.155387i
\(647\) 19.7999 + 34.2944i 0.778413 + 1.34825i 0.932856 + 0.360250i \(0.117308\pi\)
−0.154443 + 0.988002i \(0.549358\pi\)
\(648\) −6.79834 + 5.89768i −0.267064 + 0.231683i
\(649\) 10.0297 + 5.79067i 0.393702 + 0.227304i
\(650\) 1.85754 0.0728586
\(651\) −4.25256 + 36.0147i −0.166671 + 1.41153i
\(652\) −12.6737 −0.496339
\(653\) 15.0193 + 8.67139i 0.587750 + 0.339338i 0.764207 0.644971i \(-0.223130\pi\)
−0.176457 + 0.984308i \(0.556464\pi\)
\(654\) 5.65528 + 8.79700i 0.221139 + 0.343990i
\(655\) −7.92463 13.7259i −0.309641 0.536314i
\(656\) −3.60505 + 6.24414i −0.140754 + 0.243793i
\(657\) −1.75667 18.3406i −0.0685341 0.715534i
\(658\) 8.76796 10.6478i 0.341811 0.415095i
\(659\) 3.76498i 0.146663i −0.997308 0.0733314i \(-0.976637\pi\)
0.997308 0.0733314i \(-0.0233631\pi\)
\(660\) −2.93785 + 5.70067i −0.114356 + 0.221898i
\(661\) −5.11719 + 2.95441i −0.199035 + 0.114913i −0.596206 0.802832i \(-0.703326\pi\)
0.397170 + 0.917745i \(0.369992\pi\)
\(662\) 10.4270 6.02004i 0.405258 0.233976i
\(663\) −21.9584 + 42.6084i −0.852792 + 1.65477i
\(664\) 2.92318i 0.113441i
\(665\) −2.44818 + 2.97308i −0.0949365 + 0.115291i
\(666\) 1.81859 + 18.9871i 0.0704691 + 0.735736i
\(667\) −3.18039 + 5.50859i −0.123145 + 0.213294i
\(668\) −8.23717 14.2672i −0.318706 0.552015i
\(669\) −18.9413 29.4639i −0.732315 1.13914i
\(670\) 21.1886 + 12.2332i 0.818585 + 0.472610i
\(671\) 17.6997 0.683289
\(672\) 0.537371 4.55096i 0.0207295 0.175557i
\(673\) −21.9856 −0.847483 −0.423741 0.905783i \(-0.639283\pi\)
−0.423741 + 0.905783i \(0.639283\pi\)
\(674\) −19.0293 10.9866i −0.732981 0.423187i
\(675\) 1.83168 1.44174i 0.0705016 0.0554926i
\(676\) −2.07264 3.58991i −0.0797167 0.138073i
\(677\) −15.1641 + 26.2651i −0.582805 + 1.00945i 0.412340 + 0.911030i \(0.364712\pi\)
−0.995145 + 0.0984185i \(0.968622\pi\)
\(678\) −0.550542 11.5222i −0.0211434 0.442509i
\(679\) −6.58796 17.5920i −0.252823 0.675120i
\(680\) 14.2587i 0.546797i
\(681\) 4.59547 + 2.36829i 0.176099 + 0.0907530i
\(682\) 11.8945 6.86729i 0.455464 0.262962i
\(683\) −7.78638 + 4.49547i −0.297938 + 0.172014i −0.641516 0.767110i \(-0.721694\pi\)
0.343578 + 0.939124i \(0.388361\pi\)
\(684\) 1.86224 + 0.849804i 0.0712044 + 0.0324931i
\(685\) 24.6135i 0.940434i
\(686\) −15.7758 + 9.70178i −0.602322 + 0.370416i
\(687\) −4.53738 + 0.216800i −0.173112 + 0.00827144i
\(688\) 1.14285 1.97948i 0.0435709 0.0754669i
\(689\) 8.18198 + 14.1716i 0.311709 + 0.539895i
\(690\) −3.10827 + 1.99820i −0.118330 + 0.0760703i
\(691\) −17.0295 9.83197i −0.647832 0.374026i 0.139793 0.990181i \(-0.455356\pi\)
−0.787625 + 0.616155i \(0.788690\pi\)
\(692\) 8.32448 0.316449
\(693\) −6.03910 12.3813i −0.229406 0.470325i
\(694\) −0.141745 −0.00538057
\(695\) −14.5970 8.42759i −0.553696 0.319677i
\(696\) −9.26739 + 5.95768i −0.351279 + 0.225825i
\(697\) 24.0946 + 41.7331i 0.912649 + 1.58076i
\(698\) 1.53815 2.66416i 0.0582199 0.100840i
\(699\) 37.4321 1.78854i 1.41581 0.0676486i
\(700\) −0.195278 + 1.17073i −0.00738080 + 0.0442493i
\(701\) 11.9081i 0.449763i −0.974386 0.224882i \(-0.927800\pi\)
0.974386 0.224882i \(-0.0721995\pi\)
\(702\) −19.9779 7.98788i −0.754017 0.301483i
\(703\) 3.75701 2.16911i 0.141698 0.0818095i
\(704\) −1.50304 + 0.867779i −0.0566478 + 0.0327056i
\(705\) −17.1239 8.82486i −0.644924 0.332364i
\(706\) 29.6471i 1.11578i
\(707\) −6.21293 5.11604i −0.233661 0.192409i
\(708\) 0.551619 + 11.5448i 0.0207311 + 0.433879i
\(709\) 15.5820 26.9889i 0.585195 1.01359i −0.409656 0.912240i \(-0.634351\pi\)
0.994851 0.101348i \(-0.0323155\pi\)
\(710\) −15.0098 25.9977i −0.563308 0.975677i
\(711\) −0.237653 0.333533i −0.00891269 0.0125085i
\(712\) −10.8355 6.25586i −0.406076 0.234448i
\(713\) 7.91365 0.296368
\(714\) −24.5458 18.3187i −0.918605 0.685561i
\(715\) −15.3315 −0.573364
\(716\) −5.86108 3.38389i −0.219039 0.126462i
\(717\) 14.9806 + 23.3028i 0.559460 + 0.870261i
\(718\) 11.4389 + 19.8127i 0.426894 + 0.739402i
\(719\) −17.0404 + 29.5149i −0.635501 + 1.10072i 0.350907 + 0.936410i \(0.385873\pi\)
−0.986409 + 0.164310i \(0.947460\pi\)
\(720\) −6.37104 + 0.610221i −0.237435 + 0.0227416i
\(721\) −38.8526 6.48063i −1.44695 0.241351i
\(722\) 18.5344i 0.689780i
\(723\) −7.28361 + 14.1333i −0.270880 + 0.525621i
\(724\) 22.1649 12.7969i 0.823753 0.475594i
\(725\) 2.47119 1.42674i 0.0917777 0.0529879i
\(726\) 6.33794 12.2983i 0.235223 0.456431i
\(727\) 5.28672i 0.196074i 0.995183 + 0.0980369i \(0.0312563\pi\)
−0.995183 + 0.0980369i \(0.968744\pi\)
\(728\) 10.2594 3.84201i 0.380240 0.142394i
\(729\) −25.8997 + 7.62926i −0.959248 + 0.282565i
\(730\) 6.55114 11.3469i 0.242469 0.419968i
\(731\) −7.63834 13.2300i −0.282514 0.489329i
\(732\) 9.55200 + 14.8585i 0.353052 + 0.549185i
\(733\) 20.6221 + 11.9062i 0.761693 + 0.439764i 0.829903 0.557907i \(-0.188395\pi\)
−0.0682100 + 0.997671i \(0.521729\pi\)
\(734\) −31.0655 −1.14665
\(735\) 17.9017 + 18.6704i 0.660315 + 0.688667i
\(736\) −1.00000 −0.0368605
\(737\) 17.2373 + 9.95193i 0.634942 + 0.366584i
\(738\) −17.6159 + 12.5519i −0.648451 + 0.462042i
\(739\) −0.432112 0.748440i −0.0158955 0.0275318i 0.857968 0.513703i \(-0.171727\pi\)
−0.873864 + 0.486171i \(0.838393\pi\)
\(740\) −6.78208 + 11.7469i −0.249314 + 0.431825i
\(741\) 0.233551 + 4.88797i 0.00857971 + 0.179564i
\(742\) −9.79191 + 3.66693i −0.359472 + 0.134617i
\(743\) 14.9493i 0.548435i −0.961668 0.274218i \(-0.911581\pi\)
0.961668 0.274218i \(-0.0884189\pi\)
\(744\) 12.1840 + 6.27907i 0.446688 + 0.230202i
\(745\) 6.73071 3.88598i 0.246594 0.142371i
\(746\) −11.0130 + 6.35836i −0.403214 + 0.232796i
\(747\) −3.64069 + 7.97810i −0.133206 + 0.291904i
\(748\) 11.5997i 0.424128i
\(749\) −14.2717 2.38052i −0.521475 0.0869823i
\(750\) 20.1105 0.960897i 0.734332 0.0350870i
\(751\) 1.18472 2.05199i 0.0432309 0.0748781i −0.843600 0.536972i \(-0.819568\pi\)
0.886831 + 0.462094i \(0.152902\pi\)
\(752\) −2.60667 4.51489i −0.0950556 0.164641i
\(753\) −38.8941 + 25.0036i −1.41738 + 0.911183i
\(754\) −22.8094 13.1690i −0.830668 0.479586i
\(755\) −3.62957 −0.132094
\(756\) 7.13464 11.7515i 0.259484 0.427397i
\(757\) 22.6372 0.822762 0.411381 0.911463i \(-0.365047\pi\)
0.411381 + 0.911463i \(0.365047\pi\)
\(758\) −10.3621 5.98254i −0.376367 0.217295i
\(759\) −2.52863 + 1.62557i −0.0917836 + 0.0590045i
\(760\) 0.727835 + 1.26065i 0.0264013 + 0.0457285i
\(761\) 22.1996 38.4508i 0.804734 1.39384i −0.111737 0.993738i \(-0.535641\pi\)
0.916471 0.400102i \(-0.131025\pi\)
\(762\) 9.14692 0.437048i 0.331358 0.0158326i
\(763\) −12.3319 10.1547i −0.446446 0.367626i
\(764\) 5.80802i 0.210127i
\(765\) −17.7586 + 38.9157i −0.642064 + 1.40700i
\(766\) −15.8566 + 9.15482i −0.572923 + 0.330777i
\(767\) −23.9289 + 13.8154i −0.864023 + 0.498844i
\(768\) −1.53962 0.793449i −0.0555564 0.0286311i
\(769\) 29.7635i 1.07330i −0.843805 0.536649i \(-0.819690\pi\)
0.843805 0.536649i \(-0.180310\pi\)
\(770\) 1.61175 9.66276i 0.0580836