Properties

Label 966.2.l.d.47.10
Level $966$
Weight $2$
Character 966.47
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(47,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.10
Character \(\chi\) \(=\) 966.47
Dual form 966.2.l.d.185.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.43371 + 0.971841i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.427501 + 0.740454i) q^{5} +(-0.755709 - 1.55849i) q^{6} +(-2.36450 - 1.18708i) q^{7} -1.00000i q^{8} +(1.11105 + 2.78668i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.43371 + 0.971841i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.427501 + 0.740454i) q^{5} +(-0.755709 - 1.55849i) q^{6} +(-2.36450 - 1.18708i) q^{7} -1.00000i q^{8} +(1.11105 + 2.78668i) q^{9} +(0.740454 - 0.427501i) q^{10} +(5.38248 - 3.10758i) q^{11} +(-0.124784 + 1.72755i) q^{12} +2.94362i q^{13} +(1.45417 + 2.21029i) q^{14} +(-1.33252 + 0.646133i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.58584 + 6.21086i) q^{17} +(0.431140 - 2.96886i) q^{18} +(-5.55007 - 3.20433i) q^{19} -0.855002 q^{20} +(-2.23635 - 3.99984i) q^{21} -6.21516 q^{22} +(-0.866025 - 0.500000i) q^{23} +(0.971841 - 1.43371i) q^{24} +(2.13449 + 3.69704i) q^{25} +(1.47181 - 2.54925i) q^{26} +(-1.11528 + 5.07505i) q^{27} +(-0.154205 - 2.64125i) q^{28} +3.08934i q^{29} +(1.47706 + 0.106690i) q^{30} +(9.28619 - 5.36139i) q^{31} +(0.866025 - 0.500000i) q^{32} +(10.7370 + 0.775549i) q^{33} -7.17168i q^{34} +(1.88980 - 1.24332i) q^{35} +(-1.85781 + 2.35554i) q^{36} +(-4.02094 + 6.96447i) q^{37} +(3.20433 + 5.55007i) q^{38} +(-2.86073 + 4.22030i) q^{39} +(0.740454 + 0.427501i) q^{40} +8.81569 q^{41} +(-0.0631880 + 4.58214i) q^{42} -2.68771 q^{43} +(5.38248 + 3.10758i) q^{44} +(-2.53838 - 0.368626i) q^{45} +(0.500000 + 0.866025i) q^{46} +(-1.58561 + 2.74636i) q^{47} +(-1.55849 + 0.755709i) q^{48} +(4.18168 + 5.61370i) q^{49} -4.26897i q^{50} +(-0.894908 + 12.3894i) q^{51} +(-2.54925 + 1.47181i) q^{52} +(-3.70097 + 2.13676i) q^{53} +(3.50339 - 3.83748i) q^{54} +5.31397i q^{55} +(-1.18708 + 2.36450i) q^{56} +(-4.84309 - 9.98786i) q^{57} +(1.54467 - 2.67545i) q^{58} +(1.01222 + 1.75321i) q^{59} +(-1.22583 - 0.830926i) q^{60} +(1.90084 + 1.09745i) q^{61} -10.7228 q^{62} +(0.680936 - 7.90799i) q^{63} -1.00000 q^{64} +(-2.17962 - 1.25840i) q^{65} +(-8.91073 - 6.04014i) q^{66} +(-6.62148 - 11.4687i) q^{67} +(-3.58584 + 6.21086i) q^{68} +(-0.755709 - 1.55849i) q^{69} +(-2.25828 + 0.131846i) q^{70} +11.1720i q^{71} +(2.78668 - 1.11105i) q^{72} +(3.00479 - 1.73482i) q^{73} +(6.96447 - 4.02094i) q^{74} +(-0.532698 + 7.37486i) q^{75} -6.40866i q^{76} +(-16.4158 + 0.958409i) q^{77} +(4.58762 - 2.22452i) q^{78} +(-2.52567 + 4.37459i) q^{79} +(-0.427501 - 0.740454i) q^{80} +(-6.53113 + 6.19228i) q^{81} +(-7.63461 - 4.40785i) q^{82} +2.97725 q^{83} +(2.34579 - 3.93666i) q^{84} -6.13180 q^{85} +(2.32762 + 1.34385i) q^{86} +(-3.00235 + 4.42922i) q^{87} +(-3.10758 - 5.38248i) q^{88} +(0.0645771 - 0.111851i) q^{89} +(2.01399 + 1.58843i) q^{90} +(3.49432 - 6.96019i) q^{91} -1.00000i q^{92} +(18.5241 + 1.33803i) q^{93} +(2.74636 - 1.58561i) q^{94} +(4.74532 - 2.73971i) q^{95} +(1.72755 + 0.124784i) q^{96} +7.29558i q^{97} +(-0.814590 - 6.95244i) q^{98} +(14.6400 + 11.5466i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 28 q^{4} + 8 q^{7} + 10 q^{9} + 12 q^{10} + 8 q^{15} - 28 q^{16} - 8 q^{18} - 24 q^{19} - 4 q^{21} - 12 q^{22} + 6 q^{24} - 8 q^{25} + 10 q^{28} + 6 q^{30} - 6 q^{31} + 30 q^{33} + 20 q^{36} + 4 q^{37} - 10 q^{39} + 12 q^{40} + 8 q^{42} - 104 q^{43} - 6 q^{45} + 28 q^{46} + 40 q^{49} - 22 q^{51} - 6 q^{52} + 18 q^{54} + 68 q^{57} - 30 q^{58} + 4 q^{60} - 84 q^{61} - 6 q^{63} - 56 q^{64} - 30 q^{66} + 2 q^{67} + 30 q^{70} + 8 q^{72} + 54 q^{73} - 24 q^{75} + 68 q^{78} - 6 q^{79} + 22 q^{81} + 4 q^{84} - 108 q^{85} - 126 q^{87} - 6 q^{88} - 42 q^{91} + 36 q^{93} - 18 q^{94} + 6 q^{96} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.43371 + 0.971841i 0.827753 + 0.561093i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.427501 + 0.740454i −0.191184 + 0.331141i −0.945643 0.325207i \(-0.894566\pi\)
0.754459 + 0.656348i \(0.227899\pi\)
\(6\) −0.755709 1.55849i −0.308517 0.636253i
\(7\) −2.36450 1.18708i −0.893695 0.448675i
\(8\) 1.00000i 0.353553i
\(9\) 1.11105 + 2.78668i 0.370350 + 0.928892i
\(10\) 0.740454 0.427501i 0.234152 0.135188i
\(11\) 5.38248 3.10758i 1.62288 0.936970i 0.636735 0.771083i \(-0.280285\pi\)
0.986145 0.165887i \(-0.0530488\pi\)
\(12\) −0.124784 + 1.72755i −0.0360219 + 0.498701i
\(13\) 2.94362i 0.816414i 0.912889 + 0.408207i \(0.133846\pi\)
−0.912889 + 0.408207i \(0.866154\pi\)
\(14\) 1.45417 + 2.21029i 0.388644 + 0.590725i
\(15\) −1.33252 + 0.646133i −0.344054 + 0.166831i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.58584 + 6.21086i 0.869694 + 1.50635i 0.862310 + 0.506381i \(0.169017\pi\)
0.00738375 + 0.999973i \(0.497650\pi\)
\(18\) 0.431140 2.96886i 0.101621 0.699767i
\(19\) −5.55007 3.20433i −1.27327 0.735124i −0.297670 0.954669i \(-0.596209\pi\)
−0.975602 + 0.219545i \(0.929543\pi\)
\(20\) −0.855002 −0.191184
\(21\) −2.23635 3.99984i −0.488011 0.872837i
\(22\) −6.21516 −1.32508
\(23\) −0.866025 0.500000i −0.180579 0.104257i
\(24\) 0.971841 1.43371i 0.198376 0.292655i
\(25\) 2.13449 + 3.69704i 0.426897 + 0.739407i
\(26\) 1.47181 2.54925i 0.288646 0.499950i
\(27\) −1.11528 + 5.07505i −0.214636 + 0.976694i
\(28\) −0.154205 2.64125i −0.0291420 0.499150i
\(29\) 3.08934i 0.573677i 0.957979 + 0.286838i \(0.0926043\pi\)
−0.957979 + 0.286838i \(0.907396\pi\)
\(30\) 1.47706 + 0.106690i 0.269673 + 0.0194789i
\(31\) 9.28619 5.36139i 1.66785 0.962933i 0.699055 0.715068i \(-0.253604\pi\)
0.968794 0.247866i \(-0.0797293\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 10.7370 + 0.775549i 1.86907 + 0.135006i
\(34\) 7.17168i 1.22993i
\(35\) 1.88980 1.24332i 0.319435 0.210160i
\(36\) −1.85781 + 2.35554i −0.309635 + 0.392589i
\(37\) −4.02094 + 6.96447i −0.661038 + 1.14495i 0.319305 + 0.947652i \(0.396551\pi\)
−0.980343 + 0.197300i \(0.936783\pi\)
\(38\) 3.20433 + 5.55007i 0.519811 + 0.900340i
\(39\) −2.86073 + 4.22030i −0.458084 + 0.675790i
\(40\) 0.740454 + 0.427501i 0.117076 + 0.0675939i
\(41\) 8.81569 1.37678 0.688390 0.725341i \(-0.258318\pi\)
0.688390 + 0.725341i \(0.258318\pi\)
\(42\) −0.0631880 + 4.58214i −0.00975012 + 0.707040i
\(43\) −2.68771 −0.409872 −0.204936 0.978775i \(-0.565699\pi\)
−0.204936 + 0.978775i \(0.565699\pi\)
\(44\) 5.38248 + 3.10758i 0.811440 + 0.468485i
\(45\) −2.53838 0.368626i −0.378399 0.0549514i
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −1.58561 + 2.74636i −0.231285 + 0.400598i −0.958187 0.286144i \(-0.907626\pi\)
0.726901 + 0.686742i \(0.240960\pi\)
\(48\) −1.55849 + 0.755709i −0.224949 + 0.109077i
\(49\) 4.18168 + 5.61370i 0.597382 + 0.801957i
\(50\) 4.26897i 0.603724i
\(51\) −0.894908 + 12.3894i −0.125312 + 1.73487i
\(52\) −2.54925 + 1.47181i −0.353518 + 0.204104i
\(53\) −3.70097 + 2.13676i −0.508367 + 0.293506i −0.732162 0.681130i \(-0.761489\pi\)
0.223795 + 0.974636i \(0.428155\pi\)
\(54\) 3.50339 3.83748i 0.476751 0.522215i
\(55\) 5.31397i 0.716536i
\(56\) −1.18708 + 2.36450i −0.158630 + 0.315969i
\(57\) −4.84309 9.98786i −0.641482 1.32292i
\(58\) 1.54467 2.67545i 0.202825 0.351304i
\(59\) 1.01222 + 1.75321i 0.131779 + 0.228248i 0.924362 0.381515i \(-0.124598\pi\)
−0.792583 + 0.609764i \(0.791264\pi\)
\(60\) −1.22583 0.830926i −0.158253 0.107272i
\(61\) 1.90084 + 1.09745i 0.243378 + 0.140514i 0.616728 0.787176i \(-0.288458\pi\)
−0.373351 + 0.927690i \(0.621791\pi\)
\(62\) −10.7228 −1.36179
\(63\) 0.680936 7.90799i 0.0857899 0.996313i
\(64\) −1.00000 −0.125000
\(65\) −2.17962 1.25840i −0.270348 0.156086i
\(66\) −8.91073 6.04014i −1.09684 0.743490i
\(67\) −6.62148 11.4687i −0.808943 1.40113i −0.913597 0.406622i \(-0.866707\pi\)
0.104654 0.994509i \(-0.466627\pi\)
\(68\) −3.58584 + 6.21086i −0.434847 + 0.753177i
\(69\) −0.755709 1.55849i −0.0909767 0.187621i
\(70\) −2.25828 + 0.131846i −0.269916 + 0.0157586i
\(71\) 11.1720i 1.32587i 0.748678 + 0.662934i \(0.230689\pi\)
−0.748678 + 0.662934i \(0.769311\pi\)
\(72\) 2.78668 1.11105i 0.328413 0.130939i
\(73\) 3.00479 1.73482i 0.351684 0.203045i −0.313743 0.949508i \(-0.601583\pi\)
0.665427 + 0.746463i \(0.268250\pi\)
\(74\) 6.96447 4.02094i 0.809603 0.467425i
\(75\) −0.532698 + 7.37486i −0.0615106 + 0.851576i
\(76\) 6.40866i 0.735124i
\(77\) −16.4158 + 0.958409i −1.87075 + 0.109221i
\(78\) 4.58762 2.22452i 0.519446 0.251878i
\(79\) −2.52567 + 4.37459i −0.284160 + 0.492180i −0.972405 0.233298i \(-0.925048\pi\)
0.688245 + 0.725478i \(0.258381\pi\)
\(80\) −0.427501 0.740454i −0.0477961 0.0827852i
\(81\) −6.53113 + 6.19228i −0.725681 + 0.688031i
\(82\) −7.63461 4.40785i −0.843102 0.486765i
\(83\) 2.97725 0.326796 0.163398 0.986560i \(-0.447755\pi\)
0.163398 + 0.986560i \(0.447755\pi\)
\(84\) 2.34579 3.93666i 0.255947 0.429524i
\(85\) −6.13180 −0.665087
\(86\) 2.32762 + 1.34385i 0.250994 + 0.144912i
\(87\) −3.00235 + 4.42922i −0.321886 + 0.474863i
\(88\) −3.10758 5.38248i −0.331269 0.573775i
\(89\) 0.0645771 0.111851i 0.00684515 0.0118562i −0.862583 0.505916i \(-0.831154\pi\)
0.869428 + 0.494060i \(0.164488\pi\)
\(90\) 2.01399 + 1.58843i 0.212293 + 0.167435i
\(91\) 3.49432 6.96019i 0.366304 0.729626i
\(92\) 1.00000i 0.104257i
\(93\) 18.5241 + 1.33803i 1.92086 + 0.138747i
\(94\) 2.74636 1.58561i 0.283265 0.163543i
\(95\) 4.74532 2.73971i 0.486859 0.281088i
\(96\) 1.72755 + 0.124784i 0.176317 + 0.0127357i
\(97\) 7.29558i 0.740754i 0.928882 + 0.370377i \(0.120771\pi\)
−0.928882 + 0.370377i \(0.879229\pi\)
\(98\) −0.814590 6.95244i −0.0822860 0.702303i
\(99\) 14.6400 + 11.5466i 1.47138 + 1.16047i
\(100\) −2.13449 + 3.69704i −0.213449 + 0.369704i
\(101\) 1.53394 + 2.65686i 0.152633 + 0.264367i 0.932194 0.361958i \(-0.117892\pi\)
−0.779562 + 0.626325i \(0.784558\pi\)
\(102\) 6.96973 10.2821i 0.690106 1.01808i
\(103\) 0.287726 + 0.166119i 0.0283505 + 0.0163682i 0.514108 0.857725i \(-0.328123\pi\)
−0.485758 + 0.874093i \(0.661456\pi\)
\(104\) 2.94362 0.288646
\(105\) 3.91774 + 0.0540259i 0.382332 + 0.00527238i
\(106\) 4.27351 0.415080
\(107\) 12.8059 + 7.39347i 1.23799 + 0.714754i 0.968683 0.248301i \(-0.0798721\pi\)
0.269307 + 0.963054i \(0.413205\pi\)
\(108\) −4.95276 + 1.57166i −0.476580 + 0.151234i
\(109\) −2.53088 4.38361i −0.242414 0.419873i 0.718987 0.695023i \(-0.244606\pi\)
−0.961401 + 0.275150i \(0.911273\pi\)
\(110\) 2.65699 4.60204i 0.253334 0.438787i
\(111\) −12.5332 + 6.07732i −1.18960 + 0.576834i
\(112\) 2.21029 1.45417i 0.208853 0.137406i
\(113\) 8.91437i 0.838593i −0.907849 0.419297i \(-0.862277\pi\)
0.907849 0.419297i \(-0.137723\pi\)
\(114\) −0.799696 + 11.0713i −0.0748984 + 1.03692i
\(115\) 0.740454 0.427501i 0.0690477 0.0398647i
\(116\) −2.67545 + 1.54467i −0.248409 + 0.143419i
\(117\) −8.20293 + 3.27052i −0.758361 + 0.302359i
\(118\) 2.02443i 0.186364i
\(119\) −1.10591 18.9422i −0.101379 1.73643i
\(120\) 0.646133 + 1.33252i 0.0589836 + 0.121642i
\(121\) 13.8141 23.9267i 1.25583 2.17515i
\(122\) −1.09745 1.90084i −0.0993585 0.172094i
\(123\) 12.6391 + 8.56745i 1.13963 + 0.772501i
\(124\) 9.28619 + 5.36139i 0.833925 + 0.481467i
\(125\) −7.92499 −0.708833
\(126\) −4.54370 + 6.50805i −0.404785 + 0.579783i
\(127\) −8.20555 −0.728125 −0.364063 0.931375i \(-0.618611\pi\)
−0.364063 + 0.931375i \(0.618611\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −3.85340 2.61202i −0.339273 0.229976i
\(130\) 1.25840 + 2.17962i 0.110369 + 0.191165i
\(131\) 8.57443 14.8513i 0.749151 1.29757i −0.199079 0.979984i \(-0.563795\pi\)
0.948230 0.317585i \(-0.102872\pi\)
\(132\) 4.69685 + 9.68628i 0.408808 + 0.843083i
\(133\) 9.31930 + 14.1650i 0.808086 + 1.22826i
\(134\) 13.2430i 1.14402i
\(135\) −3.28106 2.99540i −0.282388 0.257803i
\(136\) 6.21086 3.58584i 0.532576 0.307483i
\(137\) 1.82671 1.05465i 0.156067 0.0901052i −0.419933 0.907555i \(-0.637946\pi\)
0.575999 + 0.817450i \(0.304613\pi\)
\(138\) −0.124784 + 1.72755i −0.0106223 + 0.147059i
\(139\) 4.45947i 0.378247i 0.981953 + 0.189123i \(0.0605646\pi\)
−0.981953 + 0.189123i \(0.939435\pi\)
\(140\) 2.02165 + 1.01496i 0.170861 + 0.0857795i
\(141\) −4.94233 + 2.39652i −0.416219 + 0.201824i
\(142\) 5.58598 9.67521i 0.468765 0.811925i
\(143\) 9.14754 + 15.8440i 0.764956 + 1.32494i
\(144\) −2.96886 0.431140i −0.247405 0.0359283i
\(145\) −2.28752 1.32070i −0.189968 0.109678i
\(146\) −3.46963 −0.287149
\(147\) 0.539694 + 12.1123i 0.0445132 + 0.999009i
\(148\) −8.04188 −0.661038
\(149\) −13.5582 7.82783i −1.11073 0.641281i −0.171712 0.985147i \(-0.554930\pi\)
−0.939019 + 0.343867i \(0.888263\pi\)
\(150\) 4.14876 6.12047i 0.338745 0.499734i
\(151\) −11.7342 20.3242i −0.954916 1.65396i −0.734559 0.678544i \(-0.762611\pi\)
−0.220357 0.975419i \(-0.570722\pi\)
\(152\) −3.20433 + 5.55007i −0.259906 + 0.450170i
\(153\) −13.3236 + 16.8931i −1.07715 + 1.36573i
\(154\) 14.6957 + 7.37789i 1.18421 + 0.594528i
\(155\) 9.16800i 0.736391i
\(156\) −5.08526 0.367316i −0.407146 0.0294088i
\(157\) 9.10228 5.25521i 0.726441 0.419411i −0.0906776 0.995880i \(-0.528903\pi\)
0.817119 + 0.576469i \(0.195570\pi\)
\(158\) 4.37459 2.52567i 0.348024 0.200932i
\(159\) −7.38271 0.533264i −0.585487 0.0422906i
\(160\) 0.855002i 0.0675939i
\(161\) 1.45417 + 2.21029i 0.114605 + 0.174195i
\(162\) 8.75227 2.09711i 0.687643 0.164764i
\(163\) 2.79248 4.83671i 0.218724 0.378841i −0.735694 0.677314i \(-0.763144\pi\)
0.954418 + 0.298473i \(0.0964773\pi\)
\(164\) 4.40785 + 7.63461i 0.344195 + 0.596163i
\(165\) −5.16433 + 7.61870i −0.402043 + 0.593115i
\(166\) −2.57837 1.48863i −0.200121 0.115540i
\(167\) 6.90771 0.534535 0.267267 0.963622i \(-0.413879\pi\)
0.267267 + 0.963622i \(0.413879\pi\)
\(168\) −3.99984 + 2.23635i −0.308595 + 0.172538i
\(169\) 4.33508 0.333467
\(170\) 5.31030 + 3.06590i 0.407281 + 0.235144i
\(171\) 2.76303 19.0264i 0.211294 1.45499i
\(172\) −1.34385 2.32762i −0.102468 0.177480i
\(173\) 10.9767 19.0122i 0.834544 1.44547i −0.0598567 0.998207i \(-0.519064\pi\)
0.894401 0.447266i \(-0.147602\pi\)
\(174\) 4.81472 2.33465i 0.365003 0.176989i
\(175\) −0.658297 11.2754i −0.0497626 0.852343i
\(176\) 6.21516i 0.468485i
\(177\) −0.252616 + 3.49730i −0.0189878 + 0.262874i
\(178\) −0.111851 + 0.0645771i −0.00838357 + 0.00484025i
\(179\) −5.41924 + 3.12880i −0.405053 + 0.233858i −0.688662 0.725082i \(-0.741802\pi\)
0.283609 + 0.958940i \(0.408468\pi\)
\(180\) −0.949951 2.38261i −0.0708052 0.177590i
\(181\) 13.9687i 1.03829i −0.854688 0.519143i \(-0.826251\pi\)
0.854688 0.519143i \(-0.173749\pi\)
\(182\) −6.50626 + 4.28054i −0.482276 + 0.317295i
\(183\) 1.65871 + 3.42074i 0.122615 + 0.252868i
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) −3.43791 5.95464i −0.252760 0.437794i
\(186\) −15.3734 10.4208i −1.12723 0.764092i
\(187\) 38.6014 + 22.2865i 2.82282 + 1.62975i
\(188\) −3.17122 −0.231285
\(189\) 8.66157 10.6760i 0.630037 0.776565i
\(190\) −5.47942 −0.397519
\(191\) −6.95208 4.01379i −0.503035 0.290427i 0.226931 0.973911i \(-0.427131\pi\)
−0.729966 + 0.683483i \(0.760464\pi\)
\(192\) −1.43371 0.971841i −0.103469 0.0701366i
\(193\) −3.90880 6.77023i −0.281361 0.487332i 0.690359 0.723467i \(-0.257453\pi\)
−0.971720 + 0.236135i \(0.924119\pi\)
\(194\) 3.64779 6.31815i 0.261896 0.453617i
\(195\) −1.90197 3.92243i −0.136203 0.280891i
\(196\) −2.77077 + 6.42829i −0.197912 + 0.459163i
\(197\) 16.5300i 1.17771i −0.808237 0.588857i \(-0.799578\pi\)
0.808237 0.588857i \(-0.200422\pi\)
\(198\) −6.90536 17.3196i −0.490742 1.23085i
\(199\) 1.87503 1.08255i 0.132917 0.0767398i −0.432067 0.901842i \(-0.642216\pi\)
0.564984 + 0.825102i \(0.308882\pi\)
\(200\) 3.69704 2.13449i 0.261420 0.150931i
\(201\) 1.65251 22.8779i 0.116559 1.61368i
\(202\) 3.06788i 0.215855i
\(203\) 3.66730 7.30474i 0.257394 0.512692i
\(204\) −11.1770 + 5.41970i −0.782548 + 0.379455i
\(205\) −3.76872 + 6.52761i −0.263219 + 0.455908i
\(206\) −0.166119 0.287726i −0.0115740 0.0200468i
\(207\) 0.431140 2.96886i 0.0299663 0.206350i
\(208\) −2.54925 1.47181i −0.176759 0.102052i
\(209\) −39.8308 −2.75516
\(210\) −3.36585 2.00566i −0.232266 0.138404i
\(211\) −11.5093 −0.792334 −0.396167 0.918178i \(-0.629660\pi\)
−0.396167 + 0.918178i \(0.629660\pi\)
\(212\) −3.70097 2.13676i −0.254184 0.146753i
\(213\) −10.8574 + 16.0174i −0.743935 + 1.09749i
\(214\) −7.39347 12.8059i −0.505407 0.875391i
\(215\) 1.14900 1.99012i 0.0783610 0.135725i
\(216\) 5.07505 + 1.11528i 0.345314 + 0.0758852i
\(217\) −28.3216 + 1.65351i −1.92259 + 0.112247i
\(218\) 5.06175i 0.342825i
\(219\) 5.99396 + 0.432953i 0.405034 + 0.0292563i
\(220\) −4.60204 + 2.65699i −0.310269 + 0.179134i
\(221\) −18.2824 + 10.5554i −1.22981 + 0.710030i
\(222\) 13.8927 + 1.00349i 0.932420 + 0.0673501i
\(223\) 13.2688i 0.888544i 0.895892 + 0.444272i \(0.146538\pi\)
−0.895892 + 0.444272i \(0.853462\pi\)
\(224\) −2.64125 + 0.154205i −0.176476 + 0.0103033i
\(225\) −7.93092 + 10.0557i −0.528728 + 0.670381i
\(226\) −4.45718 + 7.72007i −0.296487 + 0.513531i
\(227\) 1.39501 + 2.41622i 0.0925898 + 0.160370i 0.908600 0.417667i \(-0.137152\pi\)
−0.816010 + 0.578037i \(0.803819\pi\)
\(228\) 6.22820 9.18817i 0.412473 0.608501i
\(229\) 5.93757 + 3.42806i 0.392366 + 0.226532i 0.683185 0.730246i \(-0.260594\pi\)
−0.290819 + 0.956778i \(0.593928\pi\)
\(230\) −0.855002 −0.0563772
\(231\) −24.4669 14.5795i −1.60981 0.959258i
\(232\) 3.08934 0.202825
\(233\) 0.903877 + 0.521853i 0.0592149 + 0.0341878i 0.529315 0.848425i \(-0.322449\pi\)
−0.470100 + 0.882613i \(0.655782\pi\)
\(234\) 8.73920 + 1.26911i 0.571300 + 0.0829645i
\(235\) −1.35570 2.34814i −0.0884362 0.153176i
\(236\) −1.01222 + 1.75321i −0.0658896 + 0.114124i
\(237\) −7.87249 + 3.81735i −0.511373 + 0.247963i
\(238\) −8.51336 + 16.9574i −0.551839 + 1.09918i
\(239\) 8.31136i 0.537617i −0.963194 0.268809i \(-0.913370\pi\)
0.963194 0.268809i \(-0.0866299\pi\)
\(240\) 0.106690 1.47706i 0.00688683 0.0953438i
\(241\) 19.7156 11.3828i 1.26999 0.733230i 0.295006 0.955495i \(-0.404678\pi\)
0.974986 + 0.222265i \(0.0713450\pi\)
\(242\) −23.9267 + 13.8141i −1.53807 + 0.888003i
\(243\) −15.3817 + 2.53072i −0.986734 + 0.162346i
\(244\) 2.19490i 0.140514i
\(245\) −5.94435 + 0.696476i −0.379771 + 0.0444962i
\(246\) −6.66210 13.7392i −0.424760 0.875979i
\(247\) 9.43235 16.3373i 0.600166 1.03952i
\(248\) −5.36139 9.28619i −0.340448 0.589674i
\(249\) 4.26851 + 2.89341i 0.270506 + 0.183363i
\(250\) 6.86324 + 3.96250i 0.434070 + 0.250610i
\(251\) −15.8913 −1.00305 −0.501525 0.865143i \(-0.667228\pi\)
−0.501525 + 0.865143i \(0.667228\pi\)
\(252\) 7.18899 3.36429i 0.452864 0.211930i
\(253\) −6.21516 −0.390743
\(254\) 7.10622 + 4.10278i 0.445884 + 0.257431i
\(255\) −8.79123 5.95913i −0.550528 0.373175i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.53324 + 11.3159i −0.407532 + 0.705866i −0.994613 0.103662i \(-0.966944\pi\)
0.587080 + 0.809529i \(0.300277\pi\)
\(258\) 2.03113 + 4.18878i 0.126452 + 0.260782i
\(259\) 17.7749 11.6943i 1.10448 0.726647i
\(260\) 2.51681i 0.156086i
\(261\) −8.60900 + 3.43242i −0.532884 + 0.212461i
\(262\) −14.8513 + 8.57443i −0.917519 + 0.529730i
\(263\) −6.01294 + 3.47157i −0.370774 + 0.214066i −0.673796 0.738917i \(-0.735337\pi\)
0.303023 + 0.952983i \(0.402004\pi\)
\(264\) 0.775549 10.7370i 0.0477318 0.660816i
\(265\) 3.65386i 0.224455i
\(266\) −0.988249 16.9269i −0.0605934 1.03786i
\(267\) 0.201286 0.0976030i 0.0123185 0.00597320i
\(268\) 6.62148 11.4687i 0.404472 0.700565i
\(269\) 0.536972 + 0.930063i 0.0327398 + 0.0567069i 0.881931 0.471378i \(-0.156243\pi\)
−0.849191 + 0.528085i \(0.822910\pi\)
\(270\) 1.34378 + 4.23462i 0.0817797 + 0.257711i
\(271\) −16.9129 9.76469i −1.02739 0.593162i −0.111152 0.993803i \(-0.535454\pi\)
−0.916235 + 0.400641i \(0.868787\pi\)
\(272\) −7.17168 −0.434847
\(273\) 11.7740 6.58297i 0.712597 0.398419i
\(274\) −2.10931 −0.127428
\(275\) 22.9777 + 13.2662i 1.38561 + 0.799980i
\(276\) 0.971841 1.43371i 0.0584979 0.0862992i
\(277\) 1.82142 + 3.15480i 0.109439 + 0.189553i 0.915543 0.402220i \(-0.131761\pi\)
−0.806104 + 0.591773i \(0.798428\pi\)
\(278\) 2.22973 3.86201i 0.133730 0.231628i
\(279\) 25.2579 + 19.9208i 1.51215 + 1.19263i
\(280\) −1.24332 1.88980i −0.0743026 0.112937i
\(281\) 30.5871i 1.82467i −0.409442 0.912336i \(-0.634277\pi\)
0.409442 0.912336i \(-0.365723\pi\)
\(282\) 5.47844 + 0.395716i 0.326237 + 0.0235646i
\(283\) −8.12568 + 4.69136i −0.483021 + 0.278873i −0.721675 0.692232i \(-0.756627\pi\)
0.238653 + 0.971105i \(0.423294\pi\)
\(284\) −9.67521 + 5.58598i −0.574118 + 0.331467i
\(285\) 9.46598 + 0.683742i 0.560716 + 0.0405014i
\(286\) 18.2951i 1.08181i
\(287\) −20.8447 10.4649i −1.23042 0.617726i
\(288\) 2.35554 + 1.85781i 0.138801 + 0.109472i
\(289\) −17.2165 + 29.8198i −1.01273 + 1.75411i
\(290\) 1.32070 + 2.28752i 0.0775540 + 0.134328i
\(291\) −7.09014 + 10.4597i −0.415631 + 0.613161i
\(292\) 3.00479 + 1.73482i 0.175842 + 0.101522i
\(293\) 6.98322 0.407964 0.203982 0.978975i \(-0.434612\pi\)
0.203982 + 0.978975i \(0.434612\pi\)
\(294\) 5.58878 10.7594i 0.325944 0.627503i
\(295\) −1.73089 −0.100776
\(296\) 6.96447 + 4.02094i 0.404802 + 0.233712i
\(297\) 9.76814 + 30.7822i 0.566805 + 1.78616i
\(298\) 7.82783 + 13.5582i 0.453454 + 0.785405i
\(299\) 1.47181 2.54925i 0.0851171 0.147427i
\(300\) −6.65317 + 3.22610i −0.384121 + 0.186259i
\(301\) 6.35507 + 3.19053i 0.366300 + 0.183899i
\(302\) 23.4684i 1.35046i
\(303\) −0.382821 + 5.29991i −0.0219925 + 0.304472i
\(304\) 5.55007 3.20433i 0.318318 0.183781i
\(305\) −1.62522 + 0.938323i −0.0930600 + 0.0537282i
\(306\) 19.9851 7.96810i 1.14247 0.455506i
\(307\) 25.7590i 1.47015i −0.677988 0.735073i \(-0.737148\pi\)
0.677988 0.735073i \(-0.262852\pi\)
\(308\) −9.03791 13.7373i −0.514983 0.782755i
\(309\) 0.251075 + 0.517790i 0.0142832 + 0.0294560i
\(310\) 4.58400 7.93972i 0.260354 0.450946i
\(311\) 5.78604 + 10.0217i 0.328096 + 0.568279i 0.982134 0.188183i \(-0.0602597\pi\)
−0.654038 + 0.756462i \(0.726926\pi\)
\(312\) 4.22030 + 2.86073i 0.238928 + 0.161957i
\(313\) −20.1527 11.6352i −1.13910 0.657658i −0.192890 0.981220i \(-0.561786\pi\)
−0.946207 + 0.323563i \(0.895119\pi\)
\(314\) −10.5104 −0.593137
\(315\) 5.56440 + 3.88488i 0.313518 + 0.218888i
\(316\) −5.05134 −0.284160
\(317\) 1.66918 + 0.963700i 0.0937504 + 0.0541268i 0.546142 0.837692i \(-0.316096\pi\)
−0.452392 + 0.891819i \(0.649429\pi\)
\(318\) 6.12698 + 4.15317i 0.343584 + 0.232898i
\(319\) 9.60038 + 16.6283i 0.537518 + 0.931008i
\(320\) 0.427501 0.740454i 0.0238980 0.0413926i
\(321\) 11.1746 + 23.0454i 0.623707 + 1.28627i
\(322\) −0.154205 2.64125i −0.00859352 0.147191i
\(323\) 45.9609i 2.55733i
\(324\) −8.62824 2.55999i −0.479346 0.142221i
\(325\) −10.8827 + 6.28312i −0.603663 + 0.348525i
\(326\) −4.83671 + 2.79248i −0.267881 + 0.154661i
\(327\) 0.631624 8.74443i 0.0349289 0.483568i
\(328\) 8.81569i 0.486765i
\(329\) 7.00932 4.61150i 0.386436 0.254240i
\(330\) 8.28179 4.01582i 0.455898 0.221064i
\(331\) −10.5212 + 18.2232i −0.578296 + 1.00164i 0.417379 + 0.908733i \(0.362949\pi\)
−0.995675 + 0.0929055i \(0.970385\pi\)
\(332\) 1.48863 + 2.57837i 0.0816989 + 0.141507i
\(333\) −23.8752 3.46717i −1.30835 0.190000i
\(334\) −5.98225 3.45385i −0.327334 0.188987i
\(335\) 11.3228 0.618629
\(336\) 4.58214 + 0.0631880i 0.249976 + 0.00344719i
\(337\) 10.2300 0.557263 0.278632 0.960398i \(-0.410119\pi\)
0.278632 + 0.960398i \(0.410119\pi\)
\(338\) −3.75429 2.16754i −0.204206 0.117899i
\(339\) 8.66335 12.7806i 0.470528 0.694148i
\(340\) −3.06590 5.31030i −0.166272 0.287991i
\(341\) 33.3219 57.7151i 1.80448 3.12545i
\(342\) −11.9061 + 15.0958i −0.643806 + 0.816290i
\(343\) −3.22364 18.2375i −0.174060 0.984735i
\(344\) 2.68771i 0.144912i
\(345\) 1.47706 + 0.106690i 0.0795222 + 0.00574401i
\(346\) −19.0122 + 10.9767i −1.02210 + 0.590112i
\(347\) 7.62873 4.40445i 0.409532 0.236443i −0.281057 0.959691i \(-0.590685\pi\)
0.690588 + 0.723248i \(0.257352\pi\)
\(348\) −5.33700 0.385499i −0.286093 0.0206649i
\(349\) 8.74478i 0.468097i −0.972225 0.234049i \(-0.924802\pi\)
0.972225 0.234049i \(-0.0751975\pi\)
\(350\) −5.06762 + 10.0940i −0.270875 + 0.539545i
\(351\) −14.9390 3.28297i −0.797387 0.175232i
\(352\) 3.10758 5.38248i 0.165634 0.286887i
\(353\) 14.9299 + 25.8593i 0.794636 + 1.37635i 0.923070 + 0.384632i \(0.125672\pi\)
−0.128434 + 0.991718i \(0.540995\pi\)
\(354\) 1.96742 2.90245i 0.104567 0.154263i
\(355\) −8.27232 4.77603i −0.439049 0.253485i
\(356\) 0.129154 0.00684515
\(357\) 16.8233 28.2324i 0.890382 1.49422i
\(358\) 6.25760 0.330725
\(359\) −23.9879 13.8494i −1.26603 0.730945i −0.291799 0.956480i \(-0.594254\pi\)
−0.974235 + 0.225534i \(0.927587\pi\)
\(360\) −0.368626 + 2.53838i −0.0194283 + 0.133784i
\(361\) 11.0355 + 19.1140i 0.580815 + 1.00600i
\(362\) −6.98435 + 12.0972i −0.367089 + 0.635817i
\(363\) 43.0583 20.8789i 2.25998 1.09586i
\(364\) 7.77486 0.453922i 0.407513 0.0237920i
\(365\) 2.96654i 0.155276i
\(366\) 0.273888 3.79180i 0.0143163 0.198201i
\(367\) −7.26723 + 4.19574i −0.379346 + 0.219016i −0.677534 0.735492i \(-0.736951\pi\)
0.298188 + 0.954507i \(0.403618\pi\)
\(368\) 0.866025 0.500000i 0.0451447 0.0260643i
\(369\) 9.79468 + 24.5665i 0.509891 + 1.27888i
\(370\) 6.87582i 0.357457i
\(371\) 11.2874 0.658998i 0.586014 0.0342135i
\(372\) 8.10330 + 16.7114i 0.420136 + 0.866445i
\(373\) −10.0519 + 17.4103i −0.520466 + 0.901473i 0.479251 + 0.877678i \(0.340908\pi\)
−0.999717 + 0.0237950i \(0.992425\pi\)
\(374\) −22.2865 38.6014i −1.15241 1.99603i
\(375\) −11.3621 7.70183i −0.586739 0.397721i
\(376\) 2.74636 + 1.58561i 0.141633 + 0.0817716i
\(377\) −9.09387 −0.468358
\(378\) −12.8391 + 4.91491i −0.660374 + 0.252796i
\(379\) −10.9858 −0.564301 −0.282151 0.959370i \(-0.591048\pi\)
−0.282151 + 0.959370i \(0.591048\pi\)
\(380\) 4.74532 + 2.73971i 0.243430 + 0.140544i
\(381\) −11.7644 7.97449i −0.602708 0.408546i
\(382\) 4.01379 + 6.95208i 0.205363 + 0.355699i
\(383\) 5.60018 9.69979i 0.286156 0.495636i −0.686733 0.726910i \(-0.740956\pi\)
0.972889 + 0.231274i \(0.0742892\pi\)
\(384\) 0.755709 + 1.55849i 0.0385646 + 0.0795316i
\(385\) 6.30812 12.5649i 0.321491 0.640365i
\(386\) 7.81759i 0.397905i
\(387\) −2.98618 7.48977i −0.151796 0.380727i
\(388\) −6.31815 + 3.64779i −0.320756 + 0.185188i
\(389\) 13.3793 7.72453i 0.678357 0.391649i −0.120879 0.992667i \(-0.538571\pi\)
0.799236 + 0.601018i \(0.205238\pi\)
\(390\) −0.314056 + 4.34791i −0.0159028 + 0.220165i
\(391\) 7.17168i 0.362687i
\(392\) 5.61370 4.18168i 0.283534 0.211207i
\(393\) 26.7264 12.9596i 1.34817 0.653723i
\(394\) −8.26501 + 14.3154i −0.416385 + 0.721200i
\(395\) −2.15945 3.74029i −0.108654 0.188194i
\(396\) −2.67960 + 18.4519i −0.134655 + 0.927244i
\(397\) −16.2225 9.36607i −0.814184 0.470070i 0.0342225 0.999414i \(-0.489105\pi\)
−0.848407 + 0.529345i \(0.822438\pi\)
\(398\) −2.16510 −0.108527
\(399\) −0.404951 + 29.3654i −0.0202729 + 1.47011i
\(400\) −4.26897 −0.213449
\(401\) 31.9375 + 18.4391i 1.59488 + 0.920805i 0.992452 + 0.122633i \(0.0391337\pi\)
0.602429 + 0.798172i \(0.294200\pi\)
\(402\) −12.8701 + 18.9866i −0.641900 + 0.946965i
\(403\) 15.7819 + 27.3351i 0.786153 + 1.36166i
\(404\) −1.53394 + 2.65686i −0.0763163 + 0.132184i
\(405\) −1.79303 7.48321i −0.0890964 0.371844i
\(406\) −6.82835 + 4.49244i −0.338885 + 0.222956i
\(407\) 49.9815i 2.47749i
\(408\) 12.3894 + 0.894908i 0.613368 + 0.0443045i
\(409\) −4.51360 + 2.60593i −0.223183 + 0.128855i −0.607423 0.794378i \(-0.707797\pi\)
0.384240 + 0.923233i \(0.374463\pi\)
\(410\) 6.52761 3.76872i 0.322376 0.186124i
\(411\) 3.64393 + 0.263207i 0.179742 + 0.0129830i
\(412\) 0.332237i 0.0163682i
\(413\) −0.312178 5.34703i −0.0153613 0.263110i
\(414\) −1.85781 + 2.35554i −0.0913062 + 0.115768i
\(415\) −1.27278 + 2.20452i −0.0624782 + 0.108215i
\(416\) 1.47181 + 2.54925i 0.0721615 + 0.124987i
\(417\) −4.33389 + 6.39358i −0.212232 + 0.313095i
\(418\) 34.4945 + 19.9154i 1.68718 + 0.974095i
\(419\) 14.0245 0.685140 0.342570 0.939492i \(-0.388703\pi\)
0.342570 + 0.939492i \(0.388703\pi\)
\(420\) 1.91208 + 3.41988i 0.0933001 + 0.166873i
\(421\) −2.64519 −0.128919 −0.0644593 0.997920i \(-0.520532\pi\)
−0.0644593 + 0.997920i \(0.520532\pi\)
\(422\) 9.96737 + 5.75466i 0.485204 + 0.280133i
\(423\) −9.41491 1.36724i −0.457769 0.0664775i
\(424\) 2.13676 + 3.70097i 0.103770 + 0.179735i
\(425\) −15.3078 + 26.5140i −0.742539 + 1.28612i
\(426\) 17.4114 8.44276i 0.843587 0.409053i
\(427\) −3.19176 4.85137i −0.154460 0.234774i
\(428\) 14.7869i 0.714754i
\(429\) −2.28293 + 31.6057i −0.110221 + 1.52594i
\(430\) −1.99012 + 1.14900i −0.0959723 + 0.0554096i
\(431\) −7.13207 + 4.11770i −0.343540 + 0.198343i −0.661836 0.749648i \(-0.730223\pi\)
0.318296 + 0.947991i \(0.396889\pi\)
\(432\) −3.83748 3.50339i −0.184631 0.168557i
\(433\) 16.1796i 0.777541i −0.921335 0.388771i \(-0.872900\pi\)
0.921335 0.388771i \(-0.127100\pi\)
\(434\) 25.3539 + 12.7288i 1.21703 + 0.611002i
\(435\) −1.99613 4.11660i −0.0957070 0.197376i
\(436\) 2.53088 4.38361i 0.121207 0.209937i
\(437\) 3.20433 + 5.55007i 0.153284 + 0.265496i
\(438\) −4.97445 3.37193i −0.237688 0.161117i
\(439\) 34.4931 + 19.9146i 1.64627 + 0.950472i 0.978538 + 0.206066i \(0.0660662\pi\)
0.667728 + 0.744406i \(0.267267\pi\)
\(440\) 5.31397 0.253334
\(441\) −10.9975 + 17.8901i −0.523690 + 0.851909i
\(442\) 21.1107 1.00413
\(443\) −0.0707186 0.0408294i −0.00335994 0.00193986i 0.498319 0.866994i \(-0.333951\pi\)
−0.501679 + 0.865054i \(0.667284\pi\)
\(444\) −11.5297 7.81543i −0.547177 0.370904i
\(445\) 0.0552135 + 0.0956326i 0.00261737 + 0.00453342i
\(446\) 6.63439 11.4911i 0.314148 0.544120i
\(447\) −11.8311 24.3992i −0.559593 1.15404i
\(448\) 2.36450 + 1.18708i 0.111712 + 0.0560843i
\(449\) 17.2166i 0.812499i 0.913762 + 0.406250i \(0.133164\pi\)
−0.913762 + 0.406250i \(0.866836\pi\)
\(450\) 11.8962 4.74304i 0.560794 0.223589i
\(451\) 47.4503 27.3954i 2.23435 1.29000i
\(452\) 7.72007 4.45718i 0.363122 0.209648i
\(453\) 2.92847 40.5429i 0.137592 1.90487i
\(454\) 2.79001i 0.130942i
\(455\) 3.65987 + 5.56287i 0.171577 + 0.260791i
\(456\) −9.98786 + 4.84309i −0.467725 + 0.226798i
\(457\) 1.05217 1.82240i 0.0492182 0.0852485i −0.840367 0.542018i \(-0.817660\pi\)
0.889585 + 0.456770i \(0.150994\pi\)
\(458\) −3.42806 5.93757i −0.160183 0.277444i
\(459\) −35.5196 + 11.2715i −1.65791 + 0.526107i
\(460\) 0.740454 + 0.427501i 0.0345238 + 0.0199323i
\(461\) −7.03821 −0.327802 −0.163901 0.986477i \(-0.552408\pi\)
−0.163901 + 0.986477i \(0.552408\pi\)
\(462\) 13.8992 + 24.8597i 0.646652 + 1.15658i
\(463\) −26.4032 −1.22706 −0.613531 0.789671i \(-0.710251\pi\)
−0.613531 + 0.789671i \(0.710251\pi\)
\(464\) −2.67545 1.54467i −0.124205 0.0717096i
\(465\) −8.90983 + 13.1443i −0.413184 + 0.609550i
\(466\) −0.521853 0.903877i −0.0241744 0.0418713i
\(467\) −7.47490 + 12.9469i −0.345897 + 0.599112i −0.985516 0.169580i \(-0.945759\pi\)
0.639619 + 0.768692i \(0.279092\pi\)
\(468\) −6.93381 5.46869i −0.320516 0.252790i
\(469\) 2.04213 + 34.9780i 0.0942970 + 1.61514i
\(470\) 2.71140i 0.125068i
\(471\) 18.1573 + 1.31153i 0.836642 + 0.0604320i
\(472\) 1.75321 1.01222i 0.0806979 0.0465910i
\(473\) −14.4665 + 8.35226i −0.665172 + 0.384037i
\(474\) 8.72645 + 0.630325i 0.400819 + 0.0289518i
\(475\) 27.3584i 1.25529i
\(476\) 15.8515 10.4289i 0.726552 0.478006i
\(477\) −10.0664 7.93936i −0.460909 0.363518i
\(478\) −4.15568 + 7.19785i −0.190076 + 0.329222i
\(479\) 2.51296 + 4.35257i 0.114820 + 0.198874i 0.917708 0.397256i \(-0.130038\pi\)
−0.802888 + 0.596130i \(0.796704\pi\)
\(480\) −0.830926 + 1.22583i −0.0379264 + 0.0559510i
\(481\) −20.5008 11.8361i −0.934755 0.539681i
\(482\) −22.7656 −1.03694
\(483\) −0.0631880 + 4.58214i −0.00287515 + 0.208495i
\(484\) 27.6282 1.25583
\(485\) −5.40204 3.11887i −0.245294 0.141620i
\(486\) 14.5863 + 5.49917i 0.661646 + 0.249447i
\(487\) −5.22928 9.05739i −0.236961 0.410429i 0.722879 0.690974i \(-0.242818\pi\)
−0.959841 + 0.280545i \(0.909485\pi\)
\(488\) 1.09745 1.90084i 0.0496792 0.0860470i
\(489\) 8.70412 4.22060i 0.393614 0.190862i
\(490\) 5.49620 + 2.36901i 0.248293 + 0.107021i
\(491\) 9.33223i 0.421158i −0.977577 0.210579i \(-0.932465\pi\)
0.977577 0.210579i \(-0.0675349\pi\)
\(492\) −1.10005 + 15.2295i −0.0495942 + 0.686601i
\(493\) −19.1875 + 11.0779i −0.864160 + 0.498923i
\(494\) −16.3373 + 9.43235i −0.735050 + 0.424381i
\(495\) −14.8083 + 5.90409i −0.665585 + 0.265369i
\(496\) 10.7228i 0.481467i
\(497\) 13.2620 26.4161i 0.594883 1.18492i
\(498\) −2.24994 4.64003i −0.100822 0.207925i
\(499\) 1.51334 2.62118i 0.0677463 0.117340i −0.830163 0.557521i \(-0.811752\pi\)
0.897909 + 0.440181i \(0.145086\pi\)
\(500\) −3.96250 6.86324i −0.177208 0.306934i
\(501\) 9.90365 + 6.71319i 0.442463 + 0.299923i
\(502\) 13.7623 + 7.94565i 0.614240 + 0.354632i
\(503\) 24.5774 1.09585 0.547926 0.836527i \(-0.315418\pi\)
0.547926 + 0.836527i \(0.315418\pi\)
\(504\) −7.90799 0.680936i −0.352250 0.0303313i
\(505\) −2.62304 −0.116724
\(506\) 5.38248 + 3.10758i 0.239281 + 0.138149i
\(507\) 6.21524 + 4.21300i 0.276029 + 0.187106i
\(508\) −4.10278 7.10622i −0.182031 0.315287i
\(509\) −12.6487 + 21.9082i −0.560643 + 0.971063i 0.436797 + 0.899560i \(0.356113\pi\)
−0.997440 + 0.0715029i \(0.977220\pi\)
\(510\) 4.63386 + 9.55637i 0.205191 + 0.423163i
\(511\) −9.16418 + 0.535035i −0.405399 + 0.0236686i
\(512\) 1.00000i 0.0441942i
\(513\) 22.4520 24.5931i 0.991281 1.08581i
\(514\) 11.3159 6.53324i 0.499123 0.288169i
\(515\) −0.246006 + 0.142032i −0.0108403 + 0.00625867i
\(516\) 0.335382 4.64315i 0.0147644 0.204403i
\(517\) 19.7096i 0.866829i
\(518\) −21.2406 + 1.24010i −0.933260 + 0.0544868i
\(519\) 34.2143 16.5904i 1.50184 0.728238i
\(520\) −1.25840 + 2.17962i −0.0551846 + 0.0955825i
\(521\) −6.39848 11.0825i −0.280323 0.485533i 0.691142 0.722719i \(-0.257108\pi\)
−0.971464 + 0.237187i \(0.923775\pi\)
\(522\) 9.17182 + 1.33194i 0.401440 + 0.0582974i
\(523\) 16.8626 + 9.73564i 0.737351 + 0.425710i 0.821106 0.570776i \(-0.193358\pi\)
−0.0837541 + 0.996486i \(0.526691\pi\)
\(524\) 17.1489 0.749151
\(525\) 10.0141 16.8055i 0.437052 0.733451i
\(526\) 6.94314 0.302735
\(527\) 66.5976 + 38.4501i 2.90104 + 1.67491i
\(528\) −6.04014 + 8.91073i −0.262863 + 0.387790i
\(529\) 0.500000 + 0.866025i 0.0217391 + 0.0376533i
\(530\) −1.82693 + 3.16434i −0.0793568 + 0.137450i
\(531\) −3.76100 + 4.76862i −0.163214 + 0.206940i
\(532\) −7.60760 + 15.1533i −0.329831 + 0.656977i
\(533\) 25.9501i 1.12402i
\(534\) −0.223120 0.0161163i −0.00965535 0.000697421i
\(535\) −10.9490 + 6.32143i −0.473369 + 0.273299i
\(536\) −11.4687 + 6.62148i −0.495374 + 0.286005i
\(537\) −10.8103 0.780846i −0.466500 0.0336960i
\(538\) 1.07394i 0.0463010i
\(539\) 39.9528 + 17.2207i 1.72089 + 0.741750i
\(540\) 0.953567 4.33918i 0.0410350 0.186729i
\(541\) −6.34750 + 10.9942i −0.272901 + 0.472678i −0.969603 0.244682i \(-0.921316\pi\)
0.696703 + 0.717360i \(0.254650\pi\)
\(542\) 9.76469 + 16.9129i 0.419429 + 0.726473i
\(543\) 13.5754 20.0271i 0.582574 0.859444i
\(544\) 6.21086 + 3.58584i 0.266288 + 0.153742i
\(545\) 4.32781 0.185383
\(546\) −13.4881 0.186002i −0.577237 0.00796014i
\(547\) 2.59433 0.110926 0.0554628 0.998461i \(-0.482337\pi\)
0.0554628 + 0.998461i \(0.482337\pi\)
\(548\) 1.82671 + 1.05465i 0.0780334 + 0.0450526i
\(549\) −0.946309 + 6.51635i −0.0403875 + 0.278111i
\(550\) −13.2662 22.9777i −0.565671 0.979771i
\(551\) 9.89928 17.1461i 0.421724 0.730447i
\(552\) −1.55849 + 0.755709i −0.0663339 + 0.0321651i
\(553\) 11.1649 7.34552i 0.474781 0.312363i
\(554\) 3.64284i 0.154770i
\(555\) 0.857990 11.8783i 0.0364197 0.504207i
\(556\) −3.86201 + 2.22973i −0.163786 + 0.0945617i
\(557\) 1.21373 0.700746i 0.0514273 0.0296916i −0.474066 0.880489i \(-0.657214\pi\)
0.525493 + 0.850798i \(0.323881\pi\)
\(558\) −11.9135 29.8809i −0.504341 1.26496i
\(559\) 7.91160i 0.334625i
\(560\) 0.131846 + 2.25828i 0.00557150 + 0.0954297i
\(561\) 33.6843 + 69.4669i 1.42215 + 2.93289i
\(562\) −15.2935 + 26.4892i −0.645119 + 1.11738i
\(563\) −20.0197 34.6751i −0.843729 1.46138i −0.886721 0.462306i \(-0.847022\pi\)
0.0429917 0.999075i \(-0.486311\pi\)
\(564\) −4.54661 3.08192i −0.191447 0.129772i
\(565\) 6.60068 + 3.81090i 0.277693 + 0.160326i
\(566\) 9.38272 0.394385
\(567\) 22.7936 6.88863i 0.957240 0.289295i
\(568\) 11.1720 0.468765
\(569\) −16.7483 9.66966i −0.702127 0.405373i 0.106012 0.994365i \(-0.466192\pi\)
−0.808139 + 0.588991i \(0.799525\pi\)
\(570\) −7.85590 5.32513i −0.329048 0.223045i
\(571\) −18.6294 32.2671i −0.779617 1.35034i −0.932163 0.362040i \(-0.882080\pi\)
0.152546 0.988296i \(-0.451253\pi\)
\(572\) −9.14754 + 15.8440i −0.382478 + 0.662471i
\(573\) −6.06651 12.5109i −0.253432 0.522651i
\(574\) 12.8195 + 19.4852i 0.535077 + 0.813298i
\(575\) 4.26897i 0.178028i
\(576\) −1.11105 2.78668i −0.0462938 0.116112i
\(577\) 15.9404 9.20317i 0.663606 0.383133i −0.130044 0.991508i \(-0.541512\pi\)
0.793650 + 0.608375i \(0.208178\pi\)
\(578\) 29.8198 17.2165i 1.24034 0.716111i
\(579\) 0.975507 13.5053i 0.0405407 0.561260i
\(580\) 2.64140i 0.109678i
\(581\) −7.03969 3.53424i −0.292056 0.146625i
\(582\) 11.3701 5.51333i 0.471306 0.228535i
\(583\) −13.2803 + 23.0021i −0.550013 + 0.952650i
\(584\) −1.73482 3.00479i −0.0717872 0.124339i
\(585\) 1.08509 7.47204i 0.0448632 0.308931i
\(586\) −6.04765 3.49161i −0.249826 0.144237i
\(587\) 18.8530 0.778145 0.389073 0.921207i \(-0.372796\pi\)
0.389073 + 0.921207i \(0.372796\pi\)
\(588\) −10.2197 + 6.52356i −0.421455 + 0.269027i
\(589\) −68.7187 −2.83150
\(590\) 1.49900 + 0.865446i 0.0617127 + 0.0356299i
\(591\) 16.0645 23.6993i 0.660807 0.974857i
\(592\) −4.02094 6.96447i −0.165260 0.286238i
\(593\) −15.0690 + 26.1003i −0.618811 + 1.07181i 0.370892 + 0.928676i \(0.379052\pi\)
−0.989703 + 0.143136i \(0.954281\pi\)
\(594\) 6.93164 31.5422i 0.284409 1.29419i
\(595\) 14.4986 + 7.27895i 0.594385 + 0.298408i
\(596\) 15.6557i 0.641281i
\(597\) 3.74031 + 0.270169i 0.153081 + 0.0110573i
\(598\) −2.54925 + 1.47181i −0.104247 + 0.0601869i
\(599\) 13.4173 7.74650i 0.548217 0.316513i −0.200185 0.979758i \(-0.564154\pi\)
0.748403 + 0.663245i \(0.230821\pi\)
\(600\) 7.37486 + 0.532698i 0.301077 + 0.0217473i
\(601\) 29.1324i 1.18833i 0.804342 + 0.594167i \(0.202518\pi\)
−0.804342 + 0.594167i \(0.797482\pi\)
\(602\) −3.90839 5.94062i −0.159294 0.242121i
\(603\) 24.6029 31.1943i 1.00191 1.27033i
\(604\) 11.7342 20.3242i 0.477458 0.826982i
\(605\) 11.8111 + 20.4574i 0.480188 + 0.831711i
\(606\) 2.98149 4.39845i 0.121115 0.178675i
\(607\) 18.8256 + 10.8690i 0.764107 + 0.441157i 0.830768 0.556618i \(-0.187901\pi\)
−0.0666615 + 0.997776i \(0.521235\pi\)
\(608\) −6.40866 −0.259906
\(609\) 12.3569 6.90885i 0.500726 0.279961i
\(610\) 1.87665 0.0759831
\(611\) −8.08425 4.66744i −0.327054 0.188825i
\(612\) −21.2917 3.09200i −0.860666 0.124987i
\(613\) 17.7986 + 30.8280i 0.718877 + 1.24513i 0.961445 + 0.274997i \(0.0886768\pi\)
−0.242568 + 0.970134i \(0.577990\pi\)
\(614\) −12.8795 + 22.3080i −0.519775 + 0.900277i
\(615\) −11.7470 + 5.69611i −0.473687 + 0.229689i
\(616\) 0.958409 + 16.4158i 0.0386154 + 0.661412i
\(617\) 7.51810i 0.302667i 0.988483 + 0.151334i \(0.0483568\pi\)
−0.988483 + 0.151334i \(0.951643\pi\)
\(618\) 0.0414578 0.573957i 0.00166768 0.0230879i
\(619\) 7.89716 4.55943i 0.317414 0.183259i −0.332826 0.942988i \(-0.608002\pi\)
0.650239 + 0.759730i \(0.274669\pi\)
\(620\) −7.93972 + 4.58400i −0.318867 + 0.184098i
\(621\) 3.50339 3.83748i 0.140586 0.153993i
\(622\) 11.5721i 0.463998i
\(623\) −0.285468 + 0.187812i −0.0114370 + 0.00752454i
\(624\) −2.22452 4.58762i −0.0890522 0.183652i
\(625\) −7.28448 + 12.6171i −0.291379 + 0.504684i
\(626\) 11.6352 + 20.1527i 0.465034 + 0.805463i
\(627\) −57.1059 38.7092i −2.28059 1.54590i
\(628\) 9.10228 + 5.25521i 0.363221 + 0.209706i
\(629\) −57.6738 −2.29960
\(630\) −2.87647 6.14660i −0.114601 0.244887i
\(631\) 19.5301 0.777480 0.388740 0.921348i \(-0.372911\pi\)
0.388740 + 0.921348i \(0.372911\pi\)
\(632\) 4.37459 + 2.52567i 0.174012 + 0.100466i
\(633\) −16.5010 11.1852i −0.655857 0.444573i
\(634\) −0.963700 1.66918i −0.0382734 0.0662915i
\(635\) 3.50788 6.07583i 0.139206 0.241112i
\(636\) −3.22953 6.66024i −0.128059 0.264096i
\(637\) −16.5246 + 12.3093i −0.654729 + 0.487712i
\(638\) 19.2008i 0.760165i
\(639\) −31.1327 + 12.4126i −1.23159 + 0.491036i
\(640\) −0.740454 + 0.427501i −0.0292690 + 0.0168985i
\(641\) 22.3428 12.8996i 0.882487 0.509504i 0.0110096 0.999939i \(-0.496495\pi\)
0.871478 + 0.490435i \(0.163162\pi\)
\(642\) 1.84517 25.5452i 0.0728230 1.00819i
\(643\) 33.5587i 1.32343i 0.749757 + 0.661714i \(0.230171\pi\)
−0.749757 + 0.661714i \(0.769829\pi\)
\(644\) −1.18708 + 2.36450i −0.0467776 + 0.0931742i
\(645\) 3.58141 1.73662i 0.141018 0.0683792i
\(646\) −22.9804 + 39.8033i −0.904153 + 1.56604i
\(647\) 0.250687 + 0.434203i 0.00985554 + 0.0170703i 0.870911 0.491441i \(-0.163530\pi\)
−0.861056 + 0.508511i \(0.830196\pi\)
\(648\) 6.19228 + 6.53113i 0.243256 + 0.256567i
\(649\) 10.8965 + 6.29107i 0.427724 + 0.246946i
\(650\) 12.5662 0.492889
\(651\) −42.2119 25.1534i −1.65441 0.985840i
\(652\) 5.58496 0.218724
\(653\) 24.4418 + 14.1115i 0.956481 + 0.552224i 0.895088 0.445889i \(-0.147113\pi\)
0.0613925 + 0.998114i \(0.480446\pi\)
\(654\) −4.91922 + 7.25709i −0.192357 + 0.283775i
\(655\) 7.33116 + 12.6979i 0.286452 + 0.496149i
\(656\) −4.40785 + 7.63461i −0.172097 + 0.298082i
\(657\) 8.17284 + 6.44591i 0.318853 + 0.251479i
\(658\) −8.37600 + 0.489019i −0.326531 + 0.0190639i
\(659\) 29.3146i 1.14193i −0.820973 0.570967i \(-0.806568\pi\)
0.820973 0.570967i \(-0.193432\pi\)
\(660\) −9.18015 0.663097i −0.357337 0.0258110i
\(661\) −24.5752 + 14.1885i −0.955865 + 0.551869i −0.894898 0.446271i \(-0.852752\pi\)
−0.0609671 + 0.998140i \(0.519418\pi\)
\(662\) 18.2232 10.5212i 0.708265 0.408917i
\(663\) −36.4698 2.63427i −1.41637 0.102307i
\(664\) 2.97725i 0.115540i
\(665\) −14.4725 + 0.844955i −0.561221 + 0.0327660i
\(666\) 18.9429 + 14.9403i 0.734024 + 0.578923i
\(667\) 1.54467 2.67545i 0.0598099 0.103594i
\(668\) 3.45385 + 5.98225i 0.133634 + 0.231460i
\(669\) −12.8951 + 19.0236i −0.498555 + 0.735495i
\(670\) −9.80580 5.66138i −0.378831 0.218718i
\(671\) 13.6416 0.526630
\(672\) −3.93666 2.34579i −0.151860 0.0904909i
\(673\) −36.6651 −1.41334 −0.706668 0.707546i \(-0.749802\pi\)
−0.706668 + 0.707546i \(0.749802\pi\)
\(674\) −8.85943 5.11500i −0.341253 0.197022i
\(675\) −21.1432 + 6.70939i −0.813802 + 0.258245i
\(676\) 2.16754 + 3.75429i 0.0833669 + 0.144396i
\(677\) 19.2995 33.4276i 0.741738 1.28473i −0.209965 0.977709i \(-0.567335\pi\)
0.951703 0.307019i \(-0.0993317\pi\)
\(678\) −13.8930 + 6.73667i −0.533557 + 0.258720i
\(679\) 8.66044 17.2504i 0.332357 0.662008i
\(680\) 6.13180i 0.235144i
\(681\) −0.348148 + 4.81989i −0.0133411 + 0.184698i
\(682\) −57.7151 + 33.3219i −2.21003 + 1.27596i
\(683\) −44.3622 + 25.6125i −1.69747 + 0.980037i −0.749329 + 0.662198i \(0.769624\pi\)
−0.948145 + 0.317838i \(0.897043\pi\)
\(684\) 17.8589 7.12035i 0.682851 0.272253i
\(685\) 1.80346i 0.0689068i
\(686\) −6.32702 + 17.4060i −0.241567 + 0.664564i
\(687\) 5.18123 + 10.6852i 0.197676 + 0.407666i
\(688\) 1.34385 2.32762i 0.0512340 0.0887398i
\(689\) −6.28981 10.8943i −0.239623 0.415038i
\(690\) −1.22583 0.830926i −0.0466664 0.0316328i
\(691\) 4.92802 + 2.84520i 0.187471 + 0.108236i 0.590798 0.806820i \(-0.298813\pi\)
−0.403327 + 0.915056i \(0.632146\pi\)
\(692\) 21.9534 0.834544
\(693\) −20.9096 44.6807i −0.794289 1.69728i
\(694\) −8.80890 −0.334381
\(695\) −3.30203 1.90643i −0.125253 0.0723149i
\(696\) 4.42922 + 3.00235i 0.167889 + 0.113804i
\(697\) 31.6116 + 54.7530i 1.19738 + 2.07392i
\(698\) −4.37239 + 7.57320i −0.165497 + 0.286650i
\(699\) 0.788739 + 1.62661i 0.0298328 + 0.0615241i
\(700\) 9.43566 6.20782i 0.356635 0.234634i
\(701\) 20.0855i 0.758619i 0.925270 + 0.379309i \(0.123838\pi\)
−0.925270 + 0.379309i \(0.876162\pi\)
\(702\) 11.2961 + 10.3127i 0.426344 + 0.389226i
\(703\) 44.6330 25.7688i 1.68336 0.971891i
\(704\) −5.38248 + 3.10758i −0.202860 + 0.117121i
\(705\) 0.338339 4.68408i 0.0127426 0.176413i
\(706\) 29.8597i 1.12379i
\(707\) −0.473082 8.10304i −0.0177921 0.304746i
\(708\) −3.15506 + 1.52988i −0.118575 + 0.0574964i
\(709\) 22.2436 38.5271i 0.835377 1.44692i −0.0583459 0.998296i \(-0.518583\pi\)
0.893723 0.448619i \(-0.148084\pi\)
\(710\) 4.77603 + 8.27232i 0.179241 + 0.310455i
\(711\) −14.9967 2.17783i −0.562421 0.0816752i
\(712\) −0.111851 0.0645771i −0.00419178 0.00242013i
\(713\) −10.7228 −0.401571
\(714\) −28.6856 + 16.0384i −1.07353 + 0.600221i
\(715\) −15.6423 −0.584990
\(716\) −5.41924 3.12880i −0.202527 0.116929i
\(717\) 8.07732 11.9161i 0.301653 0.445014i
\(718\) 13.8494 + 23.9879i 0.516856 + 0.895222i
\(719\) 15.0871 26.1316i 0.562654 0.974545i −0.434610 0.900619i \(-0.643114\pi\)
0.997264 0.0739264i \(-0.0235530\pi\)
\(720\) 1.58843 2.01399i 0.0591973 0.0750569i
\(721\) −0.483130 0.734341i −0.0179927 0.0273483i
\(722\) 22.0710i 0.821397i
\(723\) 39.3287 + 2.84077i 1.46265 + 0.105649i
\(724\) 12.0972 6.98435i 0.449591 0.259571i
\(725\) −11.4214 + 6.59416i −0.424181 + 0.244901i
\(726\) −47.7290 3.44754i −1.77139 0.127950i
\(727\) 25.6630i 0.951789i −0.879502 0.475895i \(-0.842124\pi\)
0.879502 0.475895i \(-0.157876\pi\)
\(728\) −6.96019 3.49432i −0.257962 0.129508i
\(729\) −24.5123 11.3202i −0.907863 0.419267i
\(730\) 1.48327 2.56910i 0.0548983 0.0950867i
\(731\) −9.63769 16.6930i −0.356463 0.617412i
\(732\) −2.13309 + 3.14685i −0.0788414 + 0.116311i
\(733\) −38.4246 22.1844i −1.41924 0.819401i −0.423012 0.906124i \(-0.639027\pi\)
−0.996232 + 0.0867230i \(0.972360\pi\)
\(734\) 8.39147 0.309735
\(735\) −9.19935 4.77842i −0.339323 0.176255i
\(736\) −1.00000 −0.0368605
\(737\) −71.2800 41.1536i −2.62563 1.51591i
\(738\) 3.80079 26.1725i 0.139909 0.963424i
\(739\) 3.23693 + 5.60653i 0.119072 + 0.206239i 0.919400 0.393323i \(-0.128675\pi\)
−0.800328 + 0.599563i \(0.795341\pi\)
\(740\) 3.43791 5.95464i 0.126380 0.218897i
\(741\) 29.4005 14.2562i 1.08006 0.523716i
\(742\) −10.1047 5.07301i −0.370955 0.186236i
\(743\) 47.4860i 1.74209i 0.491201 + 0.871046i \(0.336558\pi\)
−0.491201 + 0.871046i \(0.663442\pi\)
\(744\) 1.33803 18.5241i 0.0490544 0.679127i
\(745\) 11.5923 6.69281i 0.424709 0.245206i
\(746\) 17.4103 10.0519i 0.637438 0.368025i
\(747\) 3.30788 + 8.29663i 0.121029 + 0.303558i
\(748\) 44.5731i 1.62975i
\(749\) −21.5028 32.6834i −0.785694 1.19423i
\(750\) 5.98899 + 12.3511i 0.218687 + 0.450997i
\(751\) −0.749749 + 1.29860i −0.0273587 + 0.0473867i −0.879381 0.476120i \(-0.842043\pi\)
0.852022 + 0.523506i \(0.175376\pi\)
\(752\) −1.58561 2.74636i −0.0578213 0.100149i
\(753\) −22.7835 15.4438i −0.830278 0.562804i
\(754\) 7.87552 + 4.54693i 0.286809 + 0.165590i
\(755\) 20.0656 0.730260
\(756\) 13.5765 + 2.16314i 0.493772 + 0.0786726i
\(757\) 0.175245 0.00636940 0.00318470 0.999995i \(-0.498986\pi\)
0.00318470 + 0.999995i \(0.498986\pi\)
\(758\) 9.51396 + 5.49289i 0.345562 + 0.199511i
\(759\) −8.91073 6.04014i −0.323439 0.219243i
\(760\) −2.73971 4.74532i −0.0993798 0.172131i
\(761\) −0.0332492 + 0.0575893i −0.00120528 + 0.00208761i −0.866627 0.498956i \(-0.833717\pi\)
0.865422 + 0.501043i \(0.167050\pi\)
\(762\) 6.20101 + 12.7883i 0.224639 + 0.463271i
\(763\) 0.780549 + 13.3694i 0.0282578 + 0.484004i
\(764\) 8.02757i 0.290427i
\(765\) −6.81274 17.0873i −0.246315 0.617794i
\(766\) −9.69979 + 5.60018i −0.350468 + 0.202343i
\(767\) −5.16079 + 2.97958i −0.186345 + 0.107586i
\(768\) 0.124784 1.72755i 0.00450274 0.0623376i
\(769\) 42.2625i 1.52403i −0.647562 0.762013i \(-0.724211\pi\)
0.647562 0.762013i \(-0.275789\pi\)
\(770\) −11.7454 + 7.72743i −0.423276 + 0.278477i