Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [966,2,Mod(47,966)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(966, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("966.47");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −0.866025 | − | 0.500000i | −1.72705 | + | 0.131543i | 0.500000 | + | 0.866025i | 1.22807 | − | 2.12708i | 1.56144 | + | 0.749605i | −0.955407 | − | 2.46722i | − | 1.00000i | 2.96539 | − | 0.454363i | −2.12708 | + | 1.22807i | |
47.2 | −0.866025 | − | 0.500000i | −1.71118 | − | 0.268099i | 0.500000 | + | 0.866025i | −0.519082 | + | 0.899076i | 1.34787 | + | 1.08777i | 2.02474 | + | 1.70307i | − | 1.00000i | 2.85625 | + | 0.917529i | 0.899076 | − | 0.519082i | |
47.3 | −0.866025 | − | 0.500000i | −1.67384 | + | 0.445275i | 0.500000 | + | 0.866025i | −1.04467 | + | 1.80941i | 1.67222 | + | 0.451299i | −2.62205 | − | 0.353363i | − | 1.00000i | 2.60346 | − | 1.49064i | 1.80941 | − | 1.04467i | |
47.4 | −0.866025 | − | 0.500000i | −1.20460 | + | 1.24456i | 0.500000 | + | 0.866025i | 0.662008 | − | 1.14663i | 1.66550 | − | 0.475517i | 2.07946 | + | 1.63580i | − | 1.00000i | −0.0978548 | − | 2.99840i | −1.14663 | + | 0.662008i | |
47.5 | −0.866025 | − | 0.500000i | −0.896677 | + | 1.48188i | 0.500000 | + | 0.866025i | 1.18968 | − | 2.06059i | 1.51749 | − | 0.835007i | 1.24146 | − | 2.33640i | − | 1.00000i | −1.39194 | − | 2.65754i | −2.06059 | + | 1.18968i | |
47.6 | −0.866025 | − | 0.500000i | −0.778308 | − | 1.54733i | 0.500000 | + | 0.866025i | −1.34998 | + | 2.33823i | −0.0996314 | + | 1.72918i | −2.25095 | + | 1.39041i | − | 1.00000i | −1.78847 | + | 2.40860i | 2.33823 | − | 1.34998i | |
47.7 | −0.866025 | − | 0.500000i | 0.191760 | − | 1.72140i | 0.500000 | + | 0.866025i | −0.750837 | + | 1.30049i | −1.02677 | + | 1.39490i | −0.436788 | − | 2.60945i | − | 1.00000i | −2.92646 | − | 0.660191i | 1.30049 | − | 0.750837i | |
47.8 | −0.866025 | − | 0.500000i | 0.219734 | + | 1.71806i | 0.500000 | + | 0.866025i | −1.55436 | + | 2.69223i | 0.668732 | − | 1.59775i | 1.70233 | + | 2.02535i | − | 1.00000i | −2.90343 | + | 0.755032i | 2.69223 | − | 1.55436i | |
47.9 | −0.866025 | − | 0.500000i | 0.845576 | − | 1.51162i | 0.500000 | + | 0.866025i | 1.37030 | − | 2.37343i | −1.48810 | + | 0.886316i | −2.52742 | + | 0.782396i | − | 1.00000i | −1.57000 | − | 2.55638i | −2.37343 | + | 1.37030i | |
47.10 | −0.866025 | − | 0.500000i | 1.43371 | + | 0.971841i | 0.500000 | + | 0.866025i | −0.427501 | + | 0.740454i | −0.755709 | − | 1.55849i | −2.36450 | − | 1.18708i | − | 1.00000i | 1.11105 | + | 2.78668i | 0.740454 | − | 0.427501i | |
47.11 | −0.866025 | − | 0.500000i | 1.45188 | + | 0.944479i | 0.500000 | + | 0.866025i | −1.52157 | + | 2.63544i | −0.785127 | − | 1.54388i | −0.624219 | + | 2.57106i | − | 1.00000i | 1.21592 | + | 2.74254i | 2.63544 | − | 1.52157i | |
47.12 | −0.866025 | − | 0.500000i | 1.45696 | − | 0.936628i | 0.500000 | + | 0.866025i | −1.06670 | + | 1.84758i | −1.73008 | + | 0.0826645i | 2.47771 | − | 0.927868i | − | 1.00000i | 1.24546 | − | 2.72926i | 1.84758 | − | 1.06670i | |
47.13 | −0.866025 | − | 0.500000i | 1.54271 | + | 0.787427i | 0.500000 | + | 0.866025i | 1.84945 | − | 3.20334i | −0.942314 | − | 1.45329i | 1.61347 | − | 2.09684i | − | 1.00000i | 1.75992 | + | 2.42955i | −3.20334 | + | 1.84945i | |
47.14 | −0.866025 | − | 0.500000i | 1.71535 | − | 0.239977i | 0.500000 | + | 0.866025i | 0.203133 | − | 0.351837i | −1.60552 | − | 0.649847i | 2.64215 | + | 0.138089i | − | 1.00000i | 2.88482 | − | 0.823286i | −0.351837 | + | 0.203133i | |
47.15 | 0.866025 | + | 0.500000i | −1.73168 | + | 0.0356051i | 0.500000 | + | 0.866025i | −1.18968 | + | 2.06059i | −1.51749 | − | 0.835007i | 1.24146 | − | 2.33640i | 1.00000i | 2.99746 | − | 0.123314i | −2.06059 | + | 1.18968i | ||
47.16 | 0.866025 | + | 0.500000i | −1.68012 | + | 0.420939i | 0.500000 | + | 0.866025i | −0.662008 | + | 1.14663i | −1.66550 | − | 0.475517i | 2.07946 | + | 1.63580i | 1.00000i | 2.64562 | − | 1.41446i | −1.14663 | + | 0.662008i | ||
47.17 | 0.866025 | + | 0.500000i | −1.37801 | − | 1.04932i | 0.500000 | + | 0.866025i | 1.55436 | − | 2.69223i | −0.668732 | − | 1.59775i | 1.70233 | + | 2.02535i | 1.00000i | 0.797840 | + | 2.89196i | 2.69223 | − | 1.55436i | ||
47.18 | 0.866025 | + | 0.500000i | −1.22254 | + | 1.22695i | 0.500000 | + | 0.866025i | 1.04467 | − | 1.80941i | −1.67222 | + | 0.451299i | −2.62205 | − | 0.353363i | 1.00000i | −0.0108008 | − | 2.99998i | 1.80941 | − | 1.04467i | ||
47.19 | 0.866025 | + | 0.500000i | −0.977444 | + | 1.42990i | 0.500000 | + | 0.866025i | −1.22807 | + | 2.12708i | −1.56144 | + | 0.749605i | −0.955407 | − | 2.46722i | 1.00000i | −1.08921 | − | 2.79529i | −2.12708 | + | 1.22807i | ||
47.20 | 0.866025 | + | 0.500000i | −0.623408 | + | 1.61597i | 0.500000 | + | 0.866025i | 0.519082 | − | 0.899076i | −1.34787 | + | 1.08777i | 2.02474 | + | 1.70307i | 1.00000i | −2.22273 | − | 2.01482i | 0.899076 | − | 0.519082i | ||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.l.d | ✓ | 56 |
3.b | odd | 2 | 1 | inner | 966.2.l.d | ✓ | 56 |
7.d | odd | 6 | 1 | inner | 966.2.l.d | ✓ | 56 |
21.g | even | 6 | 1 | inner | 966.2.l.d | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.l.d | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
966.2.l.d | ✓ | 56 | 3.b | odd | 2 | 1 | inner |
966.2.l.d | ✓ | 56 | 7.d | odd | 6 | 1 | inner |
966.2.l.d | ✓ | 56 | 21.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{56} + 74 T_{5}^{54} + 3035 T_{5}^{52} + 85738 T_{5}^{50} + 1842285 T_{5}^{48} + \cdots + 546946904514816 \)
acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).