Properties

Label 966.2.l.c
Level $966$
Weight $2$
Character orbit 966.l
Analytic conductor $7.714$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56q - 6q^{3} + 28q^{4} + 20q^{7} - 2q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 56q - 6q^{3} + 28q^{4} + 20q^{7} - 2q^{9} - 6q^{10} - 6q^{12} - 36q^{15} - 28q^{16} + 8q^{18} - 36q^{19} + 34q^{21} + 16q^{22} - 46q^{25} + 4q^{28} - 6q^{30} - 6q^{31} + 30q^{33} - 4q^{36} - 8q^{37} + 42q^{39} - 6q^{40} + 18q^{42} + 64q^{43} - 6q^{45} - 28q^{46} - 40q^{49} - 24q^{51} - 36q^{52} - 60q^{57} - 16q^{58} - 18q^{60} + 12q^{61} + 36q^{63} - 56q^{64} + 48q^{66} - 16q^{67} - 34q^{70} - 8q^{72} - 102q^{73} + 18q^{75} - 16q^{78} + 24q^{79} + 54q^{81} + 12q^{82} - 4q^{84} + 128q^{85} + 102q^{87} + 8q^{88} + 68q^{91} - 32q^{93} + 6q^{94} - 112q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1 −0.866025 0.500000i −1.72955 0.0930981i 0.500000 + 0.866025i 1.85941 3.22059i 1.45128 + 0.945399i −1.67325 + 2.04945i 1.00000i 2.98267 + 0.322035i −3.22059 + 1.85941i
47.2 −0.866025 0.500000i −1.63883 0.560573i 0.500000 + 0.866025i −0.519026 + 0.898980i 1.13898 + 1.30488i 1.91946 1.82090i 1.00000i 2.37152 + 1.83737i 0.898980 0.519026i
47.3 −0.866025 0.500000i −1.43165 + 0.974877i 0.500000 + 0.866025i −0.723421 + 1.25300i 1.72728 0.128444i −1.91613 1.82440i 1.00000i 1.09923 2.79136i 1.25300 0.723421i
47.4 −0.866025 0.500000i −1.24955 + 1.19943i 0.500000 + 0.866025i −1.89177 + 3.27664i 1.68186 0.413957i 2.63339 0.255430i 1.00000i 0.122757 2.99749i 3.27664 1.89177i
47.5 −0.866025 0.500000i −1.13768 1.30602i 0.500000 + 0.866025i 0.890465 1.54233i 0.332245 + 1.69989i −2.00001 1.73204i 1.00000i −0.411389 + 2.97166i −1.54233 + 0.890465i
47.6 −0.866025 0.500000i −0.319643 1.70230i 0.500000 + 0.866025i 0.224543 0.388920i −0.574332 + 1.63406i 2.31951 1.27274i 1.00000i −2.79566 + 1.08826i −0.388920 + 0.224543i
47.7 −0.866025 0.500000i −0.165511 + 1.72412i 0.500000 + 0.866025i −0.592581 + 1.02638i 1.00540 1.41038i −2.13419 + 1.56372i 1.00000i −2.94521 0.570723i 1.02638 0.592581i
47.8 −0.866025 0.500000i 0.110462 + 1.72852i 0.500000 + 0.866025i −0.0289992 + 0.0502281i 0.768599 1.55218i 1.41346 2.23654i 1.00000i −2.97560 + 0.381874i 0.0502281 0.0289992i
47.9 −0.866025 0.500000i 0.185627 + 1.72208i 0.500000 + 0.866025i 1.97297 3.41729i 0.700280 1.58417i 1.45851 + 2.20743i 1.00000i −2.93109 + 0.639328i −3.41729 + 1.97297i
47.10 −0.866025 0.500000i 0.454222 1.67143i 0.500000 + 0.866025i 2.02138 3.50113i −1.22908 + 1.22039i 2.64571 + 0.0151948i 1.00000i −2.58737 1.51840i −3.50113 + 2.02138i
47.11 −0.866025 0.500000i 0.633338 1.61211i 0.500000 + 0.866025i −1.42388 + 2.46624i −1.35454 + 1.07946i 0.837175 + 2.50981i 1.00000i −2.19777 2.04201i 2.46624 1.42388i
47.12 −0.866025 0.500000i 1.55959 0.753450i 0.500000 + 0.866025i 0.416548 0.721483i −1.72737 0.127287i −0.928188 + 2.47759i 1.00000i 1.86463 2.35014i −0.721483 + 0.416548i
47.13 −0.866025 0.500000i 1.56059 + 0.751362i 0.500000 + 0.866025i −1.92458 + 3.33347i −0.975834 1.43100i 0.526310 2.59287i 1.00000i 1.87091 + 2.34514i 3.33347 1.92458i
47.14 −0.866025 0.500000i 1.66857 + 0.464617i 0.500000 + 0.866025i 0.584963 1.01319i −1.21272 1.23666i −0.101753 + 2.64379i 1.00000i 2.56826 + 1.55049i −1.01319 + 0.584963i
47.15 0.866025 + 0.500000i −1.66351 + 0.482430i 0.500000 + 0.866025i 1.89177 3.27664i −1.68186 0.413957i 2.63339 0.255430i 1.00000i 2.53452 1.60505i 3.27664 1.89177i
47.16 0.866025 + 0.500000i −1.57589 0.718726i 0.500000 + 0.866025i 0.592581 1.02638i −1.00540 1.41038i −2.13419 + 1.56372i 1.00000i 1.96687 + 2.26527i 1.02638 0.592581i
47.17 0.866025 + 0.500000i −1.56009 + 0.752405i 0.500000 + 0.866025i 0.723421 1.25300i −1.72728 0.128444i −1.91613 1.82440i 1.00000i 1.86777 2.34764i 1.25300 0.723421i
47.18 0.866025 + 0.500000i −1.44172 0.959926i 0.500000 + 0.866025i 0.0289992 0.0502281i −0.768599 1.55218i 1.41346 2.23654i 1.00000i 1.15709 + 2.76788i 0.0502281 0.0289992i
47.19 0.866025 + 0.500000i −1.39855 1.02180i 0.500000 + 0.866025i −1.97297 + 3.41729i −0.700280 1.58417i 1.45851 + 2.20743i 1.00000i 0.911868 + 2.85806i −3.41729 + 1.97297i
47.20 0.866025 + 0.500000i −0.784148 + 1.54438i 0.500000 + 0.866025i −1.85941 + 3.22059i −1.45128 + 0.945399i −1.67325 + 2.04945i 1.00000i −1.77022 2.42205i −3.22059 + 1.85941i
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 185.28
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.l.c 56
3.b odd 2 1 inner 966.2.l.c 56
7.d odd 6 1 inner 966.2.l.c 56
21.g even 6 1 inner 966.2.l.c 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.l.c 56 1.a even 1 1 trivial
966.2.l.c 56 3.b odd 2 1 inner
966.2.l.c 56 7.d odd 6 1 inner
966.2.l.c 56 21.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(29\!\cdots\!48\)\( T_{5}^{38} + \)\(22\!\cdots\!65\)\( T_{5}^{36} + \)\(14\!\cdots\!17\)\( T_{5}^{34} + \)\(76\!\cdots\!74\)\( T_{5}^{32} + \)\(32\!\cdots\!23\)\( T_{5}^{30} + \)\(10\!\cdots\!50\)\( T_{5}^{28} + \)\(29\!\cdots\!17\)\( T_{5}^{26} + \)\(64\!\cdots\!89\)\( T_{5}^{24} + \)\(11\!\cdots\!00\)\( T_{5}^{22} + \)\(16\!\cdots\!86\)\( T_{5}^{20} + \)\(19\!\cdots\!60\)\( T_{5}^{18} + \)\(18\!\cdots\!91\)\( T_{5}^{16} + \)\(13\!\cdots\!55\)\( T_{5}^{14} + \)\(76\!\cdots\!50\)\( T_{5}^{12} + \)\(31\!\cdots\!21\)\( T_{5}^{10} + \)\(88\!\cdots\!14\)\( T_{5}^{8} + \)\(13\!\cdots\!09\)\( T_{5}^{6} + \)\(14\!\cdots\!29\)\( T_{5}^{4} + 472310621244 T_{5}^{2} + 1536953616 \)">\(T_{5}^{56} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).