Properties

Label 966.2.k.a
Level $966$
Weight $2$
Character orbit 966.k
Analytic conductor $7.714$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32q - 16q^{2} - 16q^{4} + 32q^{8} + 16q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 32q - 16q^{2} - 16q^{4} + 32q^{8} + 16q^{9} - 16q^{16} + 16q^{18} + 8q^{23} - 24q^{25} - 12q^{26} - 8q^{29} + 48q^{31} - 16q^{32} - 20q^{35} - 32q^{36} - 8q^{39} + 8q^{46} + 12q^{47} + 24q^{49} + 48q^{50} + 12q^{52} + 4q^{58} - 12q^{59} + 32q^{64} + 64q^{70} + 48q^{71} + 16q^{72} + 12q^{73} + 36q^{75} + 64q^{77} + 16q^{78} - 16q^{81} - 12q^{82} + 32q^{85} - 24q^{87} - 16q^{92} - 12q^{94} + 40q^{95} - 24q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
229.1 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i −1.81715 + 3.14740i 1.00000i −1.58446 + 2.11884i 1.00000 0.500000 0.866025i −1.81715 3.14740i
229.2 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i −1.52184 + 2.63590i 1.00000i −1.49399 2.18358i 1.00000 0.500000 0.866025i −1.52184 2.63590i
229.3 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i −1.44868 + 2.50918i 1.00000i 2.53486 0.757941i 1.00000 0.500000 0.866025i −1.44868 2.50918i
229.4 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i −0.286936 + 0.496987i 1.00000i 1.61243 + 2.09764i 1.00000 0.500000 0.866025i −0.286936 0.496987i
229.5 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i 0.286936 0.496987i 1.00000i −1.61243 2.09764i 1.00000 0.500000 0.866025i 0.286936 + 0.496987i
229.6 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i 1.44868 2.50918i 1.00000i −2.53486 + 0.757941i 1.00000 0.500000 0.866025i 1.44868 + 2.50918i
229.7 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i 1.52184 2.63590i 1.00000i 1.49399 + 2.18358i 1.00000 0.500000 0.866025i 1.52184 + 2.63590i
229.8 −0.500000 + 0.866025i −0.866025 + 0.500000i −0.500000 0.866025i 1.81715 3.14740i 1.00000i 1.58446 2.11884i 1.00000 0.500000 0.866025i 1.81715 + 3.14740i
229.9 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i −2.07087 + 3.58686i 1.00000i −1.78719 + 1.95088i 1.00000 0.500000 0.866025i −2.07087 3.58686i
229.10 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i −0.856094 + 1.48280i 1.00000i 0.871223 + 2.49819i 1.00000 0.500000 0.866025i −0.856094 1.48280i
229.11 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i −0.347206 + 0.601379i 1.00000i −2.64100 + 0.158433i 1.00000 0.500000 0.866025i −0.347206 0.601379i
229.12 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i −0.242904 + 0.420722i 1.00000i −2.51079 0.834227i 1.00000 0.500000 0.866025i −0.242904 0.420722i
229.13 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i 0.242904 0.420722i 1.00000i 2.51079 + 0.834227i 1.00000 0.500000 0.866025i 0.242904 + 0.420722i
229.14 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i 0.347206 0.601379i 1.00000i 2.64100 0.158433i 1.00000 0.500000 0.866025i 0.347206 + 0.601379i
229.15 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i 0.856094 1.48280i 1.00000i −0.871223 2.49819i 1.00000 0.500000 0.866025i 0.856094 + 1.48280i
229.16 −0.500000 + 0.866025i 0.866025 0.500000i −0.500000 0.866025i 2.07087 3.58686i 1.00000i 1.78719 1.95088i 1.00000 0.500000 0.866025i 2.07087 + 3.58686i
367.1 −0.500000 0.866025i −0.866025 0.500000i −0.500000 + 0.866025i −1.81715 3.14740i 1.00000i −1.58446 2.11884i 1.00000 0.500000 + 0.866025i −1.81715 + 3.14740i
367.2 −0.500000 0.866025i −0.866025 0.500000i −0.500000 + 0.866025i −1.52184 2.63590i 1.00000i −1.49399 + 2.18358i 1.00000 0.500000 + 0.866025i −1.52184 + 2.63590i
367.3 −0.500000 0.866025i −0.866025 0.500000i −0.500000 + 0.866025i −1.44868 2.50918i 1.00000i 2.53486 + 0.757941i 1.00000 0.500000 + 0.866025i −1.44868 + 2.50918i
367.4 −0.500000 0.866025i −0.866025 0.500000i −0.500000 + 0.866025i −0.286936 0.496987i 1.00000i 1.61243 2.09764i 1.00000 0.500000 + 0.866025i −0.286936 + 0.496987i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 367.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
23.b odd 2 1 inner
161.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 966.2.k.a 32
7.d odd 6 1 inner 966.2.k.a 32
23.b odd 2 1 inner 966.2.k.a 32
161.g even 6 1 inner 966.2.k.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.k.a 32 1.a even 1 1 trivial
966.2.k.a 32 7.d odd 6 1 inner
966.2.k.a 32 23.b odd 2 1 inner
966.2.k.a 32 161.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{5}^{32} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).