Properties

Label 966.2.i.l.415.4
Level $966$
Weight $2$
Character 966.415
Analytic conductor $7.714$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1768034304.4
Defining polynomial: \(x^{8} - 2 x^{7} - x^{6} - 6 x^{5} + 14 x^{4} + 18 x^{3} - 31 x^{2} - 14 x + 49\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 415.4
Root \(-1.17927 - 0.441707i\) of defining polynomial
Character \(\chi\) \(=\) 966.415
Dual form 966.2.i.l.277.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.91421 - 3.31552i) q^{5} +1.00000 q^{6} +(1.16774 + 2.37411i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.91421 - 3.31552i) q^{5} +1.00000 q^{6} +(1.16774 + 2.37411i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.91421 + 3.31552i) q^{10} +(2.55412 + 4.42387i) q^{11} +(-0.500000 + 0.866025i) q^{12} +0.0556701 q^{13} +(-2.63991 - 0.175759i) q^{14} -3.82843 q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.38638 + 5.86538i) q^{17} +(-0.500000 - 0.866025i) q^{18} +(-2.08196 + 3.60605i) q^{19} -3.82843 q^{20} +(1.47216 - 2.19835i) q^{21} -5.10824 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-4.82843 - 8.36308i) q^{25} +(-0.0278351 + 0.0482117i) q^{26} +1.00000 q^{27} +(1.47216 - 2.19835i) q^{28} +2.94433 q^{29} +(1.91421 - 3.31552i) q^{30} +(1.60979 + 2.78824i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.55412 - 4.42387i) q^{33} -6.77276 q^{34} +(10.1067 + 0.672879i) q^{35} +1.00000 q^{36} +(4.02629 - 6.97373i) q^{37} +(-2.08196 - 3.60605i) q^{38} +(-0.0278351 - 0.0482117i) q^{39} +(1.91421 - 3.31552i) q^{40} -4.16391 q^{41} +(1.16774 + 2.37411i) q^{42} +12.5596 q^{43} +(2.55412 - 4.42387i) q^{44} +(1.91421 + 3.31552i) q^{45} +(-0.500000 - 0.866025i) q^{46} +(-5.99845 + 10.3896i) q^{47} +1.00000 q^{48} +(-4.27276 + 5.54469i) q^{49} +9.65685 q^{50} +(3.38638 - 5.86538i) q^{51} +(-0.0278351 - 0.0482117i) q^{52} +(-2.85854 - 4.95114i) q^{53} +(-0.500000 + 0.866025i) q^{54} +19.5565 q^{55} +(1.16774 + 2.37411i) q^{56} +4.16391 q^{57} +(-1.47216 + 2.54986i) q^{58} +(-4.30059 - 7.44884i) q^{59} +(1.91421 + 3.31552i) q^{60} +(2.88866 - 5.00331i) q^{61} -3.21958 q^{62} +(-2.63991 - 0.175759i) q^{63} +1.00000 q^{64} +(0.106565 - 0.184575i) q^{65} +(2.55412 + 4.42387i) q^{66} +(-6.07718 - 10.5260i) q^{67} +(3.38638 - 5.86538i) q^{68} +1.00000 q^{69} +(-5.63608 + 8.41621i) q^{70} +11.9443 q^{71} +(-0.500000 + 0.866025i) q^{72} +(1.10979 + 1.92221i) q^{73} +(4.02629 + 6.97373i) q^{74} +(-4.82843 + 8.36308i) q^{75} +4.16391 q^{76} +(-7.52017 + 11.2297i) q^{77} +0.0556701 q^{78} +(1.47216 - 2.54986i) q^{79} +(1.91421 + 3.31552i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.08196 - 3.60605i) q^{82} -14.7651 q^{83} +(-2.63991 - 0.175759i) q^{84} +25.9290 q^{85} +(-6.27981 + 10.8770i) q^{86} +(-1.47216 - 2.54986i) q^{87} +(2.55412 + 4.42387i) q^{88} +(-1.19786 + 2.07475i) q^{89} -3.82843 q^{90} +(0.0650084 + 0.132167i) q^{91} +1.00000 q^{92} +(1.60979 - 2.78824i) q^{93} +(-5.99845 - 10.3896i) q^{94} +(7.97062 + 13.8055i) q^{95} +(-0.500000 + 0.866025i) q^{96} +4.60118 q^{97} +(-2.66546 - 6.47266i) q^{98} -5.10824 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{3} - 4 q^{4} + 4 q^{5} + 8 q^{6} + 8 q^{8} - 4 q^{9} + O(q^{10}) \) \( 8 q - 4 q^{2} - 4 q^{3} - 4 q^{4} + 4 q^{5} + 8 q^{6} + 8 q^{8} - 4 q^{9} + 4 q^{10} - 6 q^{11} - 4 q^{12} + 12 q^{13} - 6 q^{14} - 8 q^{15} - 4 q^{16} + 10 q^{17} - 4 q^{18} + 4 q^{19} - 8 q^{20} + 6 q^{21} + 12 q^{22} - 4 q^{23} - 4 q^{24} - 16 q^{25} - 6 q^{26} + 8 q^{27} + 6 q^{28} + 12 q^{29} + 4 q^{30} - 2 q^{31} - 4 q^{32} - 6 q^{33} - 20 q^{34} - 10 q^{35} + 8 q^{36} + 4 q^{38} - 6 q^{39} + 4 q^{40} + 8 q^{41} + 40 q^{43} - 6 q^{44} + 4 q^{45} - 4 q^{46} - 10 q^{47} + 8 q^{48} + 32 q^{50} + 10 q^{51} - 6 q^{52} - 4 q^{54} + 20 q^{55} - 8 q^{57} - 6 q^{58} - 6 q^{59} + 4 q^{60} + 4 q^{62} - 6 q^{63} + 8 q^{64} + 14 q^{65} - 6 q^{66} - 18 q^{67} + 10 q^{68} + 8 q^{69} + 2 q^{70} + 84 q^{71} - 4 q^{72} - 6 q^{73} - 16 q^{75} - 8 q^{76} - 2 q^{77} + 12 q^{78} + 6 q^{79} + 4 q^{80} - 4 q^{81} - 4 q^{82} - 20 q^{83} - 6 q^{84} + 68 q^{85} - 20 q^{86} - 6 q^{87} - 6 q^{88} - 8 q^{90} + 10 q^{91} + 8 q^{92} - 2 q^{93} - 10 q^{94} + 20 q^{95} - 4 q^{96} - 20 q^{97} - 18 q^{98} + 12 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.91421 3.31552i 0.856062 1.48274i −0.0195936 0.999808i \(-0.506237\pi\)
0.875656 0.482935i \(-0.160429\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.16774 + 2.37411i 0.441365 + 0.897328i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.91421 + 3.31552i 0.605327 + 1.04846i
\(11\) 2.55412 + 4.42387i 0.770096 + 1.33385i 0.937510 + 0.347959i \(0.113125\pi\)
−0.167413 + 0.985887i \(0.553541\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 0.0556701 0.0154401 0.00772006 0.999970i \(-0.497543\pi\)
0.00772006 + 0.999970i \(0.497543\pi\)
\(14\) −2.63991 0.175759i −0.705545 0.0469735i
\(15\) −3.82843 −0.988496
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.38638 + 5.86538i 0.821317 + 1.42256i 0.904701 + 0.426046i \(0.140094\pi\)
−0.0833841 + 0.996517i \(0.526573\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) −2.08196 + 3.60605i −0.477633 + 0.827285i −0.999671 0.0256370i \(-0.991839\pi\)
0.522038 + 0.852922i \(0.325172\pi\)
\(20\) −3.82843 −0.856062
\(21\) 1.47216 2.19835i 0.321253 0.479719i
\(22\) −5.10824 −1.08908
\(23\) −0.500000 + 0.866025i −0.104257 + 0.180579i
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) −4.82843 8.36308i −0.965685 1.67262i
\(26\) −0.0278351 + 0.0482117i −0.00545891 + 0.00945510i
\(27\) 1.00000 0.192450
\(28\) 1.47216 2.19835i 0.278213 0.415449i
\(29\) 2.94433 0.546748 0.273374 0.961908i \(-0.411860\pi\)
0.273374 + 0.961908i \(0.411860\pi\)
\(30\) 1.91421 3.31552i 0.349486 0.605327i
\(31\) 1.60979 + 2.78824i 0.289127 + 0.500783i 0.973602 0.228254i \(-0.0733017\pi\)
−0.684475 + 0.729037i \(0.739968\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 2.55412 4.42387i 0.444615 0.770096i
\(34\) −6.77276 −1.16152
\(35\) 10.1067 + 0.672879i 1.70834 + 0.113737i
\(36\) 1.00000 0.166667
\(37\) 4.02629 6.97373i 0.661917 1.14647i −0.318194 0.948026i \(-0.603076\pi\)
0.980111 0.198449i \(-0.0635903\pi\)
\(38\) −2.08196 3.60605i −0.337738 0.584979i
\(39\) −0.0278351 0.0482117i −0.00445718 0.00772006i
\(40\) 1.91421 3.31552i 0.302664 0.524229i
\(41\) −4.16391 −0.650294 −0.325147 0.945664i \(-0.605414\pi\)
−0.325147 + 0.945664i \(0.605414\pi\)
\(42\) 1.16774 + 2.37411i 0.180187 + 0.366332i
\(43\) 12.5596 1.91533 0.957663 0.287893i \(-0.0929547\pi\)
0.957663 + 0.287893i \(0.0929547\pi\)
\(44\) 2.55412 4.42387i 0.385048 0.666923i
\(45\) 1.91421 + 3.31552i 0.285354 + 0.494248i
\(46\) −0.500000 0.866025i −0.0737210 0.127688i
\(47\) −5.99845 + 10.3896i −0.874964 + 1.51548i −0.0181627 + 0.999835i \(0.505782\pi\)
−0.856801 + 0.515647i \(0.827552\pi\)
\(48\) 1.00000 0.144338
\(49\) −4.27276 + 5.54469i −0.610394 + 0.792098i
\(50\) 9.65685 1.36569
\(51\) 3.38638 5.86538i 0.474188 0.821317i
\(52\) −0.0278351 0.0482117i −0.00386003 0.00668577i
\(53\) −2.85854 4.95114i −0.392651 0.680092i 0.600147 0.799890i \(-0.295109\pi\)
−0.992798 + 0.119798i \(0.961775\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 19.5565 2.63700
\(56\) 1.16774 + 2.37411i 0.156046 + 0.317253i
\(57\) 4.16391 0.551524
\(58\) −1.47216 + 2.54986i −0.193305 + 0.334814i
\(59\) −4.30059 7.44884i −0.559889 0.969757i −0.997505 0.0705948i \(-0.977510\pi\)
0.437616 0.899162i \(-0.355823\pi\)
\(60\) 1.91421 + 3.31552i 0.247124 + 0.428031i
\(61\) 2.88866 5.00331i 0.369855 0.640608i −0.619688 0.784849i \(-0.712741\pi\)
0.989543 + 0.144241i \(0.0460740\pi\)
\(62\) −3.21958 −0.408887
\(63\) −2.63991 0.175759i −0.332597 0.0221435i
\(64\) 1.00000 0.125000
\(65\) 0.106565 0.184575i 0.0132177 0.0228937i
\(66\) 2.55412 + 4.42387i 0.314391 + 0.544540i
\(67\) −6.07718 10.5260i −0.742446 1.28595i −0.951379 0.308024i \(-0.900332\pi\)
0.208933 0.977930i \(-0.433001\pi\)
\(68\) 3.38638 5.86538i 0.410659 0.711282i
\(69\) 1.00000 0.120386
\(70\) −5.63608 + 8.41621i −0.673640 + 1.00593i
\(71\) 11.9443 1.41753 0.708766 0.705444i \(-0.249252\pi\)
0.708766 + 0.705444i \(0.249252\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 1.10979 + 1.92221i 0.129891 + 0.224978i 0.923634 0.383275i \(-0.125204\pi\)
−0.793743 + 0.608253i \(0.791871\pi\)
\(74\) 4.02629 + 6.97373i 0.468046 + 0.810680i
\(75\) −4.82843 + 8.36308i −0.557539 + 0.965685i
\(76\) 4.16391 0.477633
\(77\) −7.52017 + 11.2297i −0.857003 + 1.27974i
\(78\) 0.0556701 0.00630340
\(79\) 1.47216 2.54986i 0.165631 0.286882i −0.771248 0.636535i \(-0.780367\pi\)
0.936879 + 0.349653i \(0.113700\pi\)
\(80\) 1.91421 + 3.31552i 0.214016 + 0.370686i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.08196 3.60605i 0.229914 0.398222i
\(83\) −14.7651 −1.62068 −0.810340 0.585960i \(-0.800718\pi\)
−0.810340 + 0.585960i \(0.800718\pi\)
\(84\) −2.63991 0.175759i −0.288037 0.0191768i
\(85\) 25.9290 2.81240
\(86\) −6.27981 + 10.8770i −0.677170 + 1.17289i
\(87\) −1.47216 2.54986i −0.157833 0.273374i
\(88\) 2.55412 + 4.42387i 0.272270 + 0.471586i
\(89\) −1.19786 + 2.07475i −0.126973 + 0.219923i −0.922502 0.385991i \(-0.873859\pi\)
0.795530 + 0.605915i \(0.207193\pi\)
\(90\) −3.82843 −0.403552
\(91\) 0.0650084 + 0.132167i 0.00681473 + 0.0138548i
\(92\) 1.00000 0.104257
\(93\) 1.60979 2.78824i 0.166928 0.289127i
\(94\) −5.99845 10.3896i −0.618693 1.07161i
\(95\) 7.97062 + 13.8055i 0.817768 + 1.41642i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 4.60118 0.467179 0.233590 0.972335i \(-0.424953\pi\)
0.233590 + 0.972335i \(0.424953\pi\)
\(98\) −2.66546 6.47266i −0.269252 0.653837i
\(99\) −5.10824 −0.513398
\(100\) −4.82843 + 8.36308i −0.482843 + 0.836308i
\(101\) 7.44373 + 12.8929i 0.740678 + 1.28289i 0.952187 + 0.305516i \(0.0988291\pi\)
−0.211508 + 0.977376i \(0.567838\pi\)
\(102\) 3.38638 + 5.86538i 0.335301 + 0.580759i
\(103\) −3.07718 + 5.32983i −0.303204 + 0.525164i −0.976860 0.213881i \(-0.931390\pi\)
0.673656 + 0.739045i \(0.264723\pi\)
\(104\) 0.0556701 0.00545891
\(105\) −4.47062 9.08909i −0.436287 0.887004i
\(106\) 5.71709 0.555293
\(107\) −2.06118 + 3.57006i −0.199262 + 0.345131i −0.948289 0.317408i \(-0.897188\pi\)
0.749028 + 0.662539i \(0.230521\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −10.0480 17.4037i −0.962425 1.66697i −0.716381 0.697710i \(-0.754203\pi\)
−0.246044 0.969259i \(-0.579131\pi\)
\(110\) −9.77826 + 16.9365i −0.932321 + 1.61483i
\(111\) −8.05257 −0.764316
\(112\) −2.63991 0.175759i −0.249448 0.0166076i
\(113\) −5.33238 −0.501629 −0.250814 0.968035i \(-0.580698\pi\)
−0.250814 + 0.968035i \(0.580698\pi\)
\(114\) −2.08196 + 3.60605i −0.194993 + 0.337738i
\(115\) 1.91421 + 3.31552i 0.178501 + 0.309173i
\(116\) −1.47216 2.54986i −0.136687 0.236749i
\(117\) −0.0278351 + 0.0482117i −0.00257335 + 0.00445718i
\(118\) 8.60118 0.791803
\(119\) −9.97062 + 14.8889i −0.914005 + 1.36486i
\(120\) −3.82843 −0.349486
\(121\) −7.54706 + 13.0719i −0.686097 + 1.18835i
\(122\) 2.88866 + 5.00331i 0.261527 + 0.452978i
\(123\) 2.08196 + 3.60605i 0.187724 + 0.325147i
\(124\) 1.60979 2.78824i 0.144563 0.250391i
\(125\) −17.8284 −1.59462
\(126\) 1.47216 2.19835i 0.131151 0.195844i
\(127\) 8.54861 0.758567 0.379283 0.925281i \(-0.376171\pi\)
0.379283 + 0.925281i \(0.376171\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −6.27981 10.8770i −0.552907 0.957663i
\(130\) 0.106565 + 0.184575i 0.00934633 + 0.0161883i
\(131\) 3.47062 6.01128i 0.303229 0.525208i −0.673636 0.739063i \(-0.735269\pi\)
0.976865 + 0.213855i \(0.0686019\pi\)
\(132\) −5.10824 −0.444615
\(133\) −10.9923 0.731843i −0.953157 0.0634589i
\(134\) 12.1544 1.04998
\(135\) 1.91421 3.31552i 0.164749 0.285354i
\(136\) 3.38638 + 5.86538i 0.290380 + 0.502952i
\(137\) −2.63991 4.57245i −0.225542 0.390651i 0.730940 0.682442i \(-0.239082\pi\)
−0.956482 + 0.291791i \(0.905749\pi\)
\(138\) −0.500000 + 0.866025i −0.0425628 + 0.0737210i
\(139\) 9.31371 0.789978 0.394989 0.918686i \(-0.370748\pi\)
0.394989 + 0.918686i \(0.370748\pi\)
\(140\) −4.47062 9.08909i −0.377836 0.768168i
\(141\) 11.9969 1.01032
\(142\) −5.97216 + 10.3441i −0.501173 + 0.868057i
\(143\) 0.142188 + 0.246277i 0.0118904 + 0.0205947i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 5.63608 9.76197i 0.468051 0.810688i
\(146\) −2.21958 −0.183694
\(147\) 6.93822 + 0.927973i 0.572255 + 0.0765379i
\(148\) −8.05257 −0.661917
\(149\) 5.85949 10.1489i 0.480028 0.831433i −0.519710 0.854343i \(-0.673960\pi\)
0.999738 + 0.0229102i \(0.00729317\pi\)
\(150\) −4.82843 8.36308i −0.394239 0.682843i
\(151\) −8.77826 15.2044i −0.714365 1.23732i −0.963204 0.268772i \(-0.913382\pi\)
0.248839 0.968545i \(-0.419951\pi\)
\(152\) −2.08196 + 3.60605i −0.168869 + 0.292490i
\(153\) −6.77276 −0.547545
\(154\) −5.96511 12.1275i −0.480682 0.977262i
\(155\) 12.3259 0.990043
\(156\) −0.0278351 + 0.0482117i −0.00222859 + 0.00386003i
\(157\) 4.57946 + 7.93186i 0.365481 + 0.633031i 0.988853 0.148894i \(-0.0475713\pi\)
−0.623372 + 0.781925i \(0.714238\pi\)
\(158\) 1.47216 + 2.54986i 0.117119 + 0.202856i
\(159\) −2.85854 + 4.95114i −0.226697 + 0.392651i
\(160\) −3.82843 −0.302664
\(161\) −2.63991 0.175759i −0.208054 0.0138517i
\(162\) 1.00000 0.0785674
\(163\) 6.08652 10.5422i 0.476733 0.825726i −0.522912 0.852387i \(-0.675154\pi\)
0.999645 + 0.0266613i \(0.00848756\pi\)
\(164\) 2.08196 + 3.60605i 0.162573 + 0.281585i
\(165\) −9.77826 16.9365i −0.761237 1.31850i
\(166\) 7.38255 12.7869i 0.572997 0.992460i
\(167\) 21.0788 1.63113 0.815563 0.578668i \(-0.196427\pi\)
0.815563 + 0.578668i \(0.196427\pi\)
\(168\) 1.47216 2.19835i 0.113580 0.169606i
\(169\) −12.9969 −0.999762
\(170\) −12.9645 + 22.4552i −0.994332 + 1.72223i
\(171\) −2.08196 3.60605i −0.159211 0.275762i
\(172\) −6.27981 10.8770i −0.478831 0.829360i
\(173\) −6.71252 + 11.6264i −0.510344 + 0.883941i 0.489584 + 0.871956i \(0.337149\pi\)
−0.999928 + 0.0119854i \(0.996185\pi\)
\(174\) 2.94433 0.223209
\(175\) 14.2165 21.2291i 1.07467 1.60477i
\(176\) −5.10824 −0.385048
\(177\) −4.30059 + 7.44884i −0.323252 + 0.559889i
\(178\) −1.19786 2.07475i −0.0897833 0.155509i
\(179\) −0.998450 1.72937i −0.0746277 0.129259i 0.826297 0.563235i \(-0.190444\pi\)
−0.900924 + 0.433976i \(0.857110\pi\)
\(180\) 1.91421 3.31552i 0.142677 0.247124i
\(181\) 20.5443 1.52705 0.763523 0.645781i \(-0.223468\pi\)
0.763523 + 0.645781i \(0.223468\pi\)
\(182\) −0.146964 0.00978451i −0.0108937 0.000725276i
\(183\) −5.77732 −0.427072
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) −15.4143 26.6984i −1.13328 1.96291i
\(186\) 1.60979 + 2.78824i 0.118036 + 0.204444i
\(187\) −17.2984 + 29.9618i −1.26499 + 2.19102i
\(188\) 11.9969 0.874964
\(189\) 1.16774 + 2.37411i 0.0849407 + 0.172691i
\(190\) −15.9412 −1.15650
\(191\) 0.973715 1.68652i 0.0704555 0.122033i −0.828646 0.559774i \(-0.810888\pi\)
0.899101 + 0.437741i \(0.144221\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −2.22019 3.84547i −0.159812 0.276803i 0.774988 0.631975i \(-0.217756\pi\)
−0.934801 + 0.355172i \(0.884422\pi\)
\(194\) −2.30059 + 3.98474i −0.165173 + 0.286088i
\(195\) −0.213129 −0.0152625
\(196\) 6.93822 + 0.927973i 0.495587 + 0.0662838i
\(197\) −15.7620 −1.12300 −0.561498 0.827478i \(-0.689775\pi\)
−0.561498 + 0.827478i \(0.689775\pi\)
\(198\) 2.55412 4.42387i 0.181513 0.314391i
\(199\) −9.93667 17.2108i −0.704392 1.22004i −0.966911 0.255115i \(-0.917887\pi\)
0.262519 0.964927i \(-0.415447\pi\)
\(200\) −4.82843 8.36308i −0.341421 0.591359i
\(201\) −6.07718 + 10.5260i −0.428651 + 0.742446i
\(202\) −14.8875 −1.04748
\(203\) 3.43822 + 6.99015i 0.241316 + 0.490612i
\(204\) −6.77276 −0.474188
\(205\) −7.97062 + 13.8055i −0.556692 + 0.964219i
\(206\) −3.07718 5.32983i −0.214397 0.371347i
\(207\) −0.500000 0.866025i −0.0347524 0.0601929i
\(208\) −0.0278351 + 0.0482117i −0.00193001 + 0.00334288i
\(209\) −21.2703 −1.47129
\(210\) 10.1067 + 0.672879i 0.697428 + 0.0464331i
\(211\) −10.6427 −0.732676 −0.366338 0.930482i \(-0.619389\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(212\) −2.85854 + 4.95114i −0.196326 + 0.340046i
\(213\) −5.97216 10.3441i −0.409206 0.708766i
\(214\) −2.06118 3.57006i −0.140899 0.244045i
\(215\) 24.0418 41.6416i 1.63964 2.83994i
\(216\) 1.00000 0.0680414
\(217\) −4.73975 + 7.07776i −0.321756 + 0.480469i
\(218\) 20.0960 1.36107
\(219\) 1.10979 1.92221i 0.0749927 0.129891i
\(220\) −9.77826 16.9365i −0.659250 1.14186i
\(221\) 0.188520 + 0.326526i 0.0126812 + 0.0219645i
\(222\) 4.02629 6.97373i 0.270227 0.468046i
\(223\) −28.5424 −1.91134 −0.955671 0.294438i \(-0.904868\pi\)
−0.955671 + 0.294438i \(0.904868\pi\)
\(224\) 1.47216 2.19835i 0.0983632 0.146883i
\(225\) 9.65685 0.643790
\(226\) 2.66619 4.61798i 0.177352 0.307184i
\(227\) 1.84160 + 3.18974i 0.122231 + 0.211710i 0.920647 0.390396i \(-0.127662\pi\)
−0.798416 + 0.602106i \(0.794328\pi\)
\(228\) −2.08196 3.60605i −0.137881 0.238817i
\(229\) 6.08196 10.5343i 0.401907 0.696123i −0.592049 0.805902i \(-0.701681\pi\)
0.993956 + 0.109779i \(0.0350142\pi\)
\(230\) −3.82843 −0.252439
\(231\) 13.4853 + 0.897817i 0.887266 + 0.0590721i
\(232\) 2.94433 0.193305
\(233\) 0.746472 1.29293i 0.0489030 0.0847024i −0.840538 0.541753i \(-0.817761\pi\)
0.889441 + 0.457051i \(0.151094\pi\)
\(234\) −0.0278351 0.0482117i −0.00181964 0.00315170i
\(235\) 22.9646 + 39.7759i 1.49805 + 2.59469i
\(236\) −4.30059 + 7.44884i −0.279945 + 0.484878i
\(237\) −2.94433 −0.191255
\(238\) −7.90883 16.0792i −0.512654 1.04226i
\(239\) 25.1193 1.62483 0.812415 0.583080i \(-0.198153\pi\)
0.812415 + 0.583080i \(0.198153\pi\)
\(240\) 1.91421 3.31552i 0.123562 0.214016i
\(241\) −5.92355 10.2599i −0.381570 0.660898i 0.609717 0.792619i \(-0.291283\pi\)
−0.991287 + 0.131721i \(0.957950\pi\)
\(242\) −7.54706 13.0719i −0.485144 0.840293i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −5.77732 −0.369855
\(245\) 10.2045 + 24.7801i 0.651943 + 1.58314i
\(246\) −4.16391 −0.265481
\(247\) −0.115903 + 0.200749i −0.00737471 + 0.0127734i
\(248\) 1.60979 + 2.78824i 0.102222 + 0.177053i
\(249\) 7.38255 + 12.7869i 0.467850 + 0.810340i
\(250\) 8.91421 15.4399i 0.563784 0.976503i
\(251\) 8.09413 0.510897 0.255448 0.966823i \(-0.417777\pi\)
0.255448 + 0.966823i \(0.417777\pi\)
\(252\) 1.16774 + 2.37411i 0.0735608 + 0.149555i
\(253\) −5.10824 −0.321152
\(254\) −4.27431 + 7.40332i −0.268194 + 0.464525i
\(255\) −12.9645 22.4552i −0.811869 1.40620i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.970615 + 1.68116i −0.0605453 + 0.104868i −0.894709 0.446649i \(-0.852617\pi\)
0.834164 + 0.551517i \(0.185951\pi\)
\(258\) 12.5596 0.781928
\(259\) 21.2580 + 1.41531i 1.32091 + 0.0879430i
\(260\) −0.213129 −0.0132177
\(261\) −1.47216 + 2.54986i −0.0911247 + 0.157833i
\(262\) 3.47062 + 6.01128i 0.214415 + 0.371378i
\(263\) 14.6538 + 25.3810i 0.903589 + 1.56506i 0.822800 + 0.568331i \(0.192411\pi\)
0.0807894 + 0.996731i \(0.474256\pi\)
\(264\) 2.55412 4.42387i 0.157195 0.272270i
\(265\) −21.8875 −1.34454
\(266\) 6.12996 9.15372i 0.375852 0.561251i
\(267\) 2.39572 0.146615
\(268\) −6.07718 + 10.5260i −0.371223 + 0.642977i
\(269\) −1.31471 2.27714i −0.0801590 0.138840i 0.823159 0.567811i \(-0.192209\pi\)
−0.903318 + 0.428971i \(0.858876\pi\)
\(270\) 1.91421 + 3.31552i 0.116495 + 0.201776i
\(271\) −1.60979 + 2.78824i −0.0977878 + 0.169373i −0.910769 0.412917i \(-0.864510\pi\)
0.812981 + 0.582290i \(0.197843\pi\)
\(272\) −6.77276 −0.410659
\(273\) 0.0819556 0.122382i 0.00496018 0.00740691i
\(274\) 5.27981 0.318965
\(275\) 24.6648 42.7206i 1.48734 2.57615i
\(276\) −0.500000 0.866025i −0.0300965 0.0521286i
\(277\) −7.38504 12.7913i −0.443724 0.768553i 0.554238 0.832358i \(-0.313010\pi\)
−0.997962 + 0.0638053i \(0.979676\pi\)
\(278\) −4.65685 + 8.06591i −0.279300 + 0.483761i
\(279\) −3.21958 −0.192751
\(280\) 10.1067 + 0.672879i 0.603990 + 0.0402122i
\(281\) 3.44992 0.205805 0.102903 0.994691i \(-0.467187\pi\)
0.102903 + 0.994691i \(0.467187\pi\)
\(282\) −5.99845 + 10.3896i −0.357203 + 0.618693i
\(283\) −0.475996 0.824449i −0.0282950 0.0490084i 0.851531 0.524304i \(-0.175674\pi\)
−0.879826 + 0.475296i \(0.842341\pi\)
\(284\) −5.97216 10.3441i −0.354383 0.613809i
\(285\) 7.97062 13.8055i 0.472139 0.817768i
\(286\) −0.284376 −0.0168155
\(287\) −4.86237 9.88557i −0.287017 0.583527i
\(288\) 1.00000 0.0589256
\(289\) −14.4351 + 25.0024i −0.849125 + 1.47073i
\(290\) 5.63608 + 9.76197i 0.330962 + 0.573243i
\(291\) −2.30059 3.98474i −0.134863 0.233590i
\(292\) 1.10979 1.92221i 0.0649456 0.112489i
\(293\) −14.5147 −0.847959 −0.423979 0.905672i \(-0.639367\pi\)
−0.423979 + 0.905672i \(0.639367\pi\)
\(294\) −4.27276 + 5.54469i −0.249192 + 0.323373i
\(295\) −32.9290 −1.91720
\(296\) 4.02629 6.97373i 0.234023 0.405340i
\(297\) 2.55412 + 4.42387i 0.148205 + 0.256699i
\(298\) 5.85949 + 10.1489i 0.339431 + 0.587912i
\(299\) −0.0278351 + 0.0482117i −0.00160974 + 0.00278816i
\(300\) 9.65685 0.557539
\(301\) 14.6664 + 29.8179i 0.845358 + 1.71867i
\(302\) 17.5565 1.01026
\(303\) 7.44373 12.8929i 0.427631 0.740678i
\(304\) −2.08196 3.60605i −0.119408 0.206821i
\(305\) −11.0590 19.1548i −0.633238 1.09680i
\(306\) 3.38638 5.86538i 0.193586 0.335301i
\(307\) 17.2611 0.985145 0.492573 0.870271i \(-0.336057\pi\)
0.492573 + 0.870271i \(0.336057\pi\)
\(308\) 13.4853 + 0.897817i 0.768395 + 0.0511579i
\(309\) 6.15436 0.350109
\(310\) −6.16297 + 10.6746i −0.350033 + 0.606275i
\(311\) −1.18529 2.05299i −0.0672119 0.116414i 0.830461 0.557077i \(-0.188077\pi\)
−0.897673 + 0.440662i \(0.854744\pi\)
\(312\) −0.0278351 0.0482117i −0.00157585 0.00272945i
\(313\) 2.91899 5.05584i 0.164991 0.285773i −0.771661 0.636034i \(-0.780574\pi\)
0.936652 + 0.350261i \(0.113907\pi\)
\(314\) −9.15892 −0.516868
\(315\) −5.63608 + 8.41621i −0.317557 + 0.474200i
\(316\) −2.94433 −0.165631
\(317\) −0.314706 + 0.545087i −0.0176757 + 0.0306151i −0.874728 0.484614i \(-0.838960\pi\)
0.857052 + 0.515229i \(0.172293\pi\)
\(318\) −2.85854 4.95114i −0.160299 0.277646i
\(319\) 7.52017 + 13.0253i 0.421049 + 0.729278i
\(320\) 1.91421 3.31552i 0.107008 0.185343i
\(321\) 4.12236 0.230087
\(322\) 1.47216 2.19835i 0.0820405 0.122509i
\(323\) −28.2012 −1.56915
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −0.268799 0.465574i −0.0149103 0.0258254i
\(326\) 6.08652 + 10.5422i 0.337101 + 0.583876i
\(327\) −10.0480 + 17.4037i −0.555656 + 0.962425i
\(328\) −4.16391 −0.229914
\(329\) −31.6707 2.10856i −1.74606 0.116249i
\(330\) 19.5565 1.07655
\(331\) −6.85015 + 11.8648i −0.376518 + 0.652149i −0.990553 0.137130i \(-0.956212\pi\)
0.614035 + 0.789279i \(0.289545\pi\)
\(332\) 7.38255 + 12.7869i 0.405170 + 0.701775i
\(333\) 4.02629 + 6.97373i 0.220639 + 0.382158i
\(334\) −10.5394 + 18.2548i −0.576690 + 0.998857i
\(335\) −46.5321 −2.54232
\(336\) 1.16774 + 2.37411i 0.0637056 + 0.129518i
\(337\) −19.8318 −1.08031 −0.540153 0.841567i \(-0.681634\pi\)
−0.540153 + 0.841567i \(0.681634\pi\)
\(338\) 6.49845 11.2556i 0.353469 0.612226i
\(339\) 2.66619 + 4.61798i 0.144808 + 0.250814i
\(340\) −12.9645 22.4552i −0.703099 1.21780i
\(341\) −8.22320 + 14.2430i −0.445311 + 0.771302i
\(342\) 4.16391 0.225159
\(343\) −18.1532 3.66921i −0.980178 0.198119i
\(344\) 12.5596 0.677170
\(345\) 1.91421 3.31552i 0.103058 0.178501i
\(346\) −6.71252 11.6264i −0.360868 0.625041i
\(347\) −2.77887 4.81314i −0.149178 0.258383i 0.781746 0.623597i \(-0.214329\pi\)
−0.930924 + 0.365214i \(0.880996\pi\)
\(348\) −1.47216 + 2.54986i −0.0789163 + 0.136687i
\(349\) −15.5027 −0.829843 −0.414922 0.909857i \(-0.636191\pi\)
−0.414922 + 0.909857i \(0.636191\pi\)
\(350\) 11.2767 + 22.9264i 0.602766 + 1.22547i
\(351\) 0.0556701 0.00297145
\(352\) 2.55412 4.42387i 0.136135 0.235793i
\(353\) −7.97062 13.8055i −0.424233 0.734793i 0.572115 0.820173i \(-0.306123\pi\)
−0.996348 + 0.0853799i \(0.972790\pi\)
\(354\) −4.30059 7.44884i −0.228574 0.395902i
\(355\) 22.8640 39.6016i 1.21350 2.10184i
\(356\) 2.39572 0.126973
\(357\) 17.8794 + 1.19037i 0.946281 + 0.0630011i
\(358\) 1.99690 0.105539
\(359\) −16.2024 + 28.0633i −0.855128 + 1.48113i 0.0213977 + 0.999771i \(0.493188\pi\)
−0.876526 + 0.481355i \(0.840145\pi\)
\(360\) 1.91421 + 3.31552i 0.100888 + 0.174743i
\(361\) 0.830922 + 1.43920i 0.0437327 + 0.0757473i
\(362\) −10.2722 + 17.7919i −0.539892 + 0.935121i
\(363\) 15.0941 0.792236
\(364\) 0.0819556 0.122382i 0.00429564 0.00641457i
\(365\) 8.49751 0.444780
\(366\) 2.88866 5.00331i 0.150993 0.261527i
\(367\) −5.43344 9.41100i −0.283623 0.491250i 0.688651 0.725093i \(-0.258203\pi\)
−0.972274 + 0.233843i \(0.924870\pi\)
\(368\) −0.500000 0.866025i −0.0260643 0.0451447i
\(369\) 2.08196 3.60605i 0.108382 0.187724i
\(370\) 30.8287 1.60271
\(371\) 8.41649 12.5681i 0.436963 0.652505i
\(372\) −3.21958 −0.166928
\(373\) 0.108241 0.187479i 0.00560451 0.00970730i −0.863210 0.504846i \(-0.831549\pi\)
0.868814 + 0.495138i \(0.164883\pi\)
\(374\) −17.2984 29.9618i −0.894481 1.54929i
\(375\) 8.91421 + 15.4399i 0.460328 + 0.797311i
\(376\) −5.99845 + 10.3896i −0.309346 + 0.535804i
\(377\) 0.163911 0.00844186
\(378\) −2.63991 0.175759i −0.135782 0.00904005i
\(379\) 8.93667 0.459046 0.229523 0.973303i \(-0.426283\pi\)
0.229523 + 0.973303i \(0.426283\pi\)
\(380\) 7.97062 13.8055i 0.408884 0.708208i
\(381\) −4.27431 7.40332i −0.218979 0.379283i
\(382\) 0.973715 + 1.68652i 0.0498196 + 0.0862900i
\(383\) −13.4143 + 23.2343i −0.685441 + 1.18722i 0.287857 + 0.957673i \(0.407057\pi\)
−0.973298 + 0.229545i \(0.926276\pi\)
\(384\) 1.00000 0.0510310
\(385\) 22.8370 + 46.4293i 1.16388 + 2.36625i
\(386\) 4.44037 0.226009
\(387\) −6.27981 + 10.8770i −0.319221 + 0.552907i
\(388\) −2.30059 3.98474i −0.116795 0.202295i
\(389\) 1.83299 + 3.17483i 0.0929363 + 0.160970i 0.908745 0.417351i \(-0.137041\pi\)
−0.815809 + 0.578321i \(0.803708\pi\)
\(390\) 0.106565 0.184575i 0.00539610 0.00934633i
\(391\) −6.77276 −0.342513
\(392\) −4.27276 + 5.54469i −0.215807 + 0.280049i
\(393\) −6.94123 −0.350139
\(394\) 7.88100 13.6503i 0.397039 0.687692i
\(395\) −5.63608 9.76197i −0.283582 0.491178i
\(396\) 2.55412 + 4.42387i 0.128349 + 0.222308i
\(397\) −9.97862 + 17.2835i −0.500812 + 0.867433i 0.499187 + 0.866494i \(0.333632\pi\)
−1.00000 0.000938384i \(0.999701\pi\)
\(398\) 19.8733 0.996160
\(399\) 4.86237 + 9.88557i 0.243423 + 0.494897i
\(400\) 9.65685 0.482843
\(401\) −0.193083 + 0.334429i −0.00964209 + 0.0167006i −0.870806 0.491626i \(-0.836403\pi\)
0.861164 + 0.508327i \(0.169736\pi\)
\(402\) −6.07718 10.5260i −0.303102 0.524988i
\(403\) 0.0896173 + 0.155222i 0.00446415 + 0.00773214i
\(404\) 7.44373 12.8929i 0.370339 0.641446i
\(405\) −3.82843 −0.190236
\(406\) −7.77276 0.517491i −0.385755 0.0256827i
\(407\) 41.1345 2.03896
\(408\) 3.38638 5.86538i 0.167651 0.290380i
\(409\) 7.76570 + 13.4506i 0.383989 + 0.665089i 0.991628 0.129124i \(-0.0412167\pi\)
−0.607639 + 0.794213i \(0.707883\pi\)
\(410\) −7.97062 13.8055i −0.393641 0.681806i
\(411\) −2.63991 + 4.57245i −0.130217 + 0.225542i
\(412\) 6.15436 0.303204
\(413\) 12.6624 18.9084i 0.623074 0.930421i
\(414\) 1.00000 0.0491473
\(415\) −28.2635 + 48.9539i −1.38740 + 2.40305i
\(416\) −0.0278351 0.0482117i −0.00136473 0.00236378i
\(417\) −4.65685 8.06591i −0.228047 0.394989i
\(418\) 10.6351 18.4206i 0.520181 0.900980i
\(419\) 0.559628 0.0273396 0.0136698 0.999907i \(-0.495649\pi\)
0.0136698 + 0.999907i \(0.495649\pi\)
\(420\) −5.63608 + 8.41621i −0.275012 + 0.410669i
\(421\) 17.2024 0.838392 0.419196 0.907896i \(-0.362312\pi\)
0.419196 + 0.907896i \(0.362312\pi\)
\(422\) 5.32137 9.21688i 0.259040 0.448671i
\(423\) −5.99845 10.3896i −0.291655 0.505161i
\(424\) −2.85854 4.95114i −0.138823 0.240449i
\(425\) 32.7018 56.6411i 1.58627 2.74750i
\(426\) 11.9443 0.578705
\(427\) 15.2516 + 1.01541i 0.738076 + 0.0491393i
\(428\) 4.12236 0.199262
\(429\) 0.142188 0.246277i 0.00686491 0.0118904i
\(430\) 24.0418 + 41.6416i 1.15940 + 2.00814i
\(431\) −9.42505 16.3247i −0.453989 0.786331i 0.544641 0.838669i \(-0.316666\pi\)
−0.998629 + 0.0523381i \(0.983333\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 0.435383 0.0209232 0.0104616 0.999945i \(-0.496670\pi\)
0.0104616 + 0.999945i \(0.496670\pi\)
\(434\) −3.75964 7.64363i −0.180469 0.366906i
\(435\) −11.2722 −0.540458
\(436\) −10.0480 + 17.4037i −0.481212 + 0.833484i
\(437\) −2.08196 3.60605i −0.0995934 0.172501i
\(438\) 1.10979 + 1.92221i 0.0530278 + 0.0918469i
\(439\) 17.0024 29.4490i 0.811481 1.40553i −0.100347 0.994953i \(-0.531995\pi\)
0.911828 0.410573i \(-0.134671\pi\)
\(440\) 19.5565 0.932321
\(441\) −2.66546 6.47266i −0.126927 0.308222i
\(442\) −0.377040 −0.0179340
\(443\) −8.47062 + 14.6715i −0.402451 + 0.697066i −0.994021 0.109188i \(-0.965175\pi\)
0.591570 + 0.806254i \(0.298508\pi\)
\(444\) 4.02629 + 6.97373i 0.191079 + 0.330959i
\(445\) 4.58591 + 7.94304i 0.217393 + 0.376536i
\(446\) 14.2712 24.7185i 0.675761 1.17045i
\(447\) −11.7190 −0.554289
\(448\) 1.16774 + 2.37411i 0.0551706 + 0.112166i
\(449\) 5.28937 0.249621 0.124810 0.992181i \(-0.460168\pi\)
0.124810 + 0.992181i \(0.460168\pi\)
\(450\) −4.82843 + 8.36308i −0.227614 + 0.394239i
\(451\) −10.6351 18.4206i −0.500789 0.867392i
\(452\) 2.66619 + 4.61798i 0.125407 + 0.217212i
\(453\) −8.77826 + 15.2044i −0.412439 + 0.714365i
\(454\) −3.68319 −0.172861
\(455\) 0.562641 + 0.0374593i 0.0263770 + 0.00175612i
\(456\) 4.16391 0.194993
\(457\) −3.47862 + 6.02514i −0.162723 + 0.281844i −0.935844 0.352414i \(-0.885361\pi\)
0.773121 + 0.634258i \(0.218694\pi\)
\(458\) 6.08196 + 10.5343i 0.284191 + 0.492233i
\(459\) 3.38638 + 5.86538i 0.158063 + 0.273772i
\(460\) 1.91421 3.31552i 0.0892507 0.154587i
\(461\) 6.65564 0.309984 0.154992 0.987916i \(-0.450465\pi\)
0.154992 + 0.987916i \(0.450465\pi\)
\(462\) −7.52017 + 11.2297i −0.349870 + 0.522452i
\(463\) 19.8604 0.922993 0.461496 0.887142i \(-0.347313\pi\)
0.461496 + 0.887142i \(0.347313\pi\)
\(464\) −1.47216 + 2.54986i −0.0683435 + 0.118374i
\(465\) −6.16297 10.6746i −0.285801 0.495021i
\(466\) 0.746472 + 1.29293i 0.0345796 + 0.0598937i
\(467\) −9.27215 + 16.0598i −0.429064 + 0.743161i −0.996790 0.0800567i \(-0.974490\pi\)
0.567726 + 0.823217i \(0.307823\pi\)
\(468\) 0.0556701 0.00257335
\(469\) 17.8932 26.7195i 0.826232 1.23379i
\(470\) −45.9293 −2.11856
\(471\) 4.57946 7.93186i 0.211010 0.365481i
\(472\) −4.30059 7.44884i −0.197951 0.342861i
\(473\) 32.0788 + 55.5621i 1.47498 + 2.55475i
\(474\) 1.47216 2.54986i 0.0676188 0.117119i
\(475\) 40.2103 1.84497
\(476\) 17.8794 + 1.19037i 0.819503 + 0.0545605i
\(477\) 5.71709 0.261767
\(478\) −12.5596 + 21.7539i −0.574464 + 0.995001i
\(479\) −4.64158 8.03946i −0.212079 0.367332i 0.740286 0.672292i \(-0.234690\pi\)
−0.952365 + 0.304960i \(0.901357\pi\)
\(480\) 1.91421 + 3.31552i 0.0873715 + 0.151332i
\(481\) 0.224144 0.388229i 0.0102201 0.0177017i
\(482\) 11.8471 0.539621
\(483\) 1.16774 + 2.37411i 0.0531341 + 0.108026i
\(484\) 15.0941 0.686097
\(485\) 8.80765 15.2553i 0.399935 0.692707i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −4.93116 8.54102i −0.223452 0.387031i 0.732402 0.680873i \(-0.238399\pi\)
−0.955854 + 0.293842i \(0.905066\pi\)
\(488\) 2.88866 5.00331i 0.130763 0.226489i
\(489\) −12.1730 −0.550484
\(490\) −26.5625 3.55268i −1.19997 0.160494i
\(491\) −41.3368 −1.86551 −0.932753 0.360517i \(-0.882600\pi\)
−0.932753 + 0.360517i \(0.882600\pi\)
\(492\) 2.08196 3.60605i 0.0938618 0.162573i
\(493\) 9.97062 + 17.2696i 0.449054 + 0.777784i
\(494\) −0.115903 0.200749i −0.00521471 0.00903214i
\(495\) −9.77826 + 16.9365i −0.439500 + 0.761237i
\(496\) −3.21958 −0.144563
\(497\) 13.9479 + 28.3571i 0.625649 + 1.27199i
\(498\) −14.7651 −0.661640
\(499\) 2.22724 3.85770i 0.0997051 0.172694i −0.811857 0.583856i \(-0.801543\pi\)
0.911563 + 0.411161i \(0.134877\pi\)
\(500\) 8.91421 + 15.4399i 0.398656 + 0.690492i
\(501\) −10.5394 18.2548i −0.470866 0.815563i
\(502\) −4.04706 + 7.00972i −0.180629 + 0.312859i
\(503\) −9.67596 −0.431430 −0.215715 0.976456i \(-0.569208\pi\)
−0.215715 + 0.976456i \(0.569208\pi\)
\(504\) −2.63991 0.175759i −0.117591 0.00782891i
\(505\) 56.9955 2.53627
\(506\) 2.55412 4.42387i 0.113545 0.196665i
\(507\) 6.49845 + 11.2556i 0.288606 + 0.499881i
\(508\) −4.27431 7.40332i −0.189642 0.328469i
\(509\) −2.29293 + 3.97147i −0.101632 + 0.176032i −0.912357 0.409395i \(-0.865740\pi\)
0.810725 + 0.585427i \(0.199073\pi\)
\(510\) 25.9290 1.14816
\(511\) −3.26759 + 4.87941i −0.144550 + 0.215852i
\(512\) 1.00000 0.0441942
\(513\) −2.08196 + 3.60605i −0.0919206 + 0.159211i
\(514\) −0.970615 1.68116i −0.0428120 0.0741526i
\(515\) 11.7808 + 20.4049i 0.519122 + 0.899146i
\(516\) −6.27981 + 10.8770i −0.276453 + 0.478831i
\(517\) −61.2831 −2.69523
\(518\) −11.8547 + 17.7023i −0.520866 + 0.777796i
\(519\) 13.4250 0.589294
\(520\) 0.106565 0.184575i 0.00467316 0.00809416i
\(521\) 11.4652 + 19.8584i 0.502301 + 0.870011i 0.999996 + 0.00265908i \(0.000846412\pi\)
−0.497695 + 0.867352i \(0.665820\pi\)
\(522\) −1.47216 2.54986i −0.0644349 0.111605i
\(523\) −1.52857 + 2.64756i −0.0668396 + 0.115770i −0.897509 0.440997i \(-0.854625\pi\)
0.830669 + 0.556767i \(0.187958\pi\)
\(524\) −6.94123 −0.303229
\(525\) −25.4932 1.69728i −1.11261 0.0740752i
\(526\) −29.3075 −1.27787
\(527\) −10.9027 + 18.8841i −0.474930 + 0.822603i
\(528\) 2.55412 + 4.42387i 0.111154 + 0.192524i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 10.9437 18.9551i 0.475365 0.823356i
\(531\) 8.60118 0.373260
\(532\) 4.86237 + 9.88557i 0.210811 + 0.428594i
\(533\) −0.231805 −0.0100406
\(534\) −1.19786 + 2.07475i −0.0518364 + 0.0897833i
\(535\) 7.89107 + 13.6677i 0.341161 + 0.590908i
\(536\) −6.07718 10.5260i −0.262494 0.454653i
\(537\) −0.998450 + 1.72937i −0.0430863 + 0.0746277i
\(538\) 2.62941 0.113362
\(539\) −35.4421 4.74031i −1.52660 0.204180i
\(540\) −3.82843 −0.164749
\(541\) 19.6675 34.0651i 0.845571 1.46457i −0.0395537 0.999217i \(-0.512594\pi\)
0.885125 0.465354i \(-0.154073\pi\)
\(542\) −1.60979 2.78824i −0.0691464 0.119765i
\(543\) −10.2722 17.7919i −0.440820 0.763523i
\(544\) 3.38638 5.86538i 0.145190 0.251476i
\(545\) −76.9361 −3.29558
\(546\) 0.0650084 + 0.132167i 0.00278210 + 0.00565622i
\(547\) −12.4019 −0.530268 −0.265134 0.964212i \(-0.585416\pi\)
−0.265134 + 0.964212i \(0.585416\pi\)
\(548\) −2.63991 + 4.57245i −0.112771 + 0.195326i
\(549\) 2.88866 + 5.00331i 0.123285 + 0.213536i
\(550\) 24.6648 + 42.7206i 1.05171 + 1.82161i
\(551\) −6.12996 + 10.6174i −0.261145 + 0.452317i
\(552\) 1.00000 0.0425628
\(553\) 7.77276 + 0.517491i 0.330531 + 0.0220060i
\(554\) 14.7701 0.627521
\(555\) −15.4143 + 26.6984i −0.654302 + 1.13328i
\(556\) −4.65685 8.06591i −0.197495 0.342071i
\(557\) 15.5419 + 26.9194i 0.658531 + 1.14061i 0.980996 + 0.194028i \(0.0621553\pi\)
−0.322465 + 0.946581i \(0.604511\pi\)
\(558\) 1.60979 2.78824i 0.0681479 0.118036i
\(559\) 0.699196 0.0295728
\(560\) −5.63608 + 8.41621i −0.238168 + 0.355650i
\(561\) 34.5969 1.46068
\(562\) −1.72496 + 2.98772i −0.0727631 + 0.126029i
\(563\) 17.0951 + 29.6095i 0.720471 + 1.24789i 0.960811 + 0.277204i \(0.0894078\pi\)
−0.240340 + 0.970689i \(0.577259\pi\)
\(564\) −5.99845 10.3896i −0.252580 0.437482i
\(565\) −10.2073 + 17.6796i −0.429425 + 0.743786i
\(566\) 0.951992 0.0400152
\(567\) 1.47216 2.19835i 0.0618251 0.0923219i
\(568\) 11.9443 0.501173
\(569\) 19.2411 33.3265i 0.806629 1.39712i −0.108558 0.994090i \(-0.534623\pi\)
0.915186 0.403031i \(-0.132043\pi\)
\(570\) 7.97062 + 13.8055i 0.333852 + 0.578249i
\(571\) 13.5407 + 23.4532i 0.566662 + 0.981488i 0.996893 + 0.0787688i \(0.0250989\pi\)
−0.430231 + 0.902719i \(0.641568\pi\)
\(572\) 0.142188 0.246277i 0.00594519 0.0102974i
\(573\) −1.94743 −0.0813550
\(574\) 10.9923 + 0.731843i 0.458811 + 0.0305466i
\(575\) 9.65685 0.402719
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 4.16942 + 7.22164i 0.173575 + 0.300641i 0.939667 0.342090i \(-0.111135\pi\)
−0.766092 + 0.642731i \(0.777801\pi\)
\(578\) −14.4351 25.0024i −0.600422 1.03996i
\(579\) −2.22019 + 3.84547i −0.0922678 + 0.159812i
\(580\) −11.2722 −0.468051
\(581\) −17.2418 35.0539i −0.715311 1.45428i
\(582\) 4.60118 0.190725
\(583\) 14.6021 25.2916i 0.604758 1.04747i
\(584\) 1.10979 + 1.92221i 0.0459235 + 0.0795418i
\(585\) 0.106565 + 0.184575i 0.00440590 + 0.00763124i
\(586\) 7.25736 12.5701i 0.299799 0.519267i
\(587\) 40.4714 1.67043 0.835217 0.549920i \(-0.185342\pi\)
0.835217 + 0.549920i \(0.185342\pi\)
\(588\) −2.66546 6.47266i −0.109922 0.266928i
\(589\) −13.4061 −0.552387
\(590\) 16.4645 28.5174i 0.677833 1.17404i
\(591\) 7.88100 + 13.6503i 0.324181 + 0.561498i
\(592\) 4.02629 + 6.97373i 0.165479 + 0.286619i
\(593\) 15.1685 26.2726i 0.622895 1.07889i −0.366049 0.930595i \(-0.619290\pi\)
0.988944 0.148290i \(-0.0473768\pi\)
\(594\) −5.10824 −0.209594
\(595\) 30.2784 + 61.5582i 1.24129 + 2.52364i
\(596\) −11.7190 −0.480028
\(597\) −9.93667 + 17.2108i −0.406681 + 0.704392i
\(598\) −0.0278351 0.0482117i −0.00113826 0.00197153i
\(599\) 3.39721 + 5.88415i 0.138806 + 0.240420i 0.927045 0.374950i \(-0.122340\pi\)
−0.788239 + 0.615370i \(0.789007\pi\)
\(600\) −4.82843 + 8.36308i −0.197120 + 0.341421i
\(601\) 21.0251 0.857633 0.428816 0.903392i \(-0.358931\pi\)
0.428816 + 0.903392i \(0.358931\pi\)
\(602\) −33.1562 2.20746i −1.35135 0.0899695i
\(603\) 12.1544 0.494964
\(604\) −8.77826 + 15.2044i −0.357183 + 0.618658i
\(605\) 28.8934 + 50.0448i 1.17468 + 2.03461i
\(606\) 7.44373 + 12.8929i 0.302381 + 0.523739i
\(607\) −1.21864 + 2.11074i −0.0494629 + 0.0856723i −0.889697 0.456552i \(-0.849084\pi\)
0.840234 + 0.542224i \(0.182418\pi\)
\(608\) 4.16391 0.168869
\(609\) 4.33454 6.47266i 0.175644 0.262285i
\(610\) 22.1180 0.895534
\(611\) −0.333935 + 0.578392i −0.0135095 + 0.0233992i
\(612\) 3.38638 + 5.86538i 0.136886 + 0.237094i
\(613\) −2.15436 3.73146i −0.0870138 0.150712i 0.819234 0.573460i \(-0.194399\pi\)
−0.906248 + 0.422747i \(0.861066\pi\)
\(614\) −8.63057 + 14.9486i −0.348301 + 0.603276i
\(615\) 15.9412 0.642812
\(616\) −7.52017 + 11.2297i −0.302996 + 0.452457i
\(617\) −12.0621 −0.485603 −0.242801 0.970076i \(-0.578066\pi\)
−0.242801 + 0.970076i \(0.578066\pi\)
\(618\) −3.07718 + 5.32983i −0.123782 + 0.214397i
\(619\) −19.5472 33.8567i −0.785668 1.36082i −0.928599 0.371084i \(-0.878986\pi\)
0.142931 0.989733i \(-0.454347\pi\)
\(620\) −6.16297 10.6746i −0.247511 0.428701i
\(621\) −0.500000 + 0.866025i −0.0200643 + 0.0347524i
\(622\) 2.37059 0.0950519
\(623\) −6.32447 0.421068i −0.253385 0.0168697i
\(624\) 0.0556701 0.00222859
\(625\) −9.98528 + 17.2950i −0.399411 + 0.691801i
\(626\) 2.91899 + 5.05584i 0.116666 + 0.202072i
\(627\) 10.6351 + 18.4206i 0.424726 + 0.735647i
\(628\) 4.57946 7.93186i 0.182740 0.316516i
\(629\) 54.5381 2.17458
\(630\) −4.47062 9.08909i −0.178114 0.362118i
\(631\) 13.1947 0.525273 0.262636 0.964895i \(-0.415408\pi\)
0.262636 + 0.964895i \(0.415408\pi\)
\(632\) 1.47216 2.54986i 0.0585596 0.101428i
\(633\) 5.32137 + 9.21688i 0.211505 + 0.366338i
\(634\) −0.314706 0.545087i −0.0124986 0.0216482i
\(635\) 16.3639 28.3431i 0.649380 1.12476i
\(636\) 5.71709 0.226697
\(637\) −0.237865 + 0.308673i −0.00942455 + 0.0122301i
\(638\) −15.0403 −0.595453
\(639\) −5.97216 + 10.3441i −0.236255 + 0.409206i
\(640\) 1.91421 + 3.31552i 0.0756659 + 0.131057i
\(641\) −22.2597 38.5550i −0.879206 1.52283i −0.852214 0.523194i \(-0.824740\pi\)
−0.0269920 0.999636i \(-0.508593\pi\)
\(642\) −2.06118 + 3.57006i −0.0813482 + 0.140899i
\(643\) 4.30348 0.169713 0.0848563 0.996393i \(-0.472957\pi\)
0.0848563 + 0.996393i \(0.472957\pi\)
\(644\) 1.16774 + 2.37411i 0.0460155 + 0.0935529i
\(645\) −48.0836 −1.89329
\(646\) 14.1006 24.4229i 0.554780 0.960907i
\(647\) −11.8189 20.4709i −0.464648 0.804794i 0.534538 0.845145i \(-0.320486\pi\)
−0.999186 + 0.0403508i \(0.987152\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 21.9685 38.0505i 0.862338 1.49361i
\(650\) 0.537598 0.0210863
\(651\) 8.49940 + 0.565869i 0.333118 + 0.0221782i
\(652\) −12.1730 −0.476733
\(653\) 8.52017 14.7574i 0.333420 0.577501i −0.649760 0.760139i \(-0.725131\pi\)
0.983180 + 0.182639i \(0.0584639\pi\)
\(654\) −10.0480 17.4037i −0.392908 0.680537i
\(655\) −13.2870 23.0138i −0.519166 0.899222i
\(656\) 2.08196 3.60605i 0.0812867 0.140793i
\(657\) −2.21958 −0.0865941
\(658\) 17.6614 26.3734i 0.688514 1.02814i
\(659\) 0.998791 0.0389074 0.0194537 0.999811i \(-0.493807\pi\)
0.0194537 + 0.999811i \(0.493807\pi\)
\(660\) −9.77826 + 16.9365i −0.380618 + 0.659250i
\(661\) −13.1826 22.8329i −0.512743 0.888097i −0.999891 0.0147777i \(-0.995296\pi\)
0.487148 0.873320i \(-0.338037\pi\)
\(662\) −6.85015 11.8648i −0.266239 0.461139i
\(663\) 0.188520 0.326526i 0.00732152 0.0126812i
\(664\) −14.7651 −0.572997
\(665\) −23.4681 + 35.0444i −0.910055 + 1.35896i
\(666\) −8.05257 −0.312031
\(667\) −1.47216 + 2.54986i −0.0570025 + 0.0987311i
\(668\) −10.5394 18.2548i −0.407782 0.706299i
\(669\) 14.2712 + 24.7185i 0.551757 + 0.955671i
\(670\) 23.2660 40.2980i 0.898846 1.55685i
\(671\) 29.5119 1.13930
\(672\) −2.63991 0.175759i −0.101837 0.00678004i
\(673\) −20.3388 −0.784005 −0.392002 0.919964i \(-0.628217\pi\)
−0.392002 + 0.919964i \(0.628217\pi\)
\(674\) 9.91589 17.1748i 0.381946 0.661550i
\(675\) −4.82843 8.36308i −0.185846 0.321895i
\(676\) 6.49845 + 11.2556i 0.249940 + 0.432909i
\(677\) −15.2882 + 26.4799i −0.587572 + 1.01770i 0.406978 + 0.913438i \(0.366583\pi\)
−0.994549 + 0.104266i \(0.966751\pi\)
\(678\) −5.33238 −0.204789
\(679\) 5.37300 + 10.9237i 0.206197 + 0.419213i
\(680\) 25.9290 0.994332
\(681\) 1.84160 3.18974i 0.0705701 0.122231i
\(682\) −8.22320 14.2430i −0.314883 0.545393i
\(683\) −20.0180 34.6722i −0.765968 1.32670i −0.939733 0.341909i \(-0.888927\pi\)
0.173765 0.984787i \(-0.444407\pi\)
\(684\) −2.08196 + 3.60605i −0.0796056 + 0.137881i
\(685\) −20.2134 −0.772314
\(686\) 12.2542 13.8865i 0.467868 0.530188i
\(687\) −12.1639 −0.464082
\(688\) −6.27981 + 10.8770i −0.239416 + 0.414680i
\(689\) −0.159135 0.275631i −0.00606258 0.0105007i
\(690\) 1.91421 + 3.31552i 0.0728729 + 0.126220i
\(691\) −10.3431 + 17.9148i −0.393470 + 0.681510i −0.992905 0.118914i \(-0.962059\pi\)
0.599435 + 0.800424i \(0.295392\pi\)
\(692\) 13.4250 0.510344
\(693\) −5.96511 12.1275i −0.226596 0.460686i
\(694\) 5.55774 0.210969
\(695\) 17.8284 30.8797i 0.676271 1.17134i
\(696\) −1.47216 2.54986i −0.0558023 0.0966524i
\(697\) −14.1006 24.4229i −0.534098 0.925084i
\(698\) 7.75137 13.4258i 0.293394 0.508173i
\(699\) −1.49294 −0.0564683
\(700\) −25.4932 1.69728i −0.963552 0.0641510i
\(701\) −18.5954 −0.702339 −0.351170 0.936312i \(-0.614216\pi\)
−0.351170 + 0.936312i \(0.614216\pi\)
\(702\) −0.0278351 + 0.0482117i −0.00105057 + 0.00181964i
\(703\) 16.7651 + 29.0380i 0.632308 + 1.09519i
\(704\) 2.55412 + 4.42387i 0.0962620 + 0.166731i
\(705\) 22.9646 39.7759i 0.864898 1.49805i
\(706\) 15.9412 0.599956
\(707\) −21.9168 + 32.7278i −0.824265 + 1.23086i
\(708\) 8.60118 0.323252
\(709\) 9.94428 17.2240i 0.373465 0.646861i −0.616631 0.787252i \(-0.711503\pi\)
0.990096 + 0.140392i \(0.0448362\pi\)
\(710\) 22.8640 + 39.6016i 0.858071 + 1.48622i
\(711\) 1.47216 + 2.54986i 0.0552105 + 0.0956274i
\(712\) −1.19786 + 2.07475i −0.0448916 + 0.0777546i
\(713\) −3.21958 −0.120574
\(714\) −9.97062 + 14.8889i −0.373141 + 0.557202i
\(715\) 1.08871 0.0407156
\(716\) −0.998450 + 1.72937i −0.0373138 + 0.0646295i
\(717\) −12.5596 21.7539i −0.469048 0.812415i
\(718\) −16.2024 28.0633i −0.604667 1.04731i
\(719\) 14.2706 24.7174i 0.532204 0.921804i −0.467089 0.884210i \(-0.654697\pi\)
0.999293 0.0375937i \(-0.0119693\pi\)
\(720\) −3.82843 −0.142677
\(721\) −16.2469 1.08168i −0.605068 0.0402839i
\(722\) −1.66184 −0.0618474
\(723\) −5.92355 + 10.2599i −0.220299 + 0.381570i
\(724\) −10.2722 17.7919i −0.381762 0.661230i
\(725\) −14.2165 24.6237i −0.527987 0.914500i
\(726\) −7.54706 + 13.0719i −0.280098 + 0.485144i
\(727\) −24.4745 −0.907710 −0.453855 0.891076i \(-0.649952\pi\)
−0.453855 + 0.891076i \(0.649952\pi\)
\(728\) 0.0650084 + 0.132167i 0.00240937 + 0.00489843i
\(729\) 1.00000 0.0370370
\(730\) −4.24875 + 7.35906i −0.157253 + 0.272371i
\(731\) 42.5317 + 73.6670i 1.57309 + 2.72467i
\(732\) 2.88866 + 5.00331i 0.106768 + 0.184927i
\(733\) −14.9584 + 25.9087i −0.552501 + 0.956959i 0.445592 + 0.895236i \(0.352993\pi\)
−0.998093 + 0.0617235i \(0.980340\pi\)
\(734\) 10.8669 0.401104
\(735\) 16.3579 21.2274i 0.603372 0.782985i
\(736\) 1.00000 0.0368605
\(737\) 31.0437 53.7693i 1.14351 1.98062i
\(738\) 2.08196 + 3.60605i 0.0766378 + 0.132741i
\(739\) −2.48984 4.31254i −0.0915904 0.158639i 0.816590 0.577218i \(-0.195862\pi\)
−0.908180 + 0.418579i \(0.862528\pi\)
\(740\) −15.4143 + 26.6984i −0.566642 + 0.981453i
\(741\) 0.231805 0.00851559
\(742\) 6.67608 + 13.5730i 0.245087 + 0.498279i
\(743\) 34.0502 1.24918 0.624589 0.780953i \(-0.285266\pi\)
0.624589 + 0.780953i \(0.285266\pi\)
\(744\) 1.60979 2.78824i 0.0590178 0.102222i
\(745\) −22.4326 38.8544i −0.821868 1.42352i
\(746\) 0.108241 + 0.187479i 0.00396299 + 0.00686410i
\(747\) 7.38255 12.7869i 0.270113 0.467850i
\(748\) 34.5969 1.26499
\(749\) −10.8826 0.724539i −0.397643 0.0264741i
\(750\) −17.8284 −0.651002
\(751\) 22.9082 39.6782i 0.835933 1.44788i −0.0573353 0.998355i \(-0.518260\pi\)
0.893268 0.449524i \(-0.148406\pi\)
\(752\) −5.99845 10.3896i −0.218741 0.378870i
\(753\) −4.04706 7.00972i −0.147483 0.255448i
\(754\) −0.0819556 + 0.141951i −0.00298465 + 0.00516956i
\(755\) −67.2139 −2.44616
\(756\) 1.47216 2.19835i 0.0535421 0.0799531i
\(757\) 17.0256 0.618804 0.309402 0.950931i \(-0.399871\pi\)
0.309402 + 0.950931i \(0.399871\pi\)
\(758\) −4.46833 + 7.73938i −0.162297 + 0.281107i
\(759\) 2.55412 + 4.42387i 0.0927087 + 0.160576i
\(760\) 7.97062 + 13.8055i 0.289125 + 0.500779i
\(761\) 22.6480 39.2275i 0.820991 1.42200i −0.0839546 0.996470i \(-0.526755\pi\)
0.904945 0.425528i \(-0.139912\pi\)
\(762\) 8.54861 0.309684
\(763\) 29.5847 44.1780i 1.07104 1.59935i
\(764\) −1.94743 −0.0704555
\(765\) −12.9645 + 22.4552i −0.468733 + 0.811869i
\(766\) −13.4143 23.2343i −0.484680 0.839490i
\(767\) −0.239415 0.414678i −0.00864476 0.0149732i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 13.8318 0.498787 0.249393 0.968402i \(-0.419769\pi\)
0.249393 + 0.968402i \(0.419769\pi\)
\(770\) −51.6274 3.43723i −1.86052 0.123869i
\(771\) 1.94123 0.0699117
\(772\) −2.22019 + 3.84547i −0.0799062 + 0.138402i
\(773\) −3.58734 6.21345i −0.129028 0.223482i 0.794273 0.607562i \(-0.207852\pi\)
−0.923300 + 0.384079i \(0.874519\pi\)
\(774\) −6.27981 10.8770i −0.225723 0.390964i
\(775\) 15.5455 26.9256i 0.558411 0.967197i
\(776\) 4.60118