Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461.1 | − | 1.00000i | −1.64221 | − | 0.550576i | −1.00000 | −1.99217 | −0.550576 | + | 1.64221i | 2.64482 | − | 0.0703415i | 1.00000i | 2.39373 | + | 1.80833i | 1.99217i | |||||||||
461.2 | − | 1.00000i | −1.55720 | + | 0.758370i | −1.00000 | −2.55377 | 0.758370 | + | 1.55720i | 0.900399 | − | 2.48783i | 1.00000i | 1.84975 | − | 2.36187i | 2.55377i | |||||||||
461.3 | − | 1.00000i | −1.37202 | + | 1.05715i | −1.00000 | −2.38722 | 1.05715 | + | 1.37202i | −2.59254 | − | 0.527932i | 1.00000i | 0.764872 | − | 2.90086i | 2.38722i | |||||||||
461.4 | − | 1.00000i | −1.18002 | − | 1.26789i | −1.00000 | 3.87735 | −1.26789 | + | 1.18002i | 0.302862 | − | 2.62836i | 1.00000i | −0.215085 | + | 2.99228i | − | 3.87735i | ||||||||
461.5 | − | 1.00000i | −0.952183 | + | 1.44684i | −1.00000 | 3.39470 | 1.44684 | + | 0.952183i | 1.73823 | − | 1.99463i | 1.00000i | −1.18670 | − | 2.75531i | − | 3.39470i | ||||||||
461.6 | − | 1.00000i | −0.711304 | + | 1.57925i | −1.00000 | 0.334212 | 1.57925 | + | 0.711304i | −0.168570 | + | 2.64038i | 1.00000i | −1.98809 | − | 2.24666i | − | 0.334212i | ||||||||
461.7 | − | 1.00000i | −0.436762 | − | 1.67608i | −1.00000 | −3.48442 | −1.67608 | + | 0.436762i | −1.82520 | + | 1.91537i | 1.00000i | −2.61848 | + | 1.46409i | 3.48442i | |||||||||
461.8 | − | 1.00000i | 0.436762 | + | 1.67608i | −1.00000 | 3.48442 | 1.67608 | − | 0.436762i | −1.82520 | − | 1.91537i | 1.00000i | −2.61848 | + | 1.46409i | − | 3.48442i | ||||||||
461.9 | − | 1.00000i | 0.711304 | − | 1.57925i | −1.00000 | −0.334212 | −1.57925 | − | 0.711304i | −0.168570 | − | 2.64038i | 1.00000i | −1.98809 | − | 2.24666i | 0.334212i | |||||||||
461.10 | − | 1.00000i | 0.952183 | − | 1.44684i | −1.00000 | −3.39470 | −1.44684 | − | 0.952183i | 1.73823 | + | 1.99463i | 1.00000i | −1.18670 | − | 2.75531i | 3.39470i | |||||||||
461.11 | − | 1.00000i | 1.18002 | + | 1.26789i | −1.00000 | −3.87735 | 1.26789 | − | 1.18002i | 0.302862 | + | 2.62836i | 1.00000i | −0.215085 | + | 2.99228i | 3.87735i | |||||||||
461.12 | − | 1.00000i | 1.37202 | − | 1.05715i | −1.00000 | 2.38722 | −1.05715 | − | 1.37202i | −2.59254 | + | 0.527932i | 1.00000i | 0.764872 | − | 2.90086i | − | 2.38722i | ||||||||
461.13 | − | 1.00000i | 1.55720 | − | 0.758370i | −1.00000 | 2.55377 | −0.758370 | − | 1.55720i | 0.900399 | + | 2.48783i | 1.00000i | 1.84975 | − | 2.36187i | − | 2.55377i | ||||||||
461.14 | − | 1.00000i | 1.64221 | + | 0.550576i | −1.00000 | 1.99217 | 0.550576 | − | 1.64221i | 2.64482 | + | 0.0703415i | 1.00000i | 2.39373 | + | 1.80833i | − | 1.99217i | ||||||||
461.15 | 1.00000i | −1.64221 | + | 0.550576i | −1.00000 | −1.99217 | −0.550576 | − | 1.64221i | 2.64482 | + | 0.0703415i | − | 1.00000i | 2.39373 | − | 1.80833i | − | 1.99217i | ||||||||
461.16 | 1.00000i | −1.55720 | − | 0.758370i | −1.00000 | −2.55377 | 0.758370 | − | 1.55720i | 0.900399 | + | 2.48783i | − | 1.00000i | 1.84975 | + | 2.36187i | − | 2.55377i | ||||||||
461.17 | 1.00000i | −1.37202 | − | 1.05715i | −1.00000 | −2.38722 | 1.05715 | − | 1.37202i | −2.59254 | + | 0.527932i | − | 1.00000i | 0.764872 | + | 2.90086i | − | 2.38722i | ||||||||
461.18 | 1.00000i | −1.18002 | + | 1.26789i | −1.00000 | 3.87735 | −1.26789 | − | 1.18002i | 0.302862 | + | 2.62836i | − | 1.00000i | −0.215085 | − | 2.99228i | 3.87735i | |||||||||
461.19 | 1.00000i | −0.952183 | − | 1.44684i | −1.00000 | 3.39470 | 1.44684 | − | 0.952183i | 1.73823 | + | 1.99463i | − | 1.00000i | −1.18670 | + | 2.75531i | 3.39470i | |||||||||
461.20 | 1.00000i | −0.711304 | − | 1.57925i | −1.00000 | 0.334212 | 1.57925 | − | 0.711304i | −0.168570 | − | 2.64038i | − | 1.00000i | −1.98809 | + | 2.24666i | 0.334212i | |||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.f.c | ✓ | 28 |
3.b | odd | 2 | 1 | inner | 966.2.f.c | ✓ | 28 |
7.b | odd | 2 | 1 | inner | 966.2.f.c | ✓ | 28 |
21.c | even | 2 | 1 | inner | 966.2.f.c | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.f.c | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
966.2.f.c | ✓ | 28 | 3.b | odd | 2 | 1 | inner |
966.2.f.c | ✓ | 28 | 7.b | odd | 2 | 1 | inner |
966.2.f.c | ✓ | 28 | 21.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{14} - 55 T_{5}^{12} + 1214 T_{5}^{10} - 13726 T_{5}^{8} + 83744 T_{5}^{6} - 262496 T_{5}^{4} + 338560 T_{5}^{2} - 34656 \) acting on \(S_{2}^{\mathrm{new}}(966, [\chi])\).