Newspace parameters
Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 966.bf (of order \(66\), degree \(20\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.71354883526\) |
Analytic rank: | \(0\) |
Dimension: | \(1280\) |
Relative dimension: | \(64\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −0.458227 | + | 0.888835i | −1.72757 | + | 0.124485i | −0.580057 | − | 0.814576i | 1.87856 | + | 1.79120i | 0.680972 | − | 1.59257i | 0.248917 | + | 2.63402i | 0.989821 | − | 0.142315i | 2.96901 | − | 0.430114i | −2.45289 | + | 0.848953i |
11.2 | −0.458227 | + | 0.888835i | −1.71624 | + | 0.233522i | −0.580057 | − | 0.814576i | −2.07174 | − | 1.97540i | 0.578862 | − | 1.63246i | −2.59178 | + | 0.531663i | 0.989821 | − | 0.142315i | 2.89093 | − | 0.801559i | 2.70513 | − | 0.936254i |
11.3 | −0.458227 | + | 0.888835i | −1.61819 | + | 0.617630i | −0.580057 | − | 0.814576i | 2.31266 | + | 2.20512i | 0.192526 | − | 1.72132i | −1.37219 | − | 2.26210i | 0.989821 | − | 0.142315i | 2.23707 | − | 1.99888i | −3.01971 | + | 1.04513i |
11.4 | −0.458227 | + | 0.888835i | −1.61477 | − | 0.626501i | −0.580057 | − | 0.814576i | −1.38105 | − | 1.31683i | 1.29679 | − | 1.14819i | 2.39472 | + | 1.12486i | 0.989821 | − | 0.142315i | 2.21499 | + | 2.02332i | 1.80327 | − | 0.624119i |
11.5 | −0.458227 | + | 0.888835i | −1.59740 | − | 0.669558i | −0.580057 | − | 0.814576i | −1.48546 | − | 1.41639i | 1.32710 | − | 1.11302i | 0.598705 | − | 2.57712i | 0.989821 | − | 0.142315i | 2.10338 | + | 2.13911i | 1.93961 | − | 0.671307i |
11.6 | −0.458227 | + | 0.888835i | −1.47486 | + | 0.908181i | −0.580057 | − | 0.814576i | 0.367129 | + | 0.350057i | −0.131404 | − | 1.72706i | 2.61845 | − | 0.379131i | 0.989821 | − | 0.142315i | 1.35042 | − | 2.67888i | −0.479371 | + | 0.165912i |
11.7 | −0.458227 | + | 0.888835i | −1.24755 | − | 1.20151i | −0.580057 | − | 0.814576i | 2.79695 | + | 2.66688i | 1.63960 | − | 0.558302i | 2.62506 | − | 0.330282i | 0.989821 | − | 0.142315i | 0.112753 | + | 2.99788i | −3.65206 | + | 1.26399i |
11.8 | −0.458227 | + | 0.888835i | −1.17110 | − | 1.27614i | −0.580057 | − | 0.814576i | 0.549032 | + | 0.523501i | 1.67091 | − | 0.456154i | −2.28022 | − | 1.34186i | 0.989821 | − | 0.142315i | −0.257056 | + | 2.98897i | −0.716888 | + | 0.248117i |
11.9 | −0.458227 | + | 0.888835i | −1.08373 | − | 1.35113i | −0.580057 | − | 0.814576i | 0.598114 | + | 0.570300i | 1.69752 | − | 0.344132i | −0.225504 | + | 2.63612i | 0.989821 | − | 0.142315i | −0.651080 | + | 2.92850i | −0.780975 | + | 0.270298i |
11.10 | −0.458227 | + | 0.888835i | −1.07755 | + | 1.35606i | −0.580057 | − | 0.814576i | −1.05877 | − | 1.00954i | −0.711553 | − | 1.57914i | −2.64409 | + | 0.0936177i | 0.989821 | − | 0.142315i | −0.677791 | − | 2.92243i | 1.38247 | − | 0.478477i |
11.11 | −0.458227 | + | 0.888835i | −0.777131 | + | 1.54792i | −0.580057 | − | 0.814576i | −2.85699 | − | 2.72413i | −1.01975 | − | 1.40004i | 2.56739 | + | 0.639162i | 0.989821 | − | 0.142315i | −1.79214 | − | 2.40588i | 3.73045 | − | 1.29112i |
11.12 | −0.458227 | + | 0.888835i | −0.484961 | + | 1.66277i | −0.580057 | − | 0.814576i | 0.377293 | + | 0.359748i | −1.25571 | − | 1.19298i | −1.57508 | − | 2.12582i | 0.989821 | − | 0.142315i | −2.52963 | − | 1.61276i | −0.492643 | + | 0.170505i |
11.13 | −0.458227 | + | 0.888835i | −0.418014 | − | 1.68085i | −0.580057 | − | 0.814576i | −2.21751 | − | 2.11439i | 1.68555 | + | 0.398666i | 0.589589 | + | 2.57922i | 0.989821 | − | 0.142315i | −2.65053 | + | 1.40524i | 2.89546 | − | 1.00213i |
11.14 | −0.458227 | + | 0.888835i | −0.349901 | + | 1.69634i | −0.580057 | − | 0.814576i | 1.57677 | + | 1.50345i | −1.34743 | − | 1.08831i | 1.82632 | − | 1.91430i | 0.989821 | − | 0.142315i | −2.75514 | − | 1.18710i | −2.05883 | + | 0.712569i |
11.15 | −0.458227 | + | 0.888835i | −0.119815 | − | 1.72790i | −0.580057 | − | 0.814576i | 0.424017 | + | 0.404299i | 1.59072 | + | 0.685274i | −2.01888 | + | 1.71001i | 0.989821 | − | 0.142315i | −2.97129 | + | 0.414058i | −0.553651 | + | 0.191621i |
11.16 | −0.458227 | + | 0.888835i | −0.118210 | − | 1.72801i | −0.580057 | − | 0.814576i | 0.829499 | + | 0.790926i | 1.59009 | + | 0.686752i | 2.21783 | − | 1.44264i | 0.989821 | − | 0.142315i | −2.97205 | + | 0.408537i | −1.08310 | + | 0.374865i |
11.17 | −0.458227 | + | 0.888835i | 0.111990 | + | 1.72843i | −0.580057 | − | 0.814576i | −0.770390 | − | 0.734565i | −1.58760 | − | 0.692470i | 0.520510 | + | 2.59405i | 0.989821 | − | 0.142315i | −2.97492 | + | 0.387134i | 1.00592 | − | 0.348153i |
11.18 | −0.458227 | + | 0.888835i | 0.328863 | − | 1.70054i | −0.580057 | − | 0.814576i | −2.51640 | − | 2.39938i | 1.36081 | + | 1.07154i | 2.33268 | − | 1.24844i | 0.989821 | − | 0.142315i | −2.78370 | − | 1.11849i | 3.28573 | − | 1.13720i |
11.19 | −0.458227 | + | 0.888835i | 0.375913 | − | 1.69077i | −0.580057 | − | 0.814576i | 3.10185 | + | 2.95761i | 1.33056 | + | 1.10888i | −1.66460 | − | 2.05648i | 0.989821 | − | 0.142315i | −2.71738 | − | 1.27116i | −4.05017 | + | 1.40178i |
11.20 | −0.458227 | + | 0.888835i | 0.470566 | + | 1.66690i | −0.580057 | − | 0.814576i | 2.48669 | + | 2.37105i | −1.69723 | − | 0.345564i | 1.41557 | + | 2.23521i | 0.989821 | − | 0.142315i | −2.55714 | + | 1.56878i | −3.24694 | + | 1.12378i |
See next 80 embeddings (of 1280 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
23.d | odd | 22 | 1 | inner |
69.g | even | 22 | 1 | inner |
161.p | odd | 66 | 1 | inner |
483.bc | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 966.2.bf.a | ✓ | 1280 |
3.b | odd | 2 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
7.c | even | 3 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
21.h | odd | 6 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
23.d | odd | 22 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
69.g | even | 22 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
161.p | odd | 66 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
483.bc | even | 66 | 1 | inner | 966.2.bf.a | ✓ | 1280 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
966.2.bf.a | ✓ | 1280 | 1.a | even | 1 | 1 | trivial |
966.2.bf.a | ✓ | 1280 | 3.b | odd | 2 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 7.c | even | 3 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 21.h | odd | 6 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 23.d | odd | 22 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 69.g | even | 22 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 161.p | odd | 66 | 1 | inner |
966.2.bf.a | ✓ | 1280 | 483.bc | even | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(966, [\chi])\).