# Properties

 Label 966.2.be.b.493.16 Level $966$ Weight $2$ Character 966.493 Analytic conductor $7.714$ Analytic rank $0$ Dimension $320$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [966,2,Mod(19,966)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(966, base_ring=CyclotomicField(66))

chi = DirichletCharacter(H, H._module([0, 55, 45]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("966.19");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$966 = 2 \cdot 3 \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 966.be (of order $$66$$, degree $$20$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.71354883526$$ Analytic rank: $$0$$ Dimension: $$320$$ Relative dimension: $$16$$ over $$\Q(\zeta_{66})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

## Embedding invariants

 Embedding label 493.16 Character $$\chi$$ $$=$$ 966.493 Dual form 966.2.be.b.145.16

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.327068 + 0.945001i) q^{2} +(0.458227 + 0.888835i) q^{3} +(-0.786053 - 0.618159i) q^{4} +(4.33982 - 0.414402i) q^{5} +(-0.989821 + 0.142315i) q^{6} +(-0.705154 + 2.55005i) q^{7} +(0.841254 - 0.540641i) q^{8} +(-0.580057 + 0.814576i) q^{9} +O(q^{10})$$ $$q+(-0.327068 + 0.945001i) q^{2} +(0.458227 + 0.888835i) q^{3} +(-0.786053 - 0.618159i) q^{4} +(4.33982 - 0.414402i) q^{5} +(-0.989821 + 0.142315i) q^{6} +(-0.705154 + 2.55005i) q^{7} +(0.841254 - 0.540641i) q^{8} +(-0.580057 + 0.814576i) q^{9} +(-1.02780 + 4.23667i) q^{10} +(-1.85716 + 0.642768i) q^{11} +(0.189251 - 0.981929i) q^{12} +(0.782667 + 2.66552i) q^{13} +(-2.17917 - 1.50041i) q^{14} +(2.35696 + 3.66749i) q^{15} +(0.235759 + 0.971812i) q^{16} +(-2.37027 - 0.948913i) q^{17} +(-0.580057 - 0.814576i) q^{18} +(-4.71457 + 1.88743i) q^{19} +(-3.66749 - 2.35696i) q^{20} +(-2.58970 + 0.541735i) q^{21} -1.96524i q^{22} +(-2.66046 + 3.99023i) q^{23} +(0.866025 + 0.500000i) q^{24} +(13.7526 - 2.65060i) q^{25} +(-2.77490 - 0.132185i) q^{26} +(-0.989821 - 0.142315i) q^{27} +(2.13063 - 1.56858i) q^{28} +(-0.347067 - 2.41391i) q^{29} +(-4.23667 + 1.02780i) q^{30} +(9.27656 - 0.441897i) q^{31} +(-0.995472 - 0.0950560i) q^{32} +(-1.42231 - 1.35617i) q^{33} +(1.67196 - 1.92955i) q^{34} +(-2.00349 + 11.3590i) q^{35} +(0.959493 - 0.281733i) q^{36} +(-1.15203 - 0.820359i) q^{37} +(-0.241637 - 5.07259i) q^{38} +(-2.01057 + 1.91707i) q^{39} +(3.42684 - 2.69490i) q^{40} +(6.95309 + 3.17537i) q^{41} +(0.335066 - 2.62445i) q^{42} +(-6.85668 + 10.6692i) q^{43} +(1.85716 + 0.642768i) q^{44} +(-2.17978 + 3.77549i) q^{45} +(-2.90062 - 3.81922i) q^{46} +(11.4970 - 6.63778i) q^{47} +(-0.755750 + 0.654861i) q^{48} +(-6.00552 - 3.59636i) q^{49} +(-1.99323 + 13.8632i) q^{50} +(-0.242693 - 2.54160i) q^{51} +(1.03250 - 2.57905i) q^{52} +(2.49326 + 2.61485i) q^{53} +(0.458227 - 0.888835i) q^{54} +(-7.79336 + 3.55911i) q^{55} +(0.785448 + 2.52647i) q^{56} +(-3.83796 - 3.32561i) q^{57} +(2.39466 + 0.461532i) q^{58} +(9.61047 + 2.33147i) q^{59} +(0.414402 - 4.33982i) q^{60} +(-5.61413 - 2.89429i) q^{61} +(-2.61647 + 8.91088i) q^{62} +(-1.66818 - 2.05358i) q^{63} +(0.415415 - 0.909632i) q^{64} +(4.50123 + 11.2435i) q^{65} +(1.74678 - 0.900527i) q^{66} +(-2.25265 - 11.6878i) q^{67} +(1.27658 + 2.21110i) q^{68} +(-4.76575 - 0.536284i) q^{69} +(-10.0790 - 5.60846i) q^{70} +(-6.03314 - 6.96261i) q^{71} +(-0.0475819 + 0.998867i) q^{72} +(4.58690 - 5.83272i) q^{73} +(1.15203 - 0.820359i) q^{74} +(8.65778 + 11.0093i) q^{75} +(4.87263 + 1.43073i) q^{76} +(-0.329510 - 5.18910i) q^{77} +(-1.15404 - 2.52700i) q^{78} +(-0.301813 + 0.316532i) q^{79} +(1.42587 + 4.11979i) q^{80} +(-0.327068 - 0.945001i) q^{81} +(-5.27486 + 5.53212i) q^{82} +(2.84760 + 6.23536i) q^{83} +(2.37052 + 1.17501i) q^{84} +(-10.6798 - 3.13587i) q^{85} +(-7.83981 - 9.96913i) q^{86} +(1.98653 - 1.41460i) q^{87} +(-1.21483 + 1.54479i) q^{88} +(0.375556 - 7.88390i) q^{89} +(-2.85490 - 3.29473i) q^{90} +(-7.34911 + 0.116240i) q^{91} +(4.55786 - 1.49194i) q^{92} +(4.64354 + 8.04284i) q^{93} +(2.51242 + 13.0357i) q^{94} +(-19.6782 + 10.1448i) q^{95} +(-0.371662 - 0.928368i) q^{96} +(-2.91743 + 6.38828i) q^{97} +(5.36277 - 4.49897i) q^{98} +(0.553673 - 1.88564i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9}+O(q^{10})$$ 320 * q + 16 * q^2 + 16 * q^4 - 32 * q^8 - 16 * q^9 $$320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9} + 22 q^{14} + 16 q^{16} - 66 q^{17} - 16 q^{18} + 36 q^{23} + 24 q^{25} + 12 q^{26} + 44 q^{28} + 8 q^{29} - 48 q^{31} + 16 q^{32} - 46 q^{35} + 32 q^{36} - 22 q^{37} + 66 q^{38} + 8 q^{39} + 176 q^{43} - 8 q^{46} + 120 q^{47} - 24 q^{49} - 48 q^{50} - 22 q^{51} - 12 q^{52} - 44 q^{53} + 44 q^{57} + 18 q^{58} + 12 q^{59} - 32 q^{64} - 108 q^{70} - 48 q^{71} - 16 q^{72} + 252 q^{73} + 22 q^{74} - 36 q^{75} - 42 q^{77} - 16 q^{78} + 44 q^{79} + 16 q^{81} + 12 q^{82} - 22 q^{84} - 76 q^{85} + 22 q^{86} + 24 q^{87} - 22 q^{88} + 16 q^{92} + 12 q^{94} + 26 q^{95} + 2 q^{98} + 88 q^{99}+O(q^{100})$$ 320 * q + 16 * q^2 + 16 * q^4 - 32 * q^8 - 16 * q^9 + 22 * q^14 + 16 * q^16 - 66 * q^17 - 16 * q^18 + 36 * q^23 + 24 * q^25 + 12 * q^26 + 44 * q^28 + 8 * q^29 - 48 * q^31 + 16 * q^32 - 46 * q^35 + 32 * q^36 - 22 * q^37 + 66 * q^38 + 8 * q^39 + 176 * q^43 - 8 * q^46 + 120 * q^47 - 24 * q^49 - 48 * q^50 - 22 * q^51 - 12 * q^52 - 44 * q^53 + 44 * q^57 + 18 * q^58 + 12 * q^59 - 32 * q^64 - 108 * q^70 - 48 * q^71 - 16 * q^72 + 252 * q^73 + 22 * q^74 - 36 * q^75 - 42 * q^77 - 16 * q^78 + 44 * q^79 + 16 * q^81 + 12 * q^82 - 22 * q^84 - 76 * q^85 + 22 * q^86 + 24 * q^87 - 22 * q^88 + 16 * q^92 + 12 * q^94 + 26 * q^95 + 2 * q^98 + 88 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/966\mathbb{Z}\right)^\times$$.

 $$n$$ $$323$$ $$829$$ $$925$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{3}{22}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.327068 + 0.945001i −0.231272 + 0.668216i
$$3$$ 0.458227 + 0.888835i 0.264557 + 0.513169i
$$4$$ −0.786053 0.618159i −0.393027 0.309079i
$$5$$ 4.33982 0.414402i 1.94083 0.185326i 0.949219 0.314617i $$-0.101876\pi$$
0.991607 + 0.129291i $$0.0412700\pi$$
$$6$$ −0.989821 + 0.142315i −0.404093 + 0.0580998i
$$7$$ −0.705154 + 2.55005i −0.266523 + 0.963829i
$$8$$ 0.841254 0.540641i 0.297428 0.191145i
$$9$$ −0.580057 + 0.814576i −0.193352 + 0.271525i
$$10$$ −1.02780 + 4.23667i −0.325020 + 1.33975i
$$11$$ −1.85716 + 0.642768i −0.559954 + 0.193802i −0.592361 0.805673i $$-0.701804\pi$$
0.0324069 + 0.999475i $$0.489683\pi$$
$$12$$ 0.189251 0.981929i 0.0546321 0.283458i
$$13$$ 0.782667 + 2.66552i 0.217073 + 0.739282i 0.993970 + 0.109654i $$0.0349743\pi$$
−0.776897 + 0.629628i $$0.783208\pi$$
$$14$$ −2.17917 1.50041i −0.582407 0.401002i
$$15$$ 2.35696 + 3.66749i 0.608563 + 0.946943i
$$16$$ 0.235759 + 0.971812i 0.0589397 + 0.242953i
$$17$$ −2.37027 0.948913i −0.574875 0.230145i 0.0659620 0.997822i $$-0.478988\pi$$
−0.640837 + 0.767677i $$0.721413\pi$$
$$18$$ −0.580057 0.814576i −0.136721 0.191997i
$$19$$ −4.71457 + 1.88743i −1.08160 + 0.433006i −0.842890 0.538086i $$-0.819148\pi$$
−0.238707 + 0.971092i $$0.576723\pi$$
$$20$$ −3.66749 2.35696i −0.820077 0.527031i
$$21$$ −2.58970 + 0.541735i −0.565118 + 0.118216i
$$22$$ 1.96524i 0.418991i
$$23$$ −2.66046 + 3.99023i −0.554745 + 0.832021i
$$24$$ 0.866025 + 0.500000i 0.176777 + 0.102062i
$$25$$ 13.7526 2.65060i 2.75053 0.530121i
$$26$$ −2.77490 0.132185i −0.544203 0.0259236i
$$27$$ −0.989821 0.142315i −0.190491 0.0273885i
$$28$$ 2.13063 1.56858i 0.402650 0.296433i
$$29$$ −0.347067 2.41391i −0.0644488 0.448251i −0.996338 0.0855069i $$-0.972749\pi$$
0.931889 0.362744i $$-0.118160\pi$$
$$30$$ −4.23667 + 1.02780i −0.773506 + 0.187651i
$$31$$ 9.27656 0.441897i 1.66612 0.0793670i 0.806806 0.590817i $$-0.201194\pi$$
0.859313 + 0.511450i $$0.170891\pi$$
$$32$$ −0.995472 0.0950560i −0.175976 0.0168037i
$$33$$ −1.42231 1.35617i −0.247593 0.236080i
$$34$$ 1.67196 1.92955i 0.286739 0.330915i
$$35$$ −2.00349 + 11.3590i −0.338652 + 1.92002i
$$36$$ 0.959493 0.281733i 0.159915 0.0469554i
$$37$$ −1.15203 0.820359i −0.189393 0.134866i 0.481427 0.876486i $$-0.340119\pi$$
−0.670821 + 0.741620i $$0.734058\pi$$
$$38$$ −0.241637 5.07259i −0.0391987 0.822883i
$$39$$ −2.01057 + 1.91707i −0.321949 + 0.306977i
$$40$$ 3.42684 2.69490i 0.541832 0.426101i
$$41$$ 6.95309 + 3.17537i 1.08589 + 0.495910i 0.876244 0.481867i $$-0.160041\pi$$
0.209647 + 0.977777i $$0.432769\pi$$
$$42$$ 0.335066 2.62445i 0.0517018 0.404961i
$$43$$ −6.85668 + 10.6692i −1.04563 + 1.62704i −0.308590 + 0.951195i $$0.599857\pi$$
−0.737045 + 0.675844i $$0.763779\pi$$
$$44$$ 1.85716 + 0.642768i 0.279977 + 0.0969010i
$$45$$ −2.17978 + 3.77549i −0.324942 + 0.562817i
$$46$$ −2.90062 3.81922i −0.427673 0.563113i
$$47$$ 11.4970 6.63778i 1.67701 0.968220i 0.713453 0.700703i $$-0.247130\pi$$
0.963553 0.267517i $$-0.0862033\pi$$
$$48$$ −0.755750 + 0.654861i −0.109083 + 0.0945210i
$$49$$ −6.00552 3.59636i −0.857931 0.513765i
$$50$$ −1.99323 + 13.8632i −0.281885 + 1.96055i
$$51$$ −0.242693 2.54160i −0.0339838 0.355895i
$$52$$ 1.03250 2.57905i 0.143181 0.357650i
$$53$$ 2.49326 + 2.61485i 0.342475 + 0.359178i 0.872336 0.488907i $$-0.162604\pi$$
−0.529861 + 0.848085i $$0.677756\pi$$
$$54$$ 0.458227 0.888835i 0.0623567 0.120955i
$$55$$ −7.79336 + 3.55911i −1.05086 + 0.479910i
$$56$$ 0.785448 + 2.52647i 0.104960 + 0.337614i
$$57$$ −3.83796 3.32561i −0.508350 0.440488i
$$58$$ 2.39466 + 0.461532i 0.314434 + 0.0606022i
$$59$$ 9.61047 + 2.33147i 1.25118 + 0.303532i 0.806002 0.591912i $$-0.201627\pi$$
0.445174 + 0.895444i $$0.353142\pi$$
$$60$$ 0.414402 4.33982i 0.0534991 0.560268i
$$61$$ −5.61413 2.89429i −0.718816 0.370575i 0.0596865 0.998217i $$-0.480990\pi$$
−0.778502 + 0.627642i $$0.784020\pi$$
$$62$$ −2.61647 + 8.91088i −0.332292 + 1.13168i
$$63$$ −1.66818 2.05358i −0.210171 0.258726i
$$64$$ 0.415415 0.909632i 0.0519269 0.113704i
$$65$$ 4.50123 + 11.2435i 0.558309 + 1.39459i
$$66$$ 1.74678 0.900527i 0.215014 0.110847i
$$67$$ −2.25265 11.6878i −0.275205 1.42790i −0.811740 0.584020i $$-0.801479\pi$$
0.536535 0.843878i $$-0.319733\pi$$
$$68$$ 1.27658 + 2.21110i 0.154808 + 0.268135i
$$69$$ −4.76575 0.536284i −0.573729 0.0645610i
$$70$$ −10.0790 5.60846i −1.20467 0.670339i
$$71$$ −6.03314 6.96261i −0.716002 0.826310i 0.274818 0.961496i $$-0.411382\pi$$
−0.990820 + 0.135186i $$0.956837\pi$$
$$72$$ −0.0475819 + 0.998867i −0.00560758 + 0.117718i
$$73$$ 4.58690 5.83272i 0.536856 0.682668i −0.439647 0.898171i $$-0.644896\pi$$
0.976503 + 0.215502i $$0.0691389\pi$$
$$74$$ 1.15203 0.820359i 0.133921 0.0953648i
$$75$$ 8.65778 + 11.0093i 0.999714 + 1.27124i
$$76$$ 4.87263 + 1.43073i 0.558930 + 0.164117i
$$77$$ −0.329510 5.18910i −0.0375512 0.591352i
$$78$$ −1.15404 2.52700i −0.130670 0.286127i
$$79$$ −0.301813 + 0.316532i −0.0339566 + 0.0356127i −0.740493 0.672064i $$-0.765408\pi$$
0.706537 + 0.707676i $$0.250257\pi$$
$$80$$ 1.42587 + 4.11979i 0.159417 + 0.460606i
$$81$$ −0.327068 0.945001i −0.0363409 0.105000i
$$82$$ −5.27486 + 5.53212i −0.582511 + 0.610920i
$$83$$ 2.84760 + 6.23536i 0.312564 + 0.684420i 0.999089 0.0426868i $$-0.0135917\pi$$
−0.686524 + 0.727107i $$0.740864\pi$$
$$84$$ 2.37052 + 1.17501i 0.258645 + 0.128204i
$$85$$ −10.6798 3.13587i −1.15838 0.340132i
$$86$$ −7.83981 9.96913i −0.845388 1.07500i
$$87$$ 1.98653 1.41460i 0.212978 0.151661i
$$88$$ −1.21483 + 1.54479i −0.129502 + 0.164675i
$$89$$ 0.375556 7.88390i 0.0398089 0.835691i −0.887367 0.461064i $$-0.847468\pi$$
0.927176 0.374627i $$-0.122229\pi$$
$$90$$ −2.85490 3.29473i −0.300933 0.347295i
$$91$$ −7.34911 + 0.116240i −0.770396 + 0.0121852i
$$92$$ 4.55786 1.49194i 0.475190 0.155546i
$$93$$ 4.64354 + 8.04284i 0.481512 + 0.834004i
$$94$$ 2.51242 + 13.0357i 0.259136 + 1.34453i
$$95$$ −19.6782 + 10.1448i −2.01894 + 1.04084i
$$96$$ −0.371662 0.928368i −0.0379326 0.0947512i
$$97$$ −2.91743 + 6.38828i −0.296220 + 0.648631i −0.997963 0.0637990i $$-0.979678\pi$$
0.701743 + 0.712430i $$0.252406\pi$$
$$98$$ 5.36277 4.49897i 0.541722 0.454464i
$$99$$ 0.553673 1.88564i 0.0556462 0.189514i
$$100$$ −12.4488 6.41780i −1.24488 0.641780i
$$101$$ 0.286395 2.99926i 0.0284973 0.298437i −0.969976 0.243201i $$-0.921803\pi$$
0.998473 0.0552367i $$-0.0175913\pi$$
$$102$$ 2.48119 + 0.601930i 0.245674 + 0.0596000i
$$103$$ −1.24696 0.240331i −0.122866 0.0236805i 0.127447 0.991845i $$-0.459322\pi$$
−0.250314 + 0.968165i $$0.580534\pi$$
$$104$$ 2.09951 + 1.81923i 0.205874 + 0.178391i
$$105$$ −11.0143 + 3.42421i −1.07489 + 0.334168i
$$106$$ −3.28650 + 1.50090i −0.319214 + 0.145780i
$$107$$ −7.20534 + 13.9764i −0.696567 + 1.35115i 0.229321 + 0.973351i $$0.426350\pi$$
−0.925887 + 0.377800i $$0.876681\pi$$
$$108$$ 0.690079 + 0.723734i 0.0664029 + 0.0696413i
$$109$$ 4.99590 12.4791i 0.478520 1.19529i −0.471155 0.882050i $$-0.656163\pi$$
0.949675 0.313235i $$-0.101413\pi$$
$$110$$ −0.814402 8.52880i −0.0776502 0.813189i
$$111$$ 0.201272 1.39988i 0.0191039 0.132871i
$$112$$ −2.64441 0.0840794i −0.249874 0.00794475i
$$113$$ −3.85953 + 3.34430i −0.363074 + 0.314606i −0.817225 0.576319i $$-0.804488\pi$$
0.454150 + 0.890925i $$0.349943\pi$$
$$114$$ 4.39797 2.53917i 0.411908 0.237815i
$$115$$ −9.89236 + 18.4194i −0.922467 + 1.71762i
$$116$$ −1.21936 + 2.11200i −0.113215 + 0.196094i
$$117$$ −2.62526 0.908611i −0.242705 0.0840011i
$$118$$ −5.34652 + 8.31935i −0.492187 + 0.765858i
$$119$$ 4.09118 5.37518i 0.375038 0.492742i
$$120$$ 3.96559 + 1.81103i 0.362008 + 0.165323i
$$121$$ −5.61070 + 4.41231i −0.510064 + 0.401119i
$$122$$ 4.57130 4.35873i 0.413866 0.394621i
$$123$$ 0.363709 + 7.63520i 0.0327946 + 0.688442i
$$124$$ −7.56503 5.38703i −0.679360 0.483770i
$$125$$ 37.6707 11.0611i 3.36937 0.989337i
$$126$$ 2.48624 0.904773i 0.221492 0.0806036i
$$127$$ 5.46272 6.30432i 0.484738 0.559418i −0.459714 0.888067i $$-0.652048\pi$$
0.944452 + 0.328650i $$0.106593\pi$$
$$128$$ 0.723734 + 0.690079i 0.0639697 + 0.0609949i
$$129$$ −12.6251 1.20555i −1.11158 0.106143i
$$130$$ −12.0973 + 0.576268i −1.06101 + 0.0505420i
$$131$$ −19.2348 + 4.66632i −1.68056 + 0.407698i −0.958717 0.284363i $$-0.908218\pi$$
−0.721838 + 0.692062i $$0.756703\pi$$
$$132$$ 0.279683 + 1.94524i 0.0243433 + 0.169311i
$$133$$ −1.48854 13.3533i −0.129073 1.15788i
$$134$$ 11.7818 + 1.69397i 1.01779 + 0.146336i
$$135$$ −4.35462 0.207436i −0.374786 0.0178533i
$$136$$ −2.50702 + 0.483189i −0.214975 + 0.0414331i
$$137$$ 17.0140 + 9.82305i 1.45361 + 0.839240i 0.998684 0.0512914i $$-0.0163337\pi$$
0.454922 + 0.890531i $$0.349667\pi$$
$$138$$ 2.06551 4.32824i 0.175828 0.368444i
$$139$$ 21.2374i 1.80134i −0.434508 0.900668i $$-0.643078\pi$$
0.434508 0.900668i $$-0.356922\pi$$
$$140$$ 8.59650 7.69028i 0.726537 0.649947i
$$141$$ 11.1681 + 7.17731i 0.940525 + 0.604439i
$$142$$ 8.55292 3.42407i 0.717745 0.287342i
$$143$$ −3.16685 4.44721i −0.264825 0.371895i
$$144$$ −0.928368 0.371662i −0.0773640 0.0309719i
$$145$$ −2.50654 10.3321i −0.208157 0.858033i
$$146$$ 4.01170 + 6.24232i 0.332010 + 0.516618i
$$147$$ 0.444681 6.98586i 0.0366767 0.576184i
$$148$$ 0.398447 + 1.35699i 0.0327521 + 0.111544i
$$149$$ 2.94343 15.2720i 0.241136 1.25113i −0.636302 0.771440i $$-0.719537\pi$$
0.877438 0.479690i $$-0.159251\pi$$
$$150$$ −13.2354 + 4.58083i −1.08067 + 0.374023i
$$151$$ 0.819608 3.37847i 0.0666988 0.274936i −0.928690 0.370856i $$-0.879064\pi$$
0.995389 + 0.0959203i $$0.0305794\pi$$
$$152$$ −2.94573 + 4.13670i −0.238930 + 0.335530i
$$153$$ 2.14785 1.38034i 0.173644 0.111594i
$$154$$ 5.01147 + 1.38580i 0.403836 + 0.111671i
$$155$$ 40.0754 5.76198i 3.21894 0.462813i
$$156$$ 2.76547 0.264070i 0.221415 0.0211425i
$$157$$ −5.83981 4.59248i −0.466068 0.366520i 0.357336 0.933976i $$-0.383685\pi$$
−0.823404 + 0.567456i $$0.807928\pi$$
$$158$$ −0.200410 0.388741i −0.0159438 0.0309266i
$$159$$ −1.18170 + 3.41429i −0.0937147 + 0.270771i
$$160$$ −4.35956 −0.344653
$$161$$ −8.29925 9.59804i −0.654073 0.756432i
$$162$$ 1.00000 0.0785674
$$163$$ −0.0969605 + 0.280149i −0.00759454 + 0.0219430i −0.948734 0.316074i $$-0.897635\pi$$
0.941140 + 0.338017i $$0.109756\pi$$
$$164$$ −3.50262 6.79413i −0.273508 0.530532i
$$165$$ −6.73458 5.29614i −0.524287 0.412304i
$$166$$ −6.82378 + 0.651592i −0.529628 + 0.0505734i
$$167$$ 8.02444 1.15374i 0.620950 0.0892791i 0.175342 0.984508i $$-0.443897\pi$$
0.445608 + 0.895228i $$0.352988\pi$$
$$168$$ −1.88571 + 1.85583i −0.145485 + 0.143181i
$$169$$ 4.44388 2.85591i 0.341837 0.219685i
$$170$$ 6.45641 9.06676i 0.495184 0.695388i
$$171$$ 1.19726 4.93519i 0.0915571 0.377404i
$$172$$ 11.9850 4.14804i 0.913847 0.316285i
$$173$$ −1.50562 + 7.81191i −0.114470 + 0.593928i 0.878712 + 0.477353i $$0.158404\pi$$
−0.993182 + 0.116575i $$0.962808\pi$$
$$174$$ 0.687069 + 2.33994i 0.0520866 + 0.177391i
$$175$$ −2.93855 + 36.9390i −0.222134 + 2.79233i
$$176$$ −1.06249 1.65327i −0.0800883 0.124620i
$$177$$ 2.33147 + 9.61047i 0.175244 + 0.722367i
$$178$$ 7.32746 + 2.93347i 0.549216 + 0.219873i
$$179$$ 8.29336 + 11.6464i 0.619875 + 0.870493i 0.998483 0.0550646i $$-0.0175365\pi$$
−0.378608 + 0.925557i $$0.623597\pi$$
$$180$$ 4.04727 1.62028i 0.301666 0.120769i
$$181$$ 4.38105 + 2.81553i 0.325641 + 0.209277i 0.693238 0.720708i $$-0.256183\pi$$
−0.367598 + 0.929985i $$0.619820\pi$$
$$182$$ 2.29381 6.98293i 0.170029 0.517609i
$$183$$ 6.31628i 0.466913i
$$184$$ −0.0808419 + 4.79515i −0.00595974 + 0.353503i
$$185$$ −5.33957 3.08280i −0.392573 0.226652i
$$186$$ −9.11925 + 1.75759i −0.668656 + 0.128873i
$$187$$ 5.01190 + 0.238746i 0.366506 + 0.0174588i
$$188$$ −13.1404 1.88931i −0.958365 0.137792i
$$189$$ 1.06089 2.42374i 0.0771681 0.176301i
$$190$$ −3.15076 21.9140i −0.228580 1.58981i
$$191$$ 8.60036 2.08643i 0.622300 0.150968i 0.0878020 0.996138i $$-0.472016\pi$$
0.534498 + 0.845170i $$0.320501\pi$$
$$192$$ 0.998867 0.0475819i 0.0720870 0.00343393i
$$193$$ 0.863249 + 0.0824303i 0.0621380 + 0.00593346i 0.126079 0.992020i $$-0.459761\pi$$
−0.0639407 + 0.997954i $$0.520367\pi$$
$$194$$ −5.08273 4.84637i −0.364919 0.347949i
$$195$$ −7.93106 + 9.15293i −0.567955 + 0.655455i
$$196$$ 2.49754 + 6.53929i 0.178395 + 0.467092i
$$197$$ −0.760218 + 0.223220i −0.0541633 + 0.0159038i −0.308702 0.951159i $$-0.599895\pi$$
0.254539 + 0.967063i $$0.418076\pi$$
$$198$$ 1.60084 + 1.13995i 0.113767 + 0.0810130i
$$199$$ −0.148994 3.12776i −0.0105619 0.221721i −0.997977 0.0635726i $$-0.979751\pi$$
0.987415 0.158148i $$-0.0505525\pi$$
$$200$$ 10.1364 9.66507i 0.716754 0.683424i
$$201$$ 9.35635 7.35791i 0.659946 0.518987i
$$202$$ 2.74063 + 1.25160i 0.192830 + 0.0880626i
$$203$$ 6.40032 + 0.817136i 0.449214 + 0.0573517i
$$204$$ −1.38034 + 2.14785i −0.0966433 + 0.150380i
$$205$$ 31.4910 + 10.8992i 2.19943 + 0.761230i
$$206$$ 0.634952 1.09977i 0.0442392 0.0766246i
$$207$$ −1.70713 4.48171i −0.118653 0.311500i
$$208$$ −2.40586 + 1.38902i −0.166816 + 0.0963115i
$$209$$ 7.54252 6.53563i 0.521727 0.452079i
$$210$$ 0.366549 11.5285i 0.0252943 0.795541i
$$211$$ 1.10546 7.68867i 0.0761033 0.529310i −0.915733 0.401788i $$-0.868389\pi$$
0.991836 0.127521i $$-0.0407022\pi$$
$$212$$ −0.343438 3.59664i −0.0235874 0.247019i
$$213$$ 3.42407 8.55292i 0.234614 0.586036i
$$214$$ −10.8511 11.3803i −0.741765 0.777941i
$$215$$ −25.3354 + 49.1438i −1.72786 + 3.35158i
$$216$$ −0.909632 + 0.415415i −0.0618926 + 0.0282654i
$$217$$ −5.41454 + 23.9673i −0.367563 + 1.62701i
$$218$$ 10.1588 + 8.80266i 0.688041 + 0.596191i
$$219$$ 7.28617 + 1.40429i 0.492354 + 0.0948934i
$$220$$ 8.32609 + 2.01989i 0.561345 + 0.136181i
$$221$$ 0.674213 7.06068i 0.0453525 0.474953i
$$222$$ 1.25706 + 0.648058i 0.0843681 + 0.0434948i
$$223$$ 3.79741 12.9328i 0.254294 0.866045i −0.729077 0.684432i $$-0.760050\pi$$
0.983370 0.181612i $$-0.0581316\pi$$
$$224$$ 0.944358 2.47147i 0.0630976 0.165132i
$$225$$ −5.81820 + 12.7401i −0.387880 + 0.849338i
$$226$$ −1.89804 4.74108i −0.126256 0.315372i
$$227$$ 24.1449 12.4476i 1.60255 0.826174i 0.602957 0.797773i $$-0.293989\pi$$
0.999597 0.0284007i $$-0.00904144\pi$$
$$228$$ 0.961083 + 4.98657i 0.0636493 + 0.330244i
$$229$$ 5.47954 + 9.49084i 0.362098 + 0.627172i 0.988306 0.152484i $$-0.0487272\pi$$
−0.626208 + 0.779656i $$0.715394\pi$$
$$230$$ −14.1709 15.3727i −0.934398 1.01364i
$$231$$ 4.46126 2.67066i 0.293529 0.175717i
$$232$$ −1.59703 1.84307i −0.104850 0.121003i
$$233$$ 0.0685132 1.43827i 0.00448845 0.0942242i −0.995511 0.0946410i $$-0.969830\pi$$
1.00000 0.000416879i $$0.000132697\pi$$
$$234$$ 1.71728 2.18369i 0.112262 0.142753i
$$235$$ 47.1441 33.5711i 3.07534 2.18994i
$$236$$ −6.11311 7.77346i −0.397930 0.506009i
$$237$$ −0.419644 0.123219i −0.0272588 0.00800390i
$$238$$ 3.74146 + 5.62422i 0.242523 + 0.364564i
$$239$$ −4.45003 9.74421i −0.287849 0.630301i 0.709370 0.704837i $$-0.248980\pi$$
−0.997218 + 0.0745360i $$0.976252\pi$$
$$240$$ −3.00844 + 3.15516i −0.194194 + 0.203665i
$$241$$ −0.000644764 0.00186292i −4.15329e−5 0.000120001i 0.944980 0.327128i $$-0.106081\pi$$
−0.945022 + 0.327008i $$0.893960\pi$$
$$242$$ −2.33455 6.74524i −0.150071 0.433601i
$$243$$ 0.690079 0.723734i 0.0442686 0.0464276i
$$244$$ 2.62388 + 5.74549i 0.167976 + 0.367817i
$$245$$ −27.5532 13.1188i −1.76031 0.838131i
$$246$$ −7.33422 2.15352i −0.467613 0.137304i
$$247$$ −8.72092 11.0895i −0.554899 0.705611i
$$248$$ 7.56503 5.38703i 0.480380 0.342077i
$$249$$ −4.23737 + 5.38825i −0.268532 + 0.341467i
$$250$$ −1.86812 + 39.2166i −0.118150 + 2.48028i
$$251$$ −4.91570 5.67302i −0.310276 0.358078i 0.579098 0.815258i $$-0.303405\pi$$
−0.889374 + 0.457180i $$0.848859\pi$$
$$252$$ 0.0418422 + 2.64542i 0.00263581 + 0.166646i
$$253$$ 2.37610 9.12055i 0.149384 0.573404i
$$254$$ 4.17090 + 7.22422i 0.261706 + 0.453288i
$$255$$ −2.10649 10.9295i −0.131913 0.684432i
$$256$$ −0.888835 + 0.458227i −0.0555522 + 0.0286392i
$$257$$ −3.36874 8.41472i −0.210137 0.524896i 0.785431 0.618950i $$-0.212442\pi$$
−0.995567 + 0.0940541i $$0.970017\pi$$
$$258$$ 5.26851 11.5364i 0.328003 0.718226i
$$259$$ 2.90432 2.35926i 0.180466 0.146598i
$$260$$ 3.41208 11.6205i 0.211608 0.720672i
$$261$$ 2.16763 + 1.11749i 0.134173 + 0.0691709i
$$262$$ 1.88142 19.7031i 0.116235 1.21726i
$$263$$ −5.51749 1.33853i −0.340223 0.0825373i 0.0620073 0.998076i $$-0.480250\pi$$
−0.402230 + 0.915538i $$0.631765\pi$$
$$264$$ −1.92973 0.371925i −0.118767 0.0228904i
$$265$$ 11.9039 + 10.3148i 0.731250 + 0.633632i
$$266$$ 13.1058 + 2.96077i 0.803565 + 0.181536i
$$267$$ 7.17958 3.27880i 0.439383 0.200660i
$$268$$ −5.45425 + 10.5798i −0.333171 + 0.646262i
$$269$$ 9.29056 + 9.74366i 0.566456 + 0.594082i 0.943196 0.332237i $$-0.107804\pi$$
−0.376740 + 0.926319i $$0.622955\pi$$
$$270$$ 1.62028 4.04727i 0.0986073 0.246309i
$$271$$ −0.0960114 1.00548i −0.00583228 0.0610784i 0.992087 0.125550i $$-0.0400697\pi$$
−0.997920 + 0.0644721i $$0.979464\pi$$
$$272$$ 0.363352 2.52717i 0.0220315 0.153232i
$$273$$ −3.47087 6.47888i −0.210067 0.392120i
$$274$$ −14.8475 + 12.8655i −0.896972 + 0.777231i
$$275$$ −23.8371 + 13.7624i −1.43743 + 0.829901i
$$276$$ 3.41463 + 3.36754i 0.205536 + 0.202702i
$$277$$ 3.10507 5.37813i 0.186565 0.323141i −0.757538 0.652792i $$-0.773598\pi$$
0.944103 + 0.329651i $$0.106931\pi$$
$$278$$ 20.0694 + 6.94608i 1.20368 + 0.416598i
$$279$$ −5.02097 + 7.81279i −0.300598 + 0.467739i
$$280$$ 4.45568 + 10.6389i 0.266278 + 0.635799i
$$281$$ 12.6608 + 5.78198i 0.755278 + 0.344924i 0.755563 0.655076i $$-0.227363\pi$$
−0.000285116 1.00000i $$0.500091\pi$$
$$282$$ −10.4353 + 8.20641i −0.621413 + 0.488685i
$$283$$ −13.9023 + 13.2559i −0.826409 + 0.787979i −0.979756 0.200193i $$-0.935843\pi$$
0.153348 + 0.988172i $$0.450995\pi$$
$$284$$ 0.438365 + 9.20242i 0.0260122 + 0.546063i
$$285$$ −18.0342 12.8421i −1.06825 0.760699i
$$286$$ 5.23839 1.53813i 0.309753 0.0909516i
$$287$$ −13.0004 + 15.4916i −0.767387 + 0.914441i
$$288$$ 0.654861 0.755750i 0.0385880 0.0445330i
$$289$$ −7.58573 7.23298i −0.446219 0.425469i
$$290$$ 10.5836 + 1.01061i 0.621492 + 0.0593453i
$$291$$ −7.01497 + 0.334164i −0.411225 + 0.0195891i
$$292$$ −7.21110 + 1.74939i −0.421998 + 0.102375i
$$293$$ 2.02987 + 14.1181i 0.118586 + 0.824785i 0.959115 + 0.283018i $$0.0913356\pi$$
−0.840528 + 0.541767i $$0.817755\pi$$
$$294$$ 6.45620 + 2.70508i 0.376533 + 0.157763i
$$295$$ 42.6738 + 6.13557i 2.48457 + 0.357227i
$$296$$ −1.41267 0.0672939i −0.0821099 0.00391138i
$$297$$ 1.92973 0.371925i 0.111974 0.0215813i
$$298$$ 13.4693 + 7.77653i 0.780258 + 0.450482i
$$299$$ −12.7183 3.96849i −0.735518 0.229504i
$$300$$ 14.0057i 0.808622i
$$301$$ −22.3720 25.0083i −1.28950 1.44146i
$$302$$ 2.92459 + 1.87952i 0.168291 + 0.108154i
$$303$$ 2.79708 1.11978i 0.160688 0.0643298i
$$304$$ −2.94573 4.13670i −0.168949 0.237256i
$$305$$ −25.5637 10.2342i −1.46377 0.586006i
$$306$$ 0.601930 + 2.48119i 0.0344101 + 0.141840i
$$307$$ −8.96558 13.9507i −0.511693 0.796210i 0.485247 0.874377i $$-0.338730\pi$$
−0.996940 + 0.0781673i $$0.975093\pi$$
$$308$$ −2.94867 + 4.28259i −0.168016 + 0.244023i
$$309$$ −0.357773 1.21846i −0.0203530 0.0693160i
$$310$$ −7.66232 + 39.7559i −0.435190 + 2.25798i
$$311$$ −23.1787 + 8.02224i −1.31435 + 0.454899i −0.892205 0.451631i $$-0.850842\pi$$
−0.422140 + 0.906531i $$0.638721\pi$$
$$312$$ −0.654950 + 2.69974i −0.0370792 + 0.152843i
$$313$$ −3.18069 + 4.46665i −0.179783 + 0.252470i −0.894627 0.446814i $$-0.852558\pi$$
0.714844 + 0.699284i $$0.246498\pi$$
$$314$$ 6.24991 4.01658i 0.352703 0.226668i
$$315$$ −8.09061 8.22085i −0.455854 0.463192i
$$316$$ 0.432908 0.0622428i 0.0243530 0.00350143i
$$317$$ 19.6266 1.87411i 1.10234 0.105261i 0.472013 0.881591i $$-0.343527\pi$$
0.630326 + 0.776331i $$0.282921\pi$$
$$318$$ −2.84001 2.23341i −0.159260 0.125243i
$$319$$ 2.19614 + 4.25992i 0.122960 + 0.238510i
$$320$$ 1.42587 4.11979i 0.0797087 0.230303i
$$321$$ −15.7244 −0.877651
$$322$$ 11.7846 4.70359i 0.656729 0.262121i
$$323$$ 12.9658 0.721437
$$324$$ −0.327068 + 0.945001i −0.0181704 + 0.0525000i
$$325$$ 17.8290 + 34.5834i 0.988973 + 1.91834i
$$326$$ −0.233028 0.183256i −0.0129062 0.0101496i
$$327$$ 13.3812 1.27775i 0.739980 0.0706595i
$$328$$ 7.56605 1.08783i 0.417765 0.0600656i
$$329$$ 8.81955 + 33.9985i 0.486237 + 1.87440i
$$330$$ 7.20752 4.63199i 0.396761 0.254983i
$$331$$ −1.65346 + 2.32196i −0.0908824 + 0.127627i −0.857514 0.514461i $$-0.827992\pi$$
0.766631 + 0.642088i $$0.221931\pi$$
$$332$$ 1.61609 6.66159i 0.0886942 0.365602i
$$333$$ 1.33649 0.462564i 0.0732392 0.0253483i
$$334$$ −1.53425 + 7.96046i −0.0839506 + 0.435577i
$$335$$ −14.6196 49.7896i −0.798751 2.72030i
$$336$$ −1.13701 2.38898i −0.0620289 0.130329i
$$337$$ −6.31742 9.83010i −0.344132 0.535480i 0.625445 0.780269i $$-0.284918\pi$$
−0.969576 + 0.244789i $$0.921281\pi$$
$$338$$ 1.24538 + 5.13354i 0.0677400 + 0.279228i
$$339$$ −4.74108 1.89804i −0.257500 0.103087i
$$340$$ 6.45641 + 9.06676i 0.350148 + 0.491714i
$$341$$ −16.9440 + 6.78335i −0.917568 + 0.367339i
$$342$$ 4.27217 + 2.74556i 0.231013 + 0.148463i
$$343$$ 13.4057 12.7784i 0.723840 0.689968i
$$344$$ 12.6825i 0.683795i
$$345$$ −20.9047 0.352435i −1.12547 0.0189744i
$$346$$ −6.88982 3.97784i −0.370399 0.213850i
$$347$$ 25.9028 4.99235i 1.39053 0.268003i 0.561627 0.827390i $$-0.310176\pi$$
0.828907 + 0.559387i $$0.188963\pi$$
$$348$$ −2.43597 0.116039i −0.130581 0.00622036i
$$349$$ −0.412852 0.0593592i −0.0220995 0.00317742i 0.131256 0.991348i $$-0.458099\pi$$
−0.153356 + 0.988171i $$0.549008\pi$$
$$350$$ −33.9463 14.8585i −1.81451 0.794221i
$$351$$ −0.395358 2.74977i −0.0211026 0.146772i
$$352$$ 1.90985 0.463324i 0.101795 0.0246952i
$$353$$ −22.8196 + 1.08703i −1.21457 + 0.0578569i −0.645061 0.764131i $$-0.723168\pi$$
−0.569505 + 0.821988i $$0.692865\pi$$
$$354$$ −9.84445 0.940031i −0.523227 0.0499621i
$$355$$ −29.0680 27.7163i −1.54277 1.47103i
$$356$$ −5.16871 + 5.96501i −0.273941 + 0.316145i
$$357$$ 6.65234 + 1.17334i 0.352079 + 0.0620996i
$$358$$ −13.7183 + 4.02807i −0.725037 + 0.212890i
$$359$$ −2.51419 1.79035i −0.132694 0.0944909i 0.511783 0.859115i $$-0.328985\pi$$
−0.644477 + 0.764624i $$0.722925\pi$$
$$360$$ 0.207436 + 4.35462i 0.0109328 + 0.229509i
$$361$$ 4.91385 4.68534i 0.258623 0.246597i
$$362$$ −4.09358 + 3.21922i −0.215154 + 0.169199i
$$363$$ −6.49279 2.96516i −0.340783 0.155630i
$$364$$ 5.84864 + 4.45155i 0.306552 + 0.233324i
$$365$$ 17.4892 27.2138i 0.915428 1.42443i
$$366$$ 5.96889 + 2.06585i 0.311999 + 0.107984i
$$367$$ −5.07514 + 8.79040i −0.264920 + 0.458855i −0.967543 0.252708i $$-0.918679\pi$$
0.702623 + 0.711563i $$0.252012\pi$$
$$368$$ −4.50498 1.64474i −0.234838 0.0857378i
$$369$$ −6.61977 + 3.82193i −0.344612 + 0.198962i
$$370$$ 4.65966 4.03762i 0.242244 0.209906i
$$371$$ −8.42614 + 4.51406i −0.437463 + 0.234358i
$$372$$ 1.32169 9.19255i 0.0685264 0.476611i
$$373$$ −2.82790 29.6151i −0.146423 1.53341i −0.708133 0.706079i $$-0.750462\pi$$
0.561710 0.827334i $$-0.310144\pi$$
$$374$$ −1.86485 + 4.65816i −0.0964289 + 0.240868i
$$375$$ 27.0932 + 28.4146i 1.39909 + 1.46732i
$$376$$ 6.08322 11.7998i 0.313718 0.608528i
$$377$$ 6.16267 2.81440i 0.317394 0.144949i
$$378$$ 1.94346 + 1.79527i 0.0999606 + 0.0923385i
$$379$$ −21.0382 18.2297i −1.08066 0.936398i −0.0824748 0.996593i $$-0.526282\pi$$
−0.998187 + 0.0601947i $$0.980828\pi$$
$$380$$ 21.7392 + 4.18990i 1.11520 + 0.214937i
$$381$$ 8.10666 + 1.96666i 0.415317 + 0.100755i
$$382$$ −0.841229 + 8.80975i −0.0430410 + 0.450746i
$$383$$ 4.06181 + 2.09401i 0.207549 + 0.106999i 0.558867 0.829257i $$-0.311236\pi$$
−0.351318 + 0.936256i $$0.614266\pi$$
$$384$$ −0.281733 + 0.959493i −0.0143771 + 0.0489639i
$$385$$ −3.58039 22.3832i −0.182473 1.14075i
$$386$$ −0.360238 + 0.788810i −0.0183356 + 0.0401494i
$$387$$ −4.71361 11.7740i −0.239606 0.598508i
$$388$$ 6.24223 3.21809i 0.316901 0.163374i
$$389$$ −0.0263568 0.136752i −0.00133634 0.00693360i 0.981254 0.192717i $$-0.0617299\pi$$
−0.982591 + 0.185783i $$0.940518\pi$$
$$390$$ −6.05553 10.4885i −0.306634 0.531105i
$$391$$ 10.0924 6.93338i 0.510395 0.350636i
$$392$$ −6.99650 + 0.221380i −0.353377 + 0.0111814i
$$393$$ −12.9615 14.9584i −0.653821 0.754550i
$$394$$ 0.0376997 0.791415i 0.00189928 0.0398709i
$$395$$ −1.17864 + 1.49876i −0.0593039 + 0.0754110i
$$396$$ −1.60084 + 1.13995i −0.0804453 + 0.0572848i
$$397$$ 0.458168 + 0.582607i 0.0229948 + 0.0292402i 0.797415 0.603432i $$-0.206200\pi$$
−0.774420 + 0.632672i $$0.781958\pi$$
$$398$$ 3.00447 + 0.882191i 0.150600 + 0.0442202i
$$399$$ 11.1868 7.44192i 0.560041 0.372562i
$$400$$ 5.81820 + 12.7401i 0.290910 + 0.637004i
$$401$$ −7.62333 + 7.99512i −0.380691 + 0.399257i −0.886003 0.463679i $$-0.846529\pi$$
0.505312 + 0.862937i $$0.331377\pi$$
$$402$$ 3.89307 + 11.2483i 0.194169 + 0.561014i
$$403$$ 8.43834 + 24.3810i 0.420343 + 1.21450i
$$404$$ −2.07914 + 2.18054i −0.103441 + 0.108486i
$$405$$ −1.81103 3.96559i −0.0899906 0.197052i
$$406$$ −2.86553 + 5.78105i −0.142214 + 0.286908i
$$407$$ 2.66681 + 0.783046i 0.132189 + 0.0388141i
$$408$$ −1.57826 2.00692i −0.0781354 0.0993573i
$$409$$ −5.10605 + 3.63600i −0.252478 + 0.179789i −0.699288 0.714840i $$-0.746499\pi$$
0.446810 + 0.894629i $$0.352560\pi$$
$$410$$ −20.5994 + 26.1943i −1.01733 + 1.29364i
$$411$$ −0.934799 + 19.6238i −0.0461102 + 0.967973i
$$412$$ 0.831611 + 0.959730i 0.0409705 + 0.0472825i
$$413$$ −12.7222 + 22.8631i −0.626020 + 1.12502i
$$414$$ 4.79357 0.147412i 0.235591 0.00724491i
$$415$$ 14.9420 + 25.8803i 0.733474 + 1.27041i
$$416$$ −0.525749 2.72785i −0.0257770 0.133744i
$$417$$ 18.8766 9.73156i 0.924390 0.476556i
$$418$$ 3.70926 + 9.26528i 0.181426 + 0.453180i
$$419$$ −0.991689 + 2.17150i −0.0484472 + 0.106085i −0.932308 0.361666i $$-0.882208\pi$$
0.883861 + 0.467750i $$0.154935\pi$$
$$420$$ 10.7745 + 4.11699i 0.525744 + 0.200888i
$$421$$ −5.66528 + 19.2942i −0.276109 + 0.940340i 0.698347 + 0.715759i $$0.253919\pi$$
−0.974456 + 0.224580i $$0.927899\pi$$
$$422$$ 6.90424 + 3.55938i 0.336093 + 0.173268i
$$423$$ −1.26192 + 13.2155i −0.0613568 + 0.642557i
$$424$$ 3.51116 + 0.851798i 0.170517 + 0.0413670i
$$425$$ −35.1127 6.76742i −1.70322 0.328268i
$$426$$ 6.96261 + 6.03314i 0.337340 + 0.292306i
$$427$$ 11.3394 12.2754i 0.548752 0.594048i
$$428$$ 14.3034 6.53216i 0.691382 0.315744i
$$429$$ 2.50171 4.85264i 0.120784 0.234287i
$$430$$ −38.1546 40.0154i −1.83998 1.92971i
$$431$$ 1.97517 4.93375i 0.0951408 0.237650i −0.873162 0.487431i $$-0.837934\pi$$
0.968303 + 0.249780i $$0.0803584\pi$$
$$432$$ −0.0950560 0.995472i −0.00457339 0.0478947i
$$433$$ −0.0638569 + 0.444134i −0.00306876 + 0.0213437i −0.991298 0.131635i $$-0.957977\pi$$
0.988230 + 0.152978i $$0.0488865\pi$$
$$434$$ −20.8782 12.9557i −1.00219 0.621892i
$$435$$ 8.03496 6.96233i 0.385247 0.333818i
$$436$$ −11.6411 + 6.72102i −0.557509 + 0.321878i
$$437$$ 5.01166 23.8337i 0.239740 1.14012i
$$438$$ −3.71013 + 6.42614i −0.177277 + 0.307053i
$$439$$ 12.9593 + 4.48526i 0.618514 + 0.214070i 0.618315 0.785930i $$-0.287815\pi$$
0.000199021 1.00000i $$0.499937\pi$$
$$440$$ −4.63199 + 7.20752i −0.220822 + 0.343605i
$$441$$ 6.41305 2.80586i 0.305383 0.133612i
$$442$$ 6.45184 + 2.94646i 0.306883 + 0.140149i
$$443$$ 4.15758 3.26956i 0.197533 0.155341i −0.514494 0.857494i $$-0.672020\pi$$
0.712026 + 0.702153i $$0.247778\pi$$
$$444$$ −1.02356 + 0.975961i −0.0485759 + 0.0463170i
$$445$$ −1.63726 34.3703i −0.0776136 1.62931i
$$446$$ 10.9795 + 7.81846i 0.519894 + 0.370215i
$$447$$ 14.9230 4.38180i 0.705836 0.207252i
$$448$$ 2.02668 + 1.70076i 0.0957514 + 0.0803533i
$$449$$ −5.78046 + 6.67101i −0.272797 + 0.314825i −0.875573 0.483086i $$-0.839516\pi$$
0.602776 + 0.797911i $$0.294061\pi$$
$$450$$ −10.1364 9.66507i −0.477836 0.455616i
$$451$$ −14.9540 1.42794i −0.704157 0.0672389i
$$452$$ 5.10111 0.242996i 0.239936 0.0114296i
$$453$$ 3.37847 0.819608i 0.158734 0.0385085i
$$454$$ 3.86593 + 26.8882i 0.181437 + 1.26192i
$$455$$ −31.8456 + 3.54995i −1.49295 + 0.166424i
$$456$$ −5.02665 0.722724i −0.235395 0.0338446i
$$457$$ 1.39609 + 0.0665040i 0.0653063 + 0.00311092i 0.0802096 0.996778i $$-0.474441\pi$$
−0.0149033 + 0.999889i $$0.504744\pi$$
$$458$$ −10.7610 + 2.07402i −0.502830 + 0.0969125i
$$459$$ 2.21110 + 1.27658i 0.103205 + 0.0595856i
$$460$$ 19.1620 8.36356i 0.893434 0.389953i
$$461$$ 15.7896i 0.735397i −0.929945 0.367698i $$-0.880146\pi$$
0.929945 0.367698i $$-0.119854\pi$$
$$462$$ 1.06464 + 5.08938i 0.0495316 + 0.236780i
$$463$$ 1.96409 + 1.26224i 0.0912790 + 0.0586615i 0.585484 0.810684i $$-0.300904\pi$$
−0.494205 + 0.869345i $$0.664541\pi$$
$$464$$ 2.26404 0.906384i 0.105105 0.0420778i
$$465$$ 23.4851 + 32.9802i 1.08909 + 1.52942i
$$466$$ 1.33676 + 0.535157i 0.0619241 + 0.0247907i
$$467$$ −8.82754 36.3876i −0.408490 1.68382i −0.689638 0.724154i $$-0.742230\pi$$
0.281148 0.959664i $$-0.409285\pi$$
$$468$$ 1.50193 + 2.33704i 0.0694266 + 0.108030i
$$469$$ 31.3931 + 2.49736i 1.44960 + 0.115318i
$$470$$ 16.3054 + 55.5312i 0.752114 + 2.56146i
$$471$$ 1.40600 7.29503i 0.0647851 0.336137i
$$472$$ 9.34533 3.23445i 0.430154 0.148878i
$$473$$ 5.87611 24.2217i 0.270184 1.11371i
$$474$$ 0.253694 0.356263i 0.0116525 0.0163637i
$$475$$ −59.8350 + 38.4536i −2.74542 + 1.76437i
$$476$$ −6.53860 + 1.69618i −0.299696 + 0.0777441i
$$477$$ −3.57623 + 0.514184i −0.163744 + 0.0235429i
$$478$$ 10.6638 1.01826i 0.487749 0.0465743i
$$479$$ 12.7208 + 10.0038i 0.581230 + 0.457084i 0.864975 0.501815i $$-0.167334\pi$$
−0.283745 + 0.958900i $$0.591577\pi$$
$$480$$ −1.99767 3.87493i −0.0911805 0.176866i
$$481$$ 1.28502 3.71283i 0.0585921 0.169291i
$$482$$ 0.00197135 8.97923e−5
$$483$$ 4.72814 11.7747i 0.215138 0.535770i
$$484$$ 7.13782 0.324446
$$485$$ −10.0138 + 28.9330i −0.454703 + 1.31378i
$$486$$ 0.458227 + 0.888835i 0.0207856 + 0.0403184i
$$487$$ 4.52350 + 3.55732i 0.204979 + 0.161198i 0.715372 0.698744i $$-0.246257\pi$$
−0.510392 + 0.859942i $$0.670500\pi$$
$$488$$ −6.28768 + 0.600400i −0.284630 + 0.0271788i
$$489$$ −0.293436 + 0.0421898i −0.0132696 + 0.00190789i
$$490$$ 21.4091 21.7470i 0.967163 0.982431i
$$491$$ −3.75708 + 2.41453i −0.169555 + 0.108966i −0.622666 0.782488i $$-0.713950\pi$$
0.453111 + 0.891454i $$0.350314\pi$$
$$492$$ 4.43387 6.22650i 0.199894 0.280712i
$$493$$ −1.46794 + 6.05095i −0.0661129 + 0.272521i
$$494$$ 13.3320 4.61424i 0.599833 0.207604i
$$495$$ 1.62143 8.41277i 0.0728778 0.378126i
$$496$$ 2.61647 + 8.91088i 0.117483 + 0.400111i
$$497$$ 22.0093 10.4751i 0.987252 0.469872i
$$498$$ −3.70600 5.76664i −0.166070 0.258409i
$$499$$ 7.58248 + 31.2554i 0.339439 + 1.39918i 0.844247 + 0.535954i $$0.180048\pi$$
−0.504809 + 0.863231i $$0.668437\pi$$
$$500$$ −36.4487 14.5919i −1.63004 0.652568i
$$501$$ 4.70250 + 6.60374i 0.210092 + 0.295033i
$$502$$ 6.96877 2.78987i 0.311031 0.124518i
$$503$$ 9.48397 + 6.09498i 0.422869 + 0.271762i 0.734721 0.678369i $$-0.237313\pi$$
−0.311852 + 0.950131i $$0.600949\pi$$
$$504$$ −2.51361 0.825691i −0.111965 0.0367792i
$$505$$ 13.1349i 0.584496i
$$506$$ 7.84178 + 5.22846i 0.348609 + 0.232433i
$$507$$ 4.57473 + 2.64122i 0.203171 + 0.117301i
$$508$$ −8.19106 + 1.57870i −0.363419 + 0.0700434i
$$509$$ −36.3187 1.73007i −1.60980 0.0766841i −0.776722 0.629844i $$-0.783119\pi$$
−0.833075 + 0.553160i $$0.813422\pi$$
$$510$$ 11.0174 + 1.58406i 0.487856 + 0.0701432i
$$511$$ 11.6393 + 15.8098i 0.514891 + 0.699384i
$$512$$ −0.142315 0.989821i −0.00628949 0.0437443i
$$513$$ 4.93519 1.19726i 0.217894 0.0528605i
$$514$$ 9.05372 0.431282i 0.399343 0.0190230i
$$515$$ −5.51115 0.526251i −0.242850 0.0231894i
$$516$$ 9.17877 + 8.75194i 0.404073 + 0.385282i
$$517$$ −17.0851 + 19.7173i −0.751403 + 0.867166i
$$518$$ 1.27960 + 3.51622i 0.0562223 + 0.154494i
$$519$$ −7.63341 + 2.24137i −0.335070 + 0.0983853i
$$520$$ 9.86538 + 7.02511i 0.432626 + 0.308071i
$$521$$ −0.132060 2.77228i −0.00578565 0.121456i −0.999912 0.0132340i $$-0.995787\pi$$
0.994127 0.108222i $$-0.0345157\pi$$
$$522$$ −1.76499 + 1.68292i −0.0772515 + 0.0736592i
$$523$$ −26.9516 + 21.1949i −1.17851 + 0.926790i −0.998383 0.0568532i $$-0.981893\pi$$
−0.180127 + 0.983643i $$0.557651\pi$$
$$524$$ 18.0041 + 8.22221i 0.786514 + 0.359189i
$$525$$ −34.1792 + 14.3146i −1.49170 + 0.624738i
$$526$$ 3.06951 4.77625i 0.133837 0.208254i
$$527$$ −22.4073 7.75523i −0.976076 0.337823i
$$528$$ 0.982622 1.70195i 0.0427631 0.0740679i
$$529$$ −8.84388 21.2317i −0.384517 0.923118i
$$530$$ −13.6409 + 7.87555i −0.592521 + 0.342092i
$$531$$ −7.47378 + 6.47607i −0.324334 + 0.281037i
$$532$$ −7.08440 + 11.4166i −0.307148 + 0.494971i
$$533$$ −3.02206 + 21.0189i −0.130900 + 0.910428i
$$534$$ 0.750262 + 7.85710i 0.0324670 + 0.340010i
$$535$$ −25.4780 + 63.6410i −1.10151 + 2.75144i
$$536$$ −8.21397 8.61457i −0.354790 0.372093i
$$537$$ −6.55149 + 12.7081i −0.282718 + 0.548396i
$$538$$ −12.2464 + 5.59275i −0.527980 + 0.241121i
$$539$$ 13.4648 + 2.81884i 0.579970 + 0.121416i
$$540$$ 3.29473 + 2.85490i 0.141783 + 0.122855i
$$541$$ −28.4915 5.49129i −1.22495 0.236089i −0.464549 0.885548i $$-0.653783\pi$$
−0.760397 + 0.649459i $$0.774996\pi$$
$$542$$ 0.981579 + 0.238128i 0.0421624 + 0.0102285i
$$543$$ −0.495029 + 5.18418i −0.0212437 + 0.222474i
$$544$$ 2.26934 + 1.16993i 0.0972971 + 0.0501601i
$$545$$ 16.5099 56.2275i 0.707206 2.40852i
$$546$$ 7.25776 1.16094i 0.310603 0.0496838i
$$547$$ −9.72143 + 21.2870i −0.415658 + 0.910165i 0.579781 + 0.814772i $$0.303138\pi$$
−0.995440 + 0.0953926i $$0.969589\pi$$
$$548$$ −7.30172 18.2388i −0.311914 0.779123i
$$549$$ 5.61413 2.89429i 0.239605 0.123525i
$$550$$ −5.20909 27.0273i −0.222116 1.15245i
$$551$$ 6.19235 + 10.7255i 0.263803 + 0.456920i
$$552$$ −4.29914 + 2.12541i −0.182984 + 0.0904635i
$$553$$ −0.594349 0.992842i −0.0252743 0.0422199i
$$554$$ 4.06677 + 4.69330i 0.172781 + 0.199399i
$$555$$ 0.293371 6.15863i 0.0124529 0.261419i
$$556$$ −13.1281 + 16.6938i −0.556756 + 0.707973i
$$557$$ −19.4530 + 13.8524i −0.824250 + 0.586946i −0.912465 0.409155i $$-0.865823\pi$$
0.0882143 + 0.996102i $$0.471884\pi$$
$$558$$ −5.74089 7.30013i −0.243031 0.309039i
$$559$$ −33.8055 9.92618i −1.42982 0.419833i
$$560$$ −11.5111 + 0.730963i −0.486434 + 0.0308888i
$$561$$ 2.08438 + 4.56415i 0.0880025 + 0.192699i
$$562$$ −9.60490 + 10.0733i −0.405158 + 0.424918i
$$563$$ 13.5332 + 39.1016i 0.570356 + 1.64793i 0.747892 + 0.663820i $$0.231066\pi$$
−0.177536 + 0.984114i $$0.556813\pi$$
$$564$$ −4.34201 12.5454i −0.182832 0.528257i
$$565$$ −15.3638 + 16.1131i −0.646359 + 0.677882i
$$566$$ −7.97979 17.4733i −0.335415 0.734457i
$$567$$ 2.64043 0.167669i 0.110888 0.00704144i
$$568$$ −8.83967 2.59556i −0.370904 0.108907i
$$569$$ 8.00508 + 10.1793i 0.335590 + 0.426738i 0.924335 0.381581i $$-0.124620\pi$$
−0.588745 + 0.808319i $$0.700378\pi$$
$$570$$ 18.0342 12.8421i 0.755368 0.537895i
$$571$$ 8.55888 10.8835i 0.358178 0.455460i −0.573253 0.819378i $$-0.694319\pi$$
0.931431 + 0.363918i $$0.118561\pi$$
$$572$$ −0.259776 + 5.45336i −0.0108618 + 0.228016i
$$573$$ 5.79540 + 6.68825i 0.242106 + 0.279406i
$$574$$ −10.3876 17.3522i −0.433570 0.724265i
$$575$$ −26.0119 + 61.9281i −1.08477 + 2.58258i
$$576$$ 0.500000 + 0.866025i 0.0208333 + 0.0360844i
$$577$$ −6.16758 32.0004i −0.256760 1.33219i −0.849835 0.527048i $$-0.823299\pi$$
0.593076 0.805147i $$-0.297913\pi$$
$$578$$ 9.31622 4.80285i 0.387504 0.199772i
$$579$$ 0.322297 + 0.805058i 0.0133942 + 0.0334571i
$$580$$ −4.41660 + 9.67100i −0.183389 + 0.401567i
$$581$$ −17.9085 + 2.86462i −0.742969 + 0.118845i
$$582$$ 1.97859 6.73845i 0.0820151 0.279318i
$$583$$ −6.31112 3.25361i −0.261380 0.134751i
$$584$$ 0.705341 7.38666i 0.0291872 0.305662i
$$585$$ −11.7697 2.85529i −0.486616 0.118052i
$$586$$ −14.0055 2.69933i −0.578561 0.111508i
$$587$$ 2.89334 + 2.50709i 0.119421 + 0.103479i 0.712524 0.701648i $$-0.247552\pi$$
−0.593103 + 0.805126i $$0.702097\pi$$
$$588$$ −4.66792 + 5.21637i −0.192502 + 0.215120i
$$589$$ −42.9009 + 19.5922i −1.76770 + 0.807283i
$$590$$ −19.7554 + 38.3201i −0.813316 + 1.57761i
$$591$$ −0.546758 0.573423i −0.0224906 0.0235875i
$$592$$ 0.525633 1.31297i 0.0216034 0.0539626i
$$593$$ 1.73156 + 18.1338i 0.0711068 + 0.744664i 0.958772 + 0.284175i $$0.0917198\pi$$
−0.887666 + 0.460489i $$0.847674\pi$$
$$594$$ −0.279683 + 1.94524i −0.0114755 + 0.0798142i
$$595$$ 15.5275 25.0227i 0.636565 1.02583i
$$596$$ −11.7542 + 10.1851i −0.481471 + 0.417197i
$$597$$ 2.71179 1.56565i 0.110986 0.0640779i
$$598$$ 7.90997 10.7208i 0.323463 0.438407i
$$599$$ 3.52720 6.10929i 0.144117 0.249619i −0.784926 0.619590i $$-0.787299\pi$$
0.929043 + 0.369971i $$0.120632\pi$$
$$600$$ 13.2354 + 4.58083i 0.540335 + 0.187012i
$$601$$ 4.44950 6.92356i 0.181499 0.282418i −0.738568 0.674179i $$-0.764498\pi$$
0.920067 + 0.391761i $$0.128134\pi$$
$$602$$ 30.9501 12.9621i 1.26143 0.528297i
$$603$$ 10.8273 + 4.94466i 0.440922 + 0.201362i
$$604$$ −2.73269 + 2.14901i −0.111191 + 0.0874419i
$$605$$ −22.5210 + 21.4737i −0.915607 + 0.873030i
$$606$$ 0.143360 + 3.00949i 0.00582359 + 0.122252i
$$607$$ −18.8699 13.4372i −0.765908 0.545400i 0.129004 0.991644i $$-0.458822\pi$$
−0.894911 + 0.446244i $$0.852761\pi$$
$$608$$ 4.87263 1.43073i 0.197611 0.0580240i
$$609$$ 2.20650 + 6.06326i 0.0894117 + 0.245696i
$$610$$ 18.0324 20.8105i 0.730109 0.842591i
$$611$$ 26.6914 + 25.4502i 1.07982 + 1.02961i
$$612$$ −2.54160 0.242693i −0.102738 0.00981029i
$$613$$ 48.9131 2.33002i 1.97558 0.0941086i 0.980725 0.195393i $$-0.0625981\pi$$
0.994858 + 0.101284i $$0.0322951\pi$$
$$614$$ 16.1158 3.90965i 0.650381 0.157781i
$$615$$ 4.74248 + 32.9846i 0.191235 + 1.33007i
$$616$$ −3.08264 4.18720i −0.124203 0.168707i
$$617$$ 0.850373 + 0.122265i 0.0342347 + 0.00492221i 0.159411 0.987212i $$-0.449041\pi$$
−0.125176 + 0.992135i $$0.539950\pi$$
$$618$$ 1.26847 + 0.0604245i 0.0510252 + 0.00243063i
$$619$$ −20.9435 + 4.03653i −0.841790 + 0.162242i −0.591879 0.806027i $$-0.701614\pi$$
−0.249911 + 0.968269i $$0.580401\pi$$
$$620$$ −35.0632 20.2438i −1.40817 0.813010i
$$621$$ 3.20125 3.57099i 0.128462 0.143299i
$$622$$ 24.5277i 0.983472i
$$623$$ 19.8395 + 6.51705i 0.794853 + 0.261100i
$$624$$ −2.33704 1.50193i −0.0935566 0.0601252i
$$625$$ 93.8879 37.5870i 3.75552 1.50348i
$$626$$ −3.18069 4.46665i −0.127126 0.178523i
$$627$$ 9.26528 + 3.70926i 0.370020 + 0.148134i
$$628$$ 1.75152 + 7.21987i 0.0698933 + 0.288104i
$$629$$ 1.95218 + 3.03765i 0.0778386 + 0.121119i
$$630$$ 10.4149 4.95685i 0.414939 0.197486i
$$631$$ −2.37287 8.08126i −0.0944626 0.321710i 0.898682 0.438600i $$-0.144526\pi$$
−0.993145 + 0.116890i $$0.962707\pi$$
$$632$$ −0.0827709 + 0.429456i −0.00329245 + 0.0170829i
$$633$$ 7.34052 2.54058i 0.291759 0.100979i
$$634$$ −4.64819 + 19.1601i −0.184603 + 0.760945i
$$635$$ 21.0947 29.6233i 0.837117 1.17557i
$$636$$ 3.03945 1.95334i 0.120522 0.0774549i
$$637$$ 4.88583 18.8226i 0.193584 0.745777i
$$638$$ −4.74391 + 0.682072i −0.187813 + 0.0270035i
$$639$$ 9.17114 0.875738i 0.362805 0.0346436i
$$640$$ 3.42684 + 2.69490i 0.135458 + 0.106525i
$$641$$ −8.11787 15.7465i −0.320636 0.621948i 0.672342 0.740240i $$-0.265288\pi$$
−0.992979 + 0.118292i $$0.962258\pi$$
$$642$$ 5.14295 14.8596i 0.202976 0.586461i
$$643$$ −15.8305 −0.624294 −0.312147 0.950034i $$-0.601048\pi$$
−0.312147 + 0.950034i $$0.601048\pi$$
$$644$$ 0.590540 + 12.6748i 0.0232706 + 0.499458i
$$645$$ −55.2902 −2.17705
$$646$$ −4.24070 + 12.2527i −0.166848 + 0.482076i
$$647$$ 13.8859 + 26.9349i 0.545912 + 1.05892i 0.986889 + 0.161403i $$0.0516019\pi$$
−0.440977 + 0.897519i $$0.645368\pi$$
$$648$$ −0.786053 0.618159i −0.0308791 0.0242836i
$$649$$ −19.3467 + 1.84739i −0.759426 + 0.0725164i
$$650$$ −38.5126 + 5.53728i −1.51059 + 0.217190i
$$651$$ −23.7841 + 6.16982i −0.932171 + 0.241814i
$$652$$ 0.249393 0.160275i 0.00976698 0.00627685i
$$653$$ −14.7788 + 20.7539i −0.578338 + 0.812162i −0.995308 0.0967584i $$-0.969153\pi$$
0.416970 + 0.908920i $$0.363092\pi$$
$$654$$ −3.16908 + 13.0631i −0.123921 + 0.510808i
$$655$$ −81.5419 + 28.2219i −3.18611 + 1.10272i
$$656$$ −1.44661 + 7.50572i −0.0564806 + 0.293049i
$$657$$ 2.09053 + 7.11969i 0.0815593 + 0.277766i
$$658$$ −35.0132 2.78535i −1.36496 0.108584i
$$659$$ −14.5816 22.6894i −0.568017 0.883852i 0.431819 0.901960i $$-0.357872\pi$$
−0.999836 + 0.0181085i $$0.994236\pi$$
$$660$$ 2.01989 + 8.32609i 0.0786240 + 0.324093i
$$661$$ 36.8770 + 14.7633i 1.43435 + 0.574227i 0.953181 0.302402i $$-0.0977884\pi$$
0.481168 + 0.876628i $$0.340213\pi$$
$$662$$ −1.65346 2.32196i −0.0642636 0.0902456i
$$663$$ 6.58473 2.63613i 0.255730 0.102379i
$$664$$ 5.76664 + 3.70600i 0.223789 + 0.143821i
$$665$$ −11.9937 57.3341i −0.465094 2.22332i
$$666$$ 1.41427i 0.0548020i
$$667$$ 10.5554 + 5.03723i 0.408707 + 0.195042i
$$668$$ −7.02083 4.05348i −0.271644 0.156834i
$$669$$ 13.2352 2.55088i 0.511703 0.0986226i
$$670$$ 51.8328 + 2.46910i 2.00248 + 0.0953897i
$$671$$ 12.2867 + 1.76656i 0.474322 + 0.0681972i
$$672$$ 2.62946 0.293116i 0.101434 0.0113072i
$$673$$ −0.120988 0.841492i −0.00466375 0.0324371i 0.987357 0.158514i $$-0.0506704\pi$$
−0.992020 + 0.126077i $$0.959761\pi$$
$$674$$ 11.3557 2.75486i 0.437404 0.106113i
$$675$$ −13.9899 + 0.666420i −0.538471 + 0.0256505i
$$676$$ −5.25853 0.502128i −0.202251 0.0193126i
$$677$$ −2.42591 2.31310i −0.0932353 0.0888996i 0.642028 0.766681i $$-0.278093\pi$$
−0.735264 + 0.677781i $$0.762942\pi$$
$$678$$ 3.34430 3.85953i 0.128437 0.148224i
$$679$$ −14.2332 11.9443i −0.546220 0.458381i
$$680$$ −10.6798 + 3.13587i −0.409551 + 0.120255i
$$681$$ 22.1277 + 15.7570i 0.847934 + 0.603811i
$$682$$ −0.868435 18.2307i −0.0332541 0.698089i
$$683$$ 30.6655 29.2395i 1.17338 1.11882i 0.182623 0.983183i $$-0.441541\pi$$
0.990759 0.135634i $$-0.0433072\pi$$
$$684$$ −3.99185 + 3.13922i −0.152632 + 0.120031i
$$685$$ 77.9084 + 35.5796i 2.97673 + 1.35943i
$$686$$ 7.69101 + 16.8478i 0.293644 + 0.643252i
$$687$$ −5.92492 + 9.21936i −0.226050 + 0.351740i
$$688$$ −11.9850 4.14804i −0.456923 0.158143i
$$689$$ −5.01855 + 8.69238i −0.191192 + 0.331153i
$$690$$ 7.17032 19.6397i 0.272969 0.747671i
$$691$$ 12.0070 6.93223i 0.456767 0.263714i −0.253917 0.967226i $$-0.581719\pi$$
0.710684 + 0.703512i $$0.248386\pi$$
$$692$$ 6.01250 5.20986i 0.228561 0.198049i
$$693$$ 4.41805 + 2.74156i 0.167828 + 0.104143i
$$694$$ −3.75419 + 26.1110i −0.142507 + 0.991159i
$$695$$ −8.80084 92.1666i −0.333835 3.49608i
$$696$$ 0.906384 2.26404i 0.0343564 0.0858181i
$$697$$ −13.4676 14.1244i −0.510120 0.534999i
$$698$$ 0.191125 0.370731i 0.00723420 0.0140324i
$$699$$ 1.30978 0.598156i 0.0495404 0.0226243i
$$700$$ 25.1440 27.2195i 0.950356 1.02880i
$$701$$ 29.9948 + 25.9907i 1.13289 + 0.981655i 0.999955 0.00947022i $$-0.00301451\pi$$
0.132935 + 0.991125i $$0.457560\pi$$
$$702$$ 2.72785 + 0.525749i 0.102956 + 0.0198431i
$$703$$ 6.97971 + 1.69326i 0.263245 + 0.0638625i
$$704$$ −0.186808 + 1.95635i −0.00704060 + 0.0737325i
$$705$$ 51.4419 + 26.5201i 1.93741 + 0.998806i
$$706$$ 6.43633 21.9201i 0.242234 0.824974i
$$707$$ 7.44631 + 2.84526i 0.280047 + 0.107007i
$$708$$ 4.10813 8.99556i 0.154393 0.338074i
$$709$$ 12.2027 + 30.4808i 0.458281 + 1.14473i 0.960075 + 0.279744i $$0.0902495\pi$$
−0.501793 + 0.864988i $$0.667326\pi$$
$$710$$ 35.6992 18.4042i 1.33977 0.690697i
$$711$$ −0.0827709 0.429456i −0.00310415 0.0161059i
$$712$$ −3.94642 6.83540i −0.147898 0.256167i
$$713$$ −22.9167 + 38.1913i −0.858236 + 1.43027i
$$714$$ −3.28457 + 5.90271i −0.122922 + 0.220903i
$$715$$ −15.5865 17.9877i −0.582901 0.672703i
$$716$$ 0.680302 14.2813i 0.0254241 0.533717i
$$717$$ 6.62188 8.42040i 0.247299 0.314466i
$$718$$ 2.51419 1.79035i 0.0938288 0.0668152i
$$719$$ −14.4060 18.3188i −0.537254 0.683175i 0.439326 0.898328i $$-0.355217\pi$$
−0.976580 + 0.215153i $$0.930975\pi$$
$$720$$ −4.18297 1.22823i −0.155890 0.0457734i
$$721$$ 1.49215 3.01033i 0.0555706 0.112111i
$$722$$ 2.82049 + 6.17601i 0.104968 + 0.229847i
$$723$$ 0.00136038 0.00142673i 5.05932e−5 5.30607e-5i
$$724$$ −1.70329 4.92134i −0.0633023 0.182900i
$$725$$ −11.1714 32.2776i −0.414895 1.19876i
$$726$$ 4.92566 5.16588i 0.182808 0.191724i
$$727$$ 11.9405 + 26.1461i 0.442849 + 0.969704i 0.991067 + 0.133368i $$0.0425793\pi$$
−0.548218 + 0.836336i $$0.684693\pi$$
$$728$$ −6.11962 + 4.07101i −0.226808 + 0.150882i
$$729$$ 0.959493 + 0.281733i 0.0355368 + 0.0104345i
$$730$$ 19.9969 + 25.4281i 0.740117 + 0.941136i
$$731$$ 26.3764 18.7825i 0.975565 0.694696i
$$732$$ −3.90446 + 4.96493i −0.144313 + 0.183509i
$$733$$ −1.09915 + 23.0739i −0.0405979 + 0.852255i 0.883112 + 0.469162i $$0.155444\pi$$
−0.923710 + 0.383093i $$0.874859\pi$$
$$734$$ −6.64702 7.67107i −0.245346 0.283144i
$$735$$ −0.965121 30.5016i −0.0355990 1.12507i
$$736$$ 3.02771 3.71927i 0.111603 0.137094i
$$737$$ 11.6961 + 20.2582i 0.430831 + 0.746222i
$$738$$ −1.44661 7.50572i −0.0532504 0.276289i
$$739$$ 33.5103 17.2758i 1.23270 0.635500i 0.286187 0.958174i $$-0.407612\pi$$
0.946510 + 0.322674i $$0.104582\pi$$
$$740$$ 2.29153 + 5.72395i 0.0842381 + 0.210417i
$$741$$ 5.86063 12.8330i 0.215296 0.471431i
$$742$$ −1.50987 9.43911i −0.0554291 0.346521i
$$743$$ 10.1337 34.5121i 0.371768 1.26613i −0.535127 0.844772i $$-0.679736\pi$$
0.906896 0.421355i $$-0.138446\pi$$
$$744$$ 8.25468 + 4.25558i 0.302631 + 0.156017i
$$745$$ 6.44522 67.4974i 0.236135 2.47291i
$$746$$ 28.9112 + 7.01379i 1.05852 + 0.256793i
$$747$$ −6.73094 1.29728i −0.246272 0.0474651i
$$748$$ −3.79203 3.28582i −0.138650 0.120141i
$$749$$ −30.5597 28.2295i −1.11663 1.03148i
$$750$$ −35.7131 + 16.3096i −1.30406 + 0.595544i
$$751$$ −1.62280 + 3.14779i −0.0592168 + 0.114865i −0.916586 0.399837i $$-0.869067\pi$$
0.857370 + 0.514701i $$0.172097\pi$$
$$752$$ 9.16119 + 9.60798i 0.334074 + 0.350367i
$$753$$ 2.78987 6.96877i 0.101669 0.253956i
$$754$$ 0.643996 + 6.74423i 0.0234529 + 0.245610i
$$755$$ 2.15690 15.0016i 0.0784977 0.545964i
$$756$$ −2.33217 + 1.24939i −0.0848202 + 0.0454400i
$$757$$ 16.3182 14.1398i 0.593096 0.513921i −0.305792 0.952098i $$-0.598921\pi$$
0.898889 + 0.438177i $$0.144376\pi$$
$$758$$ 24.1080 13.9188i 0.875644 0.505553i
$$759$$ 9.19546 2.06731i 0.333774 0.0750387i
$$760$$ −11.0697 + 19.1732i −0.401539 + 0.695486i
$$761$$ 4.41489 + 1.52801i 0.160040 + 0.0553903i 0.405913 0.913912i $$-0.366954\pi$$
−0.245873 + 0.969302i $$0.579075\pi$$
$$762$$ −4.50992 + 7.01757i −0.163377 + 0.254220i
$$763$$ 28.2996 + 21.5395i 1.02451 + 0.779783i
$$764$$ −8.05008 3.67635i −0.291242 0.133006i
$$765$$ 8.74928 6.88051i 0.316331 0.248765i
$$766$$ −3.30733 + 3.15353i −0.119499 + 0.113942i
$$767$$ 1.30721 + 27.4416i 0.0472005 +