Properties

Label 966.2.be.b.493.13
Level $966$
Weight $2$
Character 966.493
Analytic conductor $7.714$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(19,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 45]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.be (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 493.13
Character \(\chi\) \(=\) 966.493
Dual form 966.2.be.b.145.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.327068 + 0.945001i) q^{2} +(0.458227 + 0.888835i) q^{3} +(-0.786053 - 0.618159i) q^{4} +(0.301743 - 0.0288129i) q^{5} +(-0.989821 + 0.142315i) q^{6} +(-0.249988 + 2.63391i) q^{7} +(0.841254 - 0.540641i) q^{8} +(-0.580057 + 0.814576i) q^{9} +O(q^{10})\) \(q+(-0.327068 + 0.945001i) q^{2} +(0.458227 + 0.888835i) q^{3} +(-0.786053 - 0.618159i) q^{4} +(0.301743 - 0.0288129i) q^{5} +(-0.989821 + 0.142315i) q^{6} +(-0.249988 + 2.63391i) q^{7} +(0.841254 - 0.540641i) q^{8} +(-0.580057 + 0.814576i) q^{9} +(-0.0714621 + 0.294571i) q^{10} +(3.73249 - 1.29183i) q^{11} +(0.189251 - 0.981929i) q^{12} +(0.539289 + 1.83665i) q^{13} +(-2.40729 - 1.09771i) q^{14} +(0.163876 + 0.254997i) q^{15} +(0.235759 + 0.971812i) q^{16} +(3.12522 + 1.25115i) q^{17} +(-0.580057 - 0.814576i) q^{18} +(7.95134 - 3.18324i) q^{19} +(-0.254997 - 0.163876i) q^{20} +(-2.45567 + 0.984732i) q^{21} +3.94973i q^{22} +(-3.17679 + 3.59277i) q^{23} +(0.866025 + 0.500000i) q^{24} +(-4.81943 + 0.928868i) q^{25} +(-1.91202 - 0.0910808i) q^{26} +(-0.989821 - 0.142315i) q^{27} +(1.82468 - 1.91586i) q^{28} +(0.182480 + 1.26918i) q^{29} +(-0.294571 + 0.0714621i) q^{30} +(-9.93351 + 0.473191i) q^{31} +(-0.995472 - 0.0950560i) q^{32} +(2.85855 + 2.72562i) q^{33} +(-2.20450 + 2.54412i) q^{34} +(0.000458893 + 0.801967i) q^{35} +(0.959493 - 0.281733i) q^{36} +(3.33974 + 2.37822i) q^{37} +(0.407532 + 8.55516i) q^{38} +(-1.38536 + 1.32094i) q^{39} +(0.238265 - 0.187373i) q^{40} +(2.25880 + 1.03156i) q^{41} +(-0.127402 - 2.64268i) q^{42} +(2.60535 - 4.05400i) q^{43} +(-3.73249 - 1.29183i) q^{44} +(-0.151558 + 0.262505i) q^{45} +(-2.35615 - 4.17715i) q^{46} +(-9.73099 + 5.61819i) q^{47} +(-0.755750 + 0.654861i) q^{48} +(-6.87501 - 1.31689i) q^{49} +(0.698498 - 4.85816i) q^{50} +(0.319993 + 3.35111i) q^{51} +(0.711432 - 1.77707i) q^{52} +(7.27378 + 7.62852i) q^{53} +(0.458227 - 0.888835i) q^{54} +(1.08903 - 0.497344i) q^{55} +(1.21370 + 2.35094i) q^{56} +(6.47289 + 5.60879i) q^{57} +(-1.25906 - 0.242663i) q^{58} +(7.18093 + 1.74207i) q^{59} +(0.0288129 - 0.301743i) q^{60} +(-5.36778 - 2.76728i) q^{61} +(2.80177 - 9.54194i) q^{62} +(-2.00052 - 1.73145i) q^{63} +(0.415415 - 0.909632i) q^{64} +(0.215646 + 0.538657i) q^{65} +(-3.51066 + 1.80987i) q^{66} +(0.294967 + 1.53044i) q^{67} +(-1.68318 - 2.91535i) q^{68} +(-4.64907 - 1.17734i) q^{69} +(-0.758010 - 0.261864i) q^{70} +(4.04986 + 4.67379i) q^{71} +(-0.0475819 + 0.998867i) q^{72} +(0.581773 - 0.739784i) q^{73} +(-3.33974 + 2.37822i) q^{74} +(-3.03400 - 3.85804i) q^{75} +(-8.21792 - 2.41300i) q^{76} +(2.46949 + 10.1540i) q^{77} +(-0.795183 - 1.74121i) q^{78} +(-6.89580 + 7.23211i) q^{79} +(0.0991392 + 0.286444i) q^{80} +(-0.327068 - 0.945001i) q^{81} +(-1.71360 + 1.79718i) q^{82} +(4.53632 + 9.93315i) q^{83} +(2.53901 + 0.743942i) q^{84} +(0.979061 + 0.287478i) q^{85} +(2.97891 + 3.78799i) q^{86} +(-1.04447 + 0.743766i) q^{87} +(2.44156 - 3.10469i) q^{88} +(-0.299855 + 6.29474i) q^{89} +(-0.198498 - 0.229079i) q^{90} +(-4.97240 + 0.961302i) q^{91} +(4.71803 - 0.860349i) q^{92} +(-4.97239 - 8.61243i) q^{93} +(-2.12650 - 11.0333i) q^{94} +(2.30754 - 1.18962i) q^{95} +(-0.371662 - 0.928368i) q^{96} +(7.30259 - 15.9904i) q^{97} +(3.49306 - 6.06618i) q^{98} +(-1.11277 + 3.78973i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9} + 22 q^{14} + 16 q^{16} - 66 q^{17} - 16 q^{18} + 36 q^{23} + 24 q^{25} + 12 q^{26} + 44 q^{28} + 8 q^{29} - 48 q^{31} + 16 q^{32} - 46 q^{35} + 32 q^{36} - 22 q^{37} + 66 q^{38} + 8 q^{39} + 176 q^{43} - 8 q^{46} + 120 q^{47} - 24 q^{49} - 48 q^{50} - 22 q^{51} - 12 q^{52} - 44 q^{53} + 44 q^{57} + 18 q^{58} + 12 q^{59} - 32 q^{64} - 108 q^{70} - 48 q^{71} - 16 q^{72} + 252 q^{73} + 22 q^{74} - 36 q^{75} - 42 q^{77} - 16 q^{78} + 44 q^{79} + 16 q^{81} + 12 q^{82} - 22 q^{84} - 76 q^{85} + 22 q^{86} + 24 q^{87} - 22 q^{88} + 16 q^{92} + 12 q^{94} + 26 q^{95} + 2 q^{98} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.327068 + 0.945001i −0.231272 + 0.668216i
\(3\) 0.458227 + 0.888835i 0.264557 + 0.513169i
\(4\) −0.786053 0.618159i −0.393027 0.309079i
\(5\) 0.301743 0.0288129i 0.134943 0.0128855i −0.0273658 0.999625i \(-0.508712\pi\)
0.162309 + 0.986740i \(0.448106\pi\)
\(6\) −0.989821 + 0.142315i −0.404093 + 0.0580998i
\(7\) −0.249988 + 2.63391i −0.0944864 + 0.995526i
\(8\) 0.841254 0.540641i 0.297428 0.191145i
\(9\) −0.580057 + 0.814576i −0.193352 + 0.271525i
\(10\) −0.0714621 + 0.294571i −0.0225983 + 0.0931515i
\(11\) 3.73249 1.29183i 1.12539 0.389501i 0.299929 0.953961i \(-0.403037\pi\)
0.825460 + 0.564461i \(0.190916\pi\)
\(12\) 0.189251 0.981929i 0.0546321 0.283458i
\(13\) 0.539289 + 1.83665i 0.149572 + 0.509395i 0.999857 0.0169276i \(-0.00538847\pi\)
−0.850285 + 0.526323i \(0.823570\pi\)
\(14\) −2.40729 1.09771i −0.643375 0.293375i
\(15\) 0.163876 + 0.254997i 0.0423127 + 0.0658399i
\(16\) 0.235759 + 0.971812i 0.0589397 + 0.242953i
\(17\) 3.12522 + 1.25115i 0.757977 + 0.303448i 0.718271 0.695763i \(-0.244934\pi\)
0.0397057 + 0.999211i \(0.487358\pi\)
\(18\) −0.580057 0.814576i −0.136721 0.191997i
\(19\) 7.95134 3.18324i 1.82416 0.730285i 0.842770 0.538274i \(-0.180923\pi\)
0.981393 0.192011i \(-0.0615008\pi\)
\(20\) −0.254997 0.163876i −0.0570190 0.0366439i
\(21\) −2.45567 + 0.984732i −0.535871 + 0.214886i
\(22\) 3.94973i 0.842084i
\(23\) −3.17679 + 3.59277i −0.662406 + 0.749145i
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) −4.81943 + 0.928868i −0.963885 + 0.185774i
\(26\) −1.91202 0.0910808i −0.374978 0.0178624i
\(27\) −0.989821 0.142315i −0.190491 0.0273885i
\(28\) 1.82468 1.91586i 0.344832 0.362064i
\(29\) 0.182480 + 1.26918i 0.0338857 + 0.235680i 0.999725 0.0234625i \(-0.00746903\pi\)
−0.965839 + 0.259143i \(0.916560\pi\)
\(30\) −0.294571 + 0.0714621i −0.0537810 + 0.0130471i
\(31\) −9.93351 + 0.473191i −1.78411 + 0.0849877i −0.913464 0.406920i \(-0.866603\pi\)
−0.870647 + 0.491908i \(0.836300\pi\)
\(32\) −0.995472 0.0950560i −0.175976 0.0168037i
\(33\) 2.85855 + 2.72562i 0.497610 + 0.474470i
\(34\) −2.20450 + 2.54412i −0.378068 + 0.436314i
\(35\) 0.000458893 0.801967i 7.75670e−5 0.135557i
\(36\) 0.959493 0.281733i 0.159915 0.0469554i
\(37\) 3.33974 + 2.37822i 0.549050 + 0.390977i 0.820648 0.571434i \(-0.193613\pi\)
−0.271598 + 0.962411i \(0.587552\pi\)
\(38\) 0.407532 + 8.55516i 0.0661105 + 1.38783i
\(39\) −1.38536 + 1.32094i −0.221836 + 0.211520i
\(40\) 0.238265 0.187373i 0.0376729 0.0296263i
\(41\) 2.25880 + 1.03156i 0.352765 + 0.161102i 0.583913 0.811816i \(-0.301521\pi\)
−0.231148 + 0.972919i \(0.574248\pi\)
\(42\) −0.127402 2.64268i −0.0196586 0.407775i
\(43\) 2.60535 4.05400i 0.397312 0.618230i −0.583747 0.811935i \(-0.698414\pi\)
0.981060 + 0.193705i \(0.0620506\pi\)
\(44\) −3.73249 1.29183i −0.562695 0.194750i
\(45\) −0.151558 + 0.262505i −0.0225929 + 0.0391320i
\(46\) −2.35615 4.17715i −0.347395 0.615887i
\(47\) −9.73099 + 5.61819i −1.41941 + 0.819497i −0.996247 0.0865567i \(-0.972414\pi\)
−0.423163 + 0.906054i \(0.639080\pi\)
\(48\) −0.755750 + 0.654861i −0.109083 + 0.0945210i
\(49\) −6.87501 1.31689i −0.982145 0.188127i
\(50\) 0.698498 4.85816i 0.0987826 0.687048i
\(51\) 0.319993 + 3.35111i 0.0448079 + 0.469250i
\(52\) 0.711432 1.77707i 0.0986579 0.246436i
\(53\) 7.27378 + 7.62852i 0.999131 + 1.04786i 0.998854 + 0.0478580i \(0.0152395\pi\)
0.000276371 1.00000i \(0.499912\pi\)
\(54\) 0.458227 0.888835i 0.0623567 0.120955i
\(55\) 1.08903 0.497344i 0.146845 0.0670618i
\(56\) 1.21370 + 2.35094i 0.162187 + 0.314158i
\(57\) 6.47289 + 5.60879i 0.857355 + 0.742902i
\(58\) −1.25906 0.242663i −0.165322 0.0318633i
\(59\) 7.18093 + 1.74207i 0.934878 + 0.226799i 0.674134 0.738609i \(-0.264517\pi\)
0.260744 + 0.965408i \(0.416032\pi\)
\(60\) 0.0288129 0.301743i 0.00371973 0.0389548i
\(61\) −5.36778 2.76728i −0.687274 0.354314i 0.0789585 0.996878i \(-0.474841\pi\)
−0.766232 + 0.642564i \(0.777871\pi\)
\(62\) 2.80177 9.54194i 0.355825 1.21183i
\(63\) −2.00052 1.73145i −0.252041 0.218143i
\(64\) 0.415415 0.909632i 0.0519269 0.113704i
\(65\) 0.215646 + 0.538657i 0.0267476 + 0.0668122i
\(66\) −3.51066 + 1.80987i −0.432132 + 0.222779i
\(67\) 0.294967 + 1.53044i 0.0360360 + 0.186972i 0.995486 0.0949054i \(-0.0302548\pi\)
−0.959450 + 0.281878i \(0.909043\pi\)
\(68\) −1.68318 2.91535i −0.204115 0.353538i
\(69\) −4.64907 1.17734i −0.559683 0.141735i
\(70\) −0.758010 0.261864i −0.0905995 0.0312987i
\(71\) 4.04986 + 4.67379i 0.480630 + 0.554677i 0.943338 0.331834i \(-0.107667\pi\)
−0.462707 + 0.886511i \(0.653122\pi\)
\(72\) −0.0475819 + 0.998867i −0.00560758 + 0.117718i
\(73\) 0.581773 0.739784i 0.0680913 0.0865852i −0.750814 0.660513i \(-0.770339\pi\)
0.818906 + 0.573928i \(0.194581\pi\)
\(74\) −3.33974 + 2.37822i −0.388237 + 0.276462i
\(75\) −3.03400 3.85804i −0.350336 0.445489i
\(76\) −8.21792 2.41300i −0.942660 0.276790i
\(77\) 2.46949 + 10.1540i 0.281424 + 1.15716i
\(78\) −0.795183 1.74121i −0.0900367 0.197153i
\(79\) −6.89580 + 7.23211i −0.775839 + 0.813676i −0.986479 0.163887i \(-0.947597\pi\)
0.210640 + 0.977564i \(0.432445\pi\)
\(80\) 0.0991392 + 0.286444i 0.0110841 + 0.0320254i
\(81\) −0.327068 0.945001i −0.0363409 0.105000i
\(82\) −1.71360 + 1.79718i −0.189236 + 0.198465i
\(83\) 4.53632 + 9.93315i 0.497925 + 1.09030i 0.977138 + 0.212606i \(0.0681950\pi\)
−0.479213 + 0.877699i \(0.659078\pi\)
\(84\) 2.53901 + 0.743942i 0.277028 + 0.0811707i
\(85\) 0.979061 + 0.287478i 0.106194 + 0.0311814i
\(86\) 2.97891 + 3.78799i 0.321224 + 0.408470i
\(87\) −1.04447 + 0.743766i −0.111979 + 0.0797401i
\(88\) 2.44156 3.10469i 0.260271 0.330961i
\(89\) −0.299855 + 6.29474i −0.0317846 + 0.667241i 0.925614 + 0.378470i \(0.123550\pi\)
−0.957398 + 0.288771i \(0.906753\pi\)
\(90\) −0.198498 0.229079i −0.0209235 0.0241471i
\(91\) −4.97240 + 0.961302i −0.521249 + 0.100772i
\(92\) 4.71803 0.860349i 0.491889 0.0896976i
\(93\) −4.97239 8.61243i −0.515612 0.893067i
\(94\) −2.12650 11.0333i −0.219331 1.13800i
\(95\) 2.30754 1.18962i 0.236749 0.122052i
\(96\) −0.371662 0.928368i −0.0379326 0.0947512i
\(97\) 7.30259 15.9904i 0.741466 1.62358i −0.0396629 0.999213i \(-0.512628\pi\)
0.781129 0.624370i \(-0.214644\pi\)
\(98\) 3.49306 6.06618i 0.352852 0.612777i
\(99\) −1.11277 + 3.78973i −0.111837 + 0.380883i
\(100\) 4.36251 + 2.24903i 0.436251 + 0.224903i
\(101\) 1.55884 16.3249i 0.155110 1.62439i −0.498036 0.867157i \(-0.665945\pi\)
0.653146 0.757232i \(-0.273449\pi\)
\(102\) −3.27147 0.793649i −0.323923 0.0785830i
\(103\) −19.4449 3.74770i −1.91596 0.369272i −0.916442 0.400167i \(-0.868952\pi\)
−0.999523 + 0.0308948i \(0.990164\pi\)
\(104\) 1.44665 + 1.25353i 0.141855 + 0.122918i
\(105\) −0.712607 + 0.367890i −0.0695433 + 0.0359024i
\(106\) −9.58798 + 4.37868i −0.931267 + 0.425295i
\(107\) 2.83777 5.50451i 0.274338 0.532142i −0.710908 0.703285i \(-0.751716\pi\)
0.985246 + 0.171143i \(0.0547461\pi\)
\(108\) 0.690079 + 0.723734i 0.0664029 + 0.0696413i
\(109\) 7.18823 17.9553i 0.688508 1.71981i −0.00564773 0.999984i \(-0.501798\pi\)
0.694155 0.719825i \(-0.255778\pi\)
\(110\) 0.113803 + 1.19180i 0.0108507 + 0.113634i
\(111\) −0.583487 + 4.05824i −0.0553822 + 0.385191i
\(112\) −2.61861 + 0.378028i −0.247435 + 0.0357203i
\(113\) 6.43936 5.57973i 0.605764 0.524897i −0.297088 0.954850i \(-0.596015\pi\)
0.902851 + 0.429953i \(0.141470\pi\)
\(114\) −7.41739 + 4.28243i −0.694702 + 0.401086i
\(115\) −0.855054 + 1.17562i −0.0797342 + 0.109628i
\(116\) 0.641115 1.11044i 0.0595260 0.103102i
\(117\) −1.80891 0.626070i −0.167234 0.0578802i
\(118\) −3.99491 + 6.21621i −0.367762 + 0.572248i
\(119\) −4.07668 + 7.91879i −0.373709 + 0.725914i
\(120\) 0.275723 + 0.125919i 0.0251700 + 0.0114947i
\(121\) 3.61610 2.84374i 0.328737 0.258521i
\(122\) 4.37071 4.16747i 0.395706 0.377305i
\(123\) 0.118155 + 2.48039i 0.0106537 + 0.223649i
\(124\) 8.10077 + 5.76853i 0.727471 + 0.518030i
\(125\) −2.88165 + 0.846128i −0.257742 + 0.0756800i
\(126\) 2.29053 1.32419i 0.204057 0.117968i
\(127\) −0.325029 + 0.375103i −0.0288416 + 0.0332850i −0.769987 0.638059i \(-0.779737\pi\)
0.741145 + 0.671344i \(0.234283\pi\)
\(128\) 0.723734 + 0.690079i 0.0639697 + 0.0609949i
\(129\) 4.79718 + 0.458076i 0.422369 + 0.0403313i
\(130\) −0.579563 + 0.0276080i −0.0508310 + 0.00242138i
\(131\) −3.67982 + 0.892715i −0.321508 + 0.0779969i −0.393265 0.919425i \(-0.628654\pi\)
0.0717573 + 0.997422i \(0.477139\pi\)
\(132\) −0.562105 3.90952i −0.0489249 0.340280i
\(133\) 6.39664 + 21.7389i 0.554659 + 1.88500i
\(134\) −1.54274 0.221812i −0.133272 0.0191616i
\(135\) −0.302772 0.0144228i −0.0260584 0.00124132i
\(136\) 3.30552 0.637087i 0.283446 0.0546298i
\(137\) −13.9005 8.02544i −1.18760 0.685659i −0.229837 0.973229i \(-0.573819\pi\)
−0.957760 + 0.287570i \(0.907153\pi\)
\(138\) 2.63315 4.00831i 0.224149 0.341210i
\(139\) 8.01298i 0.679652i 0.940488 + 0.339826i \(0.110368\pi\)
−0.940488 + 0.339826i \(0.889632\pi\)
\(140\) 0.495382 0.630672i 0.0418675 0.0533015i
\(141\) −9.45264 6.07484i −0.796056 0.511594i
\(142\) −5.74132 + 2.29848i −0.481801 + 0.192884i
\(143\) 4.38553 + 6.15862i 0.366737 + 0.515010i
\(144\) −0.928368 0.371662i −0.0773640 0.0309719i
\(145\) 0.0916308 + 0.377707i 0.00760952 + 0.0313669i
\(146\) 0.508817 + 0.791735i 0.0421100 + 0.0655245i
\(147\) −1.97981 6.71419i −0.163292 0.553777i
\(148\) −1.15510 3.93390i −0.0949483 0.323364i
\(149\) 1.19735 6.21244i 0.0980907 0.508943i −0.899337 0.437257i \(-0.855950\pi\)
0.997427 0.0716859i \(-0.0228379\pi\)
\(150\) 4.63818 1.60529i 0.378706 0.131071i
\(151\) 2.62598 10.8244i 0.213699 0.880880i −0.759424 0.650596i \(-0.774519\pi\)
0.973123 0.230285i \(-0.0739657\pi\)
\(152\) 4.96811 6.97673i 0.402967 0.565887i
\(153\) −2.83196 + 1.81999i −0.228950 + 0.147138i
\(154\) −10.4032 0.987382i −0.838317 0.0795655i
\(155\) −2.98373 + 0.428995i −0.239659 + 0.0344577i
\(156\) 1.90552 0.181955i 0.152564 0.0145681i
\(157\) 15.0447 + 11.8313i 1.20069 + 0.944237i 0.999377 0.0352891i \(-0.0112352\pi\)
0.201318 + 0.979526i \(0.435478\pi\)
\(158\) −4.57895 8.88193i −0.364282 0.706609i
\(159\) −3.44746 + 9.96078i −0.273401 + 0.789942i
\(160\) −0.303115 −0.0239634
\(161\) −8.66890 9.26554i −0.683205 0.730227i
\(162\) 1.00000 0.0785674
\(163\) 1.94138 5.60925i 0.152061 0.439350i −0.843083 0.537783i \(-0.819262\pi\)
0.995144 + 0.0984332i \(0.0313831\pi\)
\(164\) −1.13787 2.20716i −0.0888526 0.172350i
\(165\) 0.941080 + 0.740073i 0.0732629 + 0.0576146i
\(166\) −10.8705 + 1.03801i −0.843716 + 0.0805651i
\(167\) 14.0825 2.02476i 1.08974 0.156680i 0.426056 0.904697i \(-0.359903\pi\)
0.663680 + 0.748017i \(0.268994\pi\)
\(168\) −1.53345 + 2.15604i −0.118308 + 0.166342i
\(169\) 7.85384 5.04736i 0.604142 0.388258i
\(170\) −0.591887 + 0.831188i −0.0453956 + 0.0637492i
\(171\) −2.01924 + 8.32343i −0.154415 + 0.636509i
\(172\) −4.55396 + 1.57614i −0.347236 + 0.120180i
\(173\) −2.52808 + 13.1169i −0.192206 + 0.997259i 0.749800 + 0.661664i \(0.230150\pi\)
−0.942006 + 0.335595i \(0.891063\pi\)
\(174\) −0.361246 1.23029i −0.0273860 0.0932680i
\(175\) −1.24176 12.9262i −0.0938685 0.977126i
\(176\) 2.13538 + 3.32272i 0.160961 + 0.250459i
\(177\) 1.74207 + 7.18093i 0.130942 + 0.539752i
\(178\) −5.85046 2.34217i −0.438510 0.175553i
\(179\) 6.06070 + 8.51107i 0.452998 + 0.636147i 0.976408 0.215934i \(-0.0692796\pi\)
−0.523410 + 0.852081i \(0.675340\pi\)
\(180\) 0.281402 0.112657i 0.0209745 0.00839692i
\(181\) −4.40160 2.82874i −0.327168 0.210258i 0.366737 0.930325i \(-0.380475\pi\)
−0.693905 + 0.720066i \(0.744111\pi\)
\(182\) 0.717881 5.01333i 0.0532128 0.371613i
\(183\) 6.03912i 0.446424i
\(184\) −0.730086 + 4.73993i −0.0538226 + 0.349433i
\(185\) 1.07627 + 0.621382i 0.0791286 + 0.0456849i
\(186\) 9.76506 1.88206i 0.716009 0.137999i
\(187\) 13.2811 + 0.632658i 0.971212 + 0.0462645i
\(188\) 11.1220 + 1.59910i 0.811155 + 0.116627i
\(189\) 0.622288 2.57153i 0.0452648 0.187051i
\(190\) 0.369469 + 2.56971i 0.0268041 + 0.186427i
\(191\) 17.3366 4.20581i 1.25443 0.304322i 0.447134 0.894467i \(-0.352445\pi\)
0.807297 + 0.590145i \(0.200929\pi\)
\(192\) 0.998867 0.0475819i 0.0720870 0.00343393i
\(193\) 6.90358 + 0.659212i 0.496931 + 0.0474511i 0.340513 0.940240i \(-0.389399\pi\)
0.156418 + 0.987691i \(0.450005\pi\)
\(194\) 12.7225 + 12.1309i 0.913425 + 0.870949i
\(195\) −0.379963 + 0.438501i −0.0272097 + 0.0314017i
\(196\) 4.59008 + 5.28500i 0.327863 + 0.377500i
\(197\) 13.8271 4.06001i 0.985142 0.289264i 0.250797 0.968040i \(-0.419307\pi\)
0.734345 + 0.678776i \(0.237489\pi\)
\(198\) −3.21735 2.29107i −0.228647 0.162819i
\(199\) 0.387288 + 8.13018i 0.0274541 + 0.576333i 0.970124 + 0.242608i \(0.0780028\pi\)
−0.942670 + 0.333725i \(0.891694\pi\)
\(200\) −3.55217 + 3.38699i −0.251177 + 0.239496i
\(201\) −1.22514 + 0.963463i −0.0864150 + 0.0679575i
\(202\) 14.9172 + 6.81246i 1.04957 + 0.479323i
\(203\) −3.38852 + 0.163359i −0.237828 + 0.0114655i
\(204\) 1.81999 2.83196i 0.127425 0.198277i
\(205\) 0.711298 + 0.246183i 0.0496792 + 0.0171941i
\(206\) 9.90139 17.1497i 0.689863 1.19488i
\(207\) −1.08387 4.67175i −0.0753340 0.324709i
\(208\) −1.65774 + 0.957095i −0.114943 + 0.0663626i
\(209\) 25.5661 22.1532i 1.76845 1.53237i
\(210\) −0.114586 0.793739i −0.00790719 0.0547732i
\(211\) 1.99957 13.9073i 0.137656 0.957417i −0.797535 0.603273i \(-0.793863\pi\)
0.935191 0.354145i \(-0.115228\pi\)
\(212\) −1.00194 10.4928i −0.0688134 0.720647i
\(213\) −2.29848 + 5.74132i −0.157489 + 0.393389i
\(214\) 4.27363 + 4.48205i 0.292139 + 0.306387i
\(215\) 0.669338 1.29833i 0.0456484 0.0885456i
\(216\) −0.909632 + 0.415415i −0.0618926 + 0.0282654i
\(217\) 1.23691 26.2823i 0.0839668 1.78416i
\(218\) 14.6168 + 12.6655i 0.989972 + 0.857816i
\(219\) 0.924130 + 0.178111i 0.0624469 + 0.0120357i
\(220\) −1.16347 0.282256i −0.0784414 0.0190297i
\(221\) −0.612526 + 6.41467i −0.0412030 + 0.431497i
\(222\) −3.64420 1.87872i −0.244583 0.126091i
\(223\) −2.27398 + 7.74445i −0.152277 + 0.518607i −0.999929 0.0119459i \(-0.996197\pi\)
0.847652 + 0.530553i \(0.178016\pi\)
\(224\) 0.499225 2.59823i 0.0333559 0.173601i
\(225\) 2.03891 4.46458i 0.135927 0.297639i
\(226\) 3.16675 + 7.91015i 0.210649 + 0.526175i
\(227\) 16.4884 8.50039i 1.09438 0.564190i 0.186088 0.982533i \(-0.440419\pi\)
0.908289 + 0.418343i \(0.137389\pi\)
\(228\) −1.62091 8.41008i −0.107347 0.556971i
\(229\) −5.35289 9.27148i −0.353729 0.612676i 0.633171 0.774012i \(-0.281753\pi\)
−0.986900 + 0.161336i \(0.948420\pi\)
\(230\) −0.831306 1.19254i −0.0548147 0.0786335i
\(231\) −7.89366 + 6.84781i −0.519365 + 0.450553i
\(232\) 0.839681 + 0.969044i 0.0551278 + 0.0636209i
\(233\) −1.26772 + 26.6127i −0.0830510 + 1.74346i 0.446150 + 0.894958i \(0.352795\pi\)
−0.529201 + 0.848497i \(0.677508\pi\)
\(234\) 1.18327 1.50465i 0.0773530 0.0983623i
\(235\) −2.77438 + 1.97562i −0.180980 + 0.128876i
\(236\) −4.56771 5.80832i −0.297333 0.378089i
\(237\) −9.58800 2.81529i −0.622807 0.182873i
\(238\) −6.14991 6.44245i −0.398639 0.417602i
\(239\) −7.02153 15.3750i −0.454185 0.994526i −0.988775 0.149414i \(-0.952261\pi\)
0.534590 0.845112i \(-0.320466\pi\)
\(240\) −0.209173 + 0.219375i −0.0135021 + 0.0141606i
\(241\) 0.692827 + 2.00179i 0.0446289 + 0.128947i 0.965113 0.261832i \(-0.0843268\pi\)
−0.920484 + 0.390779i \(0.872206\pi\)
\(242\) 1.50462 + 4.34732i 0.0967207 + 0.279456i
\(243\) 0.690079 0.723734i 0.0442686 0.0464276i
\(244\) 2.50874 + 5.49337i 0.160606 + 0.351677i
\(245\) −2.11243 0.199273i −0.134958 0.0127311i
\(246\) −2.38261 0.699598i −0.151910 0.0446048i
\(247\) 10.1346 + 12.8872i 0.644847 + 0.819990i
\(248\) −8.10077 + 5.76853i −0.514400 + 0.366302i
\(249\) −6.75027 + 8.58367i −0.427781 + 0.543968i
\(250\) 0.142903 2.99990i 0.00903797 0.189730i
\(251\) −0.556867 0.642659i −0.0351491 0.0405643i 0.737903 0.674907i \(-0.235816\pi\)
−0.773052 + 0.634343i \(0.781271\pi\)
\(252\) 0.502198 + 2.59765i 0.0316355 + 0.163637i
\(253\) −7.21610 + 17.5139i −0.453672 + 1.10109i
\(254\) −0.248166 0.429836i −0.0155713 0.0269703i
\(255\) 0.193111 + 1.00195i 0.0120931 + 0.0627448i
\(256\) −0.888835 + 0.458227i −0.0555522 + 0.0286392i
\(257\) −1.84332 4.60439i −0.114983 0.287214i 0.859702 0.510796i \(-0.170649\pi\)
−0.974685 + 0.223582i \(0.928225\pi\)
\(258\) −2.00189 + 4.38352i −0.124632 + 0.272906i
\(259\) −7.09892 + 8.20207i −0.441105 + 0.509652i
\(260\) 0.163467 0.556717i 0.0101378 0.0345261i
\(261\) −1.13969 0.587551i −0.0705451 0.0363685i
\(262\) 0.359935 3.76941i 0.0222369 0.232875i
\(263\) 29.4558 + 7.14590i 1.81632 + 0.440635i 0.992080 0.125605i \(-0.0400870\pi\)
0.824241 + 0.566239i \(0.191602\pi\)
\(264\) 3.87835 + 0.747490i 0.238696 + 0.0460049i
\(265\) 2.41461 + 2.09227i 0.148328 + 0.128527i
\(266\) −22.6354 1.06528i −1.38787 0.0653164i
\(267\) −5.73239 + 2.61789i −0.350816 + 0.160212i
\(268\) 0.714192 1.38534i 0.0436262 0.0846231i
\(269\) −22.5736 23.6745i −1.37633 1.44346i −0.742004 0.670395i \(-0.766124\pi\)
−0.634330 0.773062i \(-0.718724\pi\)
\(270\) 0.112657 0.281402i 0.00685606 0.0171256i
\(271\) −0.388895 4.07269i −0.0236237 0.247398i −0.999568 0.0293798i \(-0.990647\pi\)
0.975945 0.218018i \(-0.0699593\pi\)
\(272\) −0.479083 + 3.33209i −0.0290487 + 0.202038i
\(273\) −3.13292 3.97915i −0.189613 0.240829i
\(274\) 12.1304 10.5111i 0.732827 0.634998i
\(275\) −16.7885 + 9.69287i −1.01239 + 0.584502i
\(276\) 2.92663 + 3.79932i 0.176163 + 0.228692i
\(277\) 13.4391 23.2773i 0.807480 1.39860i −0.107124 0.994246i \(-0.534164\pi\)
0.914604 0.404350i \(-0.132502\pi\)
\(278\) −7.57227 2.62079i −0.454155 0.157184i
\(279\) 5.37655 8.36608i 0.321886 0.500864i
\(280\) 0.433962 + 0.674410i 0.0259342 + 0.0403037i
\(281\) 6.27030 + 2.86355i 0.374055 + 0.170825i 0.593567 0.804785i \(-0.297719\pi\)
−0.219512 + 0.975610i \(0.570447\pi\)
\(282\) 8.83239 6.94587i 0.525961 0.413620i
\(283\) −9.96805 + 9.50451i −0.592539 + 0.564985i −0.925878 0.377822i \(-0.876673\pi\)
0.333339 + 0.942807i \(0.391825\pi\)
\(284\) −0.294261 6.17731i −0.0174612 0.366556i
\(285\) 2.11475 + 1.50591i 0.125267 + 0.0892023i
\(286\) −7.25427 + 2.13005i −0.428954 + 0.125952i
\(287\) −3.28171 + 5.69161i −0.193713 + 0.335965i
\(288\) 0.654861 0.755750i 0.0385880 0.0445330i
\(289\) −4.10186 3.91112i −0.241286 0.230066i
\(290\) −0.386903 0.0369448i −0.0227197 0.00216947i
\(291\) 17.5591 0.836444i 1.02933 0.0490332i
\(292\) −0.914608 + 0.221882i −0.0535234 + 0.0129846i
\(293\) −1.82380 12.6848i −0.106548 0.741055i −0.971128 0.238560i \(-0.923325\pi\)
0.864580 0.502495i \(-0.167584\pi\)
\(294\) 6.99245 + 0.325071i 0.407808 + 0.0189585i
\(295\) 2.21699 + 0.318755i 0.129078 + 0.0185586i
\(296\) 4.09533 + 0.195085i 0.238036 + 0.0113391i
\(297\) −3.87835 + 0.747490i −0.225045 + 0.0433738i
\(298\) 5.47915 + 3.16339i 0.317399 + 0.183250i
\(299\) −8.31188 3.89711i −0.480688 0.225376i
\(300\) 4.90812i 0.283371i
\(301\) 10.0266 + 7.87572i 0.577923 + 0.453949i
\(302\) 9.37023 + 6.02188i 0.539196 + 0.346520i
\(303\) 15.2245 6.09495i 0.874622 0.350146i
\(304\) 4.96811 + 6.97673i 0.284940 + 0.400143i
\(305\) −1.69942 0.680346i −0.0973086 0.0389565i
\(306\) −0.793649 3.27147i −0.0453699 0.187017i
\(307\) −12.0229 18.7080i −0.686182 1.06772i −0.993246 0.116031i \(-0.962983\pi\)
0.307063 0.951689i \(-0.400654\pi\)
\(308\) 4.33564 9.50813i 0.247046 0.541776i
\(309\) −5.57909 19.0006i −0.317383 1.08091i
\(310\) 0.570481 2.95994i 0.0324011 0.168113i
\(311\) −1.13948 + 0.394377i −0.0646138 + 0.0223631i −0.359184 0.933267i \(-0.616945\pi\)
0.294570 + 0.955630i \(0.404824\pi\)
\(312\) −0.451287 + 1.86023i −0.0255491 + 0.105315i
\(313\) −19.2937 + 27.0942i −1.09054 + 1.53145i −0.267430 + 0.963577i \(0.586174\pi\)
−0.823114 + 0.567876i \(0.807765\pi\)
\(314\) −16.1012 + 10.3476i −0.908642 + 0.583949i
\(315\) −0.653529 0.464813i −0.0368222 0.0261892i
\(316\) 9.89106 1.42212i 0.556416 0.0800005i
\(317\) 23.3614 2.23074i 1.31210 0.125291i 0.584560 0.811351i \(-0.301267\pi\)
0.727545 + 0.686060i \(0.240661\pi\)
\(318\) −8.28540 6.51571i −0.464622 0.365383i
\(319\) 2.32067 + 4.50146i 0.129932 + 0.252034i
\(320\) 0.0991392 0.286444i 0.00554205 0.0160127i
\(321\) 6.19295 0.345657
\(322\) 11.5913 5.16165i 0.645956 0.287648i
\(323\) 28.8324 1.60428
\(324\) −0.327068 + 0.945001i −0.0181704 + 0.0525000i
\(325\) −4.30507 8.35067i −0.238802 0.463212i
\(326\) 4.66578 + 3.66921i 0.258414 + 0.203219i
\(327\) 19.2532 1.83846i 1.06470 0.101667i
\(328\) 2.45793 0.353396i 0.135716 0.0195130i
\(329\) −12.3652 27.0351i −0.681716 1.49049i
\(330\) −1.00717 + 0.647267i −0.0554427 + 0.0356309i
\(331\) −11.0818 + 15.5622i −0.609110 + 0.855375i −0.997821 0.0659847i \(-0.978981\pi\)
0.388711 + 0.921360i \(0.372921\pi\)
\(332\) 2.57448 10.6121i 0.141293 0.582417i
\(333\) −3.87448 + 1.34097i −0.212320 + 0.0734847i
\(334\) −2.69253 + 13.9702i −0.147329 + 0.764415i
\(335\) 0.133101 + 0.453299i 0.00727206 + 0.0247664i
\(336\) −1.53592 2.15429i −0.0837913 0.117526i
\(337\) −13.7384 21.3773i −0.748376 1.16450i −0.981390 0.192023i \(-0.938495\pi\)
0.233014 0.972473i \(-0.425141\pi\)
\(338\) 2.20102 + 9.07272i 0.119720 + 0.493491i
\(339\) 7.91015 + 3.16675i 0.429620 + 0.171994i
\(340\) −0.591887 0.831188i −0.0320996 0.0450775i
\(341\) −36.4655 + 14.5986i −1.97472 + 0.790557i
\(342\) −7.20522 4.63051i −0.389614 0.250389i
\(343\) 5.18725 17.7790i 0.280085 0.959975i
\(344\) 4.81900i 0.259823i
\(345\) −1.43675 0.221300i −0.0773518 0.0119144i
\(346\) −11.5686 6.67915i −0.621933 0.359073i
\(347\) −10.9468 + 2.10982i −0.587653 + 0.113261i −0.474406 0.880306i \(-0.657337\pi\)
−0.113247 + 0.993567i \(0.536125\pi\)
\(348\) 1.28078 + 0.0610109i 0.0686568 + 0.00327053i
\(349\) 28.5332 + 4.10245i 1.52735 + 0.219599i 0.854214 0.519922i \(-0.174039\pi\)
0.673133 + 0.739521i \(0.264948\pi\)
\(350\) 12.6214 + 3.05427i 0.674641 + 0.163257i
\(351\) −0.272418 1.89471i −0.0145406 0.101132i
\(352\) −3.83839 + 0.931183i −0.204587 + 0.0496322i
\(353\) −7.63635 + 0.363764i −0.406442 + 0.0193612i −0.249808 0.968295i \(-0.580367\pi\)
−0.156634 + 0.987657i \(0.550064\pi\)
\(354\) −7.35576 0.702390i −0.390954 0.0373316i
\(355\) 1.35668 + 1.29359i 0.0720052 + 0.0686568i
\(356\) 4.12685 4.76264i 0.218723 0.252419i
\(357\) −8.90654 + 0.00509640i −0.471384 + 0.000269730i
\(358\) −10.0252 + 2.94367i −0.529850 + 0.155578i
\(359\) −6.69926 4.77052i −0.353574 0.251779i 0.389445 0.921050i \(-0.372667\pi\)
−0.743018 + 0.669271i \(0.766606\pi\)
\(360\) 0.0144228 + 0.302772i 0.000760148 + 0.0159575i
\(361\) 39.3399 37.5105i 2.07052 1.97424i
\(362\) 4.11278 3.23433i 0.216163 0.169992i
\(363\) 4.18461 + 1.91105i 0.219635 + 0.100304i
\(364\) 4.50281 + 2.31810i 0.236011 + 0.121501i
\(365\) 0.154230 0.239987i 0.00807278 0.0125615i
\(366\) 5.70697 + 1.97520i 0.298308 + 0.103245i
\(367\) −15.1912 + 26.3119i −0.792974 + 1.37347i 0.131144 + 0.991363i \(0.458135\pi\)
−0.924118 + 0.382108i \(0.875198\pi\)
\(368\) −4.24045 2.24021i −0.221049 0.116779i
\(369\) −2.15051 + 1.24160i −0.111951 + 0.0646351i
\(370\) −0.939219 + 0.813838i −0.0488277 + 0.0423094i
\(371\) −21.9112 + 17.2515i −1.13757 + 0.895652i
\(372\) −1.41529 + 9.84355i −0.0733793 + 0.510364i
\(373\) −0.449886 4.71142i −0.0232942 0.243948i −0.999618 0.0276341i \(-0.991203\pi\)
0.976324 0.216314i \(-0.0694034\pi\)
\(374\) −4.94169 + 12.3438i −0.255529 + 0.638280i
\(375\) −2.07252 2.17359i −0.107024 0.112244i
\(376\) −5.14880 + 9.98729i −0.265529 + 0.515055i
\(377\) −2.23263 + 1.01961i −0.114986 + 0.0525124i
\(378\) 2.22657 + 1.42913i 0.114522 + 0.0735064i
\(379\) 9.53598 + 8.26297i 0.489830 + 0.424440i 0.864435 0.502744i \(-0.167676\pi\)
−0.374605 + 0.927184i \(0.622222\pi\)
\(380\) −2.54922 0.491322i −0.130772 0.0252043i
\(381\) −0.482341 0.117015i −0.0247111 0.00599485i
\(382\) −1.69575 + 17.7587i −0.0867620 + 0.908613i
\(383\) −20.8392 10.7433i −1.06483 0.548959i −0.165493 0.986211i \(-0.552922\pi\)
−0.899339 + 0.437252i \(0.855952\pi\)
\(384\) −0.281733 + 0.959493i −0.0143771 + 0.0489639i
\(385\) 1.03772 + 2.99274i 0.0528869 + 0.152524i
\(386\) −2.88090 + 6.30829i −0.146634 + 0.321083i
\(387\) 1.79104 + 4.47381i 0.0910438 + 0.227417i
\(388\) −15.6249 + 8.05517i −0.793232 + 0.408940i
\(389\) −3.29355 17.0885i −0.166989 0.866424i −0.964694 0.263375i \(-0.915164\pi\)
0.797704 0.603049i \(-0.206048\pi\)
\(390\) −0.290110 0.502485i −0.0146903 0.0254443i
\(391\) −14.4233 + 7.25356i −0.729415 + 0.366828i
\(392\) −6.49559 + 2.60907i −0.328077 + 0.131778i
\(393\) −2.47967 2.86169i −0.125083 0.144353i
\(394\) −0.685697 + 14.3945i −0.0345449 + 0.725187i
\(395\) −1.87238 + 2.38092i −0.0942097 + 0.119797i
\(396\) 3.21735 2.29107i 0.161678 0.115130i
\(397\) −11.4950 14.6171i −0.576918 0.733611i 0.406763 0.913534i \(-0.366658\pi\)
−0.983681 + 0.179923i \(0.942415\pi\)
\(398\) −7.80970 2.29313i −0.391465 0.114944i
\(399\) −16.3912 + 15.6469i −0.820587 + 0.783325i
\(400\) −2.03891 4.46458i −0.101945 0.223229i
\(401\) −4.55165 + 4.77363i −0.227298 + 0.238384i −0.827501 0.561464i \(-0.810238\pi\)
0.600202 + 0.799848i \(0.295087\pi\)
\(402\) −0.509769 1.47288i −0.0254249 0.0734606i
\(403\) −6.22612 17.9892i −0.310145 0.896106i
\(404\) −11.3167 + 11.8686i −0.563028 + 0.590486i
\(405\) −0.125919 0.275723i −0.00625694 0.0137008i
\(406\) 0.953903 3.25559i 0.0473414 0.161572i
\(407\) 15.5378 + 4.56231i 0.770181 + 0.226145i
\(408\) 2.08094 + 2.64614i 0.103022 + 0.131003i
\(409\) −0.836731 + 0.595833i −0.0413737 + 0.0294621i −0.600557 0.799582i \(-0.705054\pi\)
0.559183 + 0.829044i \(0.311115\pi\)
\(410\) −0.465286 + 0.591659i −0.0229788 + 0.0292199i
\(411\) 0.763731 16.0327i 0.0376721 0.790834i
\(412\) 12.9681 + 14.9659i 0.638891 + 0.737319i
\(413\) −6.38362 + 18.4785i −0.314117 + 0.909266i
\(414\) 4.76930 + 0.503724i 0.234399 + 0.0247567i
\(415\) 1.65500 + 2.86655i 0.0812409 + 0.140713i
\(416\) −0.362263 1.87960i −0.0177614 0.0921548i
\(417\) −7.12222 + 3.67176i −0.348777 + 0.179807i
\(418\) 12.5729 + 31.4056i 0.614961 + 1.53610i
\(419\) 13.9851 30.6232i 0.683218 1.49604i −0.175979 0.984394i \(-0.556309\pi\)
0.859197 0.511645i \(-0.170964\pi\)
\(420\) 0.787561 + 0.151323i 0.0384291 + 0.00738379i
\(421\) 5.56829 18.9639i 0.271382 0.924242i −0.705184 0.709024i \(-0.749136\pi\)
0.976566 0.215218i \(-0.0690461\pi\)
\(422\) 12.4884 + 6.43822i 0.607926 + 0.313408i
\(423\) 1.06809 11.1855i 0.0519321 0.543857i
\(424\) 10.2434 + 2.48502i 0.497463 + 0.120683i
\(425\) −16.2239 3.12690i −0.786975 0.151677i
\(426\) −4.67379 4.04986i −0.226446 0.196217i
\(427\) 8.63067 13.4465i 0.417667 0.650721i
\(428\) −5.63331 + 2.57264i −0.272296 + 0.124353i
\(429\) −3.46443 + 6.72006i −0.167264 + 0.324448i
\(430\) 1.00801 + 1.05717i 0.0486104 + 0.0509812i
\(431\) −5.06769 + 12.6585i −0.244102 + 0.609738i −0.998933 0.0461816i \(-0.985295\pi\)
0.754831 + 0.655920i \(0.227719\pi\)
\(432\) −0.0950560 0.995472i −0.00457339 0.0478947i
\(433\) 0.746406 5.19137i 0.0358700 0.249481i −0.963995 0.265921i \(-0.914324\pi\)
0.999865 + 0.0164396i \(0.00523313\pi\)
\(434\) 24.4322 + 9.76498i 1.17279 + 0.468734i
\(435\) −0.293732 + 0.254520i −0.0140834 + 0.0122033i
\(436\) −16.7496 + 9.67038i −0.802160 + 0.463127i
\(437\) −13.8231 + 38.6798i −0.661248 + 1.85031i
\(438\) −0.470569 + 0.815049i −0.0224846 + 0.0389445i
\(439\) −6.44834 2.23179i −0.307762 0.106518i 0.168821 0.985647i \(-0.446004\pi\)
−0.476584 + 0.879129i \(0.658125\pi\)
\(440\) 0.647267 1.00717i 0.0308572 0.0480148i
\(441\) 5.06061 4.83635i 0.240981 0.230302i
\(442\) −5.86153 2.67687i −0.278804 0.127326i
\(443\) −16.7031 + 13.1355i −0.793590 + 0.624086i −0.930414 0.366509i \(-0.880553\pi\)
0.136824 + 0.990595i \(0.456310\pi\)
\(444\) 2.96729 2.82931i 0.140821 0.134273i
\(445\) 0.0908906 + 1.90803i 0.00430863 + 0.0904493i
\(446\) −6.57477 4.68187i −0.311324 0.221693i
\(447\) 6.07050 1.78246i 0.287125 0.0843074i
\(448\) 2.29204 + 1.32156i 0.108289 + 0.0624380i
\(449\) −9.12172 + 10.5270i −0.430480 + 0.496801i −0.929001 0.370077i \(-0.879331\pi\)
0.498521 + 0.866878i \(0.333877\pi\)
\(450\) 3.55217 + 3.38699i 0.167451 + 0.159664i
\(451\) 9.76355 + 0.932306i 0.459748 + 0.0439006i
\(452\) −8.51084 + 0.405421i −0.400316 + 0.0190694i
\(453\) 10.8244 2.62598i 0.508577 0.123379i
\(454\) 2.64003 + 18.3618i 0.123903 + 0.861762i
\(455\) −1.47269 + 0.433335i −0.0690406 + 0.0203151i
\(456\) 8.47768 + 1.21891i 0.397004 + 0.0570805i
\(457\) 25.1149 + 1.19637i 1.17483 + 0.0559638i 0.625897 0.779906i \(-0.284733\pi\)
0.548928 + 0.835869i \(0.315036\pi\)
\(458\) 10.5123 2.02608i 0.491208 0.0946726i
\(459\) −2.91535 1.68318i −0.136077 0.0785641i
\(460\) 1.39884 0.395544i 0.0652213 0.0184423i
\(461\) 2.86883i 0.133615i −0.997766 0.0668074i \(-0.978719\pi\)
0.997766 0.0668074i \(-0.0212813\pi\)
\(462\) −3.88942 9.69921i −0.180952 0.451248i
\(463\) 25.4340 + 16.3454i 1.18202 + 0.759636i 0.975756 0.218861i \(-0.0702341\pi\)
0.206261 + 0.978497i \(0.433870\pi\)
\(464\) −1.19038 + 0.476556i −0.0552620 + 0.0221236i
\(465\) −1.74853 2.45547i −0.0810861 0.113870i
\(466\) −24.7344 9.90215i −1.14580 0.458708i
\(467\) 3.97070 + 16.3674i 0.183742 + 0.757395i 0.986860 + 0.161575i \(0.0516575\pi\)
−0.803118 + 0.595819i \(0.796827\pi\)
\(468\) 1.03489 + 1.61032i 0.0478378 + 0.0744370i
\(469\) −4.10477 + 0.394329i −0.189541 + 0.0182084i
\(470\) −0.959557 3.26795i −0.0442611 0.150739i
\(471\) −3.62217 + 18.7936i −0.166901 + 0.865965i
\(472\) 6.98282 2.41678i 0.321410 0.111241i
\(473\) 4.48738 18.4972i 0.206330 0.850503i
\(474\) 5.79638 8.13988i 0.266236 0.373877i
\(475\) −35.3641 + 22.7271i −1.62262 + 1.04279i
\(476\) 8.09956 3.70455i 0.371243 0.169798i
\(477\) −10.4332 + 1.50007i −0.477704 + 0.0686835i
\(478\) 16.8259 1.60668i 0.769599 0.0734878i
\(479\) 11.0201 + 8.66627i 0.503519 + 0.395972i 0.837355 0.546659i \(-0.184101\pi\)
−0.333836 + 0.942631i \(0.608343\pi\)
\(480\) −0.138895 0.269419i −0.00633968 0.0122973i
\(481\) −2.56687 + 7.41649i −0.117039 + 0.338163i
\(482\) −2.11830 −0.0964858
\(483\) 4.26322 11.9509i 0.193983 0.543787i
\(484\) −4.60033 −0.209106
\(485\) 1.74277 5.03541i 0.0791352 0.228646i
\(486\) 0.458227 + 0.888835i 0.0207856 + 0.0403184i
\(487\) 6.44435 + 5.06789i 0.292021 + 0.229648i 0.753412 0.657549i \(-0.228407\pi\)
−0.461390 + 0.887197i \(0.652649\pi\)
\(488\) −6.01177 + 0.574055i −0.272140 + 0.0259862i
\(489\) 5.87529 0.844739i 0.265690 0.0382004i
\(490\) 0.879221 1.93107i 0.0397191 0.0872368i
\(491\) −24.6818 + 15.8621i −1.11388 + 0.715845i −0.962134 0.272575i \(-0.912125\pi\)
−0.151742 + 0.988420i \(0.548488\pi\)
\(492\) 1.44040 2.02276i 0.0649381 0.0911929i
\(493\) −1.01764 + 4.19477i −0.0458322 + 0.188923i
\(494\) −15.4931 + 5.36220i −0.697066 + 0.241257i
\(495\) −0.226576 + 1.17559i −0.0101838 + 0.0528387i
\(496\) −2.80177 9.54194i −0.125803 0.428446i
\(497\) −13.3228 + 9.49861i −0.597609 + 0.426071i
\(498\) −5.90378 9.18646i −0.264555 0.411655i
\(499\) −4.21339 17.3678i −0.188617 0.777491i −0.984980 0.172671i \(-0.944760\pi\)
0.796362 0.604820i \(-0.206755\pi\)
\(500\) 2.78817 + 1.11621i 0.124691 + 0.0499186i
\(501\) 8.25264 + 11.5892i 0.368701 + 0.517768i
\(502\) 0.789446 0.316047i 0.0352347 0.0141059i
\(503\) −18.0095 11.5740i −0.803004 0.516060i 0.0735906 0.997289i \(-0.476554\pi\)
−0.876595 + 0.481229i \(0.840191\pi\)
\(504\) −2.61904 0.375031i −0.116661 0.0167052i
\(505\) 4.97083i 0.221199i
\(506\) −14.1905 12.5474i −0.630843 0.557802i
\(507\) 8.08511 + 4.66794i 0.359072 + 0.207310i
\(508\) 0.487363 0.0939315i 0.0216232 0.00416754i
\(509\) 3.49594 + 0.166532i 0.154955 + 0.00738141i 0.124916 0.992167i \(-0.460134\pi\)
0.0300389 + 0.999549i \(0.490437\pi\)
\(510\) −1.01001 0.145217i −0.0447239 0.00643033i
\(511\) 1.80309 + 1.71728i 0.0797641 + 0.0759678i
\(512\) −0.142315 0.989821i −0.00628949 0.0437443i
\(513\) −8.32343 + 2.01924i −0.367488 + 0.0891517i
\(514\) 4.95404 0.235990i 0.218513 0.0104091i
\(515\) −5.97534 0.570576i −0.263305 0.0251426i
\(516\) −3.48768 3.32549i −0.153536 0.146397i
\(517\) −29.0631 + 33.5406i −1.27819 + 1.47511i
\(518\) −5.42913 9.39112i −0.238542 0.412622i
\(519\) −12.8172 + 3.76347i −0.562612 + 0.165198i
\(520\) 0.472633 + 0.336560i 0.0207263 + 0.0147592i
\(521\) 1.09097 + 22.9023i 0.0477963 + 1.00337i 0.887639 + 0.460539i \(0.152344\pi\)
−0.839843 + 0.542829i \(0.817353\pi\)
\(522\) 0.927993 0.884839i 0.0406171 0.0387284i
\(523\) −3.66084 + 2.87892i −0.160078 + 0.125886i −0.694985 0.719024i \(-0.744589\pi\)
0.534907 + 0.844911i \(0.320347\pi\)
\(524\) 3.44437 + 1.57299i 0.150468 + 0.0687165i
\(525\) 10.9202 7.02683i 0.476597 0.306676i
\(526\) −16.3869 + 25.4985i −0.714504 + 1.11179i
\(527\) −31.6364 10.9495i −1.37810 0.476966i
\(528\) −1.97486 + 3.42056i −0.0859449 + 0.148861i
\(529\) −2.81602 22.8270i −0.122436 0.992476i
\(530\) −2.76694 + 1.59749i −0.120188 + 0.0693907i
\(531\) −5.58440 + 4.83891i −0.242342 + 0.209991i
\(532\) 8.41001 21.0421i 0.364620 0.912290i
\(533\) −0.676467 + 4.70493i −0.0293011 + 0.203793i
\(534\) −0.599031 6.27334i −0.0259226 0.271474i
\(535\) 0.697676 1.74271i 0.0301632 0.0753440i
\(536\) 1.07556 + 1.12801i 0.0464570 + 0.0487227i
\(537\) −4.78776 + 9.28697i −0.206607 + 0.400762i
\(538\) 29.7555 13.5889i 1.28285 0.585858i
\(539\) −27.3621 + 3.96605i −1.17857 + 0.170830i
\(540\) 0.229079 + 0.198498i 0.00985800 + 0.00854200i
\(541\) 26.4192 + 5.09188i 1.13585 + 0.218917i 0.722311 0.691569i \(-0.243080\pi\)
0.413540 + 0.910486i \(0.364292\pi\)
\(542\) 3.97589 + 0.964540i 0.170779 + 0.0414305i
\(543\) 0.497351 5.20850i 0.0213434 0.223518i
\(544\) −2.99214 1.54255i −0.128287 0.0661365i
\(545\) 1.65165 5.62500i 0.0707489 0.240949i
\(546\) 4.78498 1.65916i 0.204778 0.0710057i
\(547\) −0.249348 + 0.545997i −0.0106614 + 0.0233451i −0.914888 0.403708i \(-0.867721\pi\)
0.904226 + 0.427053i \(0.140448\pi\)
\(548\) 5.96551 + 14.9011i 0.254834 + 0.636544i
\(549\) 5.36778 2.76728i 0.229091 0.118105i
\(550\) −3.66877 19.0354i −0.156437 0.811672i
\(551\) 5.49106 + 9.51079i 0.233927 + 0.405173i
\(552\) −4.54757 + 1.52304i −0.193557 + 0.0648248i
\(553\) −17.3249 19.9709i −0.736730 0.849249i
\(554\) 17.6015 + 20.3133i 0.747817 + 0.863027i
\(555\) −0.0591331 + 1.24136i −0.00251006 + 0.0526927i
\(556\) 4.95329 6.29863i 0.210066 0.267121i
\(557\) 33.9748 24.1933i 1.43956 1.02510i 0.448197 0.893935i \(-0.352066\pi\)
0.991360 0.131170i \(-0.0418732\pi\)
\(558\) 6.14745 + 7.81712i 0.260242 + 0.330925i
\(559\) 8.85083 + 2.59884i 0.374350 + 0.109919i
\(560\) −0.779253 + 0.189517i −0.0329294 + 0.00800855i
\(561\) 5.52344 + 12.0946i 0.233200 + 0.510636i
\(562\) −4.75687 + 4.98886i −0.200656 + 0.210442i
\(563\) 6.03963 + 17.4504i 0.254540 + 0.735445i 0.997791 + 0.0664324i \(0.0211617\pi\)
−0.743251 + 0.669013i \(0.766717\pi\)
\(564\) 3.67506 + 10.6184i 0.154748 + 0.447115i
\(565\) 1.78226 1.86918i 0.0749802 0.0786370i
\(566\) −5.72154 12.5284i −0.240494 0.526609i
\(567\) 2.57081 0.625231i 0.107964 0.0262572i
\(568\) 5.93381 + 1.74232i 0.248977 + 0.0731062i
\(569\) 6.25415 + 7.95280i 0.262188 + 0.333399i 0.899268 0.437399i \(-0.144100\pi\)
−0.637080 + 0.770798i \(0.719858\pi\)
\(570\) −2.11475 + 1.50591i −0.0885772 + 0.0630755i
\(571\) −0.717353 + 0.912188i −0.0300203 + 0.0381739i −0.800831 0.598890i \(-0.795609\pi\)
0.770811 + 0.637064i \(0.219851\pi\)
\(572\) 0.359744 7.55196i 0.0150417 0.315763i
\(573\) 11.6824 + 13.4822i 0.488038 + 0.563225i
\(574\) −4.30523 4.96276i −0.179697 0.207142i
\(575\) 11.9731 20.2659i 0.499312 0.845147i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 1.34407 + 6.97371i 0.0559544 + 0.290319i 0.999117 0.0420123i \(-0.0133769\pi\)
−0.943163 + 0.332331i \(0.892165\pi\)
\(578\) 5.03760 2.59706i 0.209536 0.108024i
\(579\) 2.57747 + 6.43822i 0.107116 + 0.267563i
\(580\) 0.161456 0.353540i 0.00670411 0.0146800i
\(581\) −27.2971 + 9.46511i −1.13247 + 0.392679i
\(582\) −4.95258 + 16.8669i −0.205291 + 0.699158i
\(583\) 37.0041 + 19.0769i 1.53255 + 0.790086i
\(584\) 0.0894608 0.936876i 0.00370191 0.0387682i
\(585\) −0.563864 0.136792i −0.0233129 0.00565565i
\(586\) 12.5837 + 2.42530i 0.519826 + 0.100188i
\(587\) −25.9863 22.5173i −1.07257 0.929387i −0.0748712 0.997193i \(-0.523855\pi\)
−0.997699 + 0.0678063i \(0.978400\pi\)
\(588\) −2.59420 + 6.50155i −0.106983 + 0.268119i
\(589\) −77.4784 + 35.3832i −3.19244 + 1.45794i
\(590\) −1.02633 + 1.99080i −0.0422533 + 0.0819599i
\(591\) 9.94464 + 10.4296i 0.409068 + 0.429018i
\(592\) −1.52381 + 3.80629i −0.0626281 + 0.156437i
\(593\) −1.68828 17.6804i −0.0693292 0.726048i −0.961583 0.274514i \(-0.911483\pi\)
0.892254 0.451534i \(-0.149123\pi\)
\(594\) 0.562105 3.90952i 0.0230634 0.160410i
\(595\) −1.00195 + 2.50690i −0.0410758 + 0.102773i
\(596\) −4.78146 + 4.14316i −0.195856 + 0.169710i
\(597\) −7.04893 + 4.06970i −0.288493 + 0.166562i
\(598\) 6.40132 6.58011i 0.261769 0.269081i
\(599\) −8.88079 + 15.3820i −0.362859 + 0.628490i −0.988430 0.151677i \(-0.951533\pi\)
0.625571 + 0.780167i \(0.284866\pi\)
\(600\) −4.63818 1.60529i −0.189353 0.0655357i
\(601\) −18.3578 + 28.5653i −0.748831 + 1.16520i 0.232447 + 0.972609i \(0.425327\pi\)
−0.981278 + 0.192595i \(0.938310\pi\)
\(602\) −10.7219 + 6.89925i −0.436994 + 0.281192i
\(603\) −1.41775 0.647466i −0.0577354 0.0263669i
\(604\) −8.75539 + 6.88531i −0.356252 + 0.280159i
\(605\) 1.00920 0.962267i 0.0410297 0.0391217i
\(606\) 0.780304 + 16.3806i 0.0316977 + 0.665416i
\(607\) −18.7576 13.3573i −0.761349 0.542154i 0.132144 0.991231i \(-0.457814\pi\)
−0.893494 + 0.449076i \(0.851753\pi\)
\(608\) −8.21792 + 2.41300i −0.333281 + 0.0978601i
\(609\) −1.69791 2.93698i −0.0688028 0.119013i
\(610\) 1.19875 1.38344i 0.0485361 0.0560137i
\(611\) −15.5665 14.8426i −0.629752 0.600467i
\(612\) 3.35111 + 0.319993i 0.135461 + 0.0129349i
\(613\) −5.03056 + 0.239635i −0.203183 + 0.00967878i −0.148926 0.988848i \(-0.547582\pi\)
−0.0542561 + 0.998527i \(0.517279\pi\)
\(614\) 21.6113 5.24286i 0.872163 0.211584i
\(615\) 0.107120 + 0.745034i 0.00431949 + 0.0300427i
\(616\) 7.56714 + 7.20699i 0.304889 + 0.290378i
\(617\) 16.1494 + 2.32194i 0.650152 + 0.0934778i 0.459497 0.888179i \(-0.348030\pi\)
0.190655 + 0.981657i \(0.438939\pi\)
\(618\) 19.7804 + 0.942254i 0.795682 + 0.0379030i
\(619\) −30.2155 + 5.82356i −1.21446 + 0.234069i −0.755956 0.654622i \(-0.772828\pi\)
−0.458507 + 0.888691i \(0.651616\pi\)
\(620\) 2.61056 + 1.50721i 0.104842 + 0.0605308i
\(621\) 3.65576 3.10410i 0.146701 0.124563i
\(622\) 1.20579i 0.0483480i
\(623\) −16.5048 2.36340i −0.661252 0.0946876i
\(624\) −1.61032 1.03489i −0.0644643 0.0414287i
\(625\) 21.9376 8.78248i 0.877503 0.351299i
\(626\) −19.2937 27.0942i −0.771131 1.08290i
\(627\) 31.4056 + 12.5729i 1.25422 + 0.502114i
\(628\) −4.51231 18.6000i −0.180061 0.742220i
\(629\) 7.46191 + 11.6110i 0.297526 + 0.462960i
\(630\) 0.652997 0.465560i 0.0260160 0.0185484i
\(631\) 3.02361 + 10.2975i 0.120368 + 0.409936i 0.997529 0.0702614i \(-0.0223833\pi\)
−0.877161 + 0.480197i \(0.840565\pi\)
\(632\) −1.89115 + 9.81219i −0.0752257 + 0.390308i
\(633\) 13.2775 4.59540i 0.527735 0.182651i
\(634\) −5.53270 + 22.8061i −0.219732 + 0.905746i
\(635\) −0.0872671 + 0.122550i −0.00346309 + 0.00486323i
\(636\) 8.86724 5.69863i 0.351609 0.225965i
\(637\) −1.28895 13.3372i −0.0510701 0.528439i
\(638\) −5.01290 + 0.720747i −0.198463 + 0.0285346i
\(639\) −6.15631 + 0.587856i −0.243540 + 0.0232552i
\(640\) 0.238265 + 0.187373i 0.00941823 + 0.00740658i
\(641\) −18.1831 35.2703i −0.718190 1.39309i −0.911228 0.411903i \(-0.864864\pi\)
0.193037 0.981191i \(-0.438166\pi\)
\(642\) −2.02552 + 5.85234i −0.0799407 + 0.230974i
\(643\) −9.23450 −0.364173 −0.182087 0.983282i \(-0.558285\pi\)
−0.182087 + 0.983282i \(0.558285\pi\)
\(644\) 1.08664 + 12.6420i 0.0428195 + 0.498163i
\(645\) 1.46071 0.0575155
\(646\) −9.43015 + 27.2466i −0.371024 + 1.07200i
\(647\) −1.96193 3.80562i −0.0771315 0.149614i 0.847116 0.531408i \(-0.178337\pi\)
−0.924248 + 0.381794i \(0.875307\pi\)
\(648\) −0.786053 0.618159i −0.0308791 0.0242836i
\(649\) 29.0532 2.77425i 1.14044 0.108899i
\(650\) 9.29944 1.33706i 0.364754 0.0524437i
\(651\) 23.9274 10.9438i 0.937790 0.428923i
\(652\) −4.99343 + 3.20908i −0.195558 + 0.125677i
\(653\) 14.7512 20.7152i 0.577260 0.810648i −0.417944 0.908473i \(-0.637249\pi\)
0.995204 + 0.0978248i \(0.0311885\pi\)
\(654\) −4.55976 + 18.7956i −0.178301 + 0.734965i
\(655\) −1.08464 + 0.375397i −0.0423803 + 0.0146680i
\(656\) −0.469949 + 2.43833i −0.0183484 + 0.0952006i
\(657\) 0.265149 + 0.903015i 0.0103445 + 0.0352300i
\(658\) 29.5924 2.84282i 1.15363 0.110825i
\(659\) 12.6880 + 19.7429i 0.494254 + 0.769075i 0.995351 0.0963166i \(-0.0307061\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(660\) −0.282256 1.16347i −0.0109868 0.0452882i
\(661\) −22.9821 9.20063i −0.893899 0.357863i −0.121194 0.992629i \(-0.538672\pi\)
−0.772705 + 0.634766i \(0.781097\pi\)
\(662\) −11.0818 15.5622i −0.430706 0.604842i
\(663\) −5.98226 + 2.39494i −0.232332 + 0.0930116i
\(664\) 9.18646 + 5.90378i 0.356504 + 0.229111i
\(665\) 2.55650 + 6.37525i 0.0991368 + 0.247222i
\(666\) 4.09997i 0.158871i
\(667\) −5.13957 3.37630i −0.199005 0.130731i
\(668\) −12.3212 7.11365i −0.476722 0.275235i
\(669\) −7.92554 + 1.52752i −0.306419 + 0.0590574i
\(670\) −0.471901 0.0224794i −0.0182311 0.000868455i
\(671\) −23.6101 3.39461i −0.911456 0.131048i
\(672\) 2.53815 0.746847i 0.0979114 0.0288102i
\(673\) −4.82462 33.5560i −0.185975 1.29349i −0.842300 0.539009i \(-0.818799\pi\)
0.656325 0.754479i \(-0.272110\pi\)
\(674\) 24.6950 5.99093i 0.951214 0.230762i
\(675\) 4.90256 0.233538i 0.188700 0.00898887i
\(676\) −9.29361 0.887432i −0.357446 0.0341320i
\(677\) −23.8270 22.7190i −0.915747 0.873163i 0.0765473 0.997066i \(-0.475610\pi\)
−0.992294 + 0.123903i \(0.960459\pi\)
\(678\) −5.57973 + 6.43936i −0.214288 + 0.247302i
\(679\) 40.2919 + 23.2318i 1.54626 + 0.891555i
\(680\) 0.979061 0.287478i 0.0375453 0.0110243i
\(681\) 15.1109 + 10.7604i 0.579051 + 0.412340i
\(682\) −1.86898 39.2346i −0.0715668 1.50237i
\(683\) 14.8617 14.1706i 0.568667 0.542223i −0.350259 0.936653i \(-0.613906\pi\)
0.918926 + 0.394430i \(0.129058\pi\)
\(684\) 6.73243 5.29445i 0.257421 0.202438i
\(685\) −4.42560 2.02110i −0.169093 0.0772224i
\(686\) 15.1046 + 10.7169i 0.576695 + 0.409173i
\(687\) 5.78798 9.00627i 0.220825 0.343611i
\(688\) 4.55396 + 1.57614i 0.173618 + 0.0600899i
\(689\) −10.0883 + 17.4734i −0.384332 + 0.665683i
\(690\) 0.679042 1.28535i 0.0258507 0.0489323i
\(691\) −18.8323 + 10.8728i −0.716414 + 0.413622i −0.813431 0.581661i \(-0.802403\pi\)
0.0970174 + 0.995283i \(0.469070\pi\)
\(692\) 10.0955 8.74783i 0.383774 0.332542i
\(693\) −9.70366 3.87832i −0.368611 0.147325i
\(694\) 1.58656 11.0348i 0.0602249 0.418874i
\(695\) 0.230877 + 2.41786i 0.00875768 + 0.0917145i
\(696\) −0.476556 + 1.19038i −0.0180638 + 0.0451213i
\(697\) 5.76861 + 6.04994i 0.218502 + 0.229158i
\(698\) −13.2091 + 25.6221i −0.499972 + 0.969811i
\(699\) −24.2352 + 11.0678i −0.916660 + 0.418624i
\(700\) −7.01433 + 10.9283i −0.265117 + 0.413049i
\(701\) −14.3776 12.4582i −0.543033 0.470541i 0.339622 0.940562i \(-0.389701\pi\)
−0.882655 + 0.470021i \(0.844246\pi\)
\(702\) 1.87960 + 0.362263i 0.0709408 + 0.0136727i
\(703\) 34.1259 + 8.27884i 1.28708 + 0.312242i
\(704\) 0.375445 3.93184i 0.0141501 0.148187i
\(705\) −3.02730 1.56068i −0.114015 0.0587786i
\(706\) 2.15385 7.33533i 0.0810611 0.276069i
\(707\) 42.6087 + 8.18687i 1.60247 + 0.307899i
\(708\) 3.06959 6.72147i 0.115362 0.252608i
\(709\) −12.6153 31.5115i −0.473778 1.18344i −0.952245 0.305334i \(-0.901232\pi\)
0.478468 0.878105i \(-0.341192\pi\)
\(710\) −1.66617 + 0.858973i −0.0625304 + 0.0322367i
\(711\) −1.89115 9.81219i −0.0709235 0.367986i
\(712\) 3.15094 + 5.45758i 0.118086 + 0.204532i
\(713\) 29.8566 37.1921i 1.11814 1.39285i
\(714\) 2.90823 8.41836i 0.108838 0.315049i
\(715\) 1.50075 + 1.73196i 0.0561249 + 0.0647715i
\(716\) 0.497158 10.4366i 0.0185797 0.390035i
\(717\) 10.4484 13.2862i 0.390202 0.496183i
\(718\) 6.69926 4.77052i 0.250014 0.178034i
\(719\) −1.45733 1.85314i −0.0543491 0.0691105i 0.758119 0.652117i \(-0.226119\pi\)
−0.812468 + 0.583006i \(0.801876\pi\)
\(720\) −0.290837 0.0853974i −0.0108388 0.00318257i
\(721\) 14.7321 50.2794i 0.548653 1.87250i
\(722\) 22.5806 + 49.4447i 0.840364 + 1.84014i
\(723\) −1.46179 + 1.53308i −0.0543647 + 0.0570160i
\(724\) 1.71128 + 4.94442i 0.0635993 + 0.183758i
\(725\) −2.05835 5.94721i −0.0764451 0.220874i
\(726\) −3.17459 + 3.32942i −0.117820 + 0.123566i
\(727\) −9.20871 20.1643i −0.341532 0.747851i 0.658457 0.752619i \(-0.271210\pi\)
−0.999989 + 0.00476780i \(0.998482\pi\)
\(728\) −3.66333 + 3.49698i −0.135772 + 0.129607i
\(729\) 0.959493 + 0.281733i 0.0355368 + 0.0104345i
\(730\) 0.176344 + 0.224240i 0.00652679 + 0.00829948i
\(731\) 13.2145 9.40997i 0.488754 0.348040i
\(732\) −3.73313 + 4.74707i −0.137981 + 0.175457i
\(733\) −2.05122 + 43.0604i −0.0757636 + 1.59047i 0.566548 + 0.824029i \(0.308279\pi\)
−0.642311 + 0.766444i \(0.722024\pi\)
\(734\) −19.8962 22.9615i −0.734384 0.847524i
\(735\) −0.790849 1.96891i −0.0291709 0.0726244i
\(736\) 3.50392 3.27453i 0.129156 0.120701i
\(737\) 3.07802 + 5.33129i 0.113380 + 0.196381i
\(738\) −0.469949 2.43833i −0.0172991 0.0897560i
\(739\) −11.6149 + 5.98788i −0.427260 + 0.220268i −0.658424 0.752647i \(-0.728777\pi\)
0.231164 + 0.972915i \(0.425746\pi\)
\(740\) −0.461889 1.15374i −0.0169794 0.0424124i
\(741\) −6.81063 + 14.9132i −0.250195 + 0.547850i
\(742\) −9.13620 26.3485i −0.335401 0.967285i
\(743\) −12.7283 + 43.3486i −0.466956 + 1.59031i 0.303512 + 0.952828i \(0.401841\pi\)
−0.770468 + 0.637478i \(0.779977\pi\)
\(744\) −8.83927 4.55696i −0.324063 0.167066i
\(745\) 0.182293 1.90906i 0.00667870 0.0699425i
\(746\) 4.59943 + 1.11581i 0.168397 + 0.0408527i
\(747\) −10.7226 2.06662i −0.392320 0.0756135i
\(748\) −10.0486 8.70715i −0.367413 0.318365i
\(749\) 13.7890 + 8.85052i 0.503840 + 0.323391i
\(750\) 2.73190 1.24762i 0.0997548 0.0455565i
\(751\) −0.445981 + 0.865083i −0.0162741 + 0.0315673i −0.896832 0.442371i \(-0.854138\pi\)
0.880558 + 0.473938i \(0.157168\pi\)
\(752\) −7.75399 8.13215i −0.282759 0.296549i
\(753\) 0.316047 0.789446i 0.0115174 0.0287690i
\(754\) −0.233308 2.44332i −0.00849659 0.0889803i
\(755\) 0.480486 3.34186i 0.0174867 0.121623i
\(756\) −2.07876 + 1.63668i −0.0756039 + 0.0595256i
\(757\) 19.1945 16.6321i 0.697635 0.604505i −0.232118 0.972688i \(-0.574566\pi\)
0.929753 + 0.368183i \(0.120020\pi\)
\(758\) −10.9274 + 6.30895i −0.396902 + 0.229151i
\(759\) −18.8736 + 1.61139i −0.685067 + 0.0584899i
\(760\) 1.29807 2.24832i 0.0470859 0.0815552i
\(761\) 8.38573 + 2.90233i 0.303983 + 0.105209i 0.474801 0.880093i \(-0.342520\pi\)
−0.170819 + 0.985303i \(0.554641\pi\)
\(762\) 0.268337 0.417541i 0.00972084 0.0151259i
\(763\) 45.4959 + 23.4218i 1.64706 + 0.847926i
\(764\) −16.2273 7.41078i −0.587085 0.268113i
\(765\) −0.802084 + 0.630766i −0.0289994 + 0.0228054i
\(766\) 16.9683 16.1792i 0.613090 0.584580i
\(767\) 0.673016