Properties

Label 966.2.be.b.145.13
Level $966$
Weight $2$
Character 966.145
Analytic conductor $7.714$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [966,2,Mod(19,966)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 45]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("966.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 966.be (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.71354883526\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 145.13
Character \(\chi\) \(=\) 966.145
Dual form 966.2.be.b.493.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.327068 - 0.945001i) q^{2} +(0.458227 - 0.888835i) q^{3} +(-0.786053 + 0.618159i) q^{4} +(0.301743 + 0.0288129i) q^{5} +(-0.989821 - 0.142315i) q^{6} +(-0.249988 - 2.63391i) q^{7} +(0.841254 + 0.540641i) q^{8} +(-0.580057 - 0.814576i) q^{9} +O(q^{10})\) \(q+(-0.327068 - 0.945001i) q^{2} +(0.458227 - 0.888835i) q^{3} +(-0.786053 + 0.618159i) q^{4} +(0.301743 + 0.0288129i) q^{5} +(-0.989821 - 0.142315i) q^{6} +(-0.249988 - 2.63391i) q^{7} +(0.841254 + 0.540641i) q^{8} +(-0.580057 - 0.814576i) q^{9} +(-0.0714621 - 0.294571i) q^{10} +(3.73249 + 1.29183i) q^{11} +(0.189251 + 0.981929i) q^{12} +(0.539289 - 1.83665i) q^{13} +(-2.40729 + 1.09771i) q^{14} +(0.163876 - 0.254997i) q^{15} +(0.235759 - 0.971812i) q^{16} +(3.12522 - 1.25115i) q^{17} +(-0.580057 + 0.814576i) q^{18} +(7.95134 + 3.18324i) q^{19} +(-0.254997 + 0.163876i) q^{20} +(-2.45567 - 0.984732i) q^{21} -3.94973i q^{22} +(-3.17679 - 3.59277i) q^{23} +(0.866025 - 0.500000i) q^{24} +(-4.81943 - 0.928868i) q^{25} +(-1.91202 + 0.0910808i) q^{26} +(-0.989821 + 0.142315i) q^{27} +(1.82468 + 1.91586i) q^{28} +(0.182480 - 1.26918i) q^{29} +(-0.294571 - 0.0714621i) q^{30} +(-9.93351 - 0.473191i) q^{31} +(-0.995472 + 0.0950560i) q^{32} +(2.85855 - 2.72562i) q^{33} +(-2.20450 - 2.54412i) q^{34} +(0.000458893 - 0.801967i) q^{35} +(0.959493 + 0.281733i) q^{36} +(3.33974 - 2.37822i) q^{37} +(0.407532 - 8.55516i) q^{38} +(-1.38536 - 1.32094i) q^{39} +(0.238265 + 0.187373i) q^{40} +(2.25880 - 1.03156i) q^{41} +(-0.127402 + 2.64268i) q^{42} +(2.60535 + 4.05400i) q^{43} +(-3.73249 + 1.29183i) q^{44} +(-0.151558 - 0.262505i) q^{45} +(-2.35615 + 4.17715i) q^{46} +(-9.73099 - 5.61819i) q^{47} +(-0.755750 - 0.654861i) q^{48} +(-6.87501 + 1.31689i) q^{49} +(0.698498 + 4.85816i) q^{50} +(0.319993 - 3.35111i) q^{51} +(0.711432 + 1.77707i) q^{52} +(7.27378 - 7.62852i) q^{53} +(0.458227 + 0.888835i) q^{54} +(1.08903 + 0.497344i) q^{55} +(1.21370 - 2.35094i) q^{56} +(6.47289 - 5.60879i) q^{57} +(-1.25906 + 0.242663i) q^{58} +(7.18093 - 1.74207i) q^{59} +(0.0288129 + 0.301743i) q^{60} +(-5.36778 + 2.76728i) q^{61} +(2.80177 + 9.54194i) q^{62} +(-2.00052 + 1.73145i) q^{63} +(0.415415 + 0.909632i) q^{64} +(0.215646 - 0.538657i) q^{65} +(-3.51066 - 1.80987i) q^{66} +(0.294967 - 1.53044i) q^{67} +(-1.68318 + 2.91535i) q^{68} +(-4.64907 + 1.17734i) q^{69} +(-0.758010 + 0.261864i) q^{70} +(4.04986 - 4.67379i) q^{71} +(-0.0475819 - 0.998867i) q^{72} +(0.581773 + 0.739784i) q^{73} +(-3.33974 - 2.37822i) q^{74} +(-3.03400 + 3.85804i) q^{75} +(-8.21792 + 2.41300i) q^{76} +(2.46949 - 10.1540i) q^{77} +(-0.795183 + 1.74121i) q^{78} +(-6.89580 - 7.23211i) q^{79} +(0.0991392 - 0.286444i) q^{80} +(-0.327068 + 0.945001i) q^{81} +(-1.71360 - 1.79718i) q^{82} +(4.53632 - 9.93315i) q^{83} +(2.53901 - 0.743942i) q^{84} +(0.979061 - 0.287478i) q^{85} +(2.97891 - 3.78799i) q^{86} +(-1.04447 - 0.743766i) q^{87} +(2.44156 + 3.10469i) q^{88} +(-0.299855 - 6.29474i) q^{89} +(-0.198498 + 0.229079i) q^{90} +(-4.97240 - 0.961302i) q^{91} +(4.71803 + 0.860349i) q^{92} +(-4.97239 + 8.61243i) q^{93} +(-2.12650 + 11.0333i) q^{94} +(2.30754 + 1.18962i) q^{95} +(-0.371662 + 0.928368i) q^{96} +(7.30259 + 15.9904i) q^{97} +(3.49306 + 6.06618i) q^{98} +(-1.11277 - 3.78973i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 320 q + 16 q^{2} + 16 q^{4} - 32 q^{8} - 16 q^{9} + 22 q^{14} + 16 q^{16} - 66 q^{17} - 16 q^{18} + 36 q^{23} + 24 q^{25} + 12 q^{26} + 44 q^{28} + 8 q^{29} - 48 q^{31} + 16 q^{32} - 46 q^{35} + 32 q^{36} - 22 q^{37} + 66 q^{38} + 8 q^{39} + 176 q^{43} - 8 q^{46} + 120 q^{47} - 24 q^{49} - 48 q^{50} - 22 q^{51} - 12 q^{52} - 44 q^{53} + 44 q^{57} + 18 q^{58} + 12 q^{59} - 32 q^{64} - 108 q^{70} - 48 q^{71} - 16 q^{72} + 252 q^{73} + 22 q^{74} - 36 q^{75} - 42 q^{77} - 16 q^{78} + 44 q^{79} + 16 q^{81} + 12 q^{82} - 22 q^{84} - 76 q^{85} + 22 q^{86} + 24 q^{87} - 22 q^{88} + 16 q^{92} + 12 q^{94} + 26 q^{95} + 2 q^{98} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/966\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(829\) \(925\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.327068 0.945001i −0.231272 0.668216i
\(3\) 0.458227 0.888835i 0.264557 0.513169i
\(4\) −0.786053 + 0.618159i −0.393027 + 0.309079i
\(5\) 0.301743 + 0.0288129i 0.134943 + 0.0128855i 0.162309 0.986740i \(-0.448106\pi\)
−0.0273658 + 0.999625i \(0.508712\pi\)
\(6\) −0.989821 0.142315i −0.404093 0.0580998i
\(7\) −0.249988 2.63391i −0.0944864 0.995526i
\(8\) 0.841254 + 0.540641i 0.297428 + 0.191145i
\(9\) −0.580057 0.814576i −0.193352 0.271525i
\(10\) −0.0714621 0.294571i −0.0225983 0.0931515i
\(11\) 3.73249 + 1.29183i 1.12539 + 0.389501i 0.825460 0.564461i \(-0.190916\pi\)
0.299929 + 0.953961i \(0.403037\pi\)
\(12\) 0.189251 + 0.981929i 0.0546321 + 0.283458i
\(13\) 0.539289 1.83665i 0.149572 0.509395i −0.850285 0.526323i \(-0.823570\pi\)
0.999857 + 0.0169276i \(0.00538847\pi\)
\(14\) −2.40729 + 1.09771i −0.643375 + 0.293375i
\(15\) 0.163876 0.254997i 0.0423127 0.0658399i
\(16\) 0.235759 0.971812i 0.0589397 0.242953i
\(17\) 3.12522 1.25115i 0.757977 0.303448i 0.0397057 0.999211i \(-0.487358\pi\)
0.718271 + 0.695763i \(0.244934\pi\)
\(18\) −0.580057 + 0.814576i −0.136721 + 0.191997i
\(19\) 7.95134 + 3.18324i 1.82416 + 0.730285i 0.981393 + 0.192011i \(0.0615008\pi\)
0.842770 + 0.538274i \(0.180923\pi\)
\(20\) −0.254997 + 0.163876i −0.0570190 + 0.0366439i
\(21\) −2.45567 0.984732i −0.535871 0.214886i
\(22\) 3.94973i 0.842084i
\(23\) −3.17679 3.59277i −0.662406 0.749145i
\(24\) 0.866025 0.500000i 0.176777 0.102062i
\(25\) −4.81943 0.928868i −0.963885 0.185774i
\(26\) −1.91202 + 0.0910808i −0.374978 + 0.0178624i
\(27\) −0.989821 + 0.142315i −0.190491 + 0.0273885i
\(28\) 1.82468 + 1.91586i 0.344832 + 0.362064i
\(29\) 0.182480 1.26918i 0.0338857 0.235680i −0.965839 0.259143i \(-0.916560\pi\)
0.999725 + 0.0234625i \(0.00746903\pi\)
\(30\) −0.294571 0.0714621i −0.0537810 0.0130471i
\(31\) −9.93351 0.473191i −1.78411 0.0849877i −0.870647 0.491908i \(-0.836300\pi\)
−0.913464 + 0.406920i \(0.866603\pi\)
\(32\) −0.995472 + 0.0950560i −0.175976 + 0.0168037i
\(33\) 2.85855 2.72562i 0.497610 0.474470i
\(34\) −2.20450 2.54412i −0.378068 0.436314i
\(35\) 0.000458893 0.801967i 7.75670e−5 0.135557i
\(36\) 0.959493 + 0.281733i 0.159915 + 0.0469554i
\(37\) 3.33974 2.37822i 0.549050 0.390977i −0.271598 0.962411i \(-0.587552\pi\)
0.820648 + 0.571434i \(0.193613\pi\)
\(38\) 0.407532 8.55516i 0.0661105 1.38783i
\(39\) −1.38536 1.32094i −0.221836 0.211520i
\(40\) 0.238265 + 0.187373i 0.0376729 + 0.0296263i
\(41\) 2.25880 1.03156i 0.352765 0.161102i −0.231148 0.972919i \(-0.574248\pi\)
0.583913 + 0.811816i \(0.301521\pi\)
\(42\) −0.127402 + 2.64268i −0.0196586 + 0.407775i
\(43\) 2.60535 + 4.05400i 0.397312 + 0.618230i 0.981060 0.193705i \(-0.0620506\pi\)
−0.583747 + 0.811935i \(0.698414\pi\)
\(44\) −3.73249 + 1.29183i −0.562695 + 0.194750i
\(45\) −0.151558 0.262505i −0.0225929 0.0391320i
\(46\) −2.35615 + 4.17715i −0.347395 + 0.615887i
\(47\) −9.73099 5.61819i −1.41941 0.819497i −0.423163 0.906054i \(-0.639080\pi\)
−0.996247 + 0.0865567i \(0.972414\pi\)
\(48\) −0.755750 0.654861i −0.109083 0.0945210i
\(49\) −6.87501 + 1.31689i −0.982145 + 0.188127i
\(50\) 0.698498 + 4.85816i 0.0987826 + 0.687048i
\(51\) 0.319993 3.35111i 0.0448079 0.469250i
\(52\) 0.711432 + 1.77707i 0.0986579 + 0.246436i
\(53\) 7.27378 7.62852i 0.999131 1.04786i 0.000276371 1.00000i \(-0.499912\pi\)
0.998854 0.0478580i \(-0.0152395\pi\)
\(54\) 0.458227 + 0.888835i 0.0623567 + 0.120955i
\(55\) 1.08903 + 0.497344i 0.146845 + 0.0670618i
\(56\) 1.21370 2.35094i 0.162187 0.314158i
\(57\) 6.47289 5.60879i 0.857355 0.742902i
\(58\) −1.25906 + 0.242663i −0.165322 + 0.0318633i
\(59\) 7.18093 1.74207i 0.934878 0.226799i 0.260744 0.965408i \(-0.416032\pi\)
0.674134 + 0.738609i \(0.264517\pi\)
\(60\) 0.0288129 + 0.301743i 0.00371973 + 0.0389548i
\(61\) −5.36778 + 2.76728i −0.687274 + 0.354314i −0.766232 0.642564i \(-0.777871\pi\)
0.0789585 + 0.996878i \(0.474841\pi\)
\(62\) 2.80177 + 9.54194i 0.355825 + 1.21183i
\(63\) −2.00052 + 1.73145i −0.252041 + 0.218143i
\(64\) 0.415415 + 0.909632i 0.0519269 + 0.113704i
\(65\) 0.215646 0.538657i 0.0267476 0.0668122i
\(66\) −3.51066 1.80987i −0.432132 0.222779i
\(67\) 0.294967 1.53044i 0.0360360 0.186972i −0.959450 0.281878i \(-0.909043\pi\)
0.995486 + 0.0949054i \(0.0302548\pi\)
\(68\) −1.68318 + 2.91535i −0.204115 + 0.353538i
\(69\) −4.64907 + 1.17734i −0.559683 + 0.141735i
\(70\) −0.758010 + 0.261864i −0.0905995 + 0.0312987i
\(71\) 4.04986 4.67379i 0.480630 0.554677i −0.462707 0.886511i \(-0.653122\pi\)
0.943338 + 0.331834i \(0.107667\pi\)
\(72\) −0.0475819 0.998867i −0.00560758 0.117718i
\(73\) 0.581773 + 0.739784i 0.0680913 + 0.0865852i 0.818906 0.573928i \(-0.194581\pi\)
−0.750814 + 0.660513i \(0.770339\pi\)
\(74\) −3.33974 2.37822i −0.388237 0.276462i
\(75\) −3.03400 + 3.85804i −0.350336 + 0.445489i
\(76\) −8.21792 + 2.41300i −0.942660 + 0.276790i
\(77\) 2.46949 10.1540i 0.281424 1.15716i
\(78\) −0.795183 + 1.74121i −0.0900367 + 0.197153i
\(79\) −6.89580 7.23211i −0.775839 0.813676i 0.210640 0.977564i \(-0.432445\pi\)
−0.986479 + 0.163887i \(0.947597\pi\)
\(80\) 0.0991392 0.286444i 0.0110841 0.0320254i
\(81\) −0.327068 + 0.945001i −0.0363409 + 0.105000i
\(82\) −1.71360 1.79718i −0.189236 0.198465i
\(83\) 4.53632 9.93315i 0.497925 1.09030i −0.479213 0.877699i \(-0.659078\pi\)
0.977138 0.212606i \(-0.0681950\pi\)
\(84\) 2.53901 0.743942i 0.277028 0.0811707i
\(85\) 0.979061 0.287478i 0.106194 0.0311814i
\(86\) 2.97891 3.78799i 0.321224 0.408470i
\(87\) −1.04447 0.743766i −0.111979 0.0797401i
\(88\) 2.44156 + 3.10469i 0.260271 + 0.330961i
\(89\) −0.299855 6.29474i −0.0317846 0.667241i −0.957398 0.288771i \(-0.906753\pi\)
0.925614 0.378470i \(-0.123550\pi\)
\(90\) −0.198498 + 0.229079i −0.0209235 + 0.0241471i
\(91\) −4.97240 0.961302i −0.521249 0.100772i
\(92\) 4.71803 + 0.860349i 0.491889 + 0.0896976i
\(93\) −4.97239 + 8.61243i −0.515612 + 0.893067i
\(94\) −2.12650 + 11.0333i −0.219331 + 1.13800i
\(95\) 2.30754 + 1.18962i 0.236749 + 0.122052i
\(96\) −0.371662 + 0.928368i −0.0379326 + 0.0947512i
\(97\) 7.30259 + 15.9904i 0.741466 + 1.62358i 0.781129 + 0.624370i \(0.214644\pi\)
−0.0396629 + 0.999213i \(0.512628\pi\)
\(98\) 3.49306 + 6.06618i 0.352852 + 0.612777i
\(99\) −1.11277 3.78973i −0.111837 0.380883i
\(100\) 4.36251 2.24903i 0.436251 0.224903i
\(101\) 1.55884 + 16.3249i 0.155110 + 1.62439i 0.653146 + 0.757232i \(0.273449\pi\)
−0.498036 + 0.867157i \(0.665945\pi\)
\(102\) −3.27147 + 0.793649i −0.323923 + 0.0785830i
\(103\) −19.4449 + 3.74770i −1.91596 + 0.369272i −0.999523 0.0308948i \(-0.990164\pi\)
−0.916442 + 0.400167i \(0.868952\pi\)
\(104\) 1.44665 1.25353i 0.141855 0.122918i
\(105\) −0.712607 0.367890i −0.0695433 0.0359024i
\(106\) −9.58798 4.37868i −0.931267 0.425295i
\(107\) 2.83777 + 5.50451i 0.274338 + 0.532142i 0.985246 0.171143i \(-0.0547461\pi\)
−0.710908 + 0.703285i \(0.751716\pi\)
\(108\) 0.690079 0.723734i 0.0664029 0.0696413i
\(109\) 7.18823 + 17.9553i 0.688508 + 1.71981i 0.694155 + 0.719825i \(0.255778\pi\)
−0.00564773 + 0.999984i \(0.501798\pi\)
\(110\) 0.113803 1.19180i 0.0108507 0.113634i
\(111\) −0.583487 4.05824i −0.0553822 0.385191i
\(112\) −2.61861 0.378028i −0.247435 0.0357203i
\(113\) 6.43936 + 5.57973i 0.605764 + 0.524897i 0.902851 0.429953i \(-0.141470\pi\)
−0.297088 + 0.954850i \(0.596015\pi\)
\(114\) −7.41739 4.28243i −0.694702 0.401086i
\(115\) −0.855054 1.17562i −0.0797342 0.109628i
\(116\) 0.641115 + 1.11044i 0.0595260 + 0.103102i
\(117\) −1.80891 + 0.626070i −0.167234 + 0.0578802i
\(118\) −3.99491 6.21621i −0.367762 0.572248i
\(119\) −4.07668 7.91879i −0.373709 0.725914i
\(120\) 0.275723 0.125919i 0.0251700 0.0114947i
\(121\) 3.61610 + 2.84374i 0.328737 + 0.258521i
\(122\) 4.37071 + 4.16747i 0.395706 + 0.377305i
\(123\) 0.118155 2.48039i 0.0106537 0.223649i
\(124\) 8.10077 5.76853i 0.727471 0.518030i
\(125\) −2.88165 0.846128i −0.257742 0.0756800i
\(126\) 2.29053 + 1.32419i 0.204057 + 0.117968i
\(127\) −0.325029 0.375103i −0.0288416 0.0332850i 0.741145 0.671344i \(-0.234283\pi\)
−0.769987 + 0.638059i \(0.779737\pi\)
\(128\) 0.723734 0.690079i 0.0639697 0.0609949i
\(129\) 4.79718 0.458076i 0.422369 0.0403313i
\(130\) −0.579563 0.0276080i −0.0508310 0.00242138i
\(131\) −3.67982 0.892715i −0.321508 0.0779969i 0.0717573 0.997422i \(-0.477139\pi\)
−0.393265 + 0.919425i \(0.628654\pi\)
\(132\) −0.562105 + 3.90952i −0.0489249 + 0.340280i
\(133\) 6.39664 21.7389i 0.554659 1.88500i
\(134\) −1.54274 + 0.221812i −0.133272 + 0.0191616i
\(135\) −0.302772 + 0.0144228i −0.0260584 + 0.00124132i
\(136\) 3.30552 + 0.637087i 0.283446 + 0.0546298i
\(137\) −13.9005 + 8.02544i −1.18760 + 0.685659i −0.957760 0.287570i \(-0.907153\pi\)
−0.229837 + 0.973229i \(0.573819\pi\)
\(138\) 2.63315 + 4.00831i 0.224149 + 0.341210i
\(139\) 8.01298i 0.679652i −0.940488 0.339826i \(-0.889632\pi\)
0.940488 0.339826i \(-0.110368\pi\)
\(140\) 0.495382 + 0.630672i 0.0418675 + 0.0533015i
\(141\) −9.45264 + 6.07484i −0.796056 + 0.511594i
\(142\) −5.74132 2.29848i −0.481801 0.192884i
\(143\) 4.38553 6.15862i 0.366737 0.515010i
\(144\) −0.928368 + 0.371662i −0.0773640 + 0.0309719i
\(145\) 0.0916308 0.377707i 0.00760952 0.0313669i
\(146\) 0.508817 0.791735i 0.0421100 0.0655245i
\(147\) −1.97981 + 6.71419i −0.163292 + 0.553777i
\(148\) −1.15510 + 3.93390i −0.0949483 + 0.323364i
\(149\) 1.19735 + 6.21244i 0.0980907 + 0.508943i 0.997427 + 0.0716859i \(0.0228379\pi\)
−0.899337 + 0.437257i \(0.855950\pi\)
\(150\) 4.63818 + 1.60529i 0.378706 + 0.131071i
\(151\) 2.62598 + 10.8244i 0.213699 + 0.880880i 0.973123 + 0.230285i \(0.0739657\pi\)
−0.759424 + 0.650596i \(0.774519\pi\)
\(152\) 4.96811 + 6.97673i 0.402967 + 0.565887i
\(153\) −2.83196 1.81999i −0.228950 0.147138i
\(154\) −10.4032 + 0.987382i −0.838317 + 0.0795655i
\(155\) −2.98373 0.428995i −0.239659 0.0344577i
\(156\) 1.90552 + 0.181955i 0.152564 + 0.0145681i
\(157\) 15.0447 11.8313i 1.20069 0.944237i 0.201318 0.979526i \(-0.435478\pi\)
0.999377 + 0.0352891i \(0.0112352\pi\)
\(158\) −4.57895 + 8.88193i −0.364282 + 0.706609i
\(159\) −3.44746 9.96078i −0.273401 0.789942i
\(160\) −0.303115 −0.0239634
\(161\) −8.66890 + 9.26554i −0.683205 + 0.730227i
\(162\) 1.00000 0.0785674
\(163\) 1.94138 + 5.60925i 0.152061 + 0.439350i 0.995144 0.0984332i \(-0.0313831\pi\)
−0.843083 + 0.537783i \(0.819262\pi\)
\(164\) −1.13787 + 2.20716i −0.0888526 + 0.172350i
\(165\) 0.941080 0.740073i 0.0732629 0.0576146i
\(166\) −10.8705 1.03801i −0.843716 0.0805651i
\(167\) 14.0825 + 2.02476i 1.08974 + 0.156680i 0.663680 0.748017i \(-0.268994\pi\)
0.426056 + 0.904697i \(0.359903\pi\)
\(168\) −1.53345 2.15604i −0.118308 0.166342i
\(169\) 7.85384 + 5.04736i 0.604142 + 0.388258i
\(170\) −0.591887 0.831188i −0.0453956 0.0637492i
\(171\) −2.01924 8.32343i −0.154415 0.636509i
\(172\) −4.55396 1.57614i −0.347236 0.120180i
\(173\) −2.52808 13.1169i −0.192206 0.997259i −0.942006 0.335595i \(-0.891063\pi\)
0.749800 0.661664i \(-0.230150\pi\)
\(174\) −0.361246 + 1.23029i −0.0273860 + 0.0932680i
\(175\) −1.24176 + 12.9262i −0.0938685 + 0.977126i
\(176\) 2.13538 3.32272i 0.160961 0.250459i
\(177\) 1.74207 7.18093i 0.130942 0.539752i
\(178\) −5.85046 + 2.34217i −0.438510 + 0.175553i
\(179\) 6.06070 8.51107i 0.452998 0.636147i −0.523410 0.852081i \(-0.675340\pi\)
0.976408 + 0.215934i \(0.0692796\pi\)
\(180\) 0.281402 + 0.112657i 0.0209745 + 0.00839692i
\(181\) −4.40160 + 2.82874i −0.327168 + 0.210258i −0.693905 0.720066i \(-0.744111\pi\)
0.366737 + 0.930325i \(0.380475\pi\)
\(182\) 0.717881 + 5.01333i 0.0532128 + 0.371613i
\(183\) 6.03912i 0.446424i
\(184\) −0.730086 4.73993i −0.0538226 0.349433i
\(185\) 1.07627 0.621382i 0.0791286 0.0456849i
\(186\) 9.76506 + 1.88206i 0.716009 + 0.137999i
\(187\) 13.2811 0.632658i 0.971212 0.0462645i
\(188\) 11.1220 1.59910i 0.811155 0.116627i
\(189\) 0.622288 + 2.57153i 0.0452648 + 0.187051i
\(190\) 0.369469 2.56971i 0.0268041 0.186427i
\(191\) 17.3366 + 4.20581i 1.25443 + 0.304322i 0.807297 0.590145i \(-0.200929\pi\)
0.447134 + 0.894467i \(0.352445\pi\)
\(192\) 0.998867 + 0.0475819i 0.0720870 + 0.00343393i
\(193\) 6.90358 0.659212i 0.496931 0.0474511i 0.156418 0.987691i \(-0.450005\pi\)
0.340513 + 0.940240i \(0.389399\pi\)
\(194\) 12.7225 12.1309i 0.913425 0.870949i
\(195\) −0.379963 0.438501i −0.0272097 0.0314017i
\(196\) 4.59008 5.28500i 0.327863 0.377500i
\(197\) 13.8271 + 4.06001i 0.985142 + 0.289264i 0.734345 0.678776i \(-0.237489\pi\)
0.250797 + 0.968040i \(0.419307\pi\)
\(198\) −3.21735 + 2.29107i −0.228647 + 0.162819i
\(199\) 0.387288 8.13018i 0.0274541 0.576333i −0.942670 0.333725i \(-0.891694\pi\)
0.970124 0.242608i \(-0.0780028\pi\)
\(200\) −3.55217 3.38699i −0.251177 0.239496i
\(201\) −1.22514 0.963463i −0.0864150 0.0679575i
\(202\) 14.9172 6.81246i 1.04957 0.479323i
\(203\) −3.38852 0.163359i −0.237828 0.0114655i
\(204\) 1.81999 + 2.83196i 0.127425 + 0.198277i
\(205\) 0.711298 0.246183i 0.0496792 0.0171941i
\(206\) 9.90139 + 17.1497i 0.689863 + 1.19488i
\(207\) −1.08387 + 4.67175i −0.0753340 + 0.324709i
\(208\) −1.65774 0.957095i −0.114943 0.0663626i
\(209\) 25.5661 + 22.1532i 1.76845 + 1.53237i
\(210\) −0.114586 + 0.793739i −0.00790719 + 0.0547732i
\(211\) 1.99957 + 13.9073i 0.137656 + 0.957417i 0.935191 + 0.354145i \(0.115228\pi\)
−0.797535 + 0.603273i \(0.793863\pi\)
\(212\) −1.00194 + 10.4928i −0.0688134 + 0.720647i
\(213\) −2.29848 5.74132i −0.157489 0.393389i
\(214\) 4.27363 4.48205i 0.292139 0.306387i
\(215\) 0.669338 + 1.29833i 0.0456484 + 0.0885456i
\(216\) −0.909632 0.415415i −0.0618926 0.0282654i
\(217\) 1.23691 + 26.2823i 0.0839668 + 1.78416i
\(218\) 14.6168 12.6655i 0.989972 0.857816i
\(219\) 0.924130 0.178111i 0.0624469 0.0120357i
\(220\) −1.16347 + 0.282256i −0.0784414 + 0.0190297i
\(221\) −0.612526 6.41467i −0.0412030 0.431497i
\(222\) −3.64420 + 1.87872i −0.244583 + 0.126091i
\(223\) −2.27398 7.74445i −0.152277 0.518607i 0.847652 0.530553i \(-0.178016\pi\)
−0.999929 + 0.0119459i \(0.996197\pi\)
\(224\) 0.499225 + 2.59823i 0.0333559 + 0.173601i
\(225\) 2.03891 + 4.46458i 0.135927 + 0.297639i
\(226\) 3.16675 7.91015i 0.210649 0.526175i
\(227\) 16.4884 + 8.50039i 1.09438 + 0.564190i 0.908289 0.418343i \(-0.137389\pi\)
0.186088 + 0.982533i \(0.440419\pi\)
\(228\) −1.62091 + 8.41008i −0.107347 + 0.556971i
\(229\) −5.35289 + 9.27148i −0.353729 + 0.612676i −0.986900 0.161336i \(-0.948420\pi\)
0.633171 + 0.774012i \(0.281753\pi\)
\(230\) −0.831306 + 1.19254i −0.0548147 + 0.0786335i
\(231\) −7.89366 6.84781i −0.519365 0.450553i
\(232\) 0.839681 0.969044i 0.0551278 0.0636209i
\(233\) −1.26772 26.6127i −0.0830510 1.74346i −0.529201 0.848497i \(-0.677508\pi\)
0.446150 0.894958i \(-0.352795\pi\)
\(234\) 1.18327 + 1.50465i 0.0773530 + 0.0983623i
\(235\) −2.77438 1.97562i −0.180980 0.128876i
\(236\) −4.56771 + 5.80832i −0.297333 + 0.378089i
\(237\) −9.58800 + 2.81529i −0.622807 + 0.182873i
\(238\) −6.14991 + 6.44245i −0.398639 + 0.417602i
\(239\) −7.02153 + 15.3750i −0.454185 + 0.994526i 0.534590 + 0.845112i \(0.320466\pi\)
−0.988775 + 0.149414i \(0.952261\pi\)
\(240\) −0.209173 0.219375i −0.0135021 0.0141606i
\(241\) 0.692827 2.00179i 0.0446289 0.128947i −0.920484 0.390779i \(-0.872206\pi\)
0.965113 + 0.261832i \(0.0843268\pi\)
\(242\) 1.50462 4.34732i 0.0967207 0.279456i
\(243\) 0.690079 + 0.723734i 0.0442686 + 0.0464276i
\(244\) 2.50874 5.49337i 0.160606 0.351677i
\(245\) −2.11243 + 0.199273i −0.134958 + 0.0127311i
\(246\) −2.38261 + 0.699598i −0.151910 + 0.0446048i
\(247\) 10.1346 12.8872i 0.644847 0.819990i
\(248\) −8.10077 5.76853i −0.514400 0.366302i
\(249\) −6.75027 8.58367i −0.427781 0.543968i
\(250\) 0.142903 + 2.99990i 0.00903797 + 0.189730i
\(251\) −0.556867 + 0.642659i −0.0351491 + 0.0405643i −0.773052 0.634343i \(-0.781271\pi\)
0.737903 + 0.674907i \(0.235816\pi\)
\(252\) 0.502198 2.59765i 0.0316355 0.163637i
\(253\) −7.21610 17.5139i −0.453672 1.10109i
\(254\) −0.248166 + 0.429836i −0.0155713 + 0.0269703i
\(255\) 0.193111 1.00195i 0.0120931 0.0627448i
\(256\) −0.888835 0.458227i −0.0555522 0.0286392i
\(257\) −1.84332 + 4.60439i −0.114983 + 0.287214i −0.974685 0.223582i \(-0.928225\pi\)
0.859702 + 0.510796i \(0.170649\pi\)
\(258\) −2.00189 4.38352i −0.124632 0.272906i
\(259\) −7.09892 8.20207i −0.441105 0.509652i
\(260\) 0.163467 + 0.556717i 0.0101378 + 0.0345261i
\(261\) −1.13969 + 0.587551i −0.0705451 + 0.0363685i
\(262\) 0.359935 + 3.76941i 0.0222369 + 0.232875i
\(263\) 29.4558 7.14590i 1.81632 0.440635i 0.824241 0.566239i \(-0.191602\pi\)
0.992080 + 0.125605i \(0.0400870\pi\)
\(264\) 3.87835 0.747490i 0.238696 0.0460049i
\(265\) 2.41461 2.09227i 0.148328 0.128527i
\(266\) −22.6354 + 1.06528i −1.38787 + 0.0653164i
\(267\) −5.73239 2.61789i −0.350816 0.160212i
\(268\) 0.714192 + 1.38534i 0.0436262 + 0.0846231i
\(269\) −22.5736 + 23.6745i −1.37633 + 1.44346i −0.634330 + 0.773062i \(0.718724\pi\)
−0.742004 + 0.670395i \(0.766124\pi\)
\(270\) 0.112657 + 0.281402i 0.00685606 + 0.0171256i
\(271\) −0.388895 + 4.07269i −0.0236237 + 0.247398i 0.975945 + 0.218018i \(0.0699593\pi\)
−0.999568 + 0.0293798i \(0.990647\pi\)
\(272\) −0.479083 3.33209i −0.0290487 0.202038i
\(273\) −3.13292 + 3.97915i −0.189613 + 0.240829i
\(274\) 12.1304 + 10.5111i 0.732827 + 0.634998i
\(275\) −16.7885 9.69287i −1.01239 0.584502i
\(276\) 2.92663 3.79932i 0.176163 0.228692i
\(277\) 13.4391 + 23.2773i 0.807480 + 1.39860i 0.914604 + 0.404350i \(0.132502\pi\)
−0.107124 + 0.994246i \(0.534164\pi\)
\(278\) −7.57227 + 2.62079i −0.454155 + 0.157184i
\(279\) 5.37655 + 8.36608i 0.321886 + 0.500864i
\(280\) 0.433962 0.674410i 0.0259342 0.0403037i
\(281\) 6.27030 2.86355i 0.374055 0.170825i −0.219512 0.975610i \(-0.570447\pi\)
0.593567 + 0.804785i \(0.297719\pi\)
\(282\) 8.83239 + 6.94587i 0.525961 + 0.413620i
\(283\) −9.96805 9.50451i −0.592539 0.564985i 0.333339 0.942807i \(-0.391825\pi\)
−0.925878 + 0.377822i \(0.876673\pi\)
\(284\) −0.294261 + 6.17731i −0.0174612 + 0.366556i
\(285\) 2.11475 1.50591i 0.125267 0.0892023i
\(286\) −7.25427 2.13005i −0.428954 0.125952i
\(287\) −3.28171 5.69161i −0.193713 0.335965i
\(288\) 0.654861 + 0.755750i 0.0385880 + 0.0445330i
\(289\) −4.10186 + 3.91112i −0.241286 + 0.230066i
\(290\) −0.386903 + 0.0369448i −0.0227197 + 0.00216947i
\(291\) 17.5591 + 0.836444i 1.02933 + 0.0490332i
\(292\) −0.914608 0.221882i −0.0535234 0.0129846i
\(293\) −1.82380 + 12.6848i −0.106548 + 0.741055i 0.864580 + 0.502495i \(0.167584\pi\)
−0.971128 + 0.238560i \(0.923325\pi\)
\(294\) 6.99245 0.325071i 0.407808 0.0189585i
\(295\) 2.21699 0.318755i 0.129078 0.0185586i
\(296\) 4.09533 0.195085i 0.238036 0.0113391i
\(297\) −3.87835 0.747490i −0.225045 0.0433738i
\(298\) 5.47915 3.16339i 0.317399 0.183250i
\(299\) −8.31188 + 3.89711i −0.480688 + 0.225376i
\(300\) 4.90812i 0.283371i
\(301\) 10.0266 7.87572i 0.577923 0.453949i
\(302\) 9.37023 6.02188i 0.539196 0.346520i
\(303\) 15.2245 + 6.09495i 0.874622 + 0.350146i
\(304\) 4.96811 6.97673i 0.284940 0.400143i
\(305\) −1.69942 + 0.680346i −0.0973086 + 0.0389565i
\(306\) −0.793649 + 3.27147i −0.0453699 + 0.187017i
\(307\) −12.0229 + 18.7080i −0.686182 + 1.06772i 0.307063 + 0.951689i \(0.400654\pi\)
−0.993246 + 0.116031i \(0.962983\pi\)
\(308\) 4.33564 + 9.50813i 0.247046 + 0.541776i
\(309\) −5.57909 + 19.0006i −0.317383 + 1.08091i
\(310\) 0.570481 + 2.95994i 0.0324011 + 0.168113i
\(311\) −1.13948 0.394377i −0.0646138 0.0223631i 0.294570 0.955630i \(-0.404824\pi\)
−0.359184 + 0.933267i \(0.616945\pi\)
\(312\) −0.451287 1.86023i −0.0255491 0.105315i
\(313\) −19.2937 27.0942i −1.09054 1.53145i −0.823114 0.567876i \(-0.807765\pi\)
−0.267430 0.963577i \(-0.586174\pi\)
\(314\) −16.1012 10.3476i −0.908642 0.583949i
\(315\) −0.653529 + 0.464813i −0.0368222 + 0.0261892i
\(316\) 9.89106 + 1.42212i 0.556416 + 0.0800005i
\(317\) 23.3614 + 2.23074i 1.31210 + 0.125291i 0.727545 0.686060i \(-0.240661\pi\)
0.584560 + 0.811351i \(0.301267\pi\)
\(318\) −8.28540 + 6.51571i −0.464622 + 0.365383i
\(319\) 2.32067 4.50146i 0.129932 0.252034i
\(320\) 0.0991392 + 0.286444i 0.00554205 + 0.0160127i
\(321\) 6.19295 0.345657
\(322\) 11.5913 + 5.16165i 0.645956 + 0.287648i
\(323\) 28.8324 1.60428
\(324\) −0.327068 0.945001i −0.0181704 0.0525000i
\(325\) −4.30507 + 8.35067i −0.238802 + 0.463212i
\(326\) 4.66578 3.66921i 0.258414 0.203219i
\(327\) 19.2532 + 1.83846i 1.06470 + 0.101667i
\(328\) 2.45793 + 0.353396i 0.135716 + 0.0195130i
\(329\) −12.3652 + 27.0351i −0.681716 + 1.49049i
\(330\) −1.00717 0.647267i −0.0554427 0.0356309i
\(331\) −11.0818 15.5622i −0.609110 0.855375i 0.388711 0.921360i \(-0.372921\pi\)
−0.997821 + 0.0659847i \(0.978981\pi\)
\(332\) 2.57448 + 10.6121i 0.141293 + 0.582417i
\(333\) −3.87448 1.34097i −0.212320 0.0734847i
\(334\) −2.69253 13.9702i −0.147329 0.764415i
\(335\) 0.133101 0.453299i 0.00727206 0.0247664i
\(336\) −1.53592 + 2.15429i −0.0837913 + 0.117526i
\(337\) −13.7384 + 21.3773i −0.748376 + 1.16450i 0.233014 + 0.972473i \(0.425141\pi\)
−0.981390 + 0.192023i \(0.938495\pi\)
\(338\) 2.20102 9.07272i 0.119720 0.493491i
\(339\) 7.91015 3.16675i 0.429620 0.171994i
\(340\) −0.591887 + 0.831188i −0.0320996 + 0.0450775i
\(341\) −36.4655 14.5986i −1.97472 0.790557i
\(342\) −7.20522 + 4.63051i −0.389614 + 0.250389i
\(343\) 5.18725 + 17.7790i 0.280085 + 0.959975i
\(344\) 4.81900i 0.259823i
\(345\) −1.43675 + 0.221300i −0.0773518 + 0.0119144i
\(346\) −11.5686 + 6.67915i −0.621933 + 0.359073i
\(347\) −10.9468 2.10982i −0.587653 0.113261i −0.113247 0.993567i \(-0.536125\pi\)
−0.474406 + 0.880306i \(0.657337\pi\)
\(348\) 1.28078 0.0610109i 0.0686568 0.00327053i
\(349\) 28.5332 4.10245i 1.52735 0.219599i 0.673133 0.739521i \(-0.264948\pi\)
0.854214 + 0.519922i \(0.174039\pi\)
\(350\) 12.6214 3.05427i 0.674641 0.163257i
\(351\) −0.272418 + 1.89471i −0.0145406 + 0.101132i
\(352\) −3.83839 0.931183i −0.204587 0.0496322i
\(353\) −7.63635 0.363764i −0.406442 0.0193612i −0.156634 0.987657i \(-0.550064\pi\)
−0.249808 + 0.968295i \(0.580367\pi\)
\(354\) −7.35576 + 0.702390i −0.390954 + 0.0373316i
\(355\) 1.35668 1.29359i 0.0720052 0.0686568i
\(356\) 4.12685 + 4.76264i 0.218723 + 0.252419i
\(357\) −8.90654 0.00509640i −0.471384 0.000269730i
\(358\) −10.0252 2.94367i −0.529850 0.155578i
\(359\) −6.69926 + 4.77052i −0.353574 + 0.251779i −0.743018 0.669271i \(-0.766606\pi\)
0.389445 + 0.921050i \(0.372667\pi\)
\(360\) 0.0144228 0.302772i 0.000760148 0.0159575i
\(361\) 39.3399 + 37.5105i 2.07052 + 1.97424i
\(362\) 4.11278 + 3.23433i 0.216163 + 0.169992i
\(363\) 4.18461 1.91105i 0.219635 0.100304i
\(364\) 4.50281 2.31810i 0.236011 0.121501i
\(365\) 0.154230 + 0.239987i 0.00807278 + 0.0125615i
\(366\) 5.70697 1.97520i 0.298308 0.103245i
\(367\) −15.1912 26.3119i −0.792974 1.37347i −0.924118 0.382108i \(-0.875198\pi\)
0.131144 0.991363i \(-0.458135\pi\)
\(368\) −4.24045 + 2.24021i −0.221049 + 0.116779i
\(369\) −2.15051 1.24160i −0.111951 0.0646351i
\(370\) −0.939219 0.813838i −0.0488277 0.0423094i
\(371\) −21.9112 17.2515i −1.13757 0.895652i
\(372\) −1.41529 9.84355i −0.0733793 0.510364i
\(373\) −0.449886 + 4.71142i −0.0232942 + 0.243948i 0.976324 + 0.216314i \(0.0694034\pi\)
−0.999618 + 0.0276341i \(0.991203\pi\)
\(374\) −4.94169 12.3438i −0.255529 0.638280i
\(375\) −2.07252 + 2.17359i −0.107024 + 0.112244i
\(376\) −5.14880 9.98729i −0.265529 0.515055i
\(377\) −2.23263 1.01961i −0.114986 0.0525124i
\(378\) 2.22657 1.42913i 0.114522 0.0735064i
\(379\) 9.53598 8.26297i 0.489830 0.424440i −0.374605 0.927184i \(-0.622222\pi\)
0.864435 + 0.502744i \(0.167676\pi\)
\(380\) −2.54922 + 0.491322i −0.130772 + 0.0252043i
\(381\) −0.482341 + 0.117015i −0.0247111 + 0.00599485i
\(382\) −1.69575 17.7587i −0.0867620 0.908613i
\(383\) −20.8392 + 10.7433i −1.06483 + 0.548959i −0.899339 0.437252i \(-0.855952\pi\)
−0.165493 + 0.986211i \(0.552922\pi\)
\(384\) −0.281733 0.959493i −0.0143771 0.0489639i
\(385\) 1.03772 2.99274i 0.0528869 0.152524i
\(386\) −2.88090 6.30829i −0.146634 0.321083i
\(387\) 1.79104 4.47381i 0.0910438 0.227417i
\(388\) −15.6249 8.05517i −0.793232 0.408940i
\(389\) −3.29355 + 17.0885i −0.166989 + 0.866424i 0.797704 + 0.603049i \(0.206048\pi\)
−0.964694 + 0.263375i \(0.915164\pi\)
\(390\) −0.290110 + 0.502485i −0.0146903 + 0.0254443i
\(391\) −14.4233 7.25356i −0.729415 0.366828i
\(392\) −6.49559 2.60907i −0.328077 0.131778i
\(393\) −2.47967 + 2.86169i −0.125083 + 0.144353i
\(394\) −0.685697 14.3945i −0.0345449 0.725187i
\(395\) −1.87238 2.38092i −0.0942097 0.119797i
\(396\) 3.21735 + 2.29107i 0.161678 + 0.115130i
\(397\) −11.4950 + 14.6171i −0.576918 + 0.733611i −0.983681 0.179923i \(-0.942415\pi\)
0.406763 + 0.913534i \(0.366658\pi\)
\(398\) −7.80970 + 2.29313i −0.391465 + 0.114944i
\(399\) −16.3912 15.6469i −0.820587 0.783325i
\(400\) −2.03891 + 4.46458i −0.101945 + 0.223229i
\(401\) −4.55165 4.77363i −0.227298 0.238384i 0.600202 0.799848i \(-0.295087\pi\)
−0.827501 + 0.561464i \(0.810238\pi\)
\(402\) −0.509769 + 1.47288i −0.0254249 + 0.0734606i
\(403\) −6.22612 + 17.9892i −0.310145 + 0.896106i
\(404\) −11.3167 11.8686i −0.563028 0.590486i
\(405\) −0.125919 + 0.275723i −0.00625694 + 0.0137008i
\(406\) 0.953903 + 3.25559i 0.0473414 + 0.161572i
\(407\) 15.5378 4.56231i 0.770181 0.226145i
\(408\) 2.08094 2.64614i 0.103022 0.131003i
\(409\) −0.836731 0.595833i −0.0413737 0.0294621i 0.559183 0.829044i \(-0.311115\pi\)
−0.600557 + 0.799582i \(0.705054\pi\)
\(410\) −0.465286 0.591659i −0.0229788 0.0292199i
\(411\) 0.763731 + 16.0327i 0.0376721 + 0.790834i
\(412\) 12.9681 14.9659i 0.638891 0.737319i
\(413\) −6.38362 18.4785i −0.314117 0.909266i
\(414\) 4.76930 0.503724i 0.234399 0.0247567i
\(415\) 1.65500 2.86655i 0.0812409 0.140713i
\(416\) −0.362263 + 1.87960i −0.0177614 + 0.0921548i
\(417\) −7.12222 3.67176i −0.348777 0.179807i
\(418\) 12.5729 31.4056i 0.614961 1.53610i
\(419\) 13.9851 + 30.6232i 0.683218 + 1.49604i 0.859197 + 0.511645i \(0.170964\pi\)
−0.175979 + 0.984394i \(0.556309\pi\)
\(420\) 0.787561 0.151323i 0.0384291 0.00738379i
\(421\) 5.56829 + 18.9639i 0.271382 + 0.924242i 0.976566 + 0.215218i \(0.0690461\pi\)
−0.705184 + 0.709024i \(0.749136\pi\)
\(422\) 12.4884 6.43822i 0.607926 0.313408i
\(423\) 1.06809 + 11.1855i 0.0519321 + 0.543857i
\(424\) 10.2434 2.48502i 0.497463 0.120683i
\(425\) −16.2239 + 3.12690i −0.786975 + 0.151677i
\(426\) −4.67379 + 4.04986i −0.226446 + 0.196217i
\(427\) 8.63067 + 13.4465i 0.417667 + 0.650721i
\(428\) −5.63331 2.57264i −0.272296 0.124353i
\(429\) −3.46443 6.72006i −0.167264 0.324448i
\(430\) 1.00801 1.05717i 0.0486104 0.0509812i
\(431\) −5.06769 12.6585i −0.244102 0.609738i 0.754831 0.655920i \(-0.227719\pi\)
−0.998933 + 0.0461816i \(0.985295\pi\)
\(432\) −0.0950560 + 0.995472i −0.00457339 + 0.0478947i
\(433\) 0.746406 + 5.19137i 0.0358700 + 0.249481i 0.999865 0.0164396i \(-0.00523313\pi\)
−0.963995 + 0.265921i \(0.914324\pi\)
\(434\) 24.4322 9.76498i 1.17279 0.468734i
\(435\) −0.293732 0.254520i −0.0140834 0.0122033i
\(436\) −16.7496 9.67038i −0.802160 0.463127i
\(437\) −13.8231 38.6798i −0.661248 1.85031i
\(438\) −0.470569 0.815049i −0.0224846 0.0389445i
\(439\) −6.44834 + 2.23179i −0.307762 + 0.106518i −0.476584 0.879129i \(-0.658125\pi\)
0.168821 + 0.985647i \(0.446004\pi\)
\(440\) 0.647267 + 1.00717i 0.0308572 + 0.0480148i
\(441\) 5.06061 + 4.83635i 0.240981 + 0.230302i
\(442\) −5.86153 + 2.67687i −0.278804 + 0.127326i
\(443\) −16.7031 13.1355i −0.793590 0.624086i 0.136824 0.990595i \(-0.456310\pi\)
−0.930414 + 0.366509i \(0.880553\pi\)
\(444\) 2.96729 + 2.82931i 0.140821 + 0.134273i
\(445\) 0.0908906 1.90803i 0.00430863 0.0904493i
\(446\) −6.57477 + 4.68187i −0.311324 + 0.221693i
\(447\) 6.07050 + 1.78246i 0.287125 + 0.0843074i
\(448\) 2.29204 1.32156i 0.108289 0.0624380i
\(449\) −9.12172 10.5270i −0.430480 0.496801i 0.498521 0.866878i \(-0.333877\pi\)
−0.929001 + 0.370077i \(0.879331\pi\)
\(450\) 3.55217 3.38699i 0.167451 0.159664i
\(451\) 9.76355 0.932306i 0.459748 0.0439006i
\(452\) −8.51084 0.405421i −0.400316 0.0190694i
\(453\) 10.8244 + 2.62598i 0.508577 + 0.123379i
\(454\) 2.64003 18.3618i 0.123903 0.861762i
\(455\) −1.47269 0.433335i −0.0690406 0.0203151i
\(456\) 8.47768 1.21891i 0.397004 0.0570805i
\(457\) 25.1149 1.19637i 1.17483 0.0559638i 0.548928 0.835869i \(-0.315036\pi\)
0.625897 + 0.779906i \(0.284733\pi\)
\(458\) 10.5123 + 2.02608i 0.491208 + 0.0946726i
\(459\) −2.91535 + 1.68318i −0.136077 + 0.0785641i
\(460\) 1.39884 + 0.395544i 0.0652213 + 0.0184423i
\(461\) 2.86883i 0.133615i 0.997766 + 0.0668074i \(0.0212813\pi\)
−0.997766 + 0.0668074i \(0.978719\pi\)
\(462\) −3.88942 + 9.69921i −0.180952 + 0.451248i
\(463\) 25.4340 16.3454i 1.18202 0.759636i 0.206261 0.978497i \(-0.433870\pi\)
0.975756 + 0.218861i \(0.0702341\pi\)
\(464\) −1.19038 0.476556i −0.0552620 0.0221236i
\(465\) −1.74853 + 2.45547i −0.0810861 + 0.113870i
\(466\) −24.7344 + 9.90215i −1.14580 + 0.458708i
\(467\) 3.97070 16.3674i 0.183742 0.757395i −0.803118 0.595819i \(-0.796827\pi\)
0.986860 0.161575i \(-0.0516575\pi\)
\(468\) 1.03489 1.61032i 0.0478378 0.0744370i
\(469\) −4.10477 0.394329i −0.189541 0.0182084i
\(470\) −0.959557 + 3.26795i −0.0442611 + 0.150739i
\(471\) −3.62217 18.7936i −0.166901 0.865965i
\(472\) 6.98282 + 2.41678i 0.321410 + 0.111241i
\(473\) 4.48738 + 18.4972i 0.206330 + 0.850503i
\(474\) 5.79638 + 8.13988i 0.266236 + 0.373877i
\(475\) −35.3641 22.7271i −1.62262 1.04279i
\(476\) 8.09956 + 3.70455i 0.371243 + 0.169798i
\(477\) −10.4332 1.50007i −0.477704 0.0686835i
\(478\) 16.8259 + 1.60668i 0.769599 + 0.0734878i
\(479\) 11.0201 8.66627i 0.503519 0.395972i −0.333836 0.942631i \(-0.608343\pi\)
0.837355 + 0.546659i \(0.184101\pi\)
\(480\) −0.138895 + 0.269419i −0.00633968 + 0.0122973i
\(481\) −2.56687 7.41649i −0.117039 0.338163i
\(482\) −2.11830 −0.0964858
\(483\) 4.26322 + 11.9509i 0.193983 + 0.543787i
\(484\) −4.60033 −0.209106
\(485\) 1.74277 + 5.03541i 0.0791352 + 0.228646i
\(486\) 0.458227 0.888835i 0.0207856 0.0403184i
\(487\) 6.44435 5.06789i 0.292021 0.229648i −0.461390 0.887197i \(-0.652649\pi\)
0.753412 + 0.657549i \(0.228407\pi\)
\(488\) −6.01177 0.574055i −0.272140 0.0259862i
\(489\) 5.87529 + 0.844739i 0.265690 + 0.0382004i
\(490\) 0.879221 + 1.93107i 0.0397191 + 0.0872368i
\(491\) −24.6818 15.8621i −1.11388 0.715845i −0.151742 0.988420i \(-0.548488\pi\)
−0.962134 + 0.272575i \(0.912125\pi\)
\(492\) 1.44040 + 2.02276i 0.0649381 + 0.0911929i
\(493\) −1.01764 4.19477i −0.0458322 0.188923i
\(494\) −15.4931 5.36220i −0.697066 0.241257i
\(495\) −0.226576 1.17559i −0.0101838 0.0528387i
\(496\) −2.80177 + 9.54194i −0.125803 + 0.428446i
\(497\) −13.3228 9.49861i −0.597609 0.426071i
\(498\) −5.90378 + 9.18646i −0.264555 + 0.411655i
\(499\) −4.21339 + 17.3678i −0.188617 + 0.777491i 0.796362 + 0.604820i \(0.206755\pi\)
−0.984980 + 0.172671i \(0.944760\pi\)
\(500\) 2.78817 1.11621i 0.124691 0.0499186i
\(501\) 8.25264 11.5892i 0.368701 0.517768i
\(502\) 0.789446 + 0.316047i 0.0352347 + 0.0141059i
\(503\) −18.0095 + 11.5740i −0.803004 + 0.516060i −0.876595 0.481229i \(-0.840191\pi\)
0.0735906 + 0.997289i \(0.476554\pi\)
\(504\) −2.61904 + 0.375031i −0.116661 + 0.0167052i
\(505\) 4.97083i 0.221199i
\(506\) −14.1905 + 12.5474i −0.630843 + 0.557802i
\(507\) 8.08511 4.66794i 0.359072 0.207310i
\(508\) 0.487363 + 0.0939315i 0.0216232 + 0.00416754i
\(509\) 3.49594 0.166532i 0.154955 0.00738141i 0.0300389 0.999549i \(-0.490437\pi\)
0.124916 + 0.992167i \(0.460134\pi\)
\(510\) −1.01001 + 0.145217i −0.0447239 + 0.00643033i
\(511\) 1.80309 1.71728i 0.0797641 0.0759678i
\(512\) −0.142315 + 0.989821i −0.00628949 + 0.0437443i
\(513\) −8.32343 2.01924i −0.367488 0.0891517i
\(514\) 4.95404 + 0.235990i 0.218513 + 0.0104091i
\(515\) −5.97534 + 0.570576i −0.263305 + 0.0251426i
\(516\) −3.48768 + 3.32549i −0.153536 + 0.146397i
\(517\) −29.0631 33.5406i −1.27819 1.47511i
\(518\) −5.42913 + 9.39112i −0.238542 + 0.412622i
\(519\) −12.8172 3.76347i −0.562612 0.165198i
\(520\) 0.472633 0.336560i 0.0207263 0.0147592i
\(521\) 1.09097 22.9023i 0.0477963 1.00337i −0.839843 0.542829i \(-0.817353\pi\)
0.887639 0.460539i \(-0.152344\pi\)
\(522\) 0.927993 + 0.884839i 0.0406171 + 0.0387284i
\(523\) −3.66084 2.87892i −0.160078 0.125886i 0.534907 0.844911i \(-0.320347\pi\)
−0.694985 + 0.719024i \(0.744589\pi\)
\(524\) 3.44437 1.57299i 0.150468 0.0687165i
\(525\) 10.9202 + 7.02683i 0.476597 + 0.306676i
\(526\) −16.3869 25.4985i −0.714504 1.11179i
\(527\) −31.6364 + 10.9495i −1.37810 + 0.476966i
\(528\) −1.97486 3.42056i −0.0859449 0.148861i
\(529\) −2.81602 + 22.8270i −0.122436 + 0.992476i
\(530\) −2.76694 1.59749i −0.120188 0.0693907i
\(531\) −5.58440 4.83891i −0.242342 0.209991i
\(532\) 8.41001 + 21.0421i 0.364620 + 0.912290i
\(533\) −0.676467 4.70493i −0.0293011 0.203793i
\(534\) −0.599031 + 6.27334i −0.0259226 + 0.271474i
\(535\) 0.697676 + 1.74271i 0.0301632 + 0.0753440i
\(536\) 1.07556 1.12801i 0.0464570 0.0487227i
\(537\) −4.78776 9.28697i −0.206607 0.400762i
\(538\) 29.7555 + 13.5889i 1.28285 + 0.585858i
\(539\) −27.3621 3.96605i −1.17857 0.170830i
\(540\) 0.229079 0.198498i 0.00985800 0.00854200i
\(541\) 26.4192 5.09188i 1.13585 0.218917i 0.413540 0.910486i \(-0.364292\pi\)
0.722311 + 0.691569i \(0.243080\pi\)
\(542\) 3.97589 0.964540i 0.170779 0.0414305i
\(543\) 0.497351 + 5.20850i 0.0213434 + 0.223518i
\(544\) −2.99214 + 1.54255i −0.128287 + 0.0661365i
\(545\) 1.65165 + 5.62500i 0.0707489 + 0.240949i
\(546\) 4.78498 + 1.65916i 0.204778 + 0.0710057i
\(547\) −0.249348 0.545997i −0.0106614 0.0233451i 0.904226 0.427053i \(-0.140448\pi\)
−0.914888 + 0.403708i \(0.867721\pi\)
\(548\) 5.96551 14.9011i 0.254834 0.636544i
\(549\) 5.36778 + 2.76728i 0.229091 + 0.118105i
\(550\) −3.66877 + 19.0354i −0.156437 + 0.811672i
\(551\) 5.49106 9.51079i 0.233927 0.405173i
\(552\) −4.54757 1.52304i −0.193557 0.0648248i
\(553\) −17.3249 + 19.9709i −0.736730 + 0.849249i
\(554\) 17.6015 20.3133i 0.747817 0.863027i
\(555\) −0.0591331 1.24136i −0.00251006 0.0526927i
\(556\) 4.95329 + 6.29863i 0.210066 + 0.267121i
\(557\) 33.9748 + 24.1933i 1.43956 + 1.02510i 0.991360 + 0.131170i \(0.0418732\pi\)
0.448197 + 0.893935i \(0.352066\pi\)
\(558\) 6.14745 7.81712i 0.260242 0.330925i
\(559\) 8.85083 2.59884i 0.374350 0.109919i
\(560\) −0.779253 0.189517i −0.0329294 0.00800855i
\(561\) 5.52344 12.0946i 0.233200 0.510636i
\(562\) −4.75687 4.98886i −0.200656 0.210442i
\(563\) 6.03963 17.4504i 0.254540 0.735445i −0.743251 0.669013i \(-0.766717\pi\)
0.997791 0.0664324i \(-0.0211617\pi\)
\(564\) 3.67506 10.6184i 0.154748 0.447115i
\(565\) 1.78226 + 1.86918i 0.0749802 + 0.0786370i
\(566\) −5.72154 + 12.5284i −0.240494 + 0.526609i
\(567\) 2.57081 + 0.625231i 0.107964 + 0.0262572i
\(568\) 5.93381 1.74232i 0.248977 0.0731062i
\(569\) 6.25415 7.95280i 0.262188 0.333399i −0.637080 0.770798i \(-0.719858\pi\)
0.899268 + 0.437399i \(0.144100\pi\)
\(570\) −2.11475 1.50591i −0.0885772 0.0630755i
\(571\) −0.717353 0.912188i −0.0300203 0.0381739i 0.770811 0.637064i \(-0.219851\pi\)
−0.800831 + 0.598890i \(0.795609\pi\)
\(572\) 0.359744 + 7.55196i 0.0150417 + 0.315763i
\(573\) 11.6824 13.4822i 0.488038 0.563225i
\(574\) −4.30523 + 4.96276i −0.179697 + 0.207142i
\(575\) 11.9731 + 20.2659i 0.499312 + 0.845147i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 1.34407 6.97371i 0.0559544 0.290319i −0.943163 0.332331i \(-0.892165\pi\)
0.999117 + 0.0420123i \(0.0133769\pi\)
\(578\) 5.03760 + 2.59706i 0.209536 + 0.108024i
\(579\) 2.57747 6.43822i 0.107116 0.267563i
\(580\) 0.161456 + 0.353540i 0.00670411 + 0.0146800i
\(581\) −27.2971 9.46511i −1.13247 0.392679i
\(582\) −4.95258 16.8669i −0.205291 0.699158i
\(583\) 37.0041 19.0769i 1.53255 0.790086i
\(584\) 0.0894608 + 0.936876i 0.00370191 + 0.0387682i
\(585\) −0.563864 + 0.136792i −0.0233129 + 0.00565565i
\(586\) 12.5837 2.42530i 0.519826 0.100188i
\(587\) −25.9863 + 22.5173i −1.07257 + 0.929387i −0.997699 0.0678063i \(-0.978400\pi\)
−0.0748712 + 0.997193i \(0.523855\pi\)
\(588\) −2.59420 6.50155i −0.106983 0.268119i
\(589\) −77.4784 35.3832i −3.19244 1.45794i
\(590\) −1.02633 1.99080i −0.0422533 0.0819599i
\(591\) 9.94464 10.4296i 0.409068 0.429018i
\(592\) −1.52381 3.80629i −0.0626281 0.156437i
\(593\) −1.68828 + 17.6804i −0.0693292 + 0.726048i 0.892254 + 0.451534i \(0.149123\pi\)
−0.961583 + 0.274514i \(0.911483\pi\)
\(594\) 0.562105 + 3.90952i 0.0230634 + 0.160410i
\(595\) −1.00195 2.50690i −0.0410758 0.102773i
\(596\) −4.78146 4.14316i −0.195856 0.169710i
\(597\) −7.04893 4.06970i −0.288493 0.166562i
\(598\) 6.40132 + 6.58011i 0.261769 + 0.269081i
\(599\) −8.88079 15.3820i −0.362859 0.628490i 0.625571 0.780167i \(-0.284866\pi\)
−0.988430 + 0.151677i \(0.951533\pi\)
\(600\) −4.63818 + 1.60529i −0.189353 + 0.0655357i
\(601\) −18.3578 28.5653i −0.748831 1.16520i −0.981278 0.192595i \(-0.938310\pi\)
0.232447 0.972609i \(-0.425327\pi\)
\(602\) −10.7219 6.89925i −0.436994 0.281192i
\(603\) −1.41775 + 0.647466i −0.0577354 + 0.0263669i
\(604\) −8.75539 6.88531i −0.356252 0.280159i
\(605\) 1.00920 + 0.962267i 0.0410297 + 0.0391217i
\(606\) 0.780304 16.3806i 0.0316977 0.665416i
\(607\) −18.7576 + 13.3573i −0.761349 + 0.542154i −0.893494 0.449076i \(-0.851753\pi\)
0.132144 + 0.991231i \(0.457814\pi\)
\(608\) −8.21792 2.41300i −0.333281 0.0978601i
\(609\) −1.69791 + 2.93698i −0.0688028 + 0.119013i
\(610\) 1.19875 + 1.38344i 0.0485361 + 0.0560137i
\(611\) −15.5665 + 14.8426i −0.629752 + 0.600467i
\(612\) 3.35111 0.319993i 0.135461 0.0129349i
\(613\) −5.03056 0.239635i −0.203183 0.00967878i −0.0542561 0.998527i \(-0.517279\pi\)
−0.148926 + 0.988848i \(0.547582\pi\)
\(614\) 21.6113 + 5.24286i 0.872163 + 0.211584i
\(615\) 0.107120 0.745034i 0.00431949 0.0300427i
\(616\) 7.56714 7.20699i 0.304889 0.290378i
\(617\) 16.1494 2.32194i 0.650152 0.0934778i 0.190655 0.981657i \(-0.438939\pi\)
0.459497 + 0.888179i \(0.348030\pi\)
\(618\) 19.7804 0.942254i 0.795682 0.0379030i
\(619\) −30.2155 5.82356i −1.21446 0.234069i −0.458507 0.888691i \(-0.651616\pi\)
−0.755956 + 0.654622i \(0.772828\pi\)
\(620\) 2.61056 1.50721i 0.104842 0.0605308i
\(621\) 3.65576 + 3.10410i 0.146701 + 0.124563i
\(622\) 1.20579i 0.0483480i
\(623\) −16.5048 + 2.36340i −0.661252 + 0.0946876i
\(624\) −1.61032 + 1.03489i −0.0644643 + 0.0414287i
\(625\) 21.9376 + 8.78248i 0.877503 + 0.351299i
\(626\) −19.2937 + 27.0942i −0.771131 + 1.08290i
\(627\) 31.4056 12.5729i 1.25422 0.502114i
\(628\) −4.51231 + 18.6000i −0.180061 + 0.742220i
\(629\) 7.46191 11.6110i 0.297526 0.462960i
\(630\) 0.652997 + 0.465560i 0.0260160 + 0.0185484i
\(631\) 3.02361 10.2975i 0.120368 0.409936i −0.877161 0.480197i \(-0.840565\pi\)
0.997529 + 0.0702614i \(0.0223833\pi\)
\(632\) −1.89115 9.81219i −0.0752257 0.390308i
\(633\) 13.2775 + 4.59540i 0.527735 + 0.182651i
\(634\) −5.53270 22.8061i −0.219732 0.905746i
\(635\) −0.0872671 0.122550i −0.00346309 0.00486323i
\(636\) 8.86724 + 5.69863i 0.351609 + 0.225965i
\(637\) −1.28895 + 13.3372i −0.0510701 + 0.528439i
\(638\) −5.01290 0.720747i −0.198463 0.0285346i
\(639\) −6.15631 0.587856i −0.243540 0.0232552i
\(640\) 0.238265 0.187373i 0.00941823 0.00740658i
\(641\) −18.1831 + 35.2703i −0.718190 + 1.39309i 0.193037 + 0.981191i \(0.438166\pi\)
−0.911228 + 0.411903i \(0.864864\pi\)
\(642\) −2.02552 5.85234i −0.0799407 0.230974i
\(643\) −9.23450 −0.364173 −0.182087 0.983282i \(-0.558285\pi\)
−0.182087 + 0.983282i \(0.558285\pi\)
\(644\) 1.08664 12.6420i 0.0428195 0.498163i
\(645\) 1.46071 0.0575155
\(646\) −9.43015 27.2466i −0.371024 1.07200i
\(647\) −1.96193 + 3.80562i −0.0771315 + 0.149614i −0.924248 0.381794i \(-0.875307\pi\)
0.847116 + 0.531408i \(0.178337\pi\)
\(648\) −0.786053 + 0.618159i −0.0308791 + 0.0242836i
\(649\) 29.0532 + 2.77425i 1.14044 + 0.108899i
\(650\) 9.29944 + 1.33706i 0.364754 + 0.0524437i
\(651\) 23.9274 + 10.9438i 0.937790 + 0.428923i
\(652\) −4.99343 3.20908i −0.195558 0.125677i
\(653\) 14.7512 + 20.7152i 0.577260 + 0.810648i 0.995204 0.0978248i \(-0.0311885\pi\)
−0.417944 + 0.908473i \(0.637249\pi\)
\(654\) −4.55976 18.7956i −0.178301 0.734965i
\(655\) −1.08464 0.375397i −0.0423803 0.0146680i
\(656\) −0.469949 2.43833i −0.0183484 0.0952006i
\(657\) 0.265149 0.903015i 0.0103445 0.0352300i
\(658\) 29.5924 + 2.84282i 1.15363 + 0.110825i
\(659\) 12.6880 19.7429i 0.494254 0.769075i −0.501096 0.865392i \(-0.667070\pi\)
0.995351 + 0.0963166i \(0.0307061\pi\)
\(660\) −0.282256 + 1.16347i −0.0109868 + 0.0452882i
\(661\) −22.9821 + 9.20063i −0.893899 + 0.357863i −0.772705 0.634766i \(-0.781097\pi\)
−0.121194 + 0.992629i \(0.538672\pi\)
\(662\) −11.0818 + 15.5622i −0.430706 + 0.604842i
\(663\) −5.98226 2.39494i −0.232332 0.0930116i
\(664\) 9.18646 5.90378i 0.356504 0.229111i
\(665\) 2.55650 6.37525i 0.0991368 0.247222i
\(666\) 4.09997i 0.158871i
\(667\) −5.13957 + 3.37630i −0.199005 + 0.130731i
\(668\) −12.3212 + 7.11365i −0.476722 + 0.275235i
\(669\) −7.92554 1.52752i −0.306419 0.0590574i
\(670\) −0.471901 + 0.0224794i −0.0182311 + 0.000868455i
\(671\) −23.6101 + 3.39461i −0.911456 + 0.131048i
\(672\) 2.53815 + 0.746847i 0.0979114 + 0.0288102i
\(673\) −4.82462 + 33.5560i −0.185975 + 1.29349i 0.656325 + 0.754479i \(0.272110\pi\)
−0.842300 + 0.539009i \(0.818799\pi\)
\(674\) 24.6950 + 5.99093i 0.951214 + 0.230762i
\(675\) 4.90256 + 0.233538i 0.188700 + 0.00898887i
\(676\) −9.29361 + 0.887432i −0.357446 + 0.0341320i
\(677\) −23.8270 + 22.7190i −0.915747 + 0.873163i −0.992294 0.123903i \(-0.960459\pi\)
0.0765473 + 0.997066i \(0.475610\pi\)
\(678\) −5.57973 6.43936i −0.214288 0.247302i
\(679\) 40.2919 23.2318i 1.54626 0.891555i
\(680\) 0.979061 + 0.287478i 0.0375453 + 0.0110243i
\(681\) 15.1109 10.7604i 0.579051 0.412340i
\(682\) −1.86898 + 39.2346i −0.0715668 + 1.50237i
\(683\) 14.8617 + 14.1706i 0.568667 + 0.542223i 0.918926 0.394430i \(-0.129058\pi\)
−0.350259 + 0.936653i \(0.613906\pi\)
\(684\) 6.73243 + 5.29445i 0.257421 + 0.202438i
\(685\) −4.42560 + 2.02110i −0.169093 + 0.0772224i
\(686\) 15.1046 10.7169i 0.576695 0.409173i
\(687\) 5.78798 + 9.00627i 0.220825 + 0.343611i
\(688\) 4.55396 1.57614i 0.173618 0.0600899i
\(689\) −10.0883 17.4734i −0.384332 0.665683i
\(690\) 0.679042 + 1.28535i 0.0258507 + 0.0489323i
\(691\) −18.8323 10.8728i −0.716414 0.413622i 0.0970174 0.995283i \(-0.469070\pi\)
−0.813431 + 0.581661i \(0.802403\pi\)
\(692\) 10.0955 + 8.74783i 0.383774 + 0.332542i
\(693\) −9.70366 + 3.87832i −0.368611 + 0.147325i
\(694\) 1.58656 + 11.0348i 0.0602249 + 0.418874i
\(695\) 0.230877 2.41786i 0.00875768 0.0917145i
\(696\) −0.476556 1.19038i −0.0180638 0.0451213i
\(697\) 5.76861 6.04994i 0.218502 0.229158i
\(698\) −13.2091 25.6221i −0.499972 0.969811i
\(699\) −24.2352 11.0678i −0.916660 0.418624i
\(700\) −7.01433 10.9283i −0.265117 0.413049i
\(701\) −14.3776 + 12.4582i −0.543033 + 0.470541i −0.882655 0.470021i \(-0.844246\pi\)
0.339622 + 0.940562i \(0.389701\pi\)
\(702\) 1.87960 0.362263i 0.0709408 0.0136727i
\(703\) 34.1259 8.27884i 1.28708 0.312242i
\(704\) 0.375445 + 3.93184i 0.0141501 + 0.148187i
\(705\) −3.02730 + 1.56068i −0.114015 + 0.0587786i
\(706\) 2.15385 + 7.33533i 0.0810611 + 0.276069i
\(707\) 42.6087 8.18687i 1.60247 0.307899i
\(708\) 3.06959 + 6.72147i 0.115362 + 0.252608i
\(709\) −12.6153 + 31.5115i −0.473778 + 1.18344i 0.478468 + 0.878105i \(0.341192\pi\)
−0.952245 + 0.305334i \(0.901232\pi\)
\(710\) −1.66617 0.858973i −0.0625304 0.0322367i
\(711\) −1.89115 + 9.81219i −0.0709235 + 0.367986i
\(712\) 3.15094 5.45758i 0.118086 0.204532i
\(713\) 29.8566 + 37.1921i 1.11814 + 1.39285i
\(714\) 2.90823 + 8.41836i 0.108838 + 0.315049i
\(715\) 1.50075 1.73196i 0.0561249 0.0647715i
\(716\) 0.497158 + 10.4366i 0.0185797 + 0.390035i
\(717\) 10.4484 + 13.2862i 0.390202 + 0.496183i
\(718\) 6.69926 + 4.77052i 0.250014 + 0.178034i
\(719\) −1.45733 + 1.85314i −0.0543491 + 0.0691105i −0.812468 0.583006i \(-0.801876\pi\)
0.758119 + 0.652117i \(0.226119\pi\)
\(720\) −0.290837 + 0.0853974i −0.0108388 + 0.00318257i
\(721\) 14.7321 + 50.2794i 0.548653 + 1.87250i
\(722\) 22.5806 49.4447i 0.840364 1.84014i
\(723\) −1.46179 1.53308i −0.0543647 0.0570160i
\(724\) 1.71128 4.94442i 0.0635993 0.183758i
\(725\) −2.05835 + 5.94721i −0.0764451 + 0.220874i
\(726\) −3.17459 3.32942i −0.117820 0.123566i
\(727\) −9.20871 + 20.1643i −0.341532 + 0.747851i −0.999989 0.00476780i \(-0.998482\pi\)
0.658457 + 0.752619i \(0.271210\pi\)
\(728\) −3.66333 3.49698i −0.135772 0.129607i
\(729\) 0.959493 0.281733i 0.0355368 0.0104345i
\(730\) 0.176344 0.224240i 0.00652679 0.00829948i
\(731\) 13.2145 + 9.40997i 0.488754 + 0.348040i
\(732\) −3.73313 4.74707i −0.137981 0.175457i
\(733\) −2.05122 43.0604i −0.0757636 1.59047i −0.642311 0.766444i \(-0.722024\pi\)
0.566548 0.824029i \(-0.308279\pi\)
\(734\) −19.8962 + 22.9615i −0.734384 + 0.847524i
\(735\) −0.790849 + 1.96891i −0.0291709 + 0.0726244i
\(736\) 3.50392 + 3.27453i 0.129156 + 0.120701i
\(737\) 3.07802 5.33129i 0.113380 0.196381i
\(738\) −0.469949 + 2.43833i −0.0172991 + 0.0897560i
\(739\) −11.6149 5.98788i −0.427260 0.220268i 0.231164 0.972915i \(-0.425746\pi\)
−0.658424 + 0.752647i \(0.728777\pi\)
\(740\) −0.461889 + 1.15374i −0.0169794 + 0.0424124i
\(741\) −6.81063 14.9132i −0.250195 0.547850i
\(742\) −9.13620 + 26.3485i −0.335401 + 0.967285i
\(743\) −12.7283 43.3486i −0.466956 1.59031i −0.770468 0.637478i \(-0.779977\pi\)
0.303512 0.952828i \(-0.401841\pi\)
\(744\) −8.83927 + 4.55696i −0.324063 + 0.167066i
\(745\) 0.182293 + 1.90906i 0.00667870 + 0.0699425i
\(746\) 4.59943 1.11581i 0.168397 0.0408527i
\(747\) −10.7226 + 2.06662i −0.392320 + 0.0756135i
\(748\) −10.0486 + 8.70715i −0.367413 + 0.318365i
\(749\) 13.7890 8.85052i 0.503840 0.323391i
\(750\) 2.73190 + 1.24762i 0.0997548 + 0.0455565i
\(751\) −0.445981 0.865083i −0.0162741 0.0315673i 0.880558 0.473938i \(-0.157168\pi\)
−0.896832 + 0.442371i \(0.854138\pi\)
\(752\) −7.75399 + 8.13215i −0.282759 + 0.296549i
\(753\) 0.316047 + 0.789446i 0.0115174 + 0.0287690i
\(754\) −0.233308 + 2.44332i −0.00849659 + 0.0889803i
\(755\) 0.480486 + 3.34186i 0.0174867 + 0.121623i
\(756\) −2.07876 1.63668i −0.0756039 0.0595256i
\(757\) 19.1945 + 16.6321i 0.697635 + 0.604505i 0.929753 0.368183i \(-0.120020\pi\)
−0.232118 + 0.972688i \(0.574566\pi\)
\(758\) −10.9274 6.30895i −0.396902 0.229151i
\(759\) −18.8736 1.61139i −0.685067 0.0584899i
\(760\) 1.29807 + 2.24832i 0.0470859 + 0.0815552i
\(761\) 8.38573 2.90233i 0.303983 0.105209i −0.170819 0.985303i \(-0.554641\pi\)
0.474801 + 0.880093i \(0.342520\pi\)
\(762\) 0.268337 + 0.417541i 0.00972084 + 0.0151259i
\(763\) 45.4959 23.4218i 1.64706 0.847926i
\(764\) −16.2273 + 7.41078i −0.587085 + 0.268113i
\(765\) −0.802084 0.630766i −0.0289994 0.0228054i
\(766\) 16.9683 + 16.1792i 0.613090 + 0.584580i
\(767\)