Defining parameters
| Level: | \( N \) | \(=\) | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 966.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(966))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 200 | 21 | 179 |
| Cusp forms | 185 | 21 | 164 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(8\) | \(1\) | \(7\) | \(8\) | \(1\) | \(7\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(15\) | \(2\) | \(13\) | \(14\) | \(2\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(12\) | \(2\) | \(10\) | \(11\) | \(2\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(14\) | \(2\) | \(12\) | \(13\) | \(2\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(13\) | \(0\) | \(13\) | \(12\) | \(0\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(12\) | \(3\) | \(9\) | \(11\) | \(3\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(12\) | \(2\) | \(10\) | \(11\) | \(2\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(14\) | \(0\) | \(14\) | \(13\) | \(0\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(13\) | \(1\) | \(12\) | \(12\) | \(1\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(12\) | \(0\) | \(12\) | \(11\) | \(0\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(14\) | \(2\) | \(12\) | \(13\) | \(2\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(13\) | \(3\) | \(10\) | \(12\) | \(3\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(11\) | \(0\) | \(11\) | \(10\) | \(0\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(94\) | \(5\) | \(89\) | \(87\) | \(5\) | \(82\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(106\) | \(16\) | \(90\) | \(98\) | \(16\) | \(82\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(966))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(966))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(966)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 2}\)