# Properties

 Label 9633.2.a.p.1.1 Level $9633$ Weight $2$ Character 9633.1 Self dual yes Analytic conductor $76.920$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9633,2,Mod(1,9633)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9633, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9633.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9633 = 3 \cdot 13^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9633.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$76.9198922671$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 57) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 9633.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} -1.00000 q^{5} +2.00000 q^{6} -3.00000 q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q+2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} -1.00000 q^{5} +2.00000 q^{6} -3.00000 q^{7} +1.00000 q^{9} -2.00000 q^{10} +3.00000 q^{11} +2.00000 q^{12} -6.00000 q^{14} -1.00000 q^{15} -4.00000 q^{16} +3.00000 q^{17} +2.00000 q^{18} +1.00000 q^{19} -2.00000 q^{20} -3.00000 q^{21} +6.00000 q^{22} +4.00000 q^{23} -4.00000 q^{25} +1.00000 q^{27} -6.00000 q^{28} -10.0000 q^{29} -2.00000 q^{30} -2.00000 q^{31} -8.00000 q^{32} +3.00000 q^{33} +6.00000 q^{34} +3.00000 q^{35} +2.00000 q^{36} -8.00000 q^{37} +2.00000 q^{38} +8.00000 q^{41} -6.00000 q^{42} -1.00000 q^{43} +6.00000 q^{44} -1.00000 q^{45} +8.00000 q^{46} -3.00000 q^{47} -4.00000 q^{48} +2.00000 q^{49} -8.00000 q^{50} +3.00000 q^{51} -6.00000 q^{53} +2.00000 q^{54} -3.00000 q^{55} +1.00000 q^{57} -20.0000 q^{58} -2.00000 q^{60} +7.00000 q^{61} -4.00000 q^{62} -3.00000 q^{63} -8.00000 q^{64} +6.00000 q^{66} -8.00000 q^{67} +6.00000 q^{68} +4.00000 q^{69} +6.00000 q^{70} -12.0000 q^{71} +11.0000 q^{73} -16.0000 q^{74} -4.00000 q^{75} +2.00000 q^{76} -9.00000 q^{77} +4.00000 q^{80} +1.00000 q^{81} +16.0000 q^{82} -4.00000 q^{83} -6.00000 q^{84} -3.00000 q^{85} -2.00000 q^{86} -10.0000 q^{87} -10.0000 q^{89} -2.00000 q^{90} +8.00000 q^{92} -2.00000 q^{93} -6.00000 q^{94} -1.00000 q^{95} -8.00000 q^{96} +2.00000 q^{97} +4.00000 q^{98} +3.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.00000 1.41421 0.707107 0.707107i $$-0.250000\pi$$
0.707107 + 0.707107i $$0.250000\pi$$
$$3$$ 1.00000 0.577350
$$4$$ 2.00000 1.00000
$$5$$ −1.00000 −0.447214 −0.223607 0.974679i $$-0.571783\pi$$
−0.223607 + 0.974679i $$0.571783\pi$$
$$6$$ 2.00000 0.816497
$$7$$ −3.00000 −1.13389 −0.566947 0.823754i $$-0.691875\pi$$
−0.566947 + 0.823754i $$0.691875\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ −2.00000 −0.632456
$$11$$ 3.00000 0.904534 0.452267 0.891883i $$-0.350615\pi$$
0.452267 + 0.891883i $$0.350615\pi$$
$$12$$ 2.00000 0.577350
$$13$$ 0 0
$$14$$ −6.00000 −1.60357
$$15$$ −1.00000 −0.258199
$$16$$ −4.00000 −1.00000
$$17$$ 3.00000 0.727607 0.363803 0.931476i $$-0.381478\pi$$
0.363803 + 0.931476i $$0.381478\pi$$
$$18$$ 2.00000 0.471405
$$19$$ 1.00000 0.229416
$$20$$ −2.00000 −0.447214
$$21$$ −3.00000 −0.654654
$$22$$ 6.00000 1.27920
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ 0 0
$$25$$ −4.00000 −0.800000
$$26$$ 0 0
$$27$$ 1.00000 0.192450
$$28$$ −6.00000 −1.13389
$$29$$ −10.0000 −1.85695 −0.928477 0.371391i $$-0.878881\pi$$
−0.928477 + 0.371391i $$0.878881\pi$$
$$30$$ −2.00000 −0.365148
$$31$$ −2.00000 −0.359211 −0.179605 0.983739i $$-0.557482\pi$$
−0.179605 + 0.983739i $$0.557482\pi$$
$$32$$ −8.00000 −1.41421
$$33$$ 3.00000 0.522233
$$34$$ 6.00000 1.02899
$$35$$ 3.00000 0.507093
$$36$$ 2.00000 0.333333
$$37$$ −8.00000 −1.31519 −0.657596 0.753371i $$-0.728427\pi$$
−0.657596 + 0.753371i $$0.728427\pi$$
$$38$$ 2.00000 0.324443
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 8.00000 1.24939 0.624695 0.780869i $$-0.285223\pi$$
0.624695 + 0.780869i $$0.285223\pi$$
$$42$$ −6.00000 −0.925820
$$43$$ −1.00000 −0.152499 −0.0762493 0.997089i $$-0.524294\pi$$
−0.0762493 + 0.997089i $$0.524294\pi$$
$$44$$ 6.00000 0.904534
$$45$$ −1.00000 −0.149071
$$46$$ 8.00000 1.17954
$$47$$ −3.00000 −0.437595 −0.218797 0.975770i $$-0.570213\pi$$
−0.218797 + 0.975770i $$0.570213\pi$$
$$48$$ −4.00000 −0.577350
$$49$$ 2.00000 0.285714
$$50$$ −8.00000 −1.13137
$$51$$ 3.00000 0.420084
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 2.00000 0.272166
$$55$$ −3.00000 −0.404520
$$56$$ 0 0
$$57$$ 1.00000 0.132453
$$58$$ −20.0000 −2.62613
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ −2.00000 −0.258199
$$61$$ 7.00000 0.896258 0.448129 0.893969i $$-0.352090\pi$$
0.448129 + 0.893969i $$0.352090\pi$$
$$62$$ −4.00000 −0.508001
$$63$$ −3.00000 −0.377964
$$64$$ −8.00000 −1.00000
$$65$$ 0 0
$$66$$ 6.00000 0.738549
$$67$$ −8.00000 −0.977356 −0.488678 0.872464i $$-0.662521\pi$$
−0.488678 + 0.872464i $$0.662521\pi$$
$$68$$ 6.00000 0.727607
$$69$$ 4.00000 0.481543
$$70$$ 6.00000 0.717137
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 11.0000 1.28745 0.643726 0.765256i $$-0.277388\pi$$
0.643726 + 0.765256i $$0.277388\pi$$
$$74$$ −16.0000 −1.85996
$$75$$ −4.00000 −0.461880
$$76$$ 2.00000 0.229416
$$77$$ −9.00000 −1.02565
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 4.00000 0.447214
$$81$$ 1.00000 0.111111
$$82$$ 16.0000 1.76690
$$83$$ −4.00000 −0.439057 −0.219529 0.975606i $$-0.570452\pi$$
−0.219529 + 0.975606i $$0.570452\pi$$
$$84$$ −6.00000 −0.654654
$$85$$ −3.00000 −0.325396
$$86$$ −2.00000 −0.215666
$$87$$ −10.0000 −1.07211
$$88$$ 0 0
$$89$$ −10.0000 −1.06000 −0.529999 0.847998i $$-0.677808\pi$$
−0.529999 + 0.847998i $$0.677808\pi$$
$$90$$ −2.00000 −0.210819
$$91$$ 0 0
$$92$$ 8.00000 0.834058
$$93$$ −2.00000 −0.207390
$$94$$ −6.00000 −0.618853
$$95$$ −1.00000 −0.102598
$$96$$ −8.00000 −0.816497
$$97$$ 2.00000 0.203069 0.101535 0.994832i $$-0.467625\pi$$
0.101535 + 0.994832i $$0.467625\pi$$
$$98$$ 4.00000 0.404061
$$99$$ 3.00000 0.301511
$$100$$ −8.00000 −0.800000
$$101$$ 2.00000 0.199007 0.0995037 0.995037i $$-0.468274\pi$$
0.0995037 + 0.995037i $$0.468274\pi$$
$$102$$ 6.00000 0.594089
$$103$$ 14.0000 1.37946 0.689730 0.724066i $$-0.257729\pi$$
0.689730 + 0.724066i $$0.257729\pi$$
$$104$$ 0 0
$$105$$ 3.00000 0.292770
$$106$$ −12.0000 −1.16554
$$107$$ −2.00000 −0.193347 −0.0966736 0.995316i $$-0.530820\pi$$
−0.0966736 + 0.995316i $$0.530820\pi$$
$$108$$ 2.00000 0.192450
$$109$$ −20.0000 −1.91565 −0.957826 0.287348i $$-0.907226\pi$$
−0.957826 + 0.287348i $$0.907226\pi$$
$$110$$ −6.00000 −0.572078
$$111$$ −8.00000 −0.759326
$$112$$ 12.0000 1.13389
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ 2.00000 0.187317
$$115$$ −4.00000 −0.373002
$$116$$ −20.0000 −1.85695
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −9.00000 −0.825029
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 14.0000 1.26750
$$123$$ 8.00000 0.721336
$$124$$ −4.00000 −0.359211
$$125$$ 9.00000 0.804984
$$126$$ −6.00000 −0.534522
$$127$$ −2.00000 −0.177471 −0.0887357 0.996055i $$-0.528283\pi$$
−0.0887357 + 0.996055i $$0.528283\pi$$
$$128$$ 0 0
$$129$$ −1.00000 −0.0880451
$$130$$ 0 0
$$131$$ −13.0000 −1.13582 −0.567908 0.823092i $$-0.692247\pi$$
−0.567908 + 0.823092i $$0.692247\pi$$
$$132$$ 6.00000 0.522233
$$133$$ −3.00000 −0.260133
$$134$$ −16.0000 −1.38219
$$135$$ −1.00000 −0.0860663
$$136$$ 0 0
$$137$$ −3.00000 −0.256307 −0.128154 0.991754i $$-0.540905\pi$$
−0.128154 + 0.991754i $$0.540905\pi$$
$$138$$ 8.00000 0.681005
$$139$$ −5.00000 −0.424094 −0.212047 0.977259i $$-0.568013\pi$$
−0.212047 + 0.977259i $$0.568013\pi$$
$$140$$ 6.00000 0.507093
$$141$$ −3.00000 −0.252646
$$142$$ −24.0000 −2.01404
$$143$$ 0 0
$$144$$ −4.00000 −0.333333
$$145$$ 10.0000 0.830455
$$146$$ 22.0000 1.82073
$$147$$ 2.00000 0.164957
$$148$$ −16.0000 −1.31519
$$149$$ −15.0000 −1.22885 −0.614424 0.788976i $$-0.710612\pi$$
−0.614424 + 0.788976i $$0.710612\pi$$
$$150$$ −8.00000 −0.653197
$$151$$ 8.00000 0.651031 0.325515 0.945537i $$-0.394462\pi$$
0.325515 + 0.945537i $$0.394462\pi$$
$$152$$ 0 0
$$153$$ 3.00000 0.242536
$$154$$ −18.0000 −1.45048
$$155$$ 2.00000 0.160644
$$156$$ 0 0
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 8.00000 0.632456
$$161$$ −12.0000 −0.945732
$$162$$ 2.00000 0.157135
$$163$$ 16.0000 1.25322 0.626608 0.779334i $$-0.284443\pi$$
0.626608 + 0.779334i $$0.284443\pi$$
$$164$$ 16.0000 1.24939
$$165$$ −3.00000 −0.233550
$$166$$ −8.00000 −0.620920
$$167$$ −18.0000 −1.39288 −0.696441 0.717614i $$-0.745234\pi$$
−0.696441 + 0.717614i $$0.745234\pi$$
$$168$$ 0 0
$$169$$ 0 0
$$170$$ −6.00000 −0.460179
$$171$$ 1.00000 0.0764719
$$172$$ −2.00000 −0.152499
$$173$$ 14.0000 1.06440 0.532200 0.846619i $$-0.321365\pi$$
0.532200 + 0.846619i $$0.321365\pi$$
$$174$$ −20.0000 −1.51620
$$175$$ 12.0000 0.907115
$$176$$ −12.0000 −0.904534
$$177$$ 0 0
$$178$$ −20.0000 −1.49906
$$179$$ −10.0000 −0.747435 −0.373718 0.927543i $$-0.621917\pi$$
−0.373718 + 0.927543i $$0.621917\pi$$
$$180$$ −2.00000 −0.149071
$$181$$ 2.00000 0.148659 0.0743294 0.997234i $$-0.476318\pi$$
0.0743294 + 0.997234i $$0.476318\pi$$
$$182$$ 0 0
$$183$$ 7.00000 0.517455
$$184$$ 0 0
$$185$$ 8.00000 0.588172
$$186$$ −4.00000 −0.293294
$$187$$ 9.00000 0.658145
$$188$$ −6.00000 −0.437595
$$189$$ −3.00000 −0.218218
$$190$$ −2.00000 −0.145095
$$191$$ −3.00000 −0.217072 −0.108536 0.994092i $$-0.534616\pi$$
−0.108536 + 0.994092i $$0.534616\pi$$
$$192$$ −8.00000 −0.577350
$$193$$ −4.00000 −0.287926 −0.143963 0.989583i $$-0.545985\pi$$
−0.143963 + 0.989583i $$0.545985\pi$$
$$194$$ 4.00000 0.287183
$$195$$ 0 0
$$196$$ 4.00000 0.285714
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 6.00000 0.426401
$$199$$ −5.00000 −0.354441 −0.177220 0.984171i $$-0.556711\pi$$
−0.177220 + 0.984171i $$0.556711\pi$$
$$200$$ 0 0
$$201$$ −8.00000 −0.564276
$$202$$ 4.00000 0.281439
$$203$$ 30.0000 2.10559
$$204$$ 6.00000 0.420084
$$205$$ −8.00000 −0.558744
$$206$$ 28.0000 1.95085
$$207$$ 4.00000 0.278019
$$208$$ 0 0
$$209$$ 3.00000 0.207514
$$210$$ 6.00000 0.414039
$$211$$ −28.0000 −1.92760 −0.963800 0.266627i $$-0.914091\pi$$
−0.963800 + 0.266627i $$0.914091\pi$$
$$212$$ −12.0000 −0.824163
$$213$$ −12.0000 −0.822226
$$214$$ −4.00000 −0.273434
$$215$$ 1.00000 0.0681994
$$216$$ 0 0
$$217$$ 6.00000 0.407307
$$218$$ −40.0000 −2.70914
$$219$$ 11.0000 0.743311
$$220$$ −6.00000 −0.404520
$$221$$ 0 0
$$222$$ −16.0000 −1.07385
$$223$$ −4.00000 −0.267860 −0.133930 0.990991i $$-0.542760\pi$$
−0.133930 + 0.990991i $$0.542760\pi$$
$$224$$ 24.0000 1.60357
$$225$$ −4.00000 −0.266667
$$226$$ −12.0000 −0.798228
$$227$$ −18.0000 −1.19470 −0.597351 0.801980i $$-0.703780\pi$$
−0.597351 + 0.801980i $$0.703780\pi$$
$$228$$ 2.00000 0.132453
$$229$$ 15.0000 0.991228 0.495614 0.868543i $$-0.334943\pi$$
0.495614 + 0.868543i $$0.334943\pi$$
$$230$$ −8.00000 −0.527504
$$231$$ −9.00000 −0.592157
$$232$$ 0 0
$$233$$ −11.0000 −0.720634 −0.360317 0.932830i $$-0.617331\pi$$
−0.360317 + 0.932830i $$0.617331\pi$$
$$234$$ 0 0
$$235$$ 3.00000 0.195698
$$236$$ 0 0
$$237$$ 0 0
$$238$$ −18.0000 −1.16677
$$239$$ 15.0000 0.970269 0.485135 0.874439i $$-0.338771\pi$$
0.485135 + 0.874439i $$0.338771\pi$$
$$240$$ 4.00000 0.258199
$$241$$ −12.0000 −0.772988 −0.386494 0.922292i $$-0.626314\pi$$
−0.386494 + 0.922292i $$0.626314\pi$$
$$242$$ −4.00000 −0.257130
$$243$$ 1.00000 0.0641500
$$244$$ 14.0000 0.896258
$$245$$ −2.00000 −0.127775
$$246$$ 16.0000 1.02012
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −4.00000 −0.253490
$$250$$ 18.0000 1.13842
$$251$$ 27.0000 1.70422 0.852112 0.523359i $$-0.175321\pi$$
0.852112 + 0.523359i $$0.175321\pi$$
$$252$$ −6.00000 −0.377964
$$253$$ 12.0000 0.754434
$$254$$ −4.00000 −0.250982
$$255$$ −3.00000 −0.187867
$$256$$ 16.0000 1.00000
$$257$$ 8.00000 0.499026 0.249513 0.968371i $$-0.419729\pi$$
0.249513 + 0.968371i $$0.419729\pi$$
$$258$$ −2.00000 −0.124515
$$259$$ 24.0000 1.49129
$$260$$ 0 0
$$261$$ −10.0000 −0.618984
$$262$$ −26.0000 −1.60629
$$263$$ −21.0000 −1.29492 −0.647458 0.762101i $$-0.724168\pi$$
−0.647458 + 0.762101i $$0.724168\pi$$
$$264$$ 0 0
$$265$$ 6.00000 0.368577
$$266$$ −6.00000 −0.367884
$$267$$ −10.0000 −0.611990
$$268$$ −16.0000 −0.977356
$$269$$ −30.0000 −1.82913 −0.914566 0.404436i $$-0.867468\pi$$
−0.914566 + 0.404436i $$0.867468\pi$$
$$270$$ −2.00000 −0.121716
$$271$$ −12.0000 −0.728948 −0.364474 0.931214i $$-0.618751\pi$$
−0.364474 + 0.931214i $$0.618751\pi$$
$$272$$ −12.0000 −0.727607
$$273$$ 0 0
$$274$$ −6.00000 −0.362473
$$275$$ −12.0000 −0.723627
$$276$$ 8.00000 0.481543
$$277$$ 13.0000 0.781094 0.390547 0.920583i $$-0.372286\pi$$
0.390547 + 0.920583i $$0.372286\pi$$
$$278$$ −10.0000 −0.599760
$$279$$ −2.00000 −0.119737
$$280$$ 0 0
$$281$$ −2.00000 −0.119310 −0.0596550 0.998219i $$-0.519000\pi$$
−0.0596550 + 0.998219i $$0.519000\pi$$
$$282$$ −6.00000 −0.357295
$$283$$ 19.0000 1.12943 0.564716 0.825285i $$-0.308986\pi$$
0.564716 + 0.825285i $$0.308986\pi$$
$$284$$ −24.0000 −1.42414
$$285$$ −1.00000 −0.0592349
$$286$$ 0 0
$$287$$ −24.0000 −1.41668
$$288$$ −8.00000 −0.471405
$$289$$ −8.00000 −0.470588
$$290$$ 20.0000 1.17444
$$291$$ 2.00000 0.117242
$$292$$ 22.0000 1.28745
$$293$$ −4.00000 −0.233682 −0.116841 0.993151i $$-0.537277\pi$$
−0.116841 + 0.993151i $$0.537277\pi$$
$$294$$ 4.00000 0.233285
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 3.00000 0.174078
$$298$$ −30.0000 −1.73785
$$299$$ 0 0
$$300$$ −8.00000 −0.461880
$$301$$ 3.00000 0.172917
$$302$$ 16.0000 0.920697
$$303$$ 2.00000 0.114897
$$304$$ −4.00000 −0.229416
$$305$$ −7.00000 −0.400819
$$306$$ 6.00000 0.342997
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ −18.0000 −1.02565
$$309$$ 14.0000 0.796432
$$310$$ 4.00000 0.227185
$$311$$ 7.00000 0.396934 0.198467 0.980108i $$-0.436404\pi$$
0.198467 + 0.980108i $$0.436404\pi$$
$$312$$ 0 0
$$313$$ 14.0000 0.791327 0.395663 0.918396i $$-0.370515\pi$$
0.395663 + 0.918396i $$0.370515\pi$$
$$314$$ −4.00000 −0.225733
$$315$$ 3.00000 0.169031
$$316$$ 0 0
$$317$$ 12.0000 0.673987 0.336994 0.941507i $$-0.390590\pi$$
0.336994 + 0.941507i $$0.390590\pi$$
$$318$$ −12.0000 −0.672927
$$319$$ −30.0000 −1.67968
$$320$$ 8.00000 0.447214
$$321$$ −2.00000 −0.111629
$$322$$ −24.0000 −1.33747
$$323$$ 3.00000 0.166924
$$324$$ 2.00000 0.111111
$$325$$ 0 0
$$326$$ 32.0000 1.77232
$$327$$ −20.0000 −1.10600
$$328$$ 0 0
$$329$$ 9.00000 0.496186
$$330$$ −6.00000 −0.330289
$$331$$ −12.0000 −0.659580 −0.329790 0.944054i $$-0.606978\pi$$
−0.329790 + 0.944054i $$0.606978\pi$$
$$332$$ −8.00000 −0.439057
$$333$$ −8.00000 −0.438397
$$334$$ −36.0000 −1.96983
$$335$$ 8.00000 0.437087
$$336$$ 12.0000 0.654654
$$337$$ −22.0000 −1.19842 −0.599208 0.800593i $$-0.704518\pi$$
−0.599208 + 0.800593i $$0.704518\pi$$
$$338$$ 0 0
$$339$$ −6.00000 −0.325875
$$340$$ −6.00000 −0.325396
$$341$$ −6.00000 −0.324918
$$342$$ 2.00000 0.108148
$$343$$ 15.0000 0.809924
$$344$$ 0 0
$$345$$ −4.00000 −0.215353
$$346$$ 28.0000 1.50529
$$347$$ 3.00000 0.161048 0.0805242 0.996753i $$-0.474341\pi$$
0.0805242 + 0.996753i $$0.474341\pi$$
$$348$$ −20.0000 −1.07211
$$349$$ −25.0000 −1.33822 −0.669110 0.743164i $$-0.733324\pi$$
−0.669110 + 0.743164i $$0.733324\pi$$
$$350$$ 24.0000 1.28285
$$351$$ 0 0
$$352$$ −24.0000 −1.27920
$$353$$ −14.0000 −0.745145 −0.372572 0.928003i $$-0.621524\pi$$
−0.372572 + 0.928003i $$0.621524\pi$$
$$354$$ 0 0
$$355$$ 12.0000 0.636894
$$356$$ −20.0000 −1.06000
$$357$$ −9.00000 −0.476331
$$358$$ −20.0000 −1.05703
$$359$$ −25.0000 −1.31945 −0.659725 0.751507i $$-0.729327\pi$$
−0.659725 + 0.751507i $$0.729327\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 4.00000 0.210235
$$363$$ −2.00000 −0.104973
$$364$$ 0 0
$$365$$ −11.0000 −0.575766
$$366$$ 14.0000 0.731792
$$367$$ 8.00000 0.417597 0.208798 0.977959i $$-0.433045\pi$$
0.208798 + 0.977959i $$0.433045\pi$$
$$368$$ −16.0000 −0.834058
$$369$$ 8.00000 0.416463
$$370$$ 16.0000 0.831800
$$371$$ 18.0000 0.934513
$$372$$ −4.00000 −0.207390
$$373$$ −16.0000 −0.828449 −0.414224 0.910175i $$-0.635947\pi$$
−0.414224 + 0.910175i $$0.635947\pi$$
$$374$$ 18.0000 0.930758
$$375$$ 9.00000 0.464758
$$376$$ 0 0
$$377$$ 0 0
$$378$$ −6.00000 −0.308607
$$379$$ 30.0000 1.54100 0.770498 0.637442i $$-0.220007\pi$$
0.770498 + 0.637442i $$0.220007\pi$$
$$380$$ −2.00000 −0.102598
$$381$$ −2.00000 −0.102463
$$382$$ −6.00000 −0.306987
$$383$$ −14.0000 −0.715367 −0.357683 0.933843i $$-0.616433\pi$$
−0.357683 + 0.933843i $$0.616433\pi$$
$$384$$ 0 0
$$385$$ 9.00000 0.458682
$$386$$ −8.00000 −0.407189
$$387$$ −1.00000 −0.0508329
$$388$$ 4.00000 0.203069
$$389$$ −15.0000 −0.760530 −0.380265 0.924878i $$-0.624167\pi$$
−0.380265 + 0.924878i $$0.624167\pi$$
$$390$$ 0 0
$$391$$ 12.0000 0.606866
$$392$$ 0 0
$$393$$ −13.0000 −0.655763
$$394$$ 4.00000 0.201517
$$395$$ 0 0
$$396$$ 6.00000 0.301511
$$397$$ 7.00000 0.351320 0.175660 0.984451i $$-0.443794\pi$$
0.175660 + 0.984451i $$0.443794\pi$$
$$398$$ −10.0000 −0.501255
$$399$$ −3.00000 −0.150188
$$400$$ 16.0000 0.800000
$$401$$ 28.0000 1.39825 0.699127 0.714998i $$-0.253572\pi$$
0.699127 + 0.714998i $$0.253572\pi$$
$$402$$ −16.0000 −0.798007
$$403$$ 0 0
$$404$$ 4.00000 0.199007
$$405$$ −1.00000 −0.0496904
$$406$$ 60.0000 2.97775
$$407$$ −24.0000 −1.18964
$$408$$ 0 0
$$409$$ −10.0000 −0.494468 −0.247234 0.968956i $$-0.579522\pi$$
−0.247234 + 0.968956i $$0.579522\pi$$
$$410$$ −16.0000 −0.790184
$$411$$ −3.00000 −0.147979
$$412$$ 28.0000 1.37946
$$413$$ 0 0
$$414$$ 8.00000 0.393179
$$415$$ 4.00000 0.196352
$$416$$ 0 0
$$417$$ −5.00000 −0.244851
$$418$$ 6.00000 0.293470
$$419$$ 20.0000 0.977064 0.488532 0.872546i $$-0.337533\pi$$
0.488532 + 0.872546i $$0.337533\pi$$
$$420$$ 6.00000 0.292770
$$421$$ −2.00000 −0.0974740 −0.0487370 0.998812i $$-0.515520\pi$$
−0.0487370 + 0.998812i $$0.515520\pi$$
$$422$$ −56.0000 −2.72604
$$423$$ −3.00000 −0.145865
$$424$$ 0 0
$$425$$ −12.0000 −0.582086
$$426$$ −24.0000 −1.16280
$$427$$ −21.0000 −1.01626
$$428$$ −4.00000 −0.193347
$$429$$ 0 0
$$430$$ 2.00000 0.0964486
$$431$$ 18.0000 0.867029 0.433515 0.901146i $$-0.357273\pi$$
0.433515 + 0.901146i $$0.357273\pi$$
$$432$$ −4.00000 −0.192450
$$433$$ −26.0000 −1.24948 −0.624740 0.780833i $$-0.714795\pi$$
−0.624740 + 0.780833i $$0.714795\pi$$
$$434$$ 12.0000 0.576018
$$435$$ 10.0000 0.479463
$$436$$ −40.0000 −1.91565
$$437$$ 4.00000 0.191346
$$438$$ 22.0000 1.05120
$$439$$ 10.0000 0.477274 0.238637 0.971109i $$-0.423299\pi$$
0.238637 + 0.971109i $$0.423299\pi$$
$$440$$ 0 0
$$441$$ 2.00000 0.0952381
$$442$$ 0 0
$$443$$ 39.0000 1.85295 0.926473 0.376361i $$-0.122825\pi$$
0.926473 + 0.376361i $$0.122825\pi$$
$$444$$ −16.0000 −0.759326
$$445$$ 10.0000 0.474045
$$446$$ −8.00000 −0.378811
$$447$$ −15.0000 −0.709476
$$448$$ 24.0000 1.13389
$$449$$ 20.0000 0.943858 0.471929 0.881636i $$-0.343558\pi$$
0.471929 + 0.881636i $$0.343558\pi$$
$$450$$ −8.00000 −0.377124
$$451$$ 24.0000 1.13012
$$452$$ −12.0000 −0.564433
$$453$$ 8.00000 0.375873
$$454$$ −36.0000 −1.68956
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −3.00000 −0.140334 −0.0701670 0.997535i $$-0.522353\pi$$
−0.0701670 + 0.997535i $$0.522353\pi$$
$$458$$ 30.0000 1.40181
$$459$$ 3.00000 0.140028
$$460$$ −8.00000 −0.373002
$$461$$ 33.0000 1.53696 0.768482 0.639872i $$-0.221013\pi$$
0.768482 + 0.639872i $$0.221013\pi$$
$$462$$ −18.0000 −0.837436
$$463$$ 31.0000 1.44069 0.720346 0.693615i $$-0.243983\pi$$
0.720346 + 0.693615i $$0.243983\pi$$
$$464$$ 40.0000 1.85695
$$465$$ 2.00000 0.0927478
$$466$$ −22.0000 −1.01913
$$467$$ −17.0000 −0.786666 −0.393333 0.919396i $$-0.628678\pi$$
−0.393333 + 0.919396i $$0.628678\pi$$
$$468$$ 0 0
$$469$$ 24.0000 1.10822
$$470$$ 6.00000 0.276759
$$471$$ −2.00000 −0.0921551
$$472$$ 0 0
$$473$$ −3.00000 −0.137940
$$474$$ 0 0
$$475$$ −4.00000 −0.183533
$$476$$ −18.0000 −0.825029
$$477$$ −6.00000 −0.274721
$$478$$ 30.0000 1.37217
$$479$$ 40.0000 1.82765 0.913823 0.406112i $$-0.133116\pi$$
0.913823 + 0.406112i $$0.133116\pi$$
$$480$$ 8.00000 0.365148
$$481$$ 0 0
$$482$$ −24.0000 −1.09317
$$483$$ −12.0000 −0.546019
$$484$$ −4.00000 −0.181818
$$485$$ −2.00000 −0.0908153
$$486$$ 2.00000 0.0907218
$$487$$ −8.00000 −0.362515 −0.181257 0.983436i $$-0.558017\pi$$
−0.181257 + 0.983436i $$0.558017\pi$$
$$488$$ 0 0
$$489$$ 16.0000 0.723545
$$490$$ −4.00000 −0.180702
$$491$$ −8.00000 −0.361035 −0.180517 0.983572i $$-0.557777\pi$$
−0.180517 + 0.983572i $$0.557777\pi$$
$$492$$ 16.0000 0.721336
$$493$$ −30.0000 −1.35113
$$494$$ 0 0
$$495$$ −3.00000 −0.134840
$$496$$ 8.00000 0.359211
$$497$$ 36.0000 1.61482
$$498$$ −8.00000 −0.358489
$$499$$ 35.0000 1.56682 0.783408 0.621508i $$-0.213480\pi$$
0.783408 + 0.621508i $$0.213480\pi$$
$$500$$ 18.0000 0.804984
$$501$$ −18.0000 −0.804181
$$502$$ 54.0000 2.41014
$$503$$ 24.0000 1.07011 0.535054 0.844818i $$-0.320291\pi$$
0.535054 + 0.844818i $$0.320291\pi$$
$$504$$ 0 0
$$505$$ −2.00000 −0.0889988
$$506$$ 24.0000 1.06693
$$507$$ 0 0
$$508$$ −4.00000 −0.177471
$$509$$ 10.0000 0.443242 0.221621 0.975133i $$-0.428865\pi$$
0.221621 + 0.975133i $$0.428865\pi$$
$$510$$ −6.00000 −0.265684
$$511$$ −33.0000 −1.45983
$$512$$ 32.0000 1.41421
$$513$$ 1.00000 0.0441511
$$514$$ 16.0000 0.705730
$$515$$ −14.0000 −0.616914
$$516$$ −2.00000 −0.0880451
$$517$$ −9.00000 −0.395820
$$518$$ 48.0000 2.10900
$$519$$ 14.0000 0.614532
$$520$$ 0 0
$$521$$ −28.0000 −1.22670 −0.613351 0.789810i $$-0.710179\pi$$
−0.613351 + 0.789810i $$0.710179\pi$$
$$522$$ −20.0000 −0.875376
$$523$$ 14.0000 0.612177 0.306089 0.952003i $$-0.400980\pi$$
0.306089 + 0.952003i $$0.400980\pi$$
$$524$$ −26.0000 −1.13582
$$525$$ 12.0000 0.523723
$$526$$ −42.0000 −1.83129
$$527$$ −6.00000 −0.261364
$$528$$ −12.0000 −0.522233
$$529$$ −7.00000 −0.304348
$$530$$ 12.0000 0.521247
$$531$$ 0 0
$$532$$ −6.00000 −0.260133
$$533$$ 0 0
$$534$$ −20.0000 −0.865485
$$535$$ 2.00000 0.0864675
$$536$$ 0 0
$$537$$ −10.0000 −0.431532
$$538$$ −60.0000 −2.58678
$$539$$ 6.00000 0.258438
$$540$$ −2.00000 −0.0860663
$$541$$ 13.0000 0.558914 0.279457 0.960158i $$-0.409846\pi$$
0.279457 + 0.960158i $$0.409846\pi$$
$$542$$ −24.0000 −1.03089
$$543$$ 2.00000 0.0858282
$$544$$ −24.0000 −1.02899
$$545$$ 20.0000 0.856706
$$546$$ 0 0
$$547$$ −2.00000 −0.0855138 −0.0427569 0.999086i $$-0.513614\pi$$
−0.0427569 + 0.999086i $$0.513614\pi$$
$$548$$ −6.00000 −0.256307
$$549$$ 7.00000 0.298753
$$550$$ −24.0000 −1.02336
$$551$$ −10.0000 −0.426014
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 26.0000 1.10463
$$555$$ 8.00000 0.339581
$$556$$ −10.0000 −0.424094
$$557$$ −3.00000 −0.127114 −0.0635570 0.997978i $$-0.520244\pi$$
−0.0635570 + 0.997978i $$0.520244\pi$$
$$558$$ −4.00000 −0.169334
$$559$$ 0 0
$$560$$ −12.0000 −0.507093
$$561$$ 9.00000 0.379980
$$562$$ −4.00000 −0.168730
$$563$$ 44.0000 1.85438 0.927189 0.374593i $$-0.122217\pi$$
0.927189 + 0.374593i $$0.122217\pi$$
$$564$$ −6.00000 −0.252646
$$565$$ 6.00000 0.252422
$$566$$ 38.0000 1.59726
$$567$$ −3.00000 −0.125988
$$568$$ 0 0
$$569$$ 30.0000 1.25767 0.628833 0.777541i $$-0.283533\pi$$
0.628833 + 0.777541i $$0.283533\pi$$
$$570$$ −2.00000 −0.0837708
$$571$$ 32.0000 1.33916 0.669579 0.742741i $$-0.266474\pi$$
0.669579 + 0.742741i $$0.266474\pi$$
$$572$$ 0 0
$$573$$ −3.00000 −0.125327
$$574$$ −48.0000 −2.00348
$$575$$ −16.0000 −0.667246
$$576$$ −8.00000 −0.333333
$$577$$ −3.00000 −0.124892 −0.0624458 0.998048i $$-0.519890\pi$$
−0.0624458 + 0.998048i $$0.519890\pi$$
$$578$$ −16.0000 −0.665512
$$579$$ −4.00000 −0.166234
$$580$$ 20.0000 0.830455
$$581$$ 12.0000 0.497844
$$582$$ 4.00000 0.165805
$$583$$ −18.0000 −0.745484
$$584$$ 0 0
$$585$$ 0 0
$$586$$ −8.00000 −0.330477
$$587$$ 37.0000 1.52715 0.763577 0.645717i $$-0.223441\pi$$
0.763577 + 0.645717i $$0.223441\pi$$
$$588$$ 4.00000 0.164957
$$589$$ −2.00000 −0.0824086
$$590$$ 0 0
$$591$$ 2.00000 0.0822690
$$592$$ 32.0000 1.31519
$$593$$ 6.00000 0.246390 0.123195 0.992382i $$-0.460686\pi$$
0.123195 + 0.992382i $$0.460686\pi$$
$$594$$ 6.00000 0.246183
$$595$$ 9.00000 0.368964
$$596$$ −30.0000 −1.22885
$$597$$ −5.00000 −0.204636
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −8.00000 −0.326327 −0.163163 0.986599i $$-0.552170\pi$$
−0.163163 + 0.986599i $$0.552170\pi$$
$$602$$ 6.00000 0.244542
$$603$$ −8.00000 −0.325785
$$604$$ 16.0000 0.651031
$$605$$ 2.00000 0.0813116
$$606$$ 4.00000 0.162489
$$607$$ 18.0000 0.730597 0.365299 0.930890i $$-0.380967\pi$$
0.365299 + 0.930890i $$0.380967\pi$$
$$608$$ −8.00000 −0.324443
$$609$$ 30.0000 1.21566
$$610$$ −14.0000 −0.566843
$$611$$ 0 0
$$612$$ 6.00000 0.242536
$$613$$ −9.00000 −0.363507 −0.181753 0.983344i $$-0.558177\pi$$
−0.181753 + 0.983344i $$0.558177\pi$$
$$614$$ 24.0000 0.968561
$$615$$ −8.00000 −0.322591
$$616$$ 0 0
$$617$$ −23.0000 −0.925945 −0.462973 0.886373i $$-0.653217\pi$$
−0.462973 + 0.886373i $$0.653217\pi$$
$$618$$ 28.0000 1.12633
$$619$$ −20.0000 −0.803868 −0.401934 0.915669i $$-0.631662\pi$$
−0.401934 + 0.915669i $$0.631662\pi$$
$$620$$ 4.00000 0.160644
$$621$$ 4.00000 0.160514
$$622$$ 14.0000 0.561349
$$623$$ 30.0000 1.20192
$$624$$ 0 0
$$625$$ 11.0000 0.440000
$$626$$ 28.0000 1.11911
$$627$$ 3.00000 0.119808
$$628$$ −4.00000 −0.159617
$$629$$ −24.0000 −0.956943
$$630$$ 6.00000 0.239046
$$631$$ −7.00000 −0.278666 −0.139333 0.990246i $$-0.544496\pi$$
−0.139333 + 0.990246i $$0.544496\pi$$
$$632$$ 0 0
$$633$$ −28.0000 −1.11290
$$634$$ 24.0000 0.953162
$$635$$ 2.00000 0.0793676
$$636$$ −12.0000 −0.475831
$$637$$ 0 0
$$638$$ −60.0000 −2.37542
$$639$$ −12.0000 −0.474713
$$640$$ 0 0
$$641$$ 2.00000 0.0789953 0.0394976 0.999220i $$-0.487424\pi$$
0.0394976 + 0.999220i $$0.487424\pi$$
$$642$$ −4.00000 −0.157867
$$643$$ 1.00000 0.0394362 0.0197181 0.999806i $$-0.493723\pi$$
0.0197181 + 0.999806i $$0.493723\pi$$
$$644$$ −24.0000 −0.945732
$$645$$ 1.00000 0.0393750
$$646$$ 6.00000 0.236067
$$647$$ −27.0000 −1.06148 −0.530740 0.847535i $$-0.678086\pi$$
−0.530740 + 0.847535i $$0.678086\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 6.00000 0.235159
$$652$$ 32.0000 1.25322
$$653$$ −1.00000 −0.0391330 −0.0195665 0.999809i $$-0.506229\pi$$
−0.0195665 + 0.999809i $$0.506229\pi$$
$$654$$ −40.0000 −1.56412
$$655$$ 13.0000 0.507952
$$656$$ −32.0000 −1.24939
$$657$$ 11.0000 0.429151
$$658$$ 18.0000 0.701713
$$659$$ 10.0000 0.389545 0.194772 0.980848i $$-0.437603\pi$$
0.194772 + 0.980848i $$0.437603\pi$$
$$660$$ −6.00000 −0.233550
$$661$$ −12.0000 −0.466746 −0.233373 0.972387i $$-0.574976\pi$$
−0.233373 + 0.972387i $$0.574976\pi$$
$$662$$ −24.0000 −0.932786
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 3.00000 0.116335
$$666$$ −16.0000 −0.619987
$$667$$ −40.0000 −1.54881
$$668$$ −36.0000 −1.39288
$$669$$ −4.00000 −0.154649
$$670$$ 16.0000 0.618134
$$671$$ 21.0000 0.810696
$$672$$ 24.0000 0.925820
$$673$$ −16.0000 −0.616755 −0.308377 0.951264i $$-0.599786\pi$$
−0.308377 + 0.951264i $$0.599786\pi$$
$$674$$ −44.0000 −1.69482
$$675$$ −4.00000 −0.153960
$$676$$ 0 0
$$677$$ −22.0000 −0.845529 −0.422764 0.906240i $$-0.638940\pi$$
−0.422764 + 0.906240i $$0.638940\pi$$
$$678$$ −12.0000 −0.460857
$$679$$ −6.00000 −0.230259
$$680$$ 0 0
$$681$$ −18.0000 −0.689761
$$682$$ −12.0000 −0.459504
$$683$$ 6.00000 0.229584 0.114792 0.993390i $$-0.463380\pi$$
0.114792 + 0.993390i $$0.463380\pi$$
$$684$$ 2.00000 0.0764719
$$685$$ 3.00000 0.114624
$$686$$ 30.0000 1.14541
$$687$$ 15.0000 0.572286
$$688$$ 4.00000 0.152499
$$689$$ 0 0
$$690$$ −8.00000 −0.304555
$$691$$ −17.0000 −0.646710 −0.323355 0.946278i $$-0.604811\pi$$
−0.323355 + 0.946278i $$0.604811\pi$$
$$692$$ 28.0000 1.06440
$$693$$ −9.00000 −0.341882
$$694$$ 6.00000 0.227757
$$695$$ 5.00000 0.189661
$$696$$ 0 0
$$697$$ 24.0000 0.909065
$$698$$ −50.0000 −1.89253
$$699$$ −11.0000 −0.416058
$$700$$ 24.0000 0.907115
$$701$$ 42.0000 1.58632 0.793159 0.609015i $$-0.208435\pi$$
0.793159 + 0.609015i $$0.208435\pi$$
$$702$$ 0 0
$$703$$ −8.00000 −0.301726
$$704$$ −24.0000 −0.904534
$$705$$ 3.00000 0.112987
$$706$$ −28.0000 −1.05379
$$707$$ −6.00000 −0.225653
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 24.0000 0.900704
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −8.00000 −0.299602
$$714$$ −18.0000 −0.673633
$$715$$ 0 0
$$716$$ −20.0000 −0.747435
$$717$$ 15.0000 0.560185
$$718$$ −50.0000 −1.86598
$$719$$ −35.0000 −1.30528 −0.652640 0.757668i $$-0.726339\pi$$
−0.652640 + 0.757668i $$0.726339\pi$$
$$720$$ 4.00000 0.149071
$$721$$ −42.0000 −1.56416
$$722$$ 2.00000 0.0744323
$$723$$ −12.0000 −0.446285
$$724$$ 4.00000 0.148659
$$725$$ 40.0000 1.48556
$$726$$ −4.00000 −0.148454
$$727$$ −7.00000 −0.259616 −0.129808 0.991539i $$-0.541436\pi$$
−0.129808 + 0.991539i $$0.541436\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ −22.0000 −0.814257
$$731$$ −3.00000 −0.110959
$$732$$ 14.0000 0.517455
$$733$$ −34.0000 −1.25582 −0.627909 0.778287i $$-0.716089\pi$$
−0.627909 + 0.778287i $$0.716089\pi$$
$$734$$ 16.0000 0.590571
$$735$$ −2.00000 −0.0737711
$$736$$ −32.0000 −1.17954
$$737$$ −24.0000 −0.884051
$$738$$ 16.0000 0.588968
$$739$$ 45.0000 1.65535 0.827676 0.561206i $$-0.189663\pi$$
0.827676 + 0.561206i $$0.189663\pi$$
$$740$$ 16.0000 0.588172
$$741$$ 0 0
$$742$$ 36.0000 1.32160
$$743$$ −24.0000 −0.880475 −0.440237 0.897881i $$-0.645106\pi$$
−0.440237 + 0.897881i $$0.645106\pi$$
$$744$$ 0 0
$$745$$ 15.0000 0.549557
$$746$$ −32.0000 −1.17160
$$747$$ −4.00000 −0.146352
$$748$$ 18.0000 0.658145
$$749$$ 6.00000 0.219235
$$750$$ 18.0000 0.657267
$$751$$ −8.00000 −0.291924 −0.145962 0.989290i $$-0.546628\pi$$
−0.145962 + 0.989290i $$0.546628\pi$$
$$752$$ 12.0000 0.437595
$$753$$ 27.0000 0.983935
$$754$$ 0 0
$$755$$ −8.00000 −0.291150
$$756$$ −6.00000 −0.218218
$$757$$ 23.0000 0.835949 0.417975 0.908459i $$-0.362740\pi$$
0.417975 + 0.908459i $$0.362740\pi$$
$$758$$ 60.0000 2.17930
$$759$$ 12.0000 0.435572
$$760$$ 0 0
$$761$$ 13.0000 0.471250 0.235625 0.971844i $$-0.424286\pi$$
0.235625 + 0.971844i $$0.424286\pi$$
$$762$$ −4.00000 −0.144905
$$763$$ 60.0000 2.17215
$$764$$ −6.00000 −0.217072
$$765$$ −3.00000 −0.108465
$$766$$ −28.0000 −1.01168
$$767$$ 0 0
$$768$$ 16.0000 0.577350
$$769$$ 45.0000 1.62274 0.811371 0.584532i $$-0.198722\pi$$
0.811371 + 0.584532i $$0.198722\pi$$
$$770$$ 18.0000 0.648675
$$771$$ 8.00000 0.288113
$$772$$ −8.00000 −0.287926
$$773$$ 36.0000 1.29483 0.647415 0.762138i $$-0.275850\pi$$
0.647415 + 0.762138i $$0.275850\pi$$
$$774$$ −2.00000 −0.0718885
$$775$$ 8.00000 0.287368
$$776$$ 0 0
$$777$$ 24.0000 0.860995
$$778$$ −30.0000 −1.07555
$$779$$ 8.00000 0.286630
$$780$$ 0 0
$$781$$ −36.0000 −1.28818
$$782$$ 24.0000 0.858238
$$783$$ −10.0000 −0.357371
$$784$$ −8.00000 −0.285714
$$785$$ 2.00000 0.0713831
$$786$$ −26.0000 −0.927389
$$787$$ −8.00000 −0.285169 −0.142585 0.989783i $$-0.545541\pi$$
−0.142585 + 0.989783i $$0.545541\pi$$
$$788$$ 4.00000 0.142494
$$789$$ −21.0000 −0.747620
$$790$$ 0 0
$$791$$ 18.0000 0.640006
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 14.0000 0.496841
$$795$$ 6.00000 0.212798
$$796$$ −10.0000 −0.354441
$$797$$ −12.0000 −0.425062 −0.212531 0.977154i $$-0.568171\pi$$
−0.212531 + 0.977154i $$0.568171\pi$$
$$798$$ −6.00000 −0.212398
$$799$$ −9.00000 −0.318397
$$800$$ 32.0000 1.13137
$$801$$ −10.0000 −0.353333
$$802$$ 56.0000 1.97743
$$803$$ 33.0000 1.16454
$$804$$ −16.0000 −0.564276
$$805$$ 12.0000 0.422944
$$806$$ 0 0
$$807$$ −30.0000 −1.05605
$$808$$ 0 0
$$809$$ 5.00000 0.175791 0.0878953 0.996130i $$-0.471986\pi$$
0.0878953 + 0.996130i $$0.471986\pi$$
$$810$$ −2.00000 −0.0702728
$$811$$ −2.00000 −0.0702295 −0.0351147 0.999383i $$-0.511180\pi$$
−0.0351147 + 0.999383i $$0.511180\pi$$
$$812$$ 60.0000 2.10559
$$813$$ −12.0000 −0.420858
$$814$$ −48.0000 −1.68240
$$815$$ −16.0000 −0.560456
$$816$$ −12.0000 −0.420084
$$817$$ −1.00000 −0.0349856
$$818$$ −20.0000 −0.699284
$$819$$ 0 0
$$820$$ −16.0000 −0.558744
$$821$$ 33.0000 1.15171 0.575854 0.817553i $$-0.304670\pi$$
0.575854 + 0.817553i $$0.304670\pi$$
$$822$$ −6.00000 −0.209274
$$823$$ 19.0000 0.662298 0.331149 0.943578i $$-0.392564\pi$$
0.331149 + 0.943578i $$0.392564\pi$$
$$824$$ 0 0
$$825$$ −12.0000 −0.417786
$$826$$ 0 0
$$827$$ 52.0000 1.80822 0.904109 0.427303i $$-0.140536\pi$$
0.904109 + 0.427303i $$0.140536\pi$$
$$828$$ 8.00000 0.278019
$$829$$ 20.0000 0.694629 0.347314 0.937749i $$-0.387094\pi$$
0.347314 + 0.937749i $$0.387094\pi$$
$$830$$ 8.00000 0.277684
$$831$$ 13.0000 0.450965
$$832$$ 0 0
$$833$$ 6.00000 0.207888
$$834$$ −10.0000 −0.346272
$$835$$ 18.0000 0.622916
$$836$$ 6.00000 0.207514
$$837$$ −2.00000 −0.0691301
$$838$$ 40.0000 1.38178
$$839$$ −30.0000 −1.03572 −0.517858 0.855467i $$-0.673270\pi$$
−0.517858 + 0.855467i $$0.673270\pi$$
$$840$$ 0 0
$$841$$ 71.0000 2.44828
$$842$$ −4.00000 −0.137849
$$843$$ −2.00000 −0.0688837
$$844$$ −56.0000 −1.92760
$$845$$ 0 0
$$846$$ −6.00000 −0.206284
$$847$$ 6.00000 0.206162
$$848$$ 24.0000 0.824163
$$849$$ 19.0000 0.652078
$$850$$ −24.0000 −0.823193
$$851$$ −32.0000 −1.09695
$$852$$ −24.0000 −0.822226
$$853$$ −34.0000 −1.16414 −0.582069 0.813139i $$-0.697757\pi$$
−0.582069 + 0.813139i $$0.697757\pi$$
$$854$$ −42.0000 −1.43721
$$855$$ −1.00000 −0.0341993
$$856$$ 0 0
$$857$$ 48.0000 1.63965 0.819824 0.572615i $$-0.194071\pi$$
0.819824 + 0.572615i $$0.194071\pi$$
$$858$$ 0 0
$$859$$ 35.0000 1.19418 0.597092 0.802173i $$-0.296323\pi$$
0.597092 + 0.802173i $$0.296323\pi$$
$$860$$ 2.00000 0.0681994
$$861$$ −24.0000 −0.817918
$$862$$ 36.0000 1.22616
$$863$$ −44.0000 −1.49778 −0.748889 0.662696i $$-0.769412\pi$$
−0.748889 + 0.662696i $$0.769412\pi$$
$$864$$ −8.00000 −0.272166
$$865$$ −14.0000 −0.476014
$$866$$ −52.0000 −1.76703
$$867$$ −8.00000 −0.271694
$$868$$ 12.0000 0.407307
$$869$$ 0 0
$$870$$ 20.0000 0.678064
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 2.00000 0.0676897
$$874$$ 8.00000 0.270604
$$875$$ −27.0000 −0.912767
$$876$$ 22.0000 0.743311
$$877$$ 22.0000 0.742887 0.371444 0.928456i $$-0.378863\pi$$
0.371444 + 0.928456i $$0.378863\pi$$
$$878$$ 20.0000 0.674967
$$879$$ −4.00000 −0.134917
$$880$$ 12.0000 0.404520
$$881$$ 7.00000 0.235836 0.117918 0.993023i $$-0.462378\pi$$
0.117918 + 0.993023i $$0.462378\pi$$
$$882$$ 4.00000 0.134687
$$883$$ −21.0000 −0.706706 −0.353353 0.935490i $$-0.614959\pi$$
−0.353353 + 0.935490i $$0.614959\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 78.0000 2.62046
$$887$$ −52.0000 −1.74599 −0.872995 0.487730i $$-0.837825\pi$$
−0.872995 + 0.487730i $$0.837825\pi$$
$$888$$ 0 0
$$889$$ 6.00000 0.201234
$$890$$ 20.0000 0.670402
$$891$$ 3.00000 0.100504
$$892$$ −8.00000 −0.267860
$$893$$ −3.00000 −0.100391
$$894$$ −30.0000 −1.00335
$$895$$ 10.0000 0.334263
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 40.0000 1.33482
$$899$$ 20.0000 0.667037
$$900$$ −8.00000 −0.266667
$$901$$ −18.0000 −0.599667
$$902$$ 48.0000 1.59823
$$903$$ 3.00000 0.0998337
$$904$$ 0 0
$$905$$ −2.00000 −0.0664822
$$906$$ 16.0000 0.531564
$$907$$ −2.00000 −0.0664089 −0.0332045 0.999449i $$-0.510571\pi$$
−0.0332045 + 0.999449i $$0.510571\pi$$
$$908$$ −36.0000 −1.19470
$$909$$ 2.00000 0.0663358
$$910$$ 0 0
$$911$$ 2.00000 0.0662630 0.0331315 0.999451i $$-0.489452\pi$$
0.0331315 + 0.999451i $$0.489452\pi$$
$$912$$ −4.00000 −0.132453
$$913$$ −12.0000 −0.397142
$$914$$ −6.00000 −0.198462
$$915$$ −7.00000 −0.231413
$$916$$ 30.0000 0.991228
$$917$$ 39.0000 1.28789
$$918$$ 6.00000 0.198030
$$919$$ −40.0000 −1.31948 −0.659739 0.751495i $$-0.729333\pi$$
−0.659739 + 0.751495i $$0.729333\pi$$
$$920$$ 0 0
$$921$$ 12.0000 0.395413
$$922$$ 66.0000 2.17359
$$923$$ 0 0
$$924$$ −18.0000 −0.592157
$$925$$ 32.0000 1.05215
$$926$$ 62.0000 2.03745
$$927$$ 14.0000 0.459820
$$928$$ 80.0000 2.62613
$$929$$ 50.0000 1.64045 0.820223 0.572043i $$-0.193849\pi$$
0.820223 + 0.572043i $$0.193849\pi$$
$$930$$ 4.00000 0.131165
$$931$$ 2.00000 0.0655474
$$932$$ −22.0000 −0.720634
$$933$$ 7.00000 0.229170
$$934$$ −34.0000 −1.11251
$$935$$ −9.00000 −0.294331
$$936$$ 0 0
$$937$$ 53.0000 1.73143 0.865717 0.500533i $$-0.166863\pi$$
0.865717 + 0.500533i $$0.166863\pi$$
$$938$$ 48.0000 1.56726
$$939$$ 14.0000 0.456873
$$940$$ 6.00000 0.195698
$$941$$ −2.00000 −0.0651981 −0.0325991 0.999469i $$-0.510378\pi$$
−0.0325991 + 0.999469i $$0.510378\pi$$
$$942$$ −4.00000 −0.130327
$$943$$ 32.0000 1.04206
$$944$$ 0 0
$$945$$ 3.00000 0.0975900
$$946$$ −6.00000 −0.195077
$$947$$ −28.0000 −0.909878 −0.454939 0.890523i $$-0.650339\pi$$
−0.454939 + 0.890523i $$0.650339\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ −8.00000 −0.259554
$$951$$ 12.0000 0.389127
$$952$$ 0 0
$$953$$ −16.0000 −0.518291 −0.259145 0.965838i $$-0.583441\pi$$
−0.259145 + 0.965838i $$0.583441\pi$$
$$954$$ −12.0000 −0.388514
$$955$$ 3.00000 0.0970777
$$956$$ 30.0000 0.970269
$$957$$ −30.0000 −0.969762
$$958$$ 80.0000 2.58468
$$959$$ 9.00000 0.290625
$$960$$ 8.00000 0.258199
$$961$$ −27.0000 −0.870968
$$962$$ 0 0
$$963$$ −2.00000 −0.0644491
$$964$$ −24.0000 −0.772988
$$965$$ 4.00000 0.128765
$$966$$ −24.0000 −0.772187
$$967$$ 32.0000 1.02905 0.514525 0.857475i $$-0.327968\pi$$
0.514525 + 0.857475i $$0.327968\pi$$
$$968$$ 0 0
$$969$$ 3.00000 0.0963739
$$970$$ −4.00000 −0.128432
$$971$$ 12.0000 0.385098 0.192549 0.981287i $$-0.438325\pi$$
0.192549 + 0.981287i $$0.438325\pi$$
$$972$$ 2.00000 0.0641500
$$973$$ 15.0000 0.480878
$$974$$ −16.0000 −0.512673
$$975$$ 0 0
$$976$$ −28.0000 −0.896258
$$977$$ 42.0000 1.34370 0.671850 0.740688i $$-0.265500\pi$$
0.671850 + 0.740688i $$0.265500\pi$$
$$978$$ 32.0000 1.02325
$$979$$ −30.0000 −0.958804
$$980$$ −4.00000 −0.127775
$$981$$ −20.0000 −0.638551
$$982$$ −16.0000 −0.510581
$$983$$ −4.00000 −0.127580 −0.0637901 0.997963i $$-0.520319\pi$$
−0.0637901 + 0.997963i $$0.520319\pi$$
$$984$$ 0 0
$$985$$ −2.00000 −0.0637253
$$986$$ −60.0000 −1.91079
$$987$$ 9.00000 0.286473
$$988$$ 0 0
$$989$$ −4.00000 −0.127193
$$990$$ −6.00000 −0.190693
$$991$$ −8.00000 −0.254128 −0.127064 0.991894i $$-0.540555\pi$$
−0.127064 + 0.991894i $$0.540555\pi$$
$$992$$ 16.0000 0.508001
$$993$$ −12.0000 −0.380808
$$994$$ 72.0000 2.28370
$$995$$ 5.00000 0.158511
$$996$$ −8.00000 −0.253490
$$997$$ −7.00000 −0.221692 −0.110846 0.993838i $$-0.535356\pi$$
−0.110846 + 0.993838i $$0.535356\pi$$
$$998$$ 70.0000 2.21581
$$999$$ −8.00000 −0.253109
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9633.2.a.p.1.1 1
13.12 even 2 57.2.a.b.1.1 1
39.38 odd 2 171.2.a.c.1.1 1
52.51 odd 2 912.2.a.d.1.1 1
65.12 odd 4 1425.2.c.a.799.1 2
65.38 odd 4 1425.2.c.a.799.2 2
65.64 even 2 1425.2.a.i.1.1 1
91.90 odd 2 2793.2.a.a.1.1 1
104.51 odd 2 3648.2.a.y.1.1 1
104.77 even 2 3648.2.a.h.1.1 1
143.142 odd 2 6897.2.a.g.1.1 1
156.155 even 2 2736.2.a.h.1.1 1
195.194 odd 2 4275.2.a.a.1.1 1
247.246 odd 2 1083.2.a.d.1.1 1
273.272 even 2 8379.2.a.q.1.1 1
741.740 even 2 3249.2.a.a.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.a.b.1.1 1 13.12 even 2
171.2.a.c.1.1 1 39.38 odd 2
912.2.a.d.1.1 1 52.51 odd 2
1083.2.a.d.1.1 1 247.246 odd 2
1425.2.a.i.1.1 1 65.64 even 2
1425.2.c.a.799.1 2 65.12 odd 4
1425.2.c.a.799.2 2 65.38 odd 4
2736.2.a.h.1.1 1 156.155 even 2
2793.2.a.a.1.1 1 91.90 odd 2
3249.2.a.a.1.1 1 741.740 even 2
3648.2.a.h.1.1 1 104.77 even 2
3648.2.a.y.1.1 1 104.51 odd 2
4275.2.a.a.1.1 1 195.194 odd 2
6897.2.a.g.1.1 1 143.142 odd 2
8379.2.a.q.1.1 1 273.272 even 2
9633.2.a.p.1.1 1 1.1 even 1 trivial