Properties

Label 961.2.g.t.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(-0.176392i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.t.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.996848 - 0.724253i) q^{2} +(1.89558 + 0.843968i) q^{3} +(-0.148869 - 0.458173i) q^{4} +(0.772811 - 1.33855i) q^{5} +(-1.27836 - 2.21419i) q^{6} +(-2.54521 + 2.82674i) q^{7} +(-0.944957 + 2.90828i) q^{8} +(0.873564 + 0.970191i) q^{9} +(-1.73982 + 0.774619i) q^{10} +(3.67933 + 0.782065i) q^{11} +(0.104489 - 0.994146i) q^{12} +(0.275439 + 2.62063i) q^{13} +(4.58447 - 0.974458i) q^{14} +(2.59462 - 1.88510i) q^{15} +(2.26882 - 1.64839i) q^{16} +(-3.69186 + 0.784729i) q^{17} +(-0.168147 - 1.59981i) q^{18} +(-0.637447 + 6.06491i) q^{19} +(-0.728335 - 0.154812i) q^{20} +(-7.21034 + 3.21025i) q^{21} +(-3.10132 - 3.44436i) q^{22} +(0.281158 - 0.865316i) q^{23} +(-4.24574 + 4.71537i) q^{24} +(1.30553 + 2.26124i) q^{25} +(1.62343 - 2.81186i) q^{26} +(-1.08650 - 3.34392i) q^{27} +(1.67404 + 0.745331i) q^{28} +(5.50827 + 4.00199i) q^{29} -3.95173 q^{30} +2.66037 q^{32} +(6.31443 + 4.58770i) q^{33} +(4.24857 + 1.89158i) q^{34} +(1.81676 + 5.59143i) q^{35} +(0.314468 - 0.544675i) q^{36} +(0.907032 + 1.57103i) q^{37} +(5.02796 - 5.58412i) q^{38} +(-1.68961 + 5.20008i) q^{39} +(3.16260 + 3.51242i) q^{40} +(0.307997 - 0.137129i) q^{41} +(9.51265 + 2.02198i) q^{42} +(-0.405988 + 3.86272i) q^{43} +(-0.189418 - 1.80219i) q^{44} +(1.97375 - 0.419533i) q^{45} +(-0.906980 + 0.658959i) q^{46} +(0.962040 - 0.698963i) q^{47} +(5.69192 - 1.20986i) q^{48} +(-0.780679 - 7.42766i) q^{49} +(0.336296 - 3.19964i) q^{50} +(-7.66052 - 1.62829i) q^{51} +(1.15970 - 0.516330i) q^{52} +(-1.56853 - 1.74202i) q^{53} +(-1.33876 + 4.12028i) q^{54} +(3.89026 - 4.32057i) q^{55} +(-5.81584 - 10.0733i) q^{56} +(-6.32692 + 10.9586i) q^{57} +(-2.59245 - 7.97875i) q^{58} +(7.10632 + 3.16394i) q^{59} +(-1.24996 - 0.908151i) q^{60} -2.72343 q^{61} -4.96588 q^{63} +(-7.18962 - 5.22357i) q^{64} +(3.72070 + 1.65656i) q^{65} +(-2.97187 - 9.14649i) q^{66} +(3.71059 - 6.42693i) q^{67} +(0.909147 + 1.57469i) q^{68} +(1.26326 - 1.40299i) q^{69} +(2.23857 - 6.88960i) q^{70} +(-3.41135 - 3.78869i) q^{71} +(-3.64706 + 1.62378i) q^{72} +(-5.27392 - 1.12101i) q^{73} +(0.233646 - 2.22299i) q^{74} +(0.566321 + 5.38818i) q^{75} +(2.87367 - 0.610818i) q^{76} +(-11.5754 + 8.40999i) q^{77} +(5.45046 - 3.95999i) q^{78} +(9.52444 - 2.02448i) q^{79} +(-0.453085 - 4.31082i) q^{80} +(1.17199 - 11.1508i) q^{81} +(-0.406342 - 0.0863707i) q^{82} +(-7.66935 + 3.41461i) q^{83} +(2.54425 + 2.82568i) q^{84} +(-1.80271 + 5.54818i) q^{85} +(3.20229 - 3.55651i) q^{86} +(7.06383 + 12.2349i) q^{87} +(-5.75127 + 9.96149i) q^{88} +(1.57463 + 4.84620i) q^{89} +(-2.27137 - 1.01128i) q^{90} +(-8.10889 - 5.89146i) q^{91} -0.438320 q^{92} -1.46523 q^{94} +(7.62555 + 5.54028i) q^{95} +(5.04296 + 2.24527i) q^{96} +(3.37268 + 10.3800i) q^{97} +(-4.60129 + 7.96966i) q^{98} +(2.45537 + 4.25283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} + 12 q^{7} - 8 q^{8} + 5 q^{9} - 12 q^{10} - 2 q^{11} + 25 q^{12} + 18 q^{13} + 24 q^{14} + 4 q^{15} - 2 q^{16} - q^{17} - 8 q^{18} + 11 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.996848 0.724253i −0.704878 0.512124i 0.176639 0.984276i \(-0.443477\pi\)
−0.881517 + 0.472152i \(0.843477\pi\)
\(3\) 1.89558 + 0.843968i 1.09442 + 0.487265i 0.872904 0.487892i \(-0.162234\pi\)
0.221512 + 0.975158i \(0.428901\pi\)
\(4\) −0.148869 0.458173i −0.0744347 0.229086i
\(5\) 0.772811 1.33855i 0.345612 0.598617i −0.639853 0.768497i \(-0.721005\pi\)
0.985465 + 0.169880i \(0.0543381\pi\)
\(6\) −1.27836 2.21419i −0.521890 0.903939i
\(7\) −2.54521 + 2.82674i −0.961999 + 1.06841i 0.0356144 + 0.999366i \(0.488661\pi\)
−0.997614 + 0.0690429i \(0.978005\pi\)
\(8\) −0.944957 + 2.90828i −0.334093 + 1.02823i
\(9\) 0.873564 + 0.970191i 0.291188 + 0.323397i
\(10\) −1.73982 + 0.774619i −0.550180 + 0.244956i
\(11\) 3.67933 + 0.782065i 1.10936 + 0.235801i 0.725930 0.687769i \(-0.241410\pi\)
0.383429 + 0.923570i \(0.374743\pi\)
\(12\) 0.104489 0.994146i 0.0301634 0.286985i
\(13\) 0.275439 + 2.62063i 0.0763931 + 0.726831i 0.963941 + 0.266116i \(0.0857405\pi\)
−0.887548 + 0.460715i \(0.847593\pi\)
\(14\) 4.58447 0.974458i 1.22525 0.260435i
\(15\) 2.59462 1.88510i 0.669928 0.486731i
\(16\) 2.26882 1.64839i 0.567204 0.412098i
\(17\) −3.69186 + 0.784729i −0.895408 + 0.190325i −0.632559 0.774512i \(-0.717995\pi\)
−0.262849 + 0.964837i \(0.584662\pi\)
\(18\) −0.168147 1.59981i −0.0396327 0.377080i
\(19\) −0.637447 + 6.06491i −0.146240 + 1.39139i 0.637574 + 0.770390i \(0.279938\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(20\) −0.728335 0.154812i −0.162861 0.0346171i
\(21\) −7.21034 + 3.21025i −1.57343 + 0.700534i
\(22\) −3.10132 3.44436i −0.661203 0.734340i
\(23\) 0.281158 0.865316i 0.0586255 0.180431i −0.917455 0.397839i \(-0.869760\pi\)
0.976081 + 0.217408i \(0.0697603\pi\)
\(24\) −4.24574 + 4.71537i −0.866658 + 0.962521i
\(25\) 1.30553 + 2.26124i 0.261105 + 0.452247i
\(26\) 1.62343 2.81186i 0.318380 0.551450i
\(27\) −1.08650 3.34392i −0.209098 0.643537i
\(28\) 1.67404 + 0.745331i 0.316364 + 0.140854i
\(29\) 5.50827 + 4.00199i 1.02286 + 0.743151i 0.966867 0.255280i \(-0.0821678\pi\)
0.0559922 + 0.998431i \(0.482168\pi\)
\(30\) −3.95173 −0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) 6.31443 + 4.58770i 1.09920 + 0.798617i
\(34\) 4.24857 + 1.89158i 0.728623 + 0.324404i
\(35\) 1.81676 + 5.59143i 0.307089 + 0.945124i
\(36\) 0.314468 0.544675i 0.0524114 0.0907792i
\(37\) 0.907032 + 1.57103i 0.149115 + 0.258275i 0.930901 0.365272i \(-0.119024\pi\)
−0.781786 + 0.623547i \(0.785691\pi\)
\(38\) 5.02796 5.58412i 0.815643 0.905864i
\(39\) −1.68961 + 5.20008i −0.270554 + 0.832680i
\(40\) 3.16260 + 3.51242i 0.500051 + 0.555363i
\(41\) 0.307997 0.137129i 0.0481010 0.0214160i −0.382545 0.923937i \(-0.624952\pi\)
0.430646 + 0.902521i \(0.358286\pi\)
\(42\) 9.51265 + 2.02198i 1.46783 + 0.311998i
\(43\) −0.405988 + 3.86272i −0.0619126 + 0.589059i 0.918952 + 0.394369i \(0.129037\pi\)
−0.980865 + 0.194690i \(0.937630\pi\)
\(44\) −0.189418 1.80219i −0.0285559 0.271691i
\(45\) 1.97375 0.419533i 0.294229 0.0625403i
\(46\) −0.906980 + 0.658959i −0.133727 + 0.0971582i
\(47\) 0.962040 0.698963i 0.140328 0.101954i −0.515407 0.856946i \(-0.672359\pi\)
0.655735 + 0.754992i \(0.272359\pi\)
\(48\) 5.69192 1.20986i 0.821558 0.174628i
\(49\) −0.780679 7.42766i −0.111526 1.06109i
\(50\) 0.336296 3.19964i 0.0475594 0.452497i
\(51\) −7.66052 1.62829i −1.07269 0.228007i
\(52\) 1.15970 0.516330i 0.160821 0.0716021i
\(53\) −1.56853 1.74202i −0.215454 0.239286i 0.625724 0.780045i \(-0.284804\pi\)
−0.841177 + 0.540759i \(0.818137\pi\)
\(54\) −1.33876 + 4.12028i −0.182182 + 0.560699i
\(55\) 3.89026 4.32057i 0.524562 0.582585i
\(56\) −5.81584 10.0733i −0.777175 1.34611i
\(57\) −6.32692 + 10.9586i −0.838022 + 1.45150i
\(58\) −2.59245 7.97875i −0.340406 1.04766i
\(59\) 7.10632 + 3.16394i 0.925164 + 0.411909i 0.813320 0.581816i \(-0.197658\pi\)
0.111843 + 0.993726i \(0.464324\pi\)
\(60\) −1.24996 0.908151i −0.161369 0.117242i
\(61\) −2.72343 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) −7.18962 5.22357i −0.898703 0.652946i
\(65\) 3.72070 + 1.65656i 0.461496 + 0.205471i
\(66\) −2.97187 9.14649i −0.365812 1.12586i
\(67\) 3.71059 6.42693i 0.453321 0.785175i −0.545269 0.838261i \(-0.683573\pi\)
0.998590 + 0.0530864i \(0.0169059\pi\)
\(68\) 0.909147 + 1.57469i 0.110250 + 0.190959i
\(69\) 1.26326 1.40299i 0.152078 0.168900i
\(70\) 2.23857 6.88960i 0.267560 0.823465i
\(71\) −3.41135 3.78869i −0.404853 0.449634i 0.505897 0.862594i \(-0.331162\pi\)
−0.910749 + 0.412960i \(0.864495\pi\)
\(72\) −3.64706 + 1.62378i −0.429811 + 0.191364i
\(73\) −5.27392 1.12101i −0.617266 0.131204i −0.111342 0.993782i \(-0.535515\pi\)
−0.505924 + 0.862578i \(0.668848\pi\)
\(74\) 0.233646 2.22299i 0.0271608 0.258418i
\(75\) 0.566321 + 5.38818i 0.0653931 + 0.622174i
\(76\) 2.87367 0.610818i 0.329633 0.0700656i
\(77\) −11.5754 + 8.40999i −1.31913 + 0.958407i
\(78\) 5.45046 3.95999i 0.617143 0.448380i
\(79\) 9.52444 2.02448i 1.07158 0.227772i 0.361846 0.932238i \(-0.382147\pi\)
0.709738 + 0.704466i \(0.248813\pi\)
\(80\) −0.453085 4.31082i −0.0506565 0.481964i
\(81\) 1.17199 11.1508i 0.130221 1.23897i
\(82\) −0.406342 0.0863707i −0.0448730 0.00953805i
\(83\) −7.66935 + 3.41461i −0.841820 + 0.374803i −0.781902 0.623401i \(-0.785751\pi\)
−0.0599178 + 0.998203i \(0.519084\pi\)
\(84\) 2.54425 + 2.82568i 0.277600 + 0.308306i
\(85\) −1.80271 + 5.54818i −0.195532 + 0.601785i
\(86\) 3.20229 3.55651i 0.345312 0.383508i
\(87\) 7.06383 + 12.2349i 0.757322 + 1.31172i
\(88\) −5.75127 + 9.96149i −0.613087 + 1.06190i
\(89\) 1.57463 + 4.84620i 0.166910 + 0.513696i 0.999172 0.0406863i \(-0.0129544\pi\)
−0.832262 + 0.554383i \(0.812954\pi\)
\(90\) −2.27137 1.01128i −0.239424 0.106598i
\(91\) −8.10889 5.89146i −0.850043 0.617592i
\(92\) −0.438320 −0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) 7.62555 + 5.54028i 0.782365 + 0.568421i
\(96\) 5.04296 + 2.24527i 0.514695 + 0.229157i
\(97\) 3.37268 + 10.3800i 0.342444 + 1.05393i 0.962938 + 0.269723i \(0.0869320\pi\)
−0.620494 + 0.784211i \(0.713068\pi\)
\(98\) −4.60129 + 7.96966i −0.464800 + 0.805057i
\(99\) 2.45537 + 4.25283i 0.246774 + 0.427426i
\(100\) 0.841684 0.934785i 0.0841684 0.0934785i
\(101\) −0.123213 + 0.379212i −0.0122602 + 0.0377330i −0.956999 0.290090i \(-0.906315\pi\)
0.944739 + 0.327823i \(0.106315\pi\)
\(102\) 6.45708 + 7.17131i 0.639346 + 0.710066i
\(103\) 2.99351 1.33280i 0.294959 0.131324i −0.253922 0.967225i \(-0.581721\pi\)
0.548881 + 0.835900i \(0.315054\pi\)
\(104\) −7.88180 1.67533i −0.772874 0.164279i
\(105\) −1.27516 + 12.1323i −0.124443 + 1.18399i
\(106\) 0.301917 + 2.87254i 0.0293247 + 0.279006i
\(107\) −3.08786 + 0.656345i −0.298515 + 0.0634513i −0.354734 0.934967i \(-0.615429\pi\)
0.0562195 + 0.998418i \(0.482095\pi\)
\(108\) −1.37035 + 0.995614i −0.131862 + 0.0958030i
\(109\) −5.62770 + 4.08876i −0.539036 + 0.391632i −0.823727 0.566987i \(-0.808109\pi\)
0.284691 + 0.958619i \(0.408109\pi\)
\(110\) −7.00718 + 1.48942i −0.668108 + 0.142011i
\(111\) 0.393459 + 3.74352i 0.0373455 + 0.355319i
\(112\) −1.11504 + 10.6089i −0.105361 + 1.00244i
\(113\) 14.9136 + 3.16999i 1.40295 + 0.298207i 0.846375 0.532587i \(-0.178780\pi\)
0.556579 + 0.830795i \(0.312114\pi\)
\(114\) 14.2437 6.34172i 1.33405 0.593957i
\(115\) −0.940985 1.04507i −0.0877473 0.0974533i
\(116\) 1.01359 3.11951i 0.0941096 0.289639i
\(117\) −2.30190 + 2.55651i −0.212810 + 0.236350i
\(118\) −4.79243 8.30073i −0.441179 0.764144i
\(119\) 7.17834 12.4332i 0.658037 1.13975i
\(120\) 3.03060 + 9.32722i 0.276655 + 0.851455i
\(121\) 2.87681 + 1.28084i 0.261529 + 0.116440i
\(122\) 2.71485 + 1.97245i 0.245791 + 0.178578i
\(123\) 0.699567 0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) 4.95023 + 3.59655i 0.441002 + 0.320407i
\(127\) −18.4777 8.22681i −1.63963 0.730011i −0.640356 0.768078i \(-0.721213\pi\)
−0.999275 + 0.0380671i \(0.987880\pi\)
\(128\) 1.73958 + 5.35388i 0.153759 + 0.473220i
\(129\) −4.02960 + 6.97946i −0.354786 + 0.614508i
\(130\) −2.50920 4.34607i −0.220072 0.381175i
\(131\) 8.46536 9.40173i 0.739622 0.821433i −0.249524 0.968369i \(-0.580274\pi\)
0.989146 + 0.146935i \(0.0469409\pi\)
\(132\) 1.16194 3.57607i 0.101134 0.311257i
\(133\) −15.5215 17.2384i −1.34588 1.49476i
\(134\) −8.35362 + 3.71927i −0.721643 + 0.321296i
\(135\) −5.31566 1.12988i −0.457499 0.0972444i
\(136\) 1.20644 11.4785i 0.103451 0.984273i
\(137\) 1.03253 + 9.82390i 0.0882153 + 0.839312i 0.945752 + 0.324890i \(0.105327\pi\)
−0.857537 + 0.514423i \(0.828006\pi\)
\(138\) −2.27540 + 0.483650i −0.193695 + 0.0411711i
\(139\) 12.5389 9.11007i 1.06354 0.772706i 0.0887990 0.996050i \(-0.471697\pi\)
0.974740 + 0.223343i \(0.0716971\pi\)
\(140\) 2.29138 1.66479i 0.193657 0.140700i
\(141\) 2.41353 0.513012i 0.203256 0.0432034i
\(142\) 0.656631 + 6.24742i 0.0551032 + 0.524272i
\(143\) −1.03607 + 9.85756i −0.0866406 + 0.824330i
\(144\) 3.58121 + 0.761210i 0.298434 + 0.0634342i
\(145\) 9.61371 4.28030i 0.798375 0.355459i
\(146\) 4.44541 + 4.93713i 0.367905 + 0.408599i
\(147\) 4.78887 14.7386i 0.394979 1.21562i
\(148\) 0.584772 0.649455i 0.0480680 0.0533849i
\(149\) 7.62162 + 13.2010i 0.624388 + 1.08147i 0.988659 + 0.150178i \(0.0479848\pi\)
−0.364271 + 0.931293i \(0.618682\pi\)
\(150\) 3.33787 5.78136i 0.272536 0.472046i
\(151\) −0.0809093 0.249013i −0.00658430 0.0202644i 0.947710 0.319132i \(-0.103391\pi\)
−0.954295 + 0.298867i \(0.903391\pi\)
\(152\) −17.0361 7.58495i −1.38181 0.615221i
\(153\) −3.98641 2.89630i −0.322282 0.234152i
\(154\) 17.6298 1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) −12.8848 9.36138i −1.02832 0.747120i −0.0603497 0.998177i \(-0.519222\pi\)
−0.967972 + 0.251058i \(0.919222\pi\)
\(158\) −10.9607 4.88000i −0.871984 0.388232i
\(159\) −1.50306 4.62594i −0.119200 0.366861i
\(160\) 2.05597 3.56104i 0.162538 0.281525i
\(161\) 1.73042 + 2.99717i 0.136376 + 0.236210i
\(162\) −9.24426 + 10.2668i −0.726298 + 0.806636i
\(163\) −0.0411534 + 0.126657i −0.00322339 + 0.00992056i −0.952655 0.304053i \(-0.901660\pi\)
0.949432 + 0.313973i \(0.101660\pi\)
\(164\) −0.108680 0.120702i −0.00848650 0.00942521i
\(165\) 11.0207 4.90674i 0.857963 0.381990i
\(166\) 10.1182 + 2.15069i 0.785326 + 0.166926i
\(167\) 0.412760 3.92715i 0.0319403 0.303892i −0.966876 0.255247i \(-0.917843\pi\)
0.998816 0.0486446i \(-0.0154902\pi\)
\(168\) −2.52284 24.0032i −0.194641 1.85189i
\(169\) 5.92409 1.25920i 0.455699 0.0968619i
\(170\) 5.81532 4.22508i 0.446015 0.324049i
\(171\) −6.44097 + 4.67964i −0.492553 + 0.357861i
\(172\) 1.83023 0.389028i 0.139554 0.0296631i
\(173\) 1.51116 + 14.3777i 0.114891 + 1.09312i 0.888316 + 0.459232i \(0.151875\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(174\) 1.81960 17.3123i 0.137944 1.31245i
\(175\) −9.71477 2.06494i −0.734368 0.156095i
\(176\) 9.63687 4.29061i 0.726406 0.323417i
\(177\) 10.8004 + 11.9950i 0.811805 + 0.901600i
\(178\) 1.94021 5.97136i 0.145425 0.447572i
\(179\) −11.8569 + 13.1684i −0.886228 + 0.984256i −0.999957 0.00925620i \(-0.997054\pi\)
0.113729 + 0.993512i \(0.463720\pi\)
\(180\) −0.486049 0.841862i −0.0362280 0.0627487i
\(181\) 6.02958 10.4435i 0.448175 0.776262i −0.550092 0.835104i \(-0.685407\pi\)
0.998267 + 0.0588418i \(0.0187408\pi\)
\(182\) 3.81643 + 11.7458i 0.282893 + 0.870655i
\(183\) −5.16250 2.29849i −0.381623 0.169909i
\(184\) 2.25090 + 1.63537i 0.165938 + 0.120561i
\(185\) 2.80386 0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) −0.463464 0.336727i −0.0338016 0.0245583i
\(189\) 12.2178 + 5.43971i 0.888713 + 0.395680i
\(190\) −3.58895 11.0456i −0.260370 0.801335i
\(191\) −2.53576 + 4.39207i −0.183481 + 0.317799i −0.943064 0.332612i \(-0.892070\pi\)
0.759583 + 0.650411i \(0.225403\pi\)
\(192\) −9.22001 15.9695i −0.665397 1.15250i
\(193\) −13.4105 + 14.8939i −0.965312 + 1.07209i 0.0320489 + 0.999486i \(0.489797\pi\)
−0.997361 + 0.0726015i \(0.976870\pi\)
\(194\) 4.15572 12.7900i 0.298364 0.918269i
\(195\) 5.65481 + 6.28031i 0.404950 + 0.449742i
\(196\) −3.28693 + 1.46344i −0.234781 + 0.104531i
\(197\) −21.2340 4.51342i −1.51286 0.321568i −0.624612 0.780935i \(-0.714743\pi\)
−0.888246 + 0.459367i \(0.848076\pi\)
\(198\) 0.632490 6.01774i 0.0449491 0.427662i
\(199\) −1.58523 15.0824i −0.112374 1.06917i −0.894814 0.446439i \(-0.852692\pi\)
0.782440 0.622726i \(-0.213975\pi\)
\(200\) −7.80997 + 1.66006i −0.552248 + 0.117384i
\(201\) 12.4579 9.05117i 0.878710 0.638420i
\(202\) 0.397470 0.288779i 0.0279659 0.0203184i
\(203\) −25.3323 + 5.38455i −1.77798 + 0.377921i
\(204\) 0.394377 + 3.75225i 0.0276119 + 0.262710i
\(205\) 0.0544696 0.518244i 0.00380432 0.0361957i
\(206\) −3.94935 0.839461i −0.275165 0.0584880i
\(207\) 1.08513 0.483131i 0.0754218 0.0335800i
\(208\) 4.94474 + 5.49169i 0.342856 + 0.380781i
\(209\) −7.08853 + 21.8162i −0.490324 + 1.50906i
\(210\) 10.0580 11.1705i 0.694068 0.770840i
\(211\) −3.15220 5.45978i −0.217007 0.375867i 0.736885 0.676018i \(-0.236296\pi\)
−0.953891 + 0.300152i \(0.902963\pi\)
\(212\) −0.564643 + 0.977990i −0.0387798 + 0.0671687i
\(213\) −3.26897 10.0608i −0.223986 0.689358i
\(214\) 3.55349 + 1.58212i 0.242912 + 0.108151i
\(215\) 4.85668 + 3.52859i 0.331223 + 0.240648i
\(216\) 10.7517 0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) −9.05107 6.57598i −0.611614 0.444364i
\(220\) −2.55871 1.13921i −0.172508 0.0768055i
\(221\) −3.07337 9.45885i −0.206737 0.636271i
\(222\) 2.31903 4.01668i 0.155643 0.269582i
\(223\) −3.69455 6.39915i −0.247406 0.428519i 0.715400 0.698716i \(-0.246245\pi\)
−0.962805 + 0.270196i \(0.912911\pi\)
\(224\) −6.77121 + 7.52019i −0.452420 + 0.502464i
\(225\) −1.05337 + 3.24194i −0.0702247 + 0.216129i
\(226\) −12.5707 13.9612i −0.836193 0.928686i
\(227\) 17.5764 7.82553i 1.16659 0.519398i 0.270259 0.962788i \(-0.412891\pi\)
0.896329 + 0.443389i \(0.146224\pi\)
\(228\) 5.96280 + 1.26743i 0.394896 + 0.0839377i
\(229\) 0.636276 6.05376i 0.0420463 0.400044i −0.953177 0.302414i \(-0.902207\pi\)
0.995223 0.0976293i \(-0.0311260\pi\)
\(230\) 0.181125 + 1.72329i 0.0119430 + 0.113630i
\(231\) −29.0398 + 6.17261i −1.91068 + 0.406128i
\(232\) −16.8440 + 12.2379i −1.10586 + 0.803455i
\(233\) −14.1805 + 10.3027i −0.928995 + 0.674954i −0.945746 0.324906i \(-0.894667\pi\)
0.0167519 + 0.999860i \(0.494667\pi\)
\(234\) 4.14620 0.881303i 0.271046 0.0576125i
\(235\) −0.192120 1.82790i −0.0125326 0.119239i
\(236\) 0.391717 3.72694i 0.0254986 0.242603i
\(237\) 19.7630 + 4.20075i 1.28374 + 0.272868i
\(238\) −16.1605 + 7.19513i −1.04753 + 0.466391i
\(239\) −18.6768 20.7427i −1.20810 1.34173i −0.923742 0.383016i \(-0.874886\pi\)
−0.284360 0.958718i \(-0.591781\pi\)
\(240\) 2.77933 8.55391i 0.179405 0.552152i
\(241\) 15.2225 16.9063i 0.980570 1.08903i −0.0154476 0.999881i \(-0.504917\pi\)
0.996018 0.0891530i \(-0.0284160\pi\)
\(242\) −1.94010 3.36034i −0.124714 0.216011i
\(243\) 6.35849 11.0132i 0.407897 0.706499i
\(244\) 0.405436 + 1.24780i 0.0259554 + 0.0798824i
\(245\) −10.5456 4.69521i −0.673734 0.299966i
\(246\) −0.697362 0.506663i −0.0444622 0.0323037i
\(247\) −16.0694 −1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) −11.7267 8.51997i −0.741664 0.538850i
\(251\) −14.8310 6.60317i −0.936121 0.416788i −0.118766 0.992922i \(-0.537894\pi\)
−0.817355 + 0.576134i \(0.804561\pi\)
\(252\) 0.739268 + 2.27523i 0.0465695 + 0.143326i
\(253\) 1.71121 2.96390i 0.107583 0.186339i
\(254\) 12.4612 + 21.5834i 0.781884 + 1.35426i
\(255\) −8.09969 + 8.99561i −0.507222 + 0.563327i
\(256\) −3.34892 + 10.3069i −0.209307 + 0.644182i
\(257\) 15.6256 + 17.3540i 0.974699 + 1.08251i 0.996570 + 0.0827516i \(0.0263708\pi\)
−0.0218716 + 0.999761i \(0.506963\pi\)
\(258\) 9.07179 4.03902i 0.564785 0.251459i
\(259\) −6.74947 1.43464i −0.419392 0.0891445i
\(260\) 0.205094 1.95134i 0.0127194 0.121017i
\(261\) 0.929128 + 8.84006i 0.0575116 + 0.547186i
\(262\) −15.2479 + 3.24104i −0.942019 + 0.200232i
\(263\) 8.40921 6.10965i 0.518534 0.376737i −0.297517 0.954716i \(-0.596159\pi\)
0.816051 + 0.577979i \(0.196159\pi\)
\(264\) −19.3092 + 14.0289i −1.18840 + 0.863422i
\(265\) −3.54396 + 0.753292i −0.217704 + 0.0462743i
\(266\) 2.98764 + 28.4255i 0.183184 + 1.74288i
\(267\) −1.10520 + 10.5153i −0.0676374 + 0.643527i
\(268\) −3.49704 0.743319i −0.213616 0.0454054i
\(269\) −4.03609 + 1.79698i −0.246084 + 0.109564i −0.526073 0.850440i \(-0.676336\pi\)
0.279988 + 0.960003i \(0.409669\pi\)
\(270\) 4.48059 + 4.97620i 0.272680 + 0.302842i
\(271\) 1.90134 5.85172i 0.115498 0.355467i −0.876552 0.481306i \(-0.840162\pi\)
0.992051 + 0.125840i \(0.0401625\pi\)
\(272\) −7.08262 + 7.86604i −0.429447 + 0.476949i
\(273\) −10.3989 18.0114i −0.629369 1.09010i
\(274\) 6.08571 10.5408i 0.367651 0.636790i
\(275\) 3.03502 + 9.34083i 0.183019 + 0.563273i
\(276\) −0.830873 0.369928i −0.0500127 0.0222671i
\(277\) −17.8367 12.9591i −1.07171 0.778639i −0.0954872 0.995431i \(-0.530441\pi\)
−0.976218 + 0.216791i \(0.930441\pi\)
\(278\) −19.0974 −1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) 24.8963 + 18.0882i 1.48519 + 1.07905i 0.975838 + 0.218497i \(0.0701154\pi\)
0.509353 + 0.860557i \(0.329885\pi\)
\(282\) −2.77747 1.23661i −0.165396 0.0736391i
\(283\) −6.59605 20.3005i −0.392094 1.20674i −0.931202 0.364505i \(-0.881238\pi\)
0.539107 0.842237i \(-0.318762\pi\)
\(284\) −1.22803 + 2.12701i −0.0728701 + 0.126215i
\(285\) 9.77904 + 16.9378i 0.579260 + 1.00331i
\(286\) 8.17217 9.07611i 0.483230 0.536682i
\(287\) −0.396289 + 1.21965i −0.0233922 + 0.0719937i
\(288\) 2.32400 + 2.58107i 0.136943 + 0.152091i
\(289\) −2.51624 + 1.12030i −0.148014 + 0.0659000i
\(290\) −12.6834 2.69595i −0.744796 0.158311i
\(291\) −2.36723 + 22.5227i −0.138769 + 1.32030i
\(292\) 0.271511 + 2.58325i 0.0158890 + 0.151173i
\(293\) 1.75971 0.374039i 0.102804 0.0218516i −0.156223 0.987722i \(-0.549932\pi\)
0.259026 + 0.965870i \(0.416598\pi\)
\(294\) −15.4483 + 11.2238i −0.900961 + 0.654587i
\(295\) 9.72692 7.06702i 0.566323 0.411458i
\(296\) −5.42609 + 1.15335i −0.315385 + 0.0670371i
\(297\) −1.38244 13.1531i −0.0802176 0.763219i
\(298\) 1.96329 18.6794i 0.113730 1.08207i
\(299\) 2.34511 + 0.498469i 0.135621 + 0.0288272i
\(300\) 2.38441 1.06161i 0.137664 0.0612920i
\(301\) −9.88559 10.9791i −0.569796 0.632822i
\(302\) −0.0996942 + 0.306827i −0.00573676 + 0.0176559i
\(303\) −0.553604 + 0.614840i −0.0318037 + 0.0353216i
\(304\) 8.55109 + 14.8109i 0.490439 + 0.849465i
\(305\) −2.10470 + 3.64545i −0.120515 + 0.208738i
\(306\) 1.87620 + 5.77434i 0.107255 + 0.330097i
\(307\) 24.4551 + 10.8881i 1.39572 + 0.621417i 0.960341 0.278829i \(-0.0899461\pi\)
0.435383 + 0.900245i \(0.356613\pi\)
\(308\) 5.57645 + 4.05153i 0.317748 + 0.230857i
\(309\) 6.79928 0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) −13.5267 9.82771i −0.765798 0.556384i
\(313\) −10.3622 4.61354i −0.585706 0.260773i 0.0924186 0.995720i \(-0.470540\pi\)
−0.678124 + 0.734947i \(0.737207\pi\)
\(314\) 6.06422 + 18.6638i 0.342224 + 1.05326i
\(315\) −3.83769 + 6.64708i −0.216229 + 0.374520i
\(316\) −2.34546 4.06246i −0.131943 0.228531i
\(317\) 17.3180 19.2336i 0.972676 1.08027i −0.0240746 0.999710i \(-0.507664\pi\)
0.996750 0.0805554i \(-0.0256694\pi\)
\(318\) −1.85203 + 5.69996i −0.103857 + 0.319638i
\(319\) 17.1369 + 19.0324i 0.959482 + 1.06561i
\(320\) −12.5482 + 5.58683i −0.701467 + 0.312313i
\(321\) −6.40723 1.36190i −0.357617 0.0760138i
\(322\) 0.445746 4.24099i 0.0248404 0.236341i
\(323\) −2.40594 22.8910i −0.133870 1.27369i
\(324\) −5.28345 + 1.12303i −0.293525 + 0.0623906i
\(325\) −5.56627 + 4.04413i −0.308761 + 0.224328i
\(326\) 0.132756 0.0964526i 0.00735265 0.00534202i
\(327\) −14.1186 + 3.00099i −0.780758 + 0.165955i
\(328\) 0.107766 + 1.02532i 0.00595037 + 0.0566139i
\(329\) −0.472806 + 4.49845i −0.0260666 + 0.248008i
\(330\) −14.5397 3.09051i −0.800385 0.170127i
\(331\) 0.699582 0.311474i 0.0384525 0.0171202i −0.387420 0.921903i \(-0.626634\pi\)
0.425873 + 0.904783i \(0.359967\pi\)
\(332\) 2.70621 + 3.00556i 0.148523 + 0.164951i
\(333\) −0.731844 + 2.25238i −0.0401048 + 0.123430i
\(334\) −3.25571 + 3.61583i −0.178144 + 0.197849i
\(335\) −5.73517 9.93361i −0.313346 0.542731i
\(336\) −11.0672 + 19.1689i −0.603765 + 1.04575i
\(337\) 0.739892 + 2.27715i 0.0403045 + 0.124044i 0.969184 0.246337i \(-0.0792270\pi\)
−0.928880 + 0.370381i \(0.879227\pi\)
\(338\) −6.81740 3.03530i −0.370818 0.165099i
\(339\) 25.5946 + 18.5956i 1.39011 + 1.00997i
\(340\) 2.81040 0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) 1.44195 + 1.04764i 0.0778580 + 0.0565672i
\(344\) −10.8502 4.83083i −0.585005 0.260461i
\(345\) −0.901710 2.77518i −0.0485465 0.149411i
\(346\) 8.90672 15.4269i 0.478828 0.829355i
\(347\) −2.82890 4.89980i −0.151863 0.263035i 0.780049 0.625718i \(-0.215194\pi\)
−0.931912 + 0.362683i \(0.881861\pi\)
\(348\) 4.55412 5.05786i 0.244126 0.271130i
\(349\) 8.98238 27.6449i 0.480816 1.47980i −0.357134 0.934053i \(-0.616246\pi\)
0.837950 0.545746i \(-0.183754\pi\)
\(350\) 8.18862 + 9.09438i 0.437700 + 0.486115i
\(351\) 8.46390 3.76837i 0.451769 0.201141i
\(352\) 9.78837 + 2.08058i 0.521722 + 0.110895i
\(353\) 2.01481 19.1696i 0.107237 1.02030i −0.800093 0.599876i \(-0.795216\pi\)
0.907330 0.420419i \(-0.138117\pi\)
\(354\) −2.07890 19.7794i −0.110492 1.05126i
\(355\) −7.70767 + 1.63832i −0.409081 + 0.0869528i
\(356\) 1.98598 1.44290i 0.105257 0.0764737i
\(357\) 24.1004 17.5100i 1.27553 0.926726i
\(358\) 21.3568 4.53953i 1.12874 0.239922i
\(359\) −1.08127 10.2876i −0.0570673 0.542959i −0.985285 0.170921i \(-0.945326\pi\)
0.928217 0.372038i \(-0.121341\pi\)
\(360\) −0.644988 + 6.13665i −0.0339938 + 0.323430i
\(361\) −17.7920 3.78180i −0.936419 0.199042i
\(362\) −13.5743 + 6.04368i −0.713451 + 0.317649i
\(363\) 4.37225 + 4.85588i 0.229484 + 0.254868i
\(364\) −1.49214 + 4.59233i −0.0782094 + 0.240704i
\(365\) −5.57627 + 6.19307i −0.291875 + 0.324160i
\(366\) 3.48154 + 6.03020i 0.181983 + 0.315203i
\(367\) 0.0682819 0.118268i 0.00356428 0.00617352i −0.864238 0.503084i \(-0.832199\pi\)
0.867802 + 0.496910i \(0.165532\pi\)
\(368\) −0.788484 2.42670i −0.0411025 0.126501i
\(369\) 0.402096 + 0.179025i 0.0209323 + 0.00931966i
\(370\) −2.79502 2.03070i −0.145306 0.105571i
\(371\) 8.91649 0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) 14.1525 + 10.2824i 0.731810 + 0.531691i
\(375\) 22.2993 + 9.92828i 1.15153 + 0.512694i
\(376\) 1.12369 + 3.45837i 0.0579500 + 0.178352i
\(377\) −8.97053 + 15.5374i −0.462006 + 0.800218i
\(378\) −8.23955 14.2713i −0.423797 0.734038i
\(379\) −3.08344 + 3.42451i −0.158386 + 0.175905i −0.817115 0.576475i \(-0.804428\pi\)
0.658729 + 0.752380i \(0.271094\pi\)
\(380\) 1.40320 4.31860i 0.0719825 0.221539i
\(381\) −28.0829 31.1892i −1.43873 1.59787i
\(382\) 5.70873 2.54169i 0.292084 0.130044i
\(383\) 31.5891 + 6.71446i 1.61413 + 0.343093i 0.924532 0.381104i \(-0.124456\pi\)
0.689593 + 0.724197i \(0.257789\pi\)
\(384\) −1.22098 + 11.6169i −0.0623080 + 0.592821i
\(385\) 2.31161 + 21.9935i 0.117811 + 1.12089i
\(386\) 24.1552 5.13435i 1.22947 0.261332i
\(387\) −4.10223 + 2.98044i −0.208528 + 0.151504i
\(388\) 4.25377 3.09054i 0.215952 0.156898i
\(389\) 34.5005 7.33331i 1.74925 0.371814i 0.781532 0.623866i \(-0.214439\pi\)
0.967714 + 0.252052i \(0.0811054\pi\)
\(390\) −1.08846 10.3560i −0.0551164 0.524398i
\(391\) −0.358958 + 3.41526i −0.0181533 + 0.172717i
\(392\) 22.3394 + 4.74839i 1.12831 + 0.239830i
\(393\) 23.9816 10.6773i 1.20971 0.538598i
\(394\) 17.8982 + 19.8780i 0.901698 + 1.00144i
\(395\) 4.65073 14.3135i 0.234004 0.720189i
\(396\) 1.58300 1.75810i 0.0795489 0.0883479i
\(397\) 2.01701 + 3.49356i 0.101231 + 0.175337i 0.912192 0.409763i \(-0.134389\pi\)
−0.810961 + 0.585100i \(0.801055\pi\)
\(398\) −9.34326 + 16.1830i −0.468335 + 0.811181i
\(399\) −14.8737 45.7764i −0.744614 2.29169i
\(400\) 6.68940 + 2.97831i 0.334470 + 0.148916i
\(401\) −20.1309 14.6260i −1.00529 0.730387i −0.0420750 0.999114i \(-0.513397\pi\)
−0.963216 + 0.268728i \(0.913397\pi\)
\(402\) −18.9739 −0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) −14.0201 10.1862i −0.696664 0.506156i
\(406\) 29.1522 + 12.9794i 1.44680 + 0.644157i
\(407\) 2.10862 + 6.48967i 0.104521 + 0.321681i
\(408\) 11.9744 20.7403i 0.592821 1.02680i
\(409\) −1.75361 3.03734i −0.0867105 0.150187i 0.819408 0.573210i \(-0.194302\pi\)
−0.906119 + 0.423023i \(0.860969\pi\)
\(410\) −0.429637 + 0.477161i −0.0212183 + 0.0235653i
\(411\) −6.33381 + 19.4935i −0.312424 + 0.961541i
\(412\) −1.05629 1.17313i −0.0520398 0.0577961i
\(413\) −27.0307 + 12.0348i −1.33009 + 0.592196i
\(414\) −1.43162 0.304300i −0.0703603 0.0149555i
\(415\) −1.35633 + 12.9046i −0.0665798 + 0.633464i
\(416\) 0.732770 + 6.97185i 0.0359270 + 0.341823i
\(417\) 31.4572 6.68644i 1.54047 0.327436i
\(418\) 22.8667 16.6136i 1.11844 0.812598i
\(419\) −3.33340 + 2.42186i −0.162847 + 0.118316i −0.666224 0.745751i \(-0.732091\pi\)
0.503377 + 0.864067i \(0.332091\pi\)
\(420\) 5.74853 1.22189i 0.280499 0.0596220i
\(421\) −2.88513 27.4502i −0.140613 1.33784i −0.806254 0.591569i \(-0.798509\pi\)
0.665642 0.746272i \(-0.268158\pi\)
\(422\) −0.811989 + 7.72556i −0.0395270 + 0.376074i
\(423\) 1.51853 + 0.322774i 0.0738335 + 0.0156938i
\(424\) 6.54848 2.91557i 0.318022 0.141593i
\(425\) −6.59428 7.32369i −0.319869 0.355251i
\(426\) −4.02793 + 12.3967i −0.195154 + 0.600622i
\(427\) 6.93171 7.69845i 0.335449 0.372554i
\(428\) 0.760408 + 1.31706i 0.0367557 + 0.0636627i
\(429\) −10.2834 + 17.8114i −0.496488 + 0.859943i
\(430\) −2.28579 7.03493i −0.110230 0.339255i
\(431\) −13.5880 6.04978i −0.654512 0.291407i 0.0524876 0.998622i \(-0.483285\pi\)
−0.706999 + 0.707214i \(0.749952\pi\)
\(432\) −7.97717 5.79575i −0.383802 0.278848i
\(433\) 9.26195 0.445101 0.222550 0.974921i \(-0.428562\pi\)
0.222550 + 0.974921i \(0.428562\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) 2.71115 + 1.96977i 0.129841 + 0.0943348i
\(437\) 5.06884 + 2.25679i 0.242475 + 0.107957i
\(438\) 4.25987 + 13.1105i 0.203544 + 0.626445i
\(439\) −8.85909 + 15.3444i −0.422821 + 0.732348i −0.996214 0.0869324i \(-0.972294\pi\)
0.573393 + 0.819281i \(0.305627\pi\)
\(440\) 8.88929 + 15.3967i 0.423780 + 0.734009i
\(441\) 6.52428 7.24594i 0.310680 0.345045i
\(442\) −3.78692 + 11.6549i −0.180125 + 0.554369i
\(443\) −12.3456 13.7112i −0.586558 0.651439i 0.374682 0.927154i \(-0.377752\pi\)
−0.961239 + 0.275715i \(0.911085\pi\)
\(444\) 1.65660 0.737568i 0.0786189 0.0350034i
\(445\) 7.70376 + 1.63749i 0.365193 + 0.0776243i
\(446\) −0.951695 + 9.05478i −0.0450641 + 0.428756i
\(447\) 3.30617 + 31.4561i 0.156376 + 1.48782i
\(448\) 33.0648 7.02814i 1.56216 0.332048i
\(449\) −18.3730 + 13.3487i −0.867073 + 0.629966i −0.929800 0.368065i \(-0.880020\pi\)
0.0627268 + 0.998031i \(0.480020\pi\)
\(450\) 3.39804 2.46882i 0.160185 0.116381i
\(451\) 1.24047 0.263669i 0.0584112 0.0124157i
\(452\) −0.767779 7.30493i −0.0361133 0.343595i
\(453\) 0.0567889 0.540310i 0.00266817 0.0253860i
\(454\) −23.1887 4.92891i −1.08830 0.231325i
\(455\) −14.1526 + 6.30116i −0.663486 + 0.295403i
\(456\) −25.8919 28.7558i −1.21250 1.34661i
\(457\) −4.99429 + 15.3708i −0.233623 + 0.719018i 0.763678 + 0.645597i \(0.223392\pi\)
−0.997301 + 0.0734205i \(0.976608\pi\)
\(458\) −5.01872 + 5.57385i −0.234509 + 0.260449i
\(459\) 6.63529 + 11.4927i 0.309709 + 0.536432i
\(460\) −0.338739 + 0.586713i −0.0157938 + 0.0273556i
\(461\) 6.65584 + 20.4846i 0.309993 + 0.954062i 0.977766 + 0.209697i \(0.0672476\pi\)
−0.667773 + 0.744365i \(0.732752\pi\)
\(462\) 33.4188 + 14.8790i 1.55478 + 0.692235i
\(463\) 14.1657 + 10.2920i 0.658337 + 0.478310i 0.866101 0.499869i \(-0.166619\pi\)
−0.207764 + 0.978179i \(0.566619\pi\)
\(464\) 19.0941 0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) 9.55176 + 6.93976i 0.442003 + 0.321134i 0.786430 0.617679i \(-0.211927\pi\)
−0.344427 + 0.938813i \(0.611927\pi\)
\(468\) 1.51401 + 0.674079i 0.0699850 + 0.0311593i
\(469\) 8.72305 + 26.8468i 0.402793 + 1.23967i
\(470\) −1.13235 + 1.96129i −0.0522314 + 0.0904674i
\(471\) −16.5236 28.6197i −0.761366 1.31872i
\(472\) −15.9168 + 17.6774i −0.732629 + 0.813667i
\(473\) −4.51466 + 13.8947i −0.207584 + 0.638879i
\(474\) −16.6583 18.5009i −0.765141 0.849775i
\(475\) −14.5464 + 6.47647i −0.667434 + 0.297161i
\(476\) −6.76521 1.43799i −0.310083 0.0659102i
\(477\) 0.319889 3.04354i 0.0146467 0.139354i
\(478\) 3.59499 + 34.2040i 0.164431 + 1.56446i
\(479\) 15.4633 3.28682i 0.706534 0.150179i 0.159389 0.987216i \(-0.449048\pi\)
0.547146 + 0.837037i \(0.315714\pi\)
\(480\) 6.90266 5.01507i 0.315062 0.228906i
\(481\) −3.86724 + 2.80972i −0.176331 + 0.128112i
\(482\) −27.4190 + 5.82810i −1.24890 + 0.265462i
\(483\) 0.750635 + 7.14181i 0.0341551 + 0.324964i
\(484\) 0.158577 1.50876i 0.00720803 0.0685798i
\(485\) 16.5006 + 3.50732i 0.749255 + 0.159259i
\(486\) −14.3148 + 6.37336i −0.649333 + 0.289102i
\(487\) 8.55928 + 9.50604i 0.387858 + 0.430760i 0.905178 0.425032i \(-0.139737\pi\)
−0.517320 + 0.855792i \(0.673070\pi\)
\(488\) 2.57353 7.92050i 0.116498 0.358544i
\(489\) −0.184905 + 0.205357i −0.00836167 + 0.00928658i
\(490\) 7.11185 + 12.3181i 0.321281 + 0.556475i
\(491\) 9.26410 16.0459i 0.418083 0.724141i −0.577664 0.816275i \(-0.696036\pi\)
0.995747 + 0.0921341i \(0.0293688\pi\)
\(492\) −0.104144 0.320523i −0.00469518 0.0144503i
\(493\) −23.4762 10.4523i −1.05732 0.470747i
\(494\) 16.0188 + 11.6383i 0.720720 + 0.523634i
\(495\) 7.59016 0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) 17.3648 + 12.6163i 0.778136 + 0.565349i
\(499\) 37.3524 + 16.6303i 1.67212 + 0.744476i 0.999992 + 0.00404299i \(0.00128693\pi\)
0.672130 + 0.740433i \(0.265380\pi\)
\(500\) −1.75127 5.38986i −0.0783193 0.241042i
\(501\) 4.09681 7.09588i 0.183032 0.317021i
\(502\) 10.0018 + 17.3237i 0.446404 + 0.773195i
\(503\) 13.4342 14.9202i 0.599001 0.665258i −0.365046 0.930990i \(-0.618947\pi\)
0.964047 + 0.265731i \(0.0856133\pi\)
\(504\) 4.69255 14.4422i 0.209023 0.643306i
\(505\) 0.412373 + 0.457987i 0.0183504 + 0.0203801i
\(506\) −3.85242 + 1.71521i −0.171261 + 0.0762503i
\(507\) 12.2923 + 2.61282i 0.545922 + 0.116039i
\(508\) −1.01853 + 9.69071i −0.0451901 + 0.429956i
\(509\) 3.33563 + 31.7364i 0.147849 + 1.40669i 0.777045 + 0.629445i \(0.216718\pi\)
−0.629196 + 0.777247i \(0.716616\pi\)
\(510\) 14.5893 3.10104i 0.646023 0.137316i
\(511\) 16.5920 12.0548i 0.733989 0.533274i
\(512\) 19.9117 14.4667i 0.879983 0.639345i
\(513\) 20.9731 4.45798i 0.925987 0.196825i
\(514\) −3.00768 28.6162i −0.132663 1.26221i
\(515\) 0.529405 5.03696i 0.0233284 0.221955i
\(516\) 3.79769 + 0.807223i 0.167184 + 0.0355360i
\(517\) 4.08629 1.81934i 0.179715 0.0800143i
\(518\) 5.68915 + 6.31845i 0.249967 + 0.277617i
\(519\) −9.26983 + 28.5296i −0.406900 + 1.25231i
\(520\) −8.33365 + 9.25545i −0.365455 + 0.405879i
\(521\) −1.05378 1.82520i −0.0461670 0.0799635i 0.842019 0.539449i \(-0.181367\pi\)
−0.888185 + 0.459485i \(0.848034\pi\)
\(522\) 5.47624 9.48512i 0.239688 0.415152i
\(523\) 1.51658 + 4.66757i 0.0663156 + 0.204098i 0.978723 0.205184i \(-0.0657792\pi\)
−0.912408 + 0.409282i \(0.865779\pi\)
\(524\) −5.56785 2.47897i −0.243233 0.108294i
\(525\) −16.6724 12.1132i −0.727644 0.528664i
\(526\) −12.8076 −0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) 17.9377 + 13.0325i 0.779899 + 0.566630i
\(530\) 4.07836 + 1.81580i 0.177153 + 0.0788735i
\(531\) 3.13820 + 9.65838i 0.136186 + 0.419138i
\(532\) −5.58748 + 9.67780i −0.242248 + 0.419586i
\(533\) 0.444199 + 0.769375i 0.0192404 + 0.0333253i
\(534\) 8.71747 9.68173i 0.377242 0.418969i
\(535\) −1.50778 + 4.64048i −0.0651872 + 0.200626i
\(536\) 15.1850 + 16.8646i 0.655890 + 0.728440i
\(537\) −33.5895 + 14.9550i −1.44950 + 0.645357i
\(538\) 5.32483 + 1.13183i 0.229570 + 0.0487966i
\(539\) 2.93654 27.9393i 0.126486 1.20343i
\(540\) 0.273659 + 2.60370i 0.0117764 + 0.112045i
\(541\) 12.1652 2.58580i 0.523025 0.111172i 0.0611690 0.998127i \(-0.480517\pi\)
0.461856 + 0.886955i \(0.347184\pi\)
\(542\) −6.13347 + 4.45623i −0.263455 + 0.191411i
\(543\) 20.2436 14.7078i 0.868736 0.631173i
\(544\) −9.82172 + 2.08767i −0.421103 + 0.0895082i
\(545\) 1.12386 + 10.6928i 0.0481408 + 0.458029i
\(546\) −2.67869 + 25.4861i −0.114637 + 1.09070i
\(547\) 13.6598 + 2.90349i 0.584053 + 0.124144i 0.490456 0.871466i \(-0.336830\pi\)
0.0935967 + 0.995610i \(0.470164\pi\)
\(548\) 4.34733 1.93556i 0.185709 0.0826829i
\(549\) −2.37909 2.64225i −0.101537 0.112768i
\(550\) 3.73967 11.5095i 0.159460 0.490767i
\(551\) −27.7829 + 30.8561i −1.18359 + 1.31451i
\(552\) 2.88656 + 4.99967i 0.122860 + 0.212800i
\(553\) −18.5190 + 32.0759i −0.787509 + 1.36401i
\(554\) 8.39482 + 25.8366i 0.356662 + 1.09769i
\(555\) 5.31495 + 2.36637i 0.225607 + 0.100447i
\(556\) −6.04065 4.38879i −0.256181 0.186126i
\(557\) −37.2207 −1.57709 −0.788546 0.614976i \(-0.789166\pi\)
−0.788546 + 0.614976i \(0.789166\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) 13.3388 + 9.69119i 0.563666 + 0.409527i
\(561\) −26.9121 11.9820i −1.13623 0.505882i
\(562\) −11.7174 36.0625i −0.494269 1.52120i
\(563\) 15.0134 26.0039i 0.632738 1.09593i −0.354252 0.935150i \(-0.615264\pi\)
0.986990 0.160784i \(-0.0514023\pi\)
\(564\) −0.594349 1.02944i −0.0250266 0.0433474i
\(565\) 15.7686 17.5128i 0.663389 0.736768i
\(566\) −8.12746 + 25.0138i −0.341623 + 1.05141i
\(567\) 28.5374 + 31.6939i 1.19846 + 1.33102i
\(568\) 14.2421 6.34101i 0.597587 0.266063i
\(569\) 39.4891 + 8.39367i 1.65547 + 0.351881i 0.938515 0.345239i \(-0.112202\pi\)
0.716955 + 0.697120i \(0.245536\pi\)
\(570\) 2.51902 23.9669i 0.105510 1.00386i
\(571\) −4.45307 42.3682i −0.186355 1.77305i −0.543894 0.839154i \(-0.683051\pi\)
0.357538 0.933898i \(-0.383616\pi\)
\(572\) 4.67071 0.992789i 0.195292 0.0415106i
\(573\) −8.51351 + 6.18543i −0.355657 + 0.258400i
\(574\) 1.27837 0.928794i 0.0533583 0.0387671i
\(575\) 2.32374 0.493927i 0.0969068 0.0205982i
\(576\) −1.21274 11.5384i −0.0505307 0.480767i
\(577\) 0.683383 6.50195i 0.0284496 0.270680i −0.971045 0.238896i \(-0.923215\pi\)
0.999495 0.0317838i \(-0.0101188\pi\)
\(578\) 3.31969 + 0.705621i 0.138081 + 0.0293500i
\(579\) −37.9908 + 16.9146i −1.57884 + 0.702947i
\(580\) −3.39230 3.76753i −0.140858 0.156438i
\(581\) 9.86787 30.3702i 0.409388 1.25997i
\(582\) 18.6719 20.7372i 0.773974 0.859585i
\(583\) −4.40874 7.63617i −0.182591 0.316258i
\(584\) 8.24383 14.2787i 0.341132 0.590858i
\(585\) 1.64309 + 5.05690i 0.0679333 + 0.209077i
\(586\) −2.02507 0.901618i −0.0836547 0.0372455i
\(587\) 17.2949 + 12.5655i 0.713838 + 0.518634i 0.884410 0.466712i \(-0.154561\pi\)
−0.170572 + 0.985345i \(0.554561\pi\)
\(588\) −7.46576 −0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) −36.4416 26.4764i −1.49901 1.08909i
\(592\) 4.64756 + 2.06923i 0.191013 + 0.0850446i
\(593\) 8.03153 + 24.7185i 0.329816 + 1.01507i 0.969220 + 0.246197i \(0.0791811\pi\)
−0.639404 + 0.768871i \(0.720819\pi\)
\(594\) −8.14807 + 14.1129i −0.334319 + 0.579058i
\(595\) −11.0950 19.2171i −0.454851 0.787824i
\(596\) 4.91373 5.45725i 0.201274 0.223538i
\(597\) 9.72416 29.9279i 0.397983 1.22487i
\(598\) −1.97670 2.19535i −0.0808335 0.0897747i
\(599\) −8.39362 + 3.73708i −0.342954 + 0.152693i −0.570984 0.820961i \(-0.693438\pi\)
0.228030 + 0.973654i \(0.426772\pi\)
\(600\) −16.2055 3.44458i −0.661586 0.140625i
\(601\) −3.48279 + 33.1365i −0.142066 + 1.35167i 0.658572 + 0.752518i \(0.271161\pi\)
−0.800638 + 0.599149i \(0.795506\pi\)
\(602\) 1.90282 + 18.1041i 0.0775531 + 0.737869i
\(603\) 9.47679 2.01435i 0.385925 0.0820308i
\(604\) −0.102046 + 0.0741409i −0.00415220 + 0.00301675i
\(605\) 3.93770 2.86091i 0.160090 0.116312i
\(606\) 0.997159 0.211953i 0.0405068 0.00860999i
\(607\) 5.09062 + 48.4340i 0.206622 + 1.96587i 0.254666 + 0.967029i \(0.418035\pi\)
−0.0480438 + 0.998845i \(0.515299\pi\)
\(608\) −1.69585 + 16.1349i −0.0687757 + 0.654357i
\(609\) −52.5639 11.1728i −2.13000 0.452745i
\(610\) 4.73829 2.10962i 0.191848 0.0854161i
\(611\) 2.09671 + 2.32863i 0.0848237 + 0.0942062i
\(612\) −0.733551 + 2.25764i −0.0296520 + 0.0912595i
\(613\) 13.9942 15.5421i 0.565220 0.627741i −0.390999 0.920391i \(-0.627870\pi\)
0.956220 + 0.292650i \(0.0945371\pi\)
\(614\) −16.4923 28.5654i −0.665573 1.15281i
\(615\) 0.540633 0.936404i 0.0218004 0.0377594i
\(616\) −13.5204 41.6114i −0.544752 1.67657i
\(617\) 41.4603 + 18.4593i 1.66913 + 0.743144i 1.00000 1.59016e-6i \(-5.06163e-7\pi\)
0.669129 + 0.743146i \(0.266667\pi\)
\(618\) −6.77785 4.92440i −0.272645 0.198088i
\(619\) −10.2462 −0.411832 −0.205916 0.978570i \(-0.566017\pi\)
−0.205916 + 0.978570i \(0.566017\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) −4.16796 3.02820i −0.167120 0.121420i
\(623\) −17.7067 7.88354i −0.709405 0.315847i
\(624\) 4.73836 + 14.5832i 0.189686 + 0.583794i
\(625\) 2.56358 4.44025i 0.102543 0.177610i
\(626\) 6.98816 + 12.1038i 0.279303 + 0.483767i
\(627\) −31.8491 + 35.3720i −1.27193 + 1.41262i
\(628\) −2.37097 + 7.29711i −0.0946121 + 0.291186i
\(629\) −4.58147 5.08823i −0.182675 0.202881i
\(630\) 8.63976 3.84667i 0.344216 0.153255i
\(631\) 10.4437 + 2.21987i 0.415755 + 0.0883715i 0.411040 0.911617i \(-0.365166\pi\)
0.00471535 + 0.999989i \(0.498499\pi\)
\(632\) −3.11243 + 29.6128i −0.123806 + 1.17793i
\(633\) −1.36739 13.0098i −0.0543488 0.517094i
\(634\) −31.1934 + 6.63036i −1.23885 + 0.263325i
\(635\) −25.2918 + 18.3755i −1.00367 + 0.729211i
\(636\) −1.89572 + 1.37732i −0.0751702 + 0.0546144i
\(637\) 19.2501 4.09174i 0.762717 0.162121i
\(638\) −3.29858 31.3839i −0.130592 1.24250i
\(639\) 0.695718 6.61932i 0.0275222 0.261856i
\(640\) 8.51079 + 1.80902i 0.336419 + 0.0715080i
\(641\) 21.7991 9.70559i 0.861013 0.383348i 0.0717646 0.997422i \(-0.477137\pi\)
0.789249 + 0.614074i \(0.210470\pi\)
\(642\) 5.40068 + 5.99806i 0.213148 + 0.236725i
\(643\) −2.45337 + 7.55069i −0.0967513 + 0.297770i −0.987706 0.156322i \(-0.950036\pi\)
0.890955 + 0.454092i \(0.150036\pi\)
\(644\) 1.11562 1.23902i 0.0439615 0.0488242i
\(645\) 6.22823 + 10.7876i 0.245237 + 0.424762i
\(646\) −14.1805 + 24.5614i −0.557925 + 0.966355i
\(647\) 0.765625 + 2.35635i 0.0300998 + 0.0926377i 0.964978 0.262331i \(-0.0844914\pi\)
−0.934878 + 0.354969i \(0.884491\pi\)
\(648\) 31.3220 + 13.9455i 1.23045 + 0.547830i
\(649\) 23.6721 + 17.1988i 0.929209 + 0.675110i
\(650\) 8.47769 0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) −18.1981 13.2217i −0.712145 0.517404i 0.171720 0.985146i \(-0.445068\pi\)
−0.883865 + 0.467742i \(0.845068\pi\)
\(654\) 16.2475 + 7.23387i 0.635329 + 0.282867i
\(655\) −6.04255 18.5971i −0.236102 0.726647i
\(656\) 0.472746 0.818821i 0.0184576 0.0319696i
\(657\) −3.51952 6.09598i −0.137309 0.237827i
\(658\) 3.72933 4.14184i 0.145384 0.161466i
\(659\) −3.69573 + 11.3743i −0.143965 + 0.443079i −0.996876 0.0789765i \(-0.974835\pi\)
0.852911 + 0.522056i \(0.174835\pi\)
\(660\) −3.88879 4.31894i −0.151371 0.168114i
\(661\) 21.7752 9.69496i 0.846959 0.377090i 0.0630832 0.998008i \(-0.479907\pi\)
0.783876 + 0.620918i \(0.213240\pi\)
\(662\) −0.922963 0.196182i −0.0358720 0.00762482i
\(663\) 2.15715 20.5239i 0.0837766 0.797081i
\(664\) −2.68344 25.5313i −0.104138 0.990805i
\(665\) −35.0696 + 7.45427i −1.35994 + 0.289064i
\(666\) 2.36083 1.71525i 0.0914804 0.0664644i
\(667\) 5.01168 3.64120i 0.194053 0.140988i
\(668\) −1.86076 + 0.395517i −0.0719950 + 0.0153030i
\(669\) −1.60265 15.2482i −0.0619621 0.589530i
\(670\) −1.47735 + 14.0560i −0.0570749 + 0.543031i
\(671\) −10.0204 2.12990i −0.386833 0.0822239i
\(672\) −19.1822 + 8.54046i −0.739969 + 0.329455i
\(673\) 2.33802 + 2.59664i 0.0901242 + 0.100093i 0.786520 0.617565i \(-0.211881\pi\)
−0.696396 + 0.717658i \(0.745214\pi\)
\(674\) 0.911675 2.80585i 0.0351164 0.108077i
\(675\) 6.14293 6.82241i 0.236441 0.262595i
\(676\) −1.45885 2.52680i −0.0561096 0.0971847i
\(677\) 9.62287 16.6673i 0.369837 0.640576i −0.619703 0.784836i \(-0.712747\pi\)
0.989540 + 0.144260i \(0.0460803\pi\)
\(678\) −12.0461 37.0740i −0.462626 1.42382i
\(679\) −37.9259 16.8857i −1.45546 0.648014i
\(680\) −14.4322 10.4856i −0.553449 0.402104i
\(681\) 39.9221 1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) 3.10295 + 2.25442i 0.118644 + 0.0862000i
\(685\) 13.9477 + 6.20992i 0.532915 + 0.237269i
\(686\) −0.678651 2.08867i −0.0259110 0.0797459i
\(687\) 6.31529 10.9384i 0.240944 0.417326i
\(688\) 5.44616 + 9.43303i 0.207633 + 0.359631i
\(689\) 4.13317 4.59035i 0.157461 0.174878i
\(690\) −1.11106 + 3.41950i −0.0422974 + 0.130178i
\(691\) 25.7016 + 28.5445i 0.977735 + 1.08588i 0.996290 + 0.0860571i \(0.0274267\pi\)
−0.0185551 + 0.999828i \(0.505907\pi\)
\(692\) 6.36253 2.83278i 0.241867 0.107686i
\(693\) −18.2711 3.88364i −0.694062 0.147527i
\(694\) −0.728708 + 6.93320i −0.0276614 + 0.263181i
\(695\) −2.50404 23.8243i −0.0949836 0.903709i
\(696\) −42.2575 + 8.98212i −1.60177 + 0.340466i
\(697\) −1.02947 + 0.747956i −0.0389941 + 0.0283308i
\(698\) −28.9760 + 21.0523i −1.09676 + 0.796841i
\(699\) −35.5755 + 7.56180i −1.34559 + 0.286014i
\(700\) 0.500133 + 4.75845i 0.0189033 + 0.179853i
\(701\) 3.70297 35.2314i 0.139859 1.33067i −0.669261 0.743028i \(-0.733389\pi\)
0.809120 0.587644i \(-0.199944\pi\)
\(702\) −11.1665 2.37351i −0.421451 0.0895823i
\(703\) −10.1063 + 4.49962i −0.381167 + 0.169706i
\(704\) −22.3678 24.8420i −0.843018 0.936266i
\(705\) 1.17851 3.62709i 0.0443854 0.136604i
\(706\) −15.8921 + 17.6500i −0.598107 + 0.664265i
\(707\) −0.758331 1.31347i −0.0285200 0.0493980i
\(708\) 3.88795 6.73412i 0.146118 0.253084i
\(709\) −7.97551 24.5461i −0.299526 0.921848i −0.981663 0.190623i \(-0.938949\pi\)
0.682137 0.731225i \(-0.261051\pi\)
\(710\) 8.86993 + 3.94915i 0.332883 + 0.148209i
\(711\) 10.2843 + 7.47201i 0.385693 + 0.280222i
\(712\) −15.5821 −0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) 12.3941 + 9.00486i 0.463514 + 0.336763i
\(716\) 7.79856 + 3.47214i 0.291446 + 0.129760i
\(717\) −17.8973 55.0821i −0.668386 2.05708i
\(718\) −6.37296 + 11.0383i −0.237837 + 0.411945i
\(719\) 19.5234 + 33.8155i 0.728099 + 1.26110i 0.957686 + 0.287816i \(0.0929291\pi\)
−0.229587 + 0.973288i \(0.573738\pi\)
\(720\) 3.78652 4.20535i 0.141115 0.156724i
\(721\) −3.85164 + 11.8541i −0.143443 + 0.441471i
\(722\) 14.9969 + 16.6558i 0.558127 + 0.619863i
\(723\) 43.1240 19.2001i 1.60380 0.714058i
\(724\) −5.68257 1.20787i −0.211191 0.0448900i
\(725\) −1.85826 + 17.6802i −0.0690141 + 0.656626i
\(726\) −0.841590 8.00719i −0.0312343 0.297175i
\(727\) −24.4377 + 5.19439i −0.906344 + 0.192649i −0.637424 0.770513i \(-0.720000\pi\)
−0.268920 + 0.963163i \(0.586667\pi\)
\(728\) 24.7966 18.0158i 0.919021 0.667708i
\(729\) −5.86467 + 4.26093i −0.217210 + 0.157812i
\(730\) 10.0440 2.13493i 0.371747 0.0790172i
\(731\) −1.53234 14.5792i −0.0566755 0.539232i
\(732\) −0.284569 + 2.70749i −0.0105180 + 0.100072i
\(733\) 16.5787 + 3.52390i 0.612347 + 0.130158i 0.503637 0.863915i \(-0.331995\pi\)
0.108710 + 0.994074i \(0.465328\pi\)
\(734\) −0.153722 + 0.0684416i −0.00567400 + 0.00252623i
\(735\) −16.0275 17.8003i −0.591182 0.656574i
\(736\) 0.747985 2.30206i 0.0275711 0.0848551i
\(737\) 18.6787 20.7449i 0.688041 0.764146i
\(738\) −0.271170 0.469680i −0.00998190 0.0172892i
\(739\) −7.19107 + 12.4553i −0.264528 + 0.458175i −0.967440 0.253101i \(-0.918549\pi\)
0.702912 + 0.711277i \(0.251883\pi\)
\(740\) −0.417409 1.28465i −0.0153442 0.0472247i
\(741\) −30.4610 13.5621i −1.11901 0.498216i
\(742\) −8.88838 6.45779i −0.326303 0.237073i
\(743\) −27.7705 −1.01880 −0.509400 0.860530i \(-0.670133\pi\)
−0.509400 + 0.860530i \(0.670133\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) 7.34072 + 5.33334i 0.268763 + 0.195268i
\(747\) −10.0125 4.45785i −0.366338 0.163104i
\(748\) 2.11354 + 6.50480i 0.0772786 + 0.237839i
\(749\) 6.00394 10.3991i 0.219379 0.379976i
\(750\) −15.0384 26.0473i −0.549126 0.951113i
\(751\) −29.1542 + 32.3790i −1.06385 + 1.18153i −0.0810773 + 0.996708i \(0.525836\pi\)
−0.982773 + 0.184817i \(0.940831\pi\)
\(752\) 1.03053 3.17164i 0.0375795 0.115658i
\(753\) −22.5405 25.0337i −0.821420 0.912279i
\(754\) 20.1953 8.99152i 0.735469 0.327452i
\(755\) −0.395844 0.0841392i −0.0144062 0.00306214i
\(756\) 0.673472 6.40766i 0.0244940 0.233044i
\(757\) −2.63590 25.0790i −0.0958036 0.911510i −0.931848 0.362849i \(-0.881804\pi\)
0.836044 0.548662i \(-0.184862\pi\)
\(758\) 5.55394 1.18053i 0.201728 0.0428786i
\(759\) 5.74517 4.17411i 0.208536 0.151511i
\(760\) −23.3185 + 16.9419i −0.845851 + 0.614547i
\(761\) 2.55877 0.543883i 0.0927552 0.0197157i −0.161300 0.986905i \(-0.551569\pi\)
0.254055 + 0.967190i \(0.418235\pi\)
\(762\) 5.40551 + 51.4300i 0.195821 + 1.86311i
\(763\) 2.76580 26.3148i 0.100129 0.952660i
\(764\) 2.38982 + 0.507973i 0.0864608 + 0.0183778i
\(765\) −6.95758 + 3.09771i −0.251552 + 0.111998i
\(766\) −26.6265 29.5718i −0.962056 1.06847i
\(767\) −6.33414 + 19.4945i −0.228713 + 0.703905i
\(768\) −15.0469 + 16.7112i −0.542957 + 0.603015i
\(769\) −5.67534 9.82998i −0.204658 0.354478i 0.745366 0.666656i \(-0.232275\pi\)
−0.950024 + 0.312178i \(0.898942\pi\)
\(770\) 13.6245 23.5984i 0.490994 0.850427i
\(771\) 14.9734 + 46.0835i 0.539255 + 1.65966i
\(772\) 8.82041 + 3.92710i 0.317454 + 0.141339i
\(773\) 9.23685 + 6.71097i 0.332226 + 0.241377i 0.741375 0.671091i \(-0.234174\pi\)
−0.409148 + 0.912468i \(0.634174\pi\)
\(774\) 6.24789 0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) −11.5834 8.41583i −0.415552 0.301916i
\(778\) −39.7029 17.6769i −1.42342 0.633747i
\(779\) 0.635343 + 1.95539i 0.0227635 + 0.0700590i
\(780\) 2.03564 3.52583i 0.0728875 0.126245i
\(781\) −9.58846 16.6077i −0.343102 0.594270i
\(782\) 2.83134 3.14452i 0.101248 0.112448i
\(783\) 7.39756 22.7674i 0.264367 0.813639i
\(784\) −14.0149 15.5651i −0.500533 0.555898i
\(785\) −22.4882 + 10.0124i −0.802639 + 0.357358i
\(786\) −31.6390 6.72508i −1.12853 0.239876i
\(787\) 2.83159 26.9408i 0.100935 0.960336i −0.820458 0.571706i \(-0.806282\pi\)
0.921394 0.388630i \(-0.127052\pi\)
\(788\) 1.09316 + 10.4007i 0.0389423 + 0.370511i
\(789\) 21.0967 4.48425i 0.751063 0.159643i
\(790\) −15.0026 + 10.9001i −0.533770 + 0.387807i
\(791\) −46.9190 + 34.0887i −1.66825 + 1.21205i
\(792\) −14.6886 + 3.12217i −0.521938 + 0.110941i
\(793\) −0.750140 7.13711i −0.0266383 0.253446i
\(794\) 0.519570 4.94338i 0.0184388 0.175434i
\(795\) −7.35363 1.56306i −0.260806 0.0554361i
\(796\) −6.67437 + 2.97162i −0.236567 + 0.105326i
\(797\) 32.5571 + 36.1583i 1.15323 + 1.28079i 0.953652 + 0.300912i \(0.0972911\pi\)
0.199580 + 0.979882i \(0.436042\pi\)
\(798\) −18.3269 + 56.4044i −0.648766 + 1.99670i
\(799\) −3.00322 + 3.33542i −0.106246 + 0.117999i
\(800\) 3.47318 + 6.01573i 0.122796 + 0.212688i
\(801\) −3.32620 + 5.76115i −0.117526 + 0.203560i
\(802\) 9.47458 + 29.1598i 0.334559 + 1.02967i
\(803\) −18.5278 8.24910i −0.653831 0.291104i
\(804\) −6.00159 4.36041i −0.211660 0.153780i
\(805\) 5.34915 0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) −0.986423 0.716678i −0.0347022 0.0252127i
\(809\) −17.1830 7.65036i −0.604122 0.268972i 0.0817985 0.996649i \(-0.473934\pi\)
−0.685921 + 0.727676i \(0.740600\pi\)
\(810\) 6.59853 + 20.3082i 0.231849 + 0.713557i
\(811\) 19.7693 34.2414i 0.694193 1.20238i −0.276259 0.961083i \(-0.589095\pi\)
0.970452 0.241294i \(-0.0775720\pi\)
\(812\) 6.23826 + 10.8050i 0.218920 + 0.379180i
\(813\) 8.54282 9.48776i 0.299610 0.332750i
\(814\) 2.59819 7.99639i 0.0910664 0.280273i
\(815\) 0.137733 + 0.152968i 0.00482458 + 0.00535824i
\(816\) −20.0644 + 8.93324i −0.702394 + 0.312726i
\(817\) −23.1682 4.92456i −0.810554 0.172289i
\(818\) −0.451720 + 4.29783i −0.0157940 + 0.150270i
\(819\) −1.36780 13.0137i −0.0477947 0.454737i
\(820\) −0.245554 + 0.0521941i −0.00857512 + 0.00182270i
\(821\) 11.8414 8.60325i 0.413266 0.300255i −0.361657 0.932311i \(-0.617789\pi\)
0.774923 + 0.632056i \(0.217789\pi\)
\(822\) 20.4320 14.8447i 0.712649 0.517770i
\(823\) −40.8736 + 8.68794i −1.42476 + 0.302843i −0.854855 0.518866i \(-0.826354\pi\)
−0.569907 + 0.821709i \(0.693021\pi\)
\(824\) 1.04740 + 9.96539i 0.0364881 + 0.347161i
\(825\) −2.13023 + 20.2678i −0.0741651 + 0.705634i
\(826\) 35.6618 + 7.58015i 1.24083 + 0.263747i
\(827\) −8.59293 + 3.82582i −0.298805 + 0.133037i −0.550663 0.834728i \(-0.685625\pi\)
0.251858 + 0.967764i \(0.418958\pi\)
\(828\) −0.382901 0.425254i −0.0133067 0.0147786i
\(829\) 12.4629 38.3568i 0.432854 1.33219i −0.462416 0.886663i \(-0.653017\pi\)
0.895270 0.445524i \(-0.146983\pi\)
\(830\) 10.6983 11.8816i 0.371343 0.412418i
\(831\) −22.8739 39.6188i −0.793487 1.37436i
\(832\) 11.7087 20.2801i 0.405927 0.703086i
\(833\) 8.71086 + 26.8093i 0.301813 + 0.928886i
\(834\) −36.2007 16.1176i −1.25353 0.558107i
\(835\) −4.93769 3.58744i −0.170876 0.124149i
\(836\) 11.0509 0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) −5.78419 4.20246i −0.199692 0.145085i 0.483445 0.875374i \(-0.339385\pi\)
−0.683138 + 0.730290i \(0.739385\pi\)
\(840\) −34.0792 15.1730i −1.17584 0.523519i
\(841\) 5.36358 + 16.5074i 0.184951 + 0.569221i
\(842\) −17.0048 + 29.4532i −0.586025 + 1.01503i
\(843\) 31.9272 + 55.2995i 1.09963 + 1.90462i
\(844\) −2.03226 + 2.25705i −0.0699531 + 0.0776908i
\(845\) 2.89270 8.90281i 0.0995119 0.306266i
\(846\) −1.27998 1.42156i −0.0440065 0.0488741i
\(847\) −10.9427 + 4.87201i −0.375996 + 0.167404i
\(848\) −6.43024 1.36679i −0.220815 0.0469357i
\(849\) 4.62966 44.0482i 0.158889 1.51173i
\(850\) 1.26929 + 12.0765i 0.0435364 + 0.414221i
\(851\) 1.61445 0.343163i 0.0553427 0.0117635i
\(852\) −4.12296 + 2.99550i −0.141250 + 0.102624i
\(853\) −0.911496 + 0.662240i −0.0312090 + 0.0226747i −0.603280 0.797529i \(-0.706140\pi\)
0.572071 + 0.820204i \(0.306140\pi\)
\(854\) −12.4855 + 2.65387i −0.427244 + 0.0908136i
\(855\) 1.28627 + 12.2380i 0.0439894 + 0.418532i
\(856\) 1.00906 9.60058i 0.0344890 0.328141i
\(857\) 23.3328 + 4.95953i 0.797032 + 0.169414i 0.588390 0.808578i \(-0.299762\pi\)
0.208642 + 0.977992i \(0.433096\pi\)
\(858\) 23.1510 10.3075i 0.790361 0.351892i
\(859\) 21.7238 + 24.1267i 0.741206 + 0.823193i 0.989354 0.145530i \(-0.0464886\pi\)
−0.248148 + 0.968722i \(0.579822\pi\)
\(860\) 0.893692 2.75050i 0.0304746 0.0937913i
\(861\) −1.78054 + 1.97750i −0.0606808 + 0.0673929i
\(862\) 9.16363 + 15.8719i 0.312114 + 0.540598i
\(863\) 11.9209 20.6476i 0.405793 0.702853i −0.588621 0.808409i \(-0.700329\pi\)
0.994413 + 0.105556i \(0.0336622\pi\)
\(864\) −2.89051 8.89606i −0.0983370 0.302650i
\(865\) 20.4131 + 9.08852i 0.694068 + 0.309019i
\(866\) −9.23276 6.70799i −0.313742 0.227947i
\(867\) −5.71523 −0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) −21.7672 15.8148i −0.737977 0.536172i
\(871\) 17.8646 + 7.95385i 0.605320 + 0.269506i
\(872\) −6.57333 20.2306i −0.222601 0.685095i
\(873\) −7.12437 + 12.3398i −0.241123 + 0.417638i
\(874\) −3.41837 5.92080i −0.115628 0.200274i
\(875\) −29.9414 + 33.2533i −1.01220 + 1.12417i
\(876\) −1.66551 + 5.12592i −0.0562724 + 0.173189i
\(877\) 19.5886 + 21.7553i 0.661459 + 0.734624i 0.976753 0.214370i \(-0.0687698\pi\)
−0.315294 + 0.948994i \(0.602103\pi\)
\(878\) 19.9444 8.87982i 0.673091 0.299679i
\(879\) 3.65136 + 0.776121i 0.123157 + 0.0261779i
\(880\) 1.70429 16.2152i 0.0574516 0.546616i
\(881\) −0.943900 8.98061i −0.0318008 0.302564i −0.998849 0.0479702i \(-0.984725\pi\)
0.967048 0.254594i \(-0.0819419\pi\)
\(882\) −11.7516 + 2.49788i −0.395697 + 0.0841080i
\(883\) −17.3191 + 12.5831i −0.582834 + 0.423454i −0.839745 0.542981i \(-0.817295\pi\)
0.256911 + 0.966435i \(0.417295\pi\)
\(884\) −3.87626 + 2.81627i −0.130373 + 0.0947213i
\(885\) 24.4025 5.18692i 0.820282 0.174356i
\(886\) 2.37634 + 22.6093i 0.0798346 + 0.759575i
\(887\) −2.57088 + 24.4603i −0.0863216 + 0.821296i 0.862622 + 0.505849i \(0.168821\pi\)
−0.948943 + 0.315446i \(0.897846\pi\)
\(888\) −11.2590 2.39317i −0.377827 0.0803096i
\(889\) 70.2847 31.2928i 2.35727 1.04953i
\(890\) −6.49353 7.21180i −0.217664 0.241740i
\(891\) 13.0328 40.1107i 0.436614 1.34376i
\(892\) −2.38191 + 2.64538i −0.0797524 + 0.0885740i
\(893\) 3.62590 + 6.28024i 0.121336 + 0.210160i
\(894\) 19.4864 33.7514i 0.651723 1.12882i
\(895\) 8.46344 + 26.0478i 0.282902 + 0.870681i
\(896\) −19.5616 8.70940i −0.653508 0.290961i
\(897\) 4.02467 + 2.92409i 0.134380 + 0.0976326i
\(898\) 27.9829 0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) 7.15780 + 5.20044i 0.238461 + 0.173252i
\(902\) −1.42752 0.635572i −0.0475312 0.0211622i
\(903\) −9.47298 29.1548i −0.315241 0.970212i
\(904\) −23.3119 + 40.3774i −0.775343 + 1.34293i
\(905\) −9.31946 16.1418i −0.309789 0.536571i
\(906\) −0.447931 + 0.497478i −0.0148815 + 0.0165276i
\(907\) −6.10812 + 18.7989i −0.202817 + 0.624206i 0.796979 + 0.604007i \(0.206430\pi\)
−0.999796 + 0.0201992i \(0.993570\pi\)
\(908\) −6.20204 6.88806i −0.205822 0.228588i
\(909\) −0.475543 + 0.211725i −0.0157728 + 0.00702248i
\(910\) 18.6717 + 3.96879i 0.618960 + 0.131564i
\(911\) 3.72347 35.4264i 0.123364 1.17373i −0.741227 0.671254i \(-0.765756\pi\)
0.864591 0.502476i \(-0.167578\pi\)
\(912\) 3.70936 + 35.2922i 0.122829 + 1.16864i
\(913\) −30.8885 + 6.56555i −1.02226 + 0.217288i
\(914\) 16.1109 11.7053i 0.532902 0.387176i
\(915\) −7.06628 + 5.13395i −0.233604 + 0.169723i
\(916\) −2.86839 + 0.609695i −0.0947743 + 0.0201449i
\(917\) 5.03016 + 47.8588i 0.166111 + 1.58044i
\(918\) 1.70921 16.2621i 0.0564124 0.536728i
\(919\) 16.7814 + 3.56700i 0.553568 + 0.117665i 0.476198 0.879338i \(-0.342014\pi\)
0.0773698 + 0.997002i \(0.475348\pi\)
\(920\) 3.92855 1.74910i 0.129520 0.0576662i
\(921\) 37.1674 + 41.2786i 1.22471 + 1.36018i
\(922\) 8.20114 25.2405i 0.270090 0.831252i
\(923\) 8.98912 9.98343i 0.295880 0.328609i
\(924\) 7.15126 + 12.3863i 0.235259 + 0.407481i
\(925\) −2.36831 + 4.10203i −0.0778694 + 0.134874i
\(926\) −6.66707 20.5191i −0.219094 0.674301i
\(927\) 3.90809 + 1.73999i 0.128358 + 0.0571488i
\(928\) 14.6540 + 10.6468i 0.481042 + 0.349498i
\(929\) 45.5222 1.49353 0.746767 0.665086i \(-0.231605\pi\)
0.746767 + 0.665086i \(0.231605\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) 6.83147 + 4.96335i 0.223772 + 0.162580i
\(933\) 7.92569 + 3.52875i 0.259476 + 0.115526i
\(934\) −4.49552 13.8358i −0.147098 0.452720i
\(935\) −10.9718 + 19.0037i −0.358817 + 0.621489i
\(936\) −5.25986 9.11035i −0.171924 0.297781i
\(937\) 17.1414 19.0375i 0.559986 0.621928i −0.394963 0.918697i \(-0.629243\pi\)
0.954949 + 0.296769i \(0.0959092\pi\)
\(938\) 10.7483 33.0799i 0.350944 1.08010i
\(939\) −15.7487 17.4907i −0.513940 0.570788i
\(940\) −0.808895 + 0.360143i −0.0263833 + 0.0117466i
\(941\) −11.8589 2.52069i −0.386589 0.0821721i 0.0105171 0.999945i \(-0.496652\pi\)
−0.397106 + 0.917773i \(0.629986\pi\)
\(942\) −4.25638 + 40.4967i −0.138680 + 1.31945i
\(943\) −0.0320641 0.305070i −0.00104415 0.00993444i
\(944\) 21.3383 4.53560i 0.694504 0.147621i
\(945\) 16.7233 12.1502i 0.544011 0.395247i
\(946\) 14.5637 10.5811i 0.473507 0.344023i
\(947\) 26.6067 5.65542i 0.864600 0.183776i 0.245796 0.969322i \(-0.420951\pi\)
0.618804 + 0.785545i \(0.287617\pi\)
\(948\) −1.01743 9.68023i −0.0330447 0.314399i
\(949\) 1.48510 14.1298i 0.0482083 0.458671i
\(950\) 19.1911 + 4.07920i 0.622643 + 0.132347i
\(951\) 49.0602 21.8430i 1.59089 0.708309i
\(952\) 29.3761 + 32.6255i 0.952086 + 1.05740i
\(953\) 7.69226 23.6743i 0.249177 0.766887i −0.745745 0.666232i \(-0.767906\pi\)
0.994921 0.100655i \(-0.0320939\pi\)
\(954\) −2.52317 + 2.80227i −0.0816907 + 0.0907267i
\(955\) 3.91933 + 6.78848i 0.126826 + 0.219670i
\(956\) −6.72333 + 11.6452i −0.217448 + 0.376631i
\(957\) 16.4216 + 50.5406i 0.530836 + 1.63374i
\(958\) −17.7950 7.92285i −0.574931 0.255976i
\(959\) −30.3977 22.0852i −0.981592 0.713168i
\(960\) −28.5013 −0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) −3.33422 2.42246i −0.107444 0.0780625i
\(964\) −10.0122 4.45772i −0.322471 0.143573i
\(965\) 9.57241 + 29.4609i 0.308147 + 0.948378i
\(966\) 4.42421 7.66295i 0.142347 0.246551i
\(967\) −26.0999 45.2064i −0.839316 1.45374i −0.890467 0.455048i \(-0.849622\pi\)
0.0511507 0.998691i \(-0.483711\pi\)
\(968\) −6.44351 + 7.15624i −0.207102 + 0.230010i
\(969\) 14.7586 45.4224i 0.474115 1.45918i
\(970\) −13.9084 15.4469i −0.446573 0.495970i
\(971\) −18.2351 + 8.11880i −0.585193 + 0.260545i −0.677907 0.735148i \(-0.737113\pi\)
0.0927134 + 0.995693i \(0.470446\pi\)
\(972\) −5.99255 1.27376i −0.192211 0.0408557i
\(973\) −6.16241 + 58.6314i −0.197558 + 1.87964i
\(974\) −1.64753 15.6752i −0.0527901 0.502265i
\(975\) −13.9644 + 2.96823i −0.447220 + 0.0950596i
\(976\) −6.17897 + 4.48929i −0.197784 + 0.143699i
\(977\) 48.7438 35.4144i 1.55945 1.13301i 0.622994 0.782227i \(-0.285916\pi\)
0.936458 0.350781i \(-0.114084\pi\)
\(978\) 0.333052 0.0707925i 0.0106498 0.00226369i
\(979\) 2.00352 + 19.0622i 0.0640328 + 0.609231i
\(980\) −0.581298 + 5.53068i −0.0185689 + 0.176671i
\(981\) −8.88303 1.88815i −0.283613 0.0602839i
\(982\) −20.8562 + 9.28577i −0.665547 + 0.296321i
\(983\) −7.72091 8.57494i −0.246259 0.273498i 0.607325 0.794453i \(-0.292243\pi\)
−0.853584 + 0.520955i \(0.825576\pi\)
\(984\) −0.661060 + 2.03453i −0.0210738 + 0.0648586i
\(985\) −22.4513 + 24.9347i −0.715358 + 0.794485i
\(986\) 15.8321 + 27.4221i 0.504198 + 0.873297i
\(987\) −4.69279 + 8.12816i −0.149373 + 0.258722i
\(988\) 2.39225 + 7.36259i 0.0761076 + 0.234235i
\(989\) 3.22832 + 1.43734i 0.102655 + 0.0457048i
\(990\) −7.56624 5.49719i −0.240471 0.174712i
\(991\) 37.3423 1.18622 0.593109 0.805122i \(-0.297900\pi\)
0.593109 + 0.805122i \(0.297900\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) −19.3311 14.0449i −0.613146 0.445477i
\(995\) −21.4136 9.53397i −0.678858 0.302247i
\(996\) 2.59326 + 7.98124i 0.0821707 + 0.252895i
\(997\) −10.4012 + 18.0154i −0.329410 + 0.570555i −0.982395 0.186816i \(-0.940183\pi\)
0.652985 + 0.757371i \(0.273516\pi\)
\(998\) −25.1901 43.6305i −0.797378 1.38110i
\(999\) 4.26788 4.73997i 0.135030 0.149966i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.t.732.1 16
31.2 even 5 961.2.g.k.448.2 16
31.3 odd 30 961.2.d.q.388.2 16
31.4 even 5 961.2.c.j.521.5 16
31.5 even 3 961.2.g.s.816.1 16
31.6 odd 6 961.2.d.q.374.2 16
31.7 even 15 961.2.a.i.1.5 8
31.8 even 5 31.2.g.a.7.2 16
31.9 even 15 961.2.g.k.547.2 16
31.10 even 15 31.2.g.a.9.2 yes 16
31.11 odd 30 961.2.c.i.439.5 16
31.12 odd 30 961.2.d.n.628.3 16
31.13 odd 30 961.2.g.n.235.1 16
31.14 even 15 961.2.d.o.531.3 16
31.15 odd 10 961.2.g.m.338.1 16
31.16 even 5 961.2.g.s.338.1 16
31.17 odd 30 961.2.d.n.531.3 16
31.18 even 15 inner 961.2.g.t.235.1 16
31.19 even 15 961.2.d.o.628.3 16
31.20 even 15 961.2.c.j.439.5 16
31.21 odd 30 961.2.g.l.846.2 16
31.22 odd 30 961.2.g.j.547.2 16
31.23 odd 10 961.2.g.l.844.2 16
31.24 odd 30 961.2.a.j.1.5 8
31.25 even 3 961.2.d.p.374.2 16
31.26 odd 6 961.2.g.m.816.1 16
31.27 odd 10 961.2.c.i.521.5 16
31.28 even 15 961.2.d.p.388.2 16
31.29 odd 10 961.2.g.j.448.2 16
31.30 odd 2 961.2.g.n.732.1 16
93.8 odd 10 279.2.y.c.100.1 16
93.38 odd 30 8649.2.a.bf.1.4 8
93.41 odd 30 279.2.y.c.226.1 16
93.86 even 30 8649.2.a.be.1.4 8
124.39 odd 10 496.2.bg.c.193.2 16
124.103 odd 30 496.2.bg.c.257.2 16
155.8 odd 20 775.2.ck.a.224.3 32
155.39 even 10 775.2.bl.a.751.1 16
155.72 odd 60 775.2.ck.a.474.3 32
155.103 odd 60 775.2.ck.a.474.2 32
155.132 odd 20 775.2.ck.a.224.2 32
155.134 even 30 775.2.bl.a.226.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.8 even 5
31.2.g.a.9.2 yes 16 31.10 even 15
279.2.y.c.100.1 16 93.8 odd 10
279.2.y.c.226.1 16 93.41 odd 30
496.2.bg.c.193.2 16 124.39 odd 10
496.2.bg.c.257.2 16 124.103 odd 30
775.2.bl.a.226.1 16 155.134 even 30
775.2.bl.a.751.1 16 155.39 even 10
775.2.ck.a.224.2 32 155.132 odd 20
775.2.ck.a.224.3 32 155.8 odd 20
775.2.ck.a.474.2 32 155.103 odd 60
775.2.ck.a.474.3 32 155.72 odd 60
961.2.a.i.1.5 8 31.7 even 15
961.2.a.j.1.5 8 31.24 odd 30
961.2.c.i.439.5 16 31.11 odd 30
961.2.c.i.521.5 16 31.27 odd 10
961.2.c.j.439.5 16 31.20 even 15
961.2.c.j.521.5 16 31.4 even 5
961.2.d.n.531.3 16 31.17 odd 30
961.2.d.n.628.3 16 31.12 odd 30
961.2.d.o.531.3 16 31.14 even 15
961.2.d.o.628.3 16 31.19 even 15
961.2.d.p.374.2 16 31.25 even 3
961.2.d.p.388.2 16 31.28 even 15
961.2.d.q.374.2 16 31.6 odd 6
961.2.d.q.388.2 16 31.3 odd 30
961.2.g.j.448.2 16 31.29 odd 10
961.2.g.j.547.2 16 31.22 odd 30
961.2.g.k.448.2 16 31.2 even 5
961.2.g.k.547.2 16 31.9 even 15
961.2.g.l.844.2 16 31.23 odd 10
961.2.g.l.846.2 16 31.21 odd 30
961.2.g.m.338.1 16 31.15 odd 10
961.2.g.m.816.1 16 31.26 odd 6
961.2.g.n.235.1 16 31.13 odd 30
961.2.g.n.732.1 16 31.30 odd 2
961.2.g.s.338.1 16 31.16 even 5
961.2.g.s.816.1 16 31.5 even 3
961.2.g.t.235.1 16 31.18 even 15 inner
961.2.g.t.732.1 16 1.1 even 1 trivial
8649.2.a.be.1.4 8 93.86 even 30
8649.2.a.bf.1.4 8 93.38 odd 30