Properties

Label 961.2.g.s.235.1
Level $961$
Weight $2$
Character 961.235
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 235.1
Root \(-0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 961.235
Dual form 961.2.g.s.732.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67638 + 1.21796i) q^{2} +(-1.95443 + 0.870169i) q^{3} +(0.708788 - 2.18143i) q^{4} +(-1.17396 - 2.03335i) q^{5} +(2.21654 - 3.83916i) q^{6} +(-2.45875 - 2.73072i) q^{7} +(0.188054 + 0.578772i) q^{8} +(1.05522 - 1.17194i) q^{9} +(4.44454 + 1.97884i) q^{10} +(4.18710 - 0.889995i) q^{11} +(0.512931 + 4.88021i) q^{12} +(0.218172 - 2.07577i) q^{13} +(7.44771 + 1.58306i) q^{14} +(4.06377 + 2.95251i) q^{15} +(2.69109 + 1.95519i) q^{16} +(-2.08159 - 0.442455i) q^{17} +(-0.341570 + 3.24983i) q^{18} +(0.0648092 + 0.616619i) q^{19} +(-5.26769 + 1.11968i) q^{20} +(7.18164 + 3.19747i) q^{21} +(-5.93519 + 6.59170i) q^{22} +(-1.03640 - 3.18973i) q^{23} +(-0.871168 - 0.967530i) q^{24} +(-0.256344 + 0.444001i) q^{25} +(2.16247 + 3.74550i) q^{26} +(0.940760 - 2.89536i) q^{27} +(-7.69959 + 3.42808i) q^{28} +(1.11435 - 0.809625i) q^{29} -10.4085 q^{30} -8.10976 q^{32} +(-7.40895 + 5.38292i) q^{33} +(4.02843 - 1.79357i) q^{34} +(-2.66604 + 8.20524i) q^{35} +(-1.80857 - 3.13253i) q^{36} +(-0.137239 + 0.237704i) q^{37} +(-0.859664 - 0.954753i) q^{38} +(1.37986 + 4.24679i) q^{39} +(0.956078 - 1.06183i) q^{40} +(-3.90807 - 1.73998i) q^{41} +(-15.9336 + 3.38678i) q^{42} +(-0.0281905 - 0.268215i) q^{43} +(1.02631 - 9.76467i) q^{44} +(-3.62173 - 0.769824i) q^{45} +(5.62238 + 4.08489i) q^{46} +(-4.35183 - 3.16179i) q^{47} +(-6.96090 - 1.47959i) q^{48} +(-0.679670 + 6.46663i) q^{49} +(-0.111046 - 1.05653i) q^{50} +(4.45333 - 0.946585i) q^{51} +(-4.37349 - 1.94720i) q^{52} +(6.36255 - 7.06633i) q^{53} +(1.94937 + 5.99954i) q^{54} +(-6.72514 - 7.46903i) q^{55} +(1.11808 - 1.93658i) q^{56} +(-0.663228 - 1.14874i) q^{57} +(-0.881988 + 2.71448i) q^{58} +(-5.32363 + 2.37023i) q^{59} +(9.32103 - 6.77212i) q^{60} +2.22719 q^{61} -5.79474 q^{63} +(8.21287 - 5.96700i) q^{64} +(-4.47688 + 1.99324i) q^{65} +(5.86404 - 18.0477i) q^{66} +(6.80719 + 11.7904i) q^{67} +(-2.44059 + 4.22722i) q^{68} +(4.80118 + 5.33225i) q^{69} +(-5.52437 - 17.0022i) q^{70} +(-0.893908 + 0.992785i) q^{71} +(0.876721 + 0.390342i) q^{72} +(13.8565 - 2.94528i) q^{73} +(-0.0594505 - 0.565634i) q^{74} +(0.114651 - 1.09083i) q^{75} +(1.39104 + 0.295676i) q^{76} +(-12.7253 - 9.24551i) q^{77} +(-7.48561 - 5.43861i) q^{78} +(-8.48701 - 1.80397i) q^{79} +(0.816370 - 7.76724i) q^{80} +(1.17533 + 11.1825i) q^{81} +(8.67065 - 1.84300i) q^{82} +(-4.73717 - 2.10912i) q^{83} +(12.0653 - 13.3999i) q^{84} +(1.54403 + 4.75202i) q^{85} +(0.373934 + 0.415296i) q^{86} +(-1.47342 + 2.55203i) q^{87} +(1.30251 + 2.25601i) q^{88} +(1.54897 - 4.76725i) q^{89} +(7.00903 - 3.12062i) q^{90} +(-6.20475 + 4.50802i) q^{91} -7.69274 q^{92} +11.1463 q^{94} +(1.17772 - 0.855663i) q^{95} +(15.8500 - 7.05686i) q^{96} +(2.07474 - 6.38538i) q^{97} +(-6.73673 - 11.6684i) q^{98} +(3.37528 - 5.84615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} - 3 q^{7} - 8 q^{8} + 5 q^{9} + 18 q^{10} - 2 q^{11} - 20 q^{12} - 27 q^{13} - 6 q^{14} + 4 q^{15} - 2 q^{16} - 16 q^{17} + 22 q^{18} - 4 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67638 + 1.21796i −1.18538 + 0.861230i −0.992768 0.120045i \(-0.961696\pi\)
−0.192612 + 0.981275i \(0.561696\pi\)
\(3\) −1.95443 + 0.870169i −1.12839 + 0.502392i −0.884094 0.467308i \(-0.845224\pi\)
−0.244297 + 0.969700i \(0.578557\pi\)
\(4\) 0.708788 2.18143i 0.354394 1.09071i
\(5\) −1.17396 2.03335i −0.525009 0.909342i −0.999576 0.0291228i \(-0.990729\pi\)
0.474567 0.880219i \(-0.342605\pi\)
\(6\) 2.21654 3.83916i 0.904898 1.56733i
\(7\) −2.45875 2.73072i −0.929319 1.03211i −0.999402 0.0345725i \(-0.988993\pi\)
0.0700828 0.997541i \(-0.477674\pi\)
\(8\) 0.188054 + 0.578772i 0.0664872 + 0.204627i
\(9\) 1.05522 1.17194i 0.351739 0.390645i
\(10\) 4.44454 + 1.97884i 1.40549 + 0.625764i
\(11\) 4.18710 0.889995i 1.26246 0.268344i 0.472405 0.881382i \(-0.343386\pi\)
0.790053 + 0.613038i \(0.210053\pi\)
\(12\) 0.512931 + 4.88021i 0.148070 + 1.40880i
\(13\) 0.218172 2.07577i 0.0605099 0.575714i −0.921697 0.387911i \(-0.873197\pi\)
0.982207 0.187803i \(-0.0601365\pi\)
\(14\) 7.44771 + 1.58306i 1.99048 + 0.423090i
\(15\) 4.06377 + 2.95251i 1.04926 + 0.762334i
\(16\) 2.69109 + 1.95519i 0.672773 + 0.488798i
\(17\) −2.08159 0.442455i −0.504859 0.107311i −0.0515606 0.998670i \(-0.516420\pi\)
−0.453299 + 0.891359i \(0.649753\pi\)
\(18\) −0.341570 + 3.24983i −0.0805089 + 0.765991i
\(19\) 0.0648092 + 0.616619i 0.0148683 + 0.141462i 0.999438 0.0335327i \(-0.0106758\pi\)
−0.984569 + 0.174995i \(0.944009\pi\)
\(20\) −5.26769 + 1.11968i −1.17789 + 0.250369i
\(21\) 7.18164 + 3.19747i 1.56716 + 0.697745i
\(22\) −5.93519 + 6.59170i −1.26539 + 1.40536i
\(23\) −1.03640 3.18973i −0.216105 0.665104i −0.999073 0.0430417i \(-0.986295\pi\)
0.782968 0.622062i \(-0.213705\pi\)
\(24\) −0.871168 0.967530i −0.177826 0.197496i
\(25\) −0.256344 + 0.444001i −0.0512688 + 0.0888002i
\(26\) 2.16247 + 3.74550i 0.424094 + 0.734553i
\(27\) 0.940760 2.89536i 0.181049 0.557213i
\(28\) −7.69959 + 3.42808i −1.45509 + 0.647846i
\(29\) 1.11435 0.809625i 0.206930 0.150344i −0.479493 0.877545i \(-0.659180\pi\)
0.686424 + 0.727202i \(0.259180\pi\)
\(30\) −10.4085 −1.90032
\(31\) 0 0
\(32\) −8.10976 −1.43362
\(33\) −7.40895 + 5.38292i −1.28973 + 0.937046i
\(34\) 4.02843 1.79357i 0.690870 0.307595i
\(35\) −2.66604 + 8.20524i −0.450644 + 1.38694i
\(36\) −1.80857 3.13253i −0.301428 0.522089i
\(37\) −0.137239 + 0.237704i −0.0225619 + 0.0390783i −0.877086 0.480334i \(-0.840516\pi\)
0.854524 + 0.519412i \(0.173849\pi\)
\(38\) −0.859664 0.954753i −0.139456 0.154881i
\(39\) 1.37986 + 4.24679i 0.220955 + 0.680030i
\(40\) 0.956078 1.06183i 0.151169 0.167890i
\(41\) −3.90807 1.73998i −0.610338 0.271740i 0.0782030 0.996937i \(-0.475082\pi\)
−0.688541 + 0.725198i \(0.741748\pi\)
\(42\) −15.9336 + 3.38678i −2.45860 + 0.522592i
\(43\) −0.0281905 0.268215i −0.00429902 0.0409024i 0.992162 0.124958i \(-0.0398795\pi\)
−0.996461 + 0.0840552i \(0.973213\pi\)
\(44\) 1.02631 9.76467i 0.154722 1.47208i
\(45\) −3.62173 0.769824i −0.539896 0.114759i
\(46\) 5.62238 + 4.08489i 0.828974 + 0.602285i
\(47\) −4.35183 3.16179i −0.634780 0.461195i 0.223273 0.974756i \(-0.428326\pi\)
−0.858053 + 0.513561i \(0.828326\pi\)
\(48\) −6.96090 1.47959i −1.00472 0.213560i
\(49\) −0.679670 + 6.46663i −0.0970958 + 0.923805i
\(50\) −0.111046 1.05653i −0.0157043 0.149416i
\(51\) 4.45333 0.946585i 0.623591 0.132548i
\(52\) −4.37349 1.94720i −0.606494 0.270029i
\(53\) 6.36255 7.06633i 0.873964 0.970635i −0.125807 0.992055i \(-0.540152\pi\)
0.999771 + 0.0214197i \(0.00681863\pi\)
\(54\) 1.94937 + 5.99954i 0.265276 + 0.816434i
\(55\) −6.72514 7.46903i −0.906818 1.00712i
\(56\) 1.11808 1.93658i 0.149410 0.258786i
\(57\) −0.663228 1.14874i −0.0878467 0.152155i
\(58\) −0.881988 + 2.71448i −0.115811 + 0.356429i
\(59\) −5.32363 + 2.37023i −0.693078 + 0.308578i −0.722876 0.690978i \(-0.757180\pi\)
0.0297983 + 0.999556i \(0.490513\pi\)
\(60\) 9.32103 6.77212i 1.20334 0.874278i
\(61\) 2.22719 0.285162 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(62\) 0 0
\(63\) −5.79474 −0.730068
\(64\) 8.21287 5.96700i 1.02661 0.745875i
\(65\) −4.47688 + 1.99324i −0.555289 + 0.247231i
\(66\) 5.86404 18.0477i 0.721813 2.22151i
\(67\) 6.80719 + 11.7904i 0.831631 + 1.44043i 0.896744 + 0.442550i \(0.145926\pi\)
−0.0651129 + 0.997878i \(0.520741\pi\)
\(68\) −2.44059 + 4.22722i −0.295965 + 0.512626i
\(69\) 4.80118 + 5.33225i 0.577994 + 0.641928i
\(70\) −5.52437 17.0022i −0.660288 2.03216i
\(71\) −0.893908 + 0.992785i −0.106087 + 0.117822i −0.793850 0.608114i \(-0.791926\pi\)
0.687762 + 0.725936i \(0.258593\pi\)
\(72\) 0.876721 + 0.390342i 0.103323 + 0.0460022i
\(73\) 13.8565 2.94528i 1.62178 0.344719i 0.694615 0.719382i \(-0.255575\pi\)
0.927161 + 0.374663i \(0.122242\pi\)
\(74\) −0.0594505 0.565634i −0.00691099 0.0657536i
\(75\) 0.114651 1.09083i 0.0132388 0.125958i
\(76\) 1.39104 + 0.295676i 0.159564 + 0.0339163i
\(77\) −12.7253 9.24551i −1.45019 1.05362i
\(78\) −7.48561 5.43861i −0.847578 0.615801i
\(79\) −8.48701 1.80397i −0.954863 0.202962i −0.295969 0.955198i \(-0.595642\pi\)
−0.658895 + 0.752235i \(0.728976\pi\)
\(80\) 0.816370 7.76724i 0.0912730 0.868404i
\(81\) 1.17533 + 11.1825i 0.130592 + 1.24250i
\(82\) 8.67065 1.84300i 0.957513 0.203526i
\(83\) −4.73717 2.10912i −0.519972 0.231506i 0.129932 0.991523i \(-0.458524\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(84\) 12.0653 13.3999i 1.31643 1.46205i
\(85\) 1.54403 + 4.75202i 0.167473 + 0.515429i
\(86\) 0.373934 + 0.415296i 0.0403223 + 0.0447825i
\(87\) −1.47342 + 2.55203i −0.157967 + 0.273607i
\(88\) 1.30251 + 2.25601i 0.138848 + 0.240491i
\(89\) 1.54897 4.76725i 0.164191 0.505327i −0.834785 0.550576i \(-0.814408\pi\)
0.998976 + 0.0452489i \(0.0144081\pi\)
\(90\) 7.00903 3.12062i 0.738816 0.328942i
\(91\) −6.20475 + 4.50802i −0.650435 + 0.472569i
\(92\) −7.69274 −0.802024
\(93\) 0 0
\(94\) 11.1463 1.14965
\(95\) 1.17772 0.855663i 0.120831 0.0877892i
\(96\) 15.8500 7.05686i 1.61768 0.720238i
\(97\) 2.07474 6.38538i 0.210657 0.648337i −0.788776 0.614681i \(-0.789285\pi\)
0.999433 0.0336562i \(-0.0107151\pi\)
\(98\) −6.73673 11.6684i −0.680512 1.17868i
\(99\) 3.37528 5.84615i 0.339228 0.587560i
\(100\) 0.786862 + 0.873899i 0.0786862 + 0.0873899i
\(101\) −5.58165 17.1786i −0.555395 1.70933i −0.694898 0.719108i \(-0.744550\pi\)
0.139503 0.990222i \(-0.455450\pi\)
\(102\) −6.31258 + 7.01083i −0.625038 + 0.694175i
\(103\) 3.57682 + 1.59250i 0.352435 + 0.156914i 0.575315 0.817932i \(-0.304879\pi\)
−0.222881 + 0.974846i \(0.571546\pi\)
\(104\) 1.24242 0.264085i 0.121830 0.0258957i
\(105\) −1.92934 18.3565i −0.188285 1.79141i
\(106\) −2.05954 + 19.5952i −0.200040 + 1.90326i
\(107\) −10.8727 2.31107i −1.05111 0.223419i −0.350201 0.936675i \(-0.613887\pi\)
−0.700905 + 0.713255i \(0.747220\pi\)
\(108\) −5.64922 4.10440i −0.543596 0.394946i
\(109\) −14.6379 10.6350i −1.40205 1.01865i −0.994419 0.105505i \(-0.966354\pi\)
−0.407633 0.913146i \(-0.633646\pi\)
\(110\) 20.3709 + 4.32997i 1.94229 + 0.412846i
\(111\) 0.0613806 0.583997i 0.00582599 0.0554306i
\(112\) −1.27764 12.1559i −0.120726 1.14863i
\(113\) −17.1555 + 3.64651i −1.61385 + 0.343035i −0.924438 0.381332i \(-0.875465\pi\)
−0.689415 + 0.724367i \(0.742132\pi\)
\(114\) 2.51095 + 1.11795i 0.235172 + 0.104705i
\(115\) −5.26914 + 5.85197i −0.491350 + 0.545699i
\(116\) −0.976297 3.00473i −0.0906469 0.278982i
\(117\) −2.20245 2.44606i −0.203616 0.226139i
\(118\) 6.03758 10.4574i 0.555804 0.962681i
\(119\) 3.90988 + 6.77211i 0.358418 + 0.620798i
\(120\) −0.944616 + 2.90723i −0.0862312 + 0.265392i
\(121\) 6.69071 2.97890i 0.608246 0.270809i
\(122\) −3.73362 + 2.71263i −0.338026 + 0.245590i
\(123\) 9.15213 0.825220
\(124\) 0 0
\(125\) −10.5358 −0.942352
\(126\) 9.71419 7.05777i 0.865409 0.628756i
\(127\) −12.9708 + 5.77496i −1.15097 + 0.512445i −0.891372 0.453272i \(-0.850257\pi\)
−0.259598 + 0.965717i \(0.583590\pi\)
\(128\) −1.48821 + 4.58025i −0.131541 + 0.404841i
\(129\) 0.288489 + 0.499677i 0.0254000 + 0.0439941i
\(130\) 5.07728 8.79410i 0.445307 0.771294i
\(131\) 4.81005 + 5.34211i 0.420256 + 0.466742i 0.915679 0.401910i \(-0.131654\pi\)
−0.495423 + 0.868652i \(0.664987\pi\)
\(132\) 6.49106 + 19.9774i 0.564974 + 1.73881i
\(133\) 1.52446 1.69309i 0.132188 0.146809i
\(134\) −25.7717 11.4743i −2.22634 0.991230i
\(135\) −6.99170 + 1.48613i −0.601749 + 0.127906i
\(136\) −0.135371 1.28797i −0.0116080 0.110442i
\(137\) −0.792080 + 7.53614i −0.0676720 + 0.643856i 0.907140 + 0.420829i \(0.138261\pi\)
−0.974812 + 0.223027i \(0.928406\pi\)
\(138\) −14.5431 3.09123i −1.23799 0.263143i
\(139\) 16.2598 + 11.8134i 1.37914 + 1.00200i 0.996960 + 0.0779138i \(0.0248259\pi\)
0.382178 + 0.924089i \(0.375174\pi\)
\(140\) 16.0095 + 11.6316i 1.35305 + 0.983046i
\(141\) 11.2567 + 2.39268i 0.947981 + 0.201500i
\(142\) 0.289355 2.75303i 0.0242822 0.231029i
\(143\) −0.933915 8.88561i −0.0780979 0.743052i
\(144\) 5.13104 1.09064i 0.427587 0.0908864i
\(145\) −2.95445 1.31541i −0.245354 0.109239i
\(146\) −19.6415 + 21.8141i −1.62554 + 1.80534i
\(147\) −4.29869 13.2300i −0.354550 1.09119i
\(148\) 0.421261 + 0.467858i 0.0346274 + 0.0384577i
\(149\) −6.15749 + 10.6651i −0.504441 + 0.873717i 0.495546 + 0.868582i \(0.334968\pi\)
−0.999987 + 0.00513554i \(0.998365\pi\)
\(150\) 1.13639 + 1.96829i 0.0927862 + 0.160710i
\(151\) −6.14232 + 18.9041i −0.499855 + 1.53840i 0.309397 + 0.950933i \(0.399873\pi\)
−0.809252 + 0.587462i \(0.800127\pi\)
\(152\) −0.344694 + 0.153468i −0.0279584 + 0.0124479i
\(153\) −2.71505 + 1.97260i −0.219499 + 0.159475i
\(154\) 32.5932 2.62644
\(155\) 0 0
\(156\) 10.2421 0.820023
\(157\) 4.69603 3.41187i 0.374784 0.272297i −0.384408 0.923163i \(-0.625594\pi\)
0.759192 + 0.650867i \(0.225594\pi\)
\(158\) 16.4246 7.31272i 1.30667 0.581769i
\(159\) −6.28627 + 19.3472i −0.498534 + 1.53433i
\(160\) 9.52050 + 16.4900i 0.752662 + 1.30365i
\(161\) −6.16198 + 10.6729i −0.485632 + 0.841139i
\(162\) −15.5901 17.3146i −1.22488 1.36036i
\(163\) 5.49535 + 16.9129i 0.430429 + 1.32472i 0.897699 + 0.440610i \(0.145238\pi\)
−0.467270 + 0.884115i \(0.654762\pi\)
\(164\) −6.56564 + 7.29188i −0.512691 + 0.569401i
\(165\) 19.6431 + 8.74569i 1.52922 + 0.680851i
\(166\) 10.5101 2.23400i 0.815745 0.173392i
\(167\) −0.228084 2.17008i −0.0176497 0.167926i 0.982146 0.188118i \(-0.0602388\pi\)
−0.999796 + 0.0201925i \(0.993572\pi\)
\(168\) −0.500068 + 4.75783i −0.0385811 + 0.367074i
\(169\) 8.45472 + 1.79711i 0.650363 + 0.138239i
\(170\) −8.37616 6.08564i −0.642422 0.466747i
\(171\) 0.791026 + 0.574714i 0.0604912 + 0.0439495i
\(172\) −0.605072 0.128612i −0.0461363 0.00980658i
\(173\) 0.575735 5.47775i 0.0437723 0.416466i −0.950592 0.310444i \(-0.899522\pi\)
0.994364 0.106021i \(-0.0338112\pi\)
\(174\) −0.638271 6.07275i −0.0483872 0.460374i
\(175\) 1.84273 0.391684i 0.139297 0.0296085i
\(176\) 13.0080 + 5.79153i 0.980513 + 0.436553i
\(177\) 8.34217 9.26491i 0.627036 0.696394i
\(178\) 3.20966 + 9.87832i 0.240574 + 0.740411i
\(179\) 8.11916 + 9.01724i 0.606854 + 0.673980i 0.965773 0.259389i \(-0.0835211\pi\)
−0.358919 + 0.933369i \(0.616854\pi\)
\(180\) −4.24636 + 7.35491i −0.316505 + 0.548202i
\(181\) −4.82344 8.35444i −0.358523 0.620980i 0.629191 0.777251i \(-0.283386\pi\)
−0.987714 + 0.156270i \(0.950053\pi\)
\(182\) 4.91094 15.1143i 0.364023 1.12035i
\(183\) −4.35289 + 1.93803i −0.321775 + 0.143263i
\(184\) 1.65122 1.19968i 0.121730 0.0884418i
\(185\) 0.644448 0.0473808
\(186\) 0 0
\(187\) −9.10960 −0.666160
\(188\) −9.98175 + 7.25216i −0.727994 + 0.528918i
\(189\) −10.2195 + 4.55002i −0.743359 + 0.330965i
\(190\) −0.932141 + 2.86884i −0.0676246 + 0.208127i
\(191\) −5.23270 9.06331i −0.378625 0.655798i 0.612237 0.790674i \(-0.290270\pi\)
−0.990862 + 0.134876i \(0.956936\pi\)
\(192\) −10.8592 + 18.8087i −0.783695 + 1.35740i
\(193\) −1.19818 1.33071i −0.0862468 0.0957868i 0.698477 0.715633i \(-0.253862\pi\)
−0.784723 + 0.619846i \(0.787195\pi\)
\(194\) 4.29910 + 13.2313i 0.308658 + 0.949951i
\(195\) 7.01531 7.79129i 0.502377 0.557946i
\(196\) 13.6247 + 6.06613i 0.973196 + 0.433295i
\(197\) −6.25717 + 1.33000i −0.445805 + 0.0947587i −0.425344 0.905032i \(-0.639847\pi\)
−0.0204611 + 0.999791i \(0.506513\pi\)
\(198\) 1.46214 + 13.9113i 0.103910 + 0.988636i
\(199\) −0.0969142 + 0.922077i −0.00687007 + 0.0653643i −0.997420 0.0717898i \(-0.977129\pi\)
0.990550 + 0.137154i \(0.0437956\pi\)
\(200\) −0.305182 0.0648684i −0.0215796 0.00458689i
\(201\) −23.5638 17.1201i −1.66207 1.20756i
\(202\) 30.2798 + 21.9996i 2.13048 + 1.54788i
\(203\) −4.95077 1.05232i −0.347476 0.0738583i
\(204\) 1.09156 10.3855i 0.0764248 0.727133i
\(205\) 1.04990 + 9.98914i 0.0733283 + 0.697672i
\(206\) −7.93573 + 1.68679i −0.552908 + 0.117524i
\(207\) −4.83179 2.15125i −0.335832 0.149522i
\(208\) 4.64564 5.15951i 0.322117 0.357747i
\(209\) 0.820151 + 2.52416i 0.0567310 + 0.174600i
\(210\) 25.5918 + 28.4226i 1.76600 + 1.96135i
\(211\) 3.09072 5.35328i 0.212774 0.368535i −0.739808 0.672818i \(-0.765084\pi\)
0.952582 + 0.304283i \(0.0984169\pi\)
\(212\) −10.9050 18.8880i −0.748957 1.29723i
\(213\) 0.883191 2.71818i 0.0605152 0.186247i
\(214\) 21.0416 9.36833i 1.43838 0.640406i
\(215\) −0.512281 + 0.372194i −0.0349373 + 0.0253834i
\(216\) 1.85267 0.126058
\(217\) 0 0
\(218\) 37.4917 2.53926
\(219\) −24.5186 + 17.8138i −1.65681 + 1.20375i
\(220\) −21.0598 + 9.37644i −1.41985 + 0.632160i
\(221\) −1.37258 + 4.22436i −0.0923295 + 0.284161i
\(222\) 0.608389 + 1.05376i 0.0408324 + 0.0707238i
\(223\) −7.94891 + 13.7679i −0.532298 + 0.921968i 0.466991 + 0.884262i \(0.345338\pi\)
−0.999289 + 0.0377054i \(0.987995\pi\)
\(224\) 19.9399 + 22.1455i 1.33229 + 1.47966i
\(225\) 0.249842 + 0.768936i 0.0166562 + 0.0512624i
\(226\) 24.3178 27.0077i 1.61760 1.79652i
\(227\) −4.24338 1.88927i −0.281643 0.125396i 0.261054 0.965324i \(-0.415930\pi\)
−0.542697 + 0.839929i \(0.682597\pi\)
\(228\) −2.97599 + 0.632566i −0.197090 + 0.0418927i
\(229\) 2.02977 + 19.3120i 0.134131 + 1.27617i 0.829902 + 0.557909i \(0.188396\pi\)
−0.695771 + 0.718264i \(0.744937\pi\)
\(230\) 1.70561 16.2277i 0.112464 1.07003i
\(231\) 32.9160 + 6.99650i 2.16571 + 0.460336i
\(232\) 0.678147 + 0.492703i 0.0445225 + 0.0323475i
\(233\) 11.5273 + 8.37505i 0.755176 + 0.548667i 0.897427 0.441163i \(-0.145434\pi\)
−0.142251 + 0.989831i \(0.545434\pi\)
\(234\) 6.67135 + 1.41804i 0.436120 + 0.0927002i
\(235\) −1.32017 + 12.5606i −0.0861186 + 0.819364i
\(236\) 1.39716 + 13.2931i 0.0909474 + 0.865307i
\(237\) 18.1570 3.85940i 1.17943 0.250695i
\(238\) −14.8026 6.59055i −0.959512 0.427202i
\(239\) −4.55110 + 5.05451i −0.294386 + 0.326949i −0.872135 0.489266i \(-0.837265\pi\)
0.577748 + 0.816215i \(0.303932\pi\)
\(240\) 5.16327 + 15.8909i 0.333288 + 1.02575i
\(241\) −7.69843 8.54997i −0.495899 0.550752i 0.442291 0.896872i \(-0.354166\pi\)
−0.938190 + 0.346120i \(0.887499\pi\)
\(242\) −7.58800 + 13.1428i −0.487775 + 0.844851i
\(243\) −7.46119 12.9232i −0.478636 0.829021i
\(244\) 1.57861 4.85845i 0.101060 0.311030i
\(245\) 13.9468 6.20953i 0.891031 0.396712i
\(246\) −15.3425 + 11.1470i −0.978200 + 0.710704i
\(247\) 1.29410 0.0823413
\(248\) 0 0
\(249\) 11.0938 0.703039
\(250\) 17.6620 12.8322i 1.11705 0.811581i
\(251\) −6.66377 + 2.96690i −0.420614 + 0.187269i −0.606119 0.795374i \(-0.707274\pi\)
0.185505 + 0.982643i \(0.440608\pi\)
\(252\) −4.10724 + 12.6408i −0.258732 + 0.796295i
\(253\) −7.17837 12.4333i −0.451300 0.781675i
\(254\) 14.7103 25.4790i 0.923005 1.59869i
\(255\) −7.15275 7.94394i −0.447923 0.497469i
\(256\) 3.19031 + 9.81877i 0.199395 + 0.613673i
\(257\) −16.4979 + 18.3228i −1.02911 + 1.14294i −0.0394914 + 0.999220i \(0.512574\pi\)
−0.989618 + 0.143722i \(0.954093\pi\)
\(258\) −1.09221 0.486281i −0.0679977 0.0302745i
\(259\) 0.986537 0.209695i 0.0613005 0.0130298i
\(260\) 1.17494 + 11.1788i 0.0728665 + 0.693278i
\(261\) 0.227055 2.16028i 0.0140543 0.133718i
\(262\) −14.5700 3.09694i −0.900136 0.191330i
\(263\) 21.2666 + 15.4511i 1.31136 + 0.952757i 0.999997 + 0.00246465i \(0.000784522\pi\)
0.311360 + 0.950292i \(0.399215\pi\)
\(264\) −4.50877 3.27581i −0.277495 0.201612i
\(265\) −21.8377 4.64174i −1.34148 0.285140i
\(266\) −0.493464 + 4.69499i −0.0302562 + 0.287869i
\(267\) 1.12095 + 10.6651i 0.0686010 + 0.652695i
\(268\) 30.5448 6.49249i 1.86582 0.396592i
\(269\) −19.0746 8.49258i −1.16300 0.517802i −0.267805 0.963473i \(-0.586298\pi\)
−0.895197 + 0.445672i \(0.852965\pi\)
\(270\) 9.91070 11.0069i 0.603146 0.669861i
\(271\) −6.49271 19.9825i −0.394404 1.21385i −0.929425 0.369012i \(-0.879696\pi\)
0.535021 0.844839i \(-0.320304\pi\)
\(272\) −4.73666 5.26059i −0.287202 0.318970i
\(273\) 8.20403 14.2098i 0.496530 0.860016i
\(274\) −7.85091 13.5982i −0.474291 0.821496i
\(275\) −0.678179 + 2.08722i −0.0408958 + 0.125864i
\(276\) 15.0349 6.69399i 0.904997 0.402931i
\(277\) 3.85034 2.79744i 0.231345 0.168082i −0.466074 0.884746i \(-0.654332\pi\)
0.697418 + 0.716664i \(0.254332\pi\)
\(278\) −41.6459 −2.49776
\(279\) 0 0
\(280\) −5.25032 −0.313767
\(281\) 5.38386 3.91160i 0.321174 0.233347i −0.415502 0.909592i \(-0.636394\pi\)
0.736676 + 0.676246i \(0.236394\pi\)
\(282\) −21.7846 + 9.69914i −1.29726 + 0.577576i
\(283\) −2.23921 + 6.89159i −0.133107 + 0.409662i −0.995291 0.0969338i \(-0.969096\pi\)
0.862183 + 0.506596i \(0.169096\pi\)
\(284\) 1.53210 + 2.65367i 0.0909132 + 0.157466i
\(285\) −1.55720 + 2.69715i −0.0922406 + 0.159765i
\(286\) 12.3879 + 13.7582i 0.732514 + 0.813539i
\(287\) 4.85755 + 14.9500i 0.286732 + 0.882471i
\(288\) −8.55755 + 9.50412i −0.504258 + 0.560036i
\(289\) −11.3930 5.07250i −0.670178 0.298383i
\(290\) 6.55491 1.39329i 0.384917 0.0818167i
\(291\) 1.50143 + 14.2852i 0.0880154 + 0.837411i
\(292\) 3.39638 32.3144i 0.198758 1.89106i
\(293\) −13.2163 2.80920i −0.772102 0.164115i −0.195018 0.980800i \(-0.562476\pi\)
−0.577085 + 0.816684i \(0.695810\pi\)
\(294\) 23.3199 + 16.9429i 1.36004 + 0.988131i
\(295\) 11.0692 + 8.04226i 0.644475 + 0.468238i
\(296\) −0.163385 0.0347285i −0.00949654 0.00201855i
\(297\) 1.36220 12.9604i 0.0790427 0.752041i
\(298\) −2.66737 25.3783i −0.154517 1.47013i
\(299\) −6.84723 + 1.45542i −0.395986 + 0.0841694i
\(300\) −2.29831 1.02327i −0.132693 0.0590786i
\(301\) −0.663106 + 0.736453i −0.0382208 + 0.0424485i
\(302\) −12.7276 39.1716i −0.732393 2.25407i
\(303\) 25.8572 + 28.7173i 1.48546 + 1.64977i
\(304\) −1.03120 + 1.78609i −0.0591434 + 0.102439i
\(305\) −2.61462 4.52866i −0.149713 0.259310i
\(306\) 2.14891 6.61367i 0.122845 0.378078i
\(307\) −20.7611 + 9.24343i −1.18490 + 0.527550i −0.902057 0.431617i \(-0.857943\pi\)
−0.282840 + 0.959167i \(0.591277\pi\)
\(308\) −29.1880 + 21.2063i −1.66314 + 1.20834i
\(309\) −8.37640 −0.476517
\(310\) 0 0
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) −2.19843 + 1.59725i −0.124462 + 0.0904266i
\(313\) 25.6679 11.4281i 1.45084 0.645954i 0.478193 0.878255i \(-0.341292\pi\)
0.972644 + 0.232300i \(0.0746252\pi\)
\(314\) −3.71682 + 11.4392i −0.209752 + 0.645551i
\(315\) 6.80276 + 11.7827i 0.383292 + 0.663882i
\(316\) −9.95072 + 17.2352i −0.559772 + 0.969553i
\(317\) −10.5835 11.7542i −0.594430 0.660181i 0.368596 0.929590i \(-0.379839\pi\)
−0.963026 + 0.269408i \(0.913172\pi\)
\(318\) −13.0259 40.0896i −0.730457 2.24812i
\(319\) 3.94535 4.38175i 0.220897 0.245331i
\(320\) −21.7745 9.69465i −1.21723 0.541948i
\(321\) 23.2610 4.94428i 1.29830 0.275963i
\(322\) −2.66932 25.3968i −0.148755 1.41531i
\(323\) 0.137920 1.31222i 0.00767408 0.0730140i
\(324\) 25.2268 + 5.36212i 1.40149 + 0.297896i
\(325\) 0.865715 + 0.628979i 0.0480212 + 0.0348895i
\(326\) −29.8116 21.6594i −1.65111 1.19960i
\(327\) 37.8629 + 8.04802i 2.09383 + 0.445056i
\(328\) 0.272124 2.58909i 0.0150256 0.142959i
\(329\) 2.06610 + 19.6577i 0.113908 + 1.08376i
\(330\) −43.5813 + 9.26350i −2.39907 + 0.509939i
\(331\) 11.8250 + 5.26485i 0.649963 + 0.289382i 0.705112 0.709096i \(-0.250897\pi\)
−0.0551489 + 0.998478i \(0.517563\pi\)
\(332\) −7.95855 + 8.83887i −0.436782 + 0.485096i
\(333\) 0.133758 + 0.411664i 0.00732988 + 0.0225591i
\(334\) 3.02543 + 3.36008i 0.165544 + 0.183855i
\(335\) 15.9827 27.6828i 0.873228 1.51247i
\(336\) 13.0748 + 22.6462i 0.713287 + 1.23545i
\(337\) −8.61116 + 26.5024i −0.469080 + 1.44368i 0.384698 + 0.923042i \(0.374306\pi\)
−0.853778 + 0.520637i \(0.825694\pi\)
\(338\) −16.3621 + 7.28489i −0.889983 + 0.396246i
\(339\) 30.3561 22.0550i 1.64872 1.19786i
\(340\) 11.4606 0.621537
\(341\) 0 0
\(342\) −2.02604 −0.109556
\(343\) −1.47969 + 1.07506i −0.0798956 + 0.0580476i
\(344\) 0.149934 0.0667549i 0.00808389 0.00359918i
\(345\) 5.20597 16.0223i 0.280280 0.862612i
\(346\) 5.70655 + 9.88403i 0.306786 + 0.531369i
\(347\) −2.66175 + 4.61029i −0.142890 + 0.247493i −0.928584 0.371123i \(-0.878973\pi\)
0.785693 + 0.618616i \(0.212306\pi\)
\(348\) 4.52273 + 5.02300i 0.242444 + 0.269261i
\(349\) −1.26632 3.89734i −0.0677847 0.208620i 0.911427 0.411463i \(-0.134982\pi\)
−0.979211 + 0.202843i \(0.934982\pi\)
\(350\) −2.61206 + 2.90098i −0.139620 + 0.155064i
\(351\) −5.80484 2.58448i −0.309840 0.137949i
\(352\) −33.9564 + 7.21765i −1.80988 + 0.384702i
\(353\) −2.27761 21.6700i −0.121225 1.15338i −0.870862 0.491528i \(-0.836438\pi\)
0.749637 0.661849i \(-0.230228\pi\)
\(354\) −2.70034 + 25.6920i −0.143521 + 1.36551i
\(355\) 3.06809 + 0.652142i 0.162837 + 0.0346121i
\(356\) −9.30151 6.75794i −0.492979 0.358170i
\(357\) −13.5345 9.83337i −0.716320 0.520437i
\(358\) −24.5935 5.22750i −1.29980 0.276282i
\(359\) 0.740211 7.04264i 0.0390668 0.371696i −0.957469 0.288535i \(-0.906832\pi\)
0.996536 0.0831610i \(-0.0265016\pi\)
\(360\) −0.235531 2.24093i −0.0124136 0.118107i
\(361\) 18.2088 3.87040i 0.958357 0.203705i
\(362\) 18.2613 + 8.13046i 0.959793 + 0.427327i
\(363\) −10.4844 + 11.6441i −0.550288 + 0.611156i
\(364\) 5.43605 + 16.7304i 0.284927 + 0.876914i
\(365\) −22.2557 24.7174i −1.16491 1.29377i
\(366\) 4.93665 8.55053i 0.258043 0.446943i
\(367\) 8.05884 + 13.9583i 0.420668 + 0.728619i 0.996005 0.0892980i \(-0.0284624\pi\)
−0.575337 + 0.817917i \(0.695129\pi\)
\(368\) 3.44747 10.6102i 0.179712 0.553096i
\(369\) −6.16301 + 2.74395i −0.320833 + 0.142844i
\(370\) −1.08034 + 0.784913i −0.0561642 + 0.0408057i
\(371\) −34.9401 −1.81400
\(372\) 0 0
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) 15.2712 11.0951i 0.789653 0.573716i
\(375\) 20.5915 9.16793i 1.06334 0.473430i
\(376\) 1.01157 3.11331i 0.0521680 0.160557i
\(377\) −1.43747 2.48977i −0.0740335 0.128230i
\(378\) 11.5900 20.0745i 0.596127 1.03252i
\(379\) −9.24446 10.2670i −0.474856 0.527381i 0.457361 0.889281i \(-0.348795\pi\)
−0.932217 + 0.361900i \(0.882128\pi\)
\(380\) −1.03181 3.17559i −0.0529309 0.162904i
\(381\) 20.3253 22.5735i 1.04130 1.15648i
\(382\) 19.8108 + 8.82032i 1.01361 + 0.451287i
\(383\) −10.0808 + 2.14274i −0.515105 + 0.109489i −0.458128 0.888886i \(-0.651480\pi\)
−0.0569778 + 0.998375i \(0.518146\pi\)
\(384\) −1.07698 10.2468i −0.0549594 0.522904i
\(385\) −3.86036 + 36.7289i −0.196742 + 1.87188i
\(386\) 3.62936 + 0.771445i 0.184730 + 0.0392655i
\(387\) −0.344078 0.249987i −0.0174905 0.0127076i
\(388\) −12.4587 9.05177i −0.632494 0.459534i
\(389\) 24.8111 + 5.27377i 1.25797 + 0.267391i 0.788213 0.615403i \(-0.211007\pi\)
0.469761 + 0.882794i \(0.344340\pi\)
\(390\) −2.27084 + 21.6056i −0.114988 + 1.09404i
\(391\) 0.746057 + 7.09826i 0.0377297 + 0.358974i
\(392\) −3.87052 + 0.822704i −0.195491 + 0.0415528i
\(393\) −14.0495 6.25522i −0.708701 0.315534i
\(394\) 8.86951 9.85059i 0.446839 0.496265i
\(395\) 6.29527 + 19.3749i 0.316749 + 0.974855i
\(396\) −10.3606 11.5066i −0.520639 0.578229i
\(397\) −8.37941 + 14.5136i −0.420550 + 0.728415i −0.995993 0.0894272i \(-0.971496\pi\)
0.575443 + 0.817842i \(0.304830\pi\)
\(398\) −0.960590 1.66379i −0.0481500 0.0833983i
\(399\) −1.50618 + 4.63556i −0.0754035 + 0.232068i
\(400\) −1.55795 + 0.693645i −0.0778977 + 0.0346823i
\(401\) 22.3479 16.2367i 1.11600 0.810823i 0.132404 0.991196i \(-0.457730\pi\)
0.983598 + 0.180372i \(0.0577303\pi\)
\(402\) 60.3537 3.01017
\(403\) 0 0
\(404\) −41.4300 −2.06122
\(405\) 21.3581 15.5176i 1.06129 0.771075i
\(406\) 9.58106 4.26576i 0.475500 0.211706i
\(407\) −0.363076 + 1.11743i −0.0179970 + 0.0553891i
\(408\) 1.38532 + 2.39945i 0.0685838 + 0.118791i
\(409\) 11.3053 19.5814i 0.559013 0.968239i −0.438566 0.898699i \(-0.644514\pi\)
0.997579 0.0695399i \(-0.0221531\pi\)
\(410\) −13.9264 15.4669i −0.687778 0.763854i
\(411\) −5.00965 15.4181i −0.247108 0.760519i
\(412\) 6.00914 6.67383i 0.296049 0.328796i
\(413\) 19.5619 + 8.70952i 0.962578 + 0.428567i
\(414\) 10.7201 2.27862i 0.526862 0.111988i
\(415\) 1.27264 + 12.1083i 0.0624714 + 0.594375i
\(416\) −1.76932 + 16.8340i −0.0867481 + 0.825353i
\(417\) −42.0583 8.93978i −2.05961 0.437783i
\(418\) −4.44922 3.23255i −0.217619 0.158109i
\(419\) 5.00860 + 3.63896i 0.244686 + 0.177775i 0.703368 0.710825i \(-0.251678\pi\)
−0.458682 + 0.888600i \(0.651678\pi\)
\(420\) −41.4108 8.80214i −2.02064 0.429500i
\(421\) −0.685637 + 6.52340i −0.0334159 + 0.317931i 0.965027 + 0.262150i \(0.0844316\pi\)
−0.998443 + 0.0557811i \(0.982235\pi\)
\(422\) 1.33887 + 12.7385i 0.0651753 + 0.620102i
\(423\) −8.29754 + 1.76370i −0.403440 + 0.0857539i
\(424\) 5.28630 + 2.35361i 0.256725 + 0.114301i
\(425\) 0.730053 0.810806i 0.0354128 0.0393299i
\(426\) 1.83008 + 5.63240i 0.0886676 + 0.272891i
\(427\) −5.47609 6.08182i −0.265007 0.294320i
\(428\) −12.7479 + 22.0800i −0.616192 + 1.06728i
\(429\) 9.55725 + 16.5536i 0.461428 + 0.799217i
\(430\) 0.405460 1.24788i 0.0195530 0.0601780i
\(431\) 21.4388 9.54518i 1.03267 0.459775i 0.180797 0.983520i \(-0.442132\pi\)
0.851875 + 0.523746i \(0.175466\pi\)
\(432\) 8.19266 5.95232i 0.394170 0.286381i
\(433\) 24.3130 1.16841 0.584203 0.811607i \(-0.301407\pi\)
0.584203 + 0.811607i \(0.301407\pi\)
\(434\) 0 0
\(435\) 6.91890 0.331736
\(436\) −33.5747 + 24.3934i −1.60793 + 1.16823i
\(437\) 1.89968 0.845790i 0.0908738 0.0404596i
\(438\) 19.4060 59.7255i 0.927254 2.85379i
\(439\) −7.25318 12.5629i −0.346175 0.599593i 0.639391 0.768881i \(-0.279186\pi\)
−0.985567 + 0.169288i \(0.945853\pi\)
\(440\) 3.05817 5.29690i 0.145792 0.252520i
\(441\) 6.86128 + 7.62023i 0.326728 + 0.362868i
\(442\) −2.84415 8.75338i −0.135282 0.416356i
\(443\) −11.0848 + 12.3109i −0.526655 + 0.584910i −0.946507 0.322683i \(-0.895415\pi\)
0.419852 + 0.907593i \(0.362082\pi\)
\(444\) −1.23044 0.547828i −0.0583941 0.0259987i
\(445\) −11.5119 + 2.44693i −0.545717 + 0.115996i
\(446\) −3.44340 32.7617i −0.163050 1.55131i
\(447\) 2.75396 26.2022i 0.130258 1.23932i
\(448\) −36.4876 7.75567i −1.72388 0.366421i
\(449\) −5.51532 4.00712i −0.260284 0.189107i 0.449988 0.893035i \(-0.351428\pi\)
−0.710272 + 0.703927i \(0.751428\pi\)
\(450\) −1.35537 0.984731i −0.0638926 0.0464207i
\(451\) −17.9121 3.80732i −0.843446 0.179280i
\(452\) −4.20502 + 40.0080i −0.197787 + 1.88182i
\(453\) −4.44503 42.2917i −0.208846 1.98704i
\(454\) 9.41459 2.00113i 0.441849 0.0939178i
\(455\) 16.4505 + 7.32423i 0.771211 + 0.343365i
\(456\) 0.540138 0.599884i 0.0252943 0.0280921i
\(457\) 6.62154 + 20.3790i 0.309742 + 0.953289i 0.977865 + 0.209238i \(0.0670983\pi\)
−0.668122 + 0.744051i \(0.732902\pi\)
\(458\) −26.9240 29.9021i −1.25807 1.39723i
\(459\) −3.23934 + 5.61070i −0.151200 + 0.261885i
\(460\) 9.03094 + 15.6420i 0.421070 + 0.729314i
\(461\) −2.68057 + 8.24994i −0.124847 + 0.384238i −0.993873 0.110527i \(-0.964746\pi\)
0.869027 + 0.494766i \(0.164746\pi\)
\(462\) −63.7012 + 28.3616i −2.96365 + 1.31950i
\(463\) −2.95281 + 2.14534i −0.137229 + 0.0997025i −0.654282 0.756251i \(-0.727029\pi\)
0.517053 + 0.855953i \(0.327029\pi\)
\(464\) 4.58180 0.212705
\(465\) 0 0
\(466\) −29.5246 −1.36770
\(467\) 2.49267 1.81103i 0.115347 0.0838045i −0.528616 0.848861i \(-0.677289\pi\)
0.643963 + 0.765056i \(0.277289\pi\)
\(468\) −6.89698 + 3.07073i −0.318813 + 0.141945i
\(469\) 15.4591 47.5782i 0.713834 2.19696i
\(470\) −13.0852 22.6643i −0.603577 1.04543i
\(471\) −6.20917 + 10.7546i −0.286104 + 0.495546i
\(472\) −2.37295 2.63543i −0.109224 0.121306i
\(473\) −0.356747 1.09795i −0.0164032 0.0504839i
\(474\) −25.7375 + 28.5844i −1.18216 + 1.31293i
\(475\) −0.290393 0.129291i −0.0133241 0.00593229i
\(476\) 17.5441 3.72912i 0.804134 0.170924i
\(477\) −1.56742 14.9130i −0.0717673 0.682820i
\(478\) 1.47318 14.0164i 0.0673817 0.641094i
\(479\) 17.0298 + 3.61979i 0.778110 + 0.165392i 0.579813 0.814750i \(-0.303126\pi\)
0.198297 + 0.980142i \(0.436459\pi\)
\(480\) −32.9562 23.9441i −1.50424 1.09289i
\(481\) 0.463476 + 0.336735i 0.0211327 + 0.0153538i
\(482\) 23.3190 + 4.95662i 1.06215 + 0.225768i
\(483\) 2.75597 26.2213i 0.125401 1.19311i
\(484\) −1.75594 16.7067i −0.0798157 0.759395i
\(485\) −15.4194 + 3.27749i −0.700157 + 0.148823i
\(486\) 28.2477 + 12.5767i 1.28134 + 0.570491i
\(487\) 19.2533 21.3830i 0.872451 0.968955i −0.127287 0.991866i \(-0.540627\pi\)
0.999738 + 0.0229112i \(0.00729351\pi\)
\(488\) 0.418832 + 1.28903i 0.0189596 + 0.0583518i
\(489\) −25.4574 28.2733i −1.15122 1.27856i
\(490\) −15.8172 + 27.3963i −0.714550 + 1.23764i
\(491\) 4.91284 + 8.50929i 0.221713 + 0.384019i 0.955328 0.295546i \(-0.0955017\pi\)
−0.733615 + 0.679565i \(0.762168\pi\)
\(492\) 6.48693 19.9647i 0.292453 0.900078i
\(493\) −2.67785 + 1.19225i −0.120604 + 0.0536964i
\(494\) −2.16940 + 1.57616i −0.0976058 + 0.0709148i
\(495\) −15.8497 −0.712391
\(496\) 0 0
\(497\) 4.90891 0.220195
\(498\) −18.5974 + 13.5118i −0.833369 + 0.605478i
\(499\) −9.91015 + 4.41228i −0.443639 + 0.197521i −0.616384 0.787446i \(-0.711403\pi\)
0.172745 + 0.984967i \(0.444736\pi\)
\(500\) −7.46766 + 22.9831i −0.333964 + 1.02784i
\(501\) 2.33411 + 4.04280i 0.104280 + 0.180619i
\(502\) 7.55745 13.0899i 0.337305 0.584230i
\(503\) 5.72839 + 6.36202i 0.255416 + 0.283669i 0.857192 0.514996i \(-0.172207\pi\)
−0.601776 + 0.798665i \(0.705540\pi\)
\(504\) −1.08973 3.35383i −0.0485402 0.149391i
\(505\) −28.3774 + 31.5163i −1.26278 + 1.40246i
\(506\) 27.1770 + 12.1000i 1.20816 + 0.537909i
\(507\) −18.0879 + 3.84471i −0.803314 + 0.170750i
\(508\) 3.40412 + 32.3880i 0.151033 + 1.43699i
\(509\) 4.13748 39.3655i 0.183391 1.74484i −0.385749 0.922604i \(-0.626057\pi\)
0.569140 0.822241i \(-0.307276\pi\)
\(510\) 21.6662 + 4.60528i 0.959394 + 0.203925i
\(511\) −42.1123 30.5963i −1.86294 1.35350i
\(512\) −25.0995 18.2358i −1.10925 0.805918i
\(513\) 1.84630 + 0.392444i 0.0815163 + 0.0173268i
\(514\) 5.34032 50.8097i 0.235551 2.24112i
\(515\) −0.960912 9.14246i −0.0423428 0.402865i
\(516\) 1.29449 0.275152i 0.0569866 0.0121129i
\(517\) −21.0355 9.36563i −0.925142 0.411900i
\(518\) −1.39841 + 1.55309i −0.0614427 + 0.0682391i
\(519\) 3.64134 + 11.2069i 0.159837 + 0.491927i
\(520\) −1.99553 2.21626i −0.0875096 0.0971893i
\(521\) 0.674660 1.16855i 0.0295574 0.0511949i −0.850868 0.525379i \(-0.823924\pi\)
0.880426 + 0.474184i \(0.157257\pi\)
\(522\) 2.25051 + 3.89800i 0.0985022 + 0.170611i
\(523\) 8.79861 27.0793i 0.384736 1.18410i −0.551935 0.833887i \(-0.686110\pi\)
0.936671 0.350210i \(-0.113890\pi\)
\(524\) 15.0627 6.70636i 0.658018 0.292969i
\(525\) −3.26065 + 2.36900i −0.142306 + 0.103392i
\(526\) −54.4699 −2.37500
\(527\) 0 0
\(528\) −30.4628 −1.32572
\(529\) 9.50718 6.90737i 0.413356 0.300320i
\(530\) 42.2618 18.8161i 1.83573 0.817321i
\(531\) −2.83982 + 8.74006i −0.123238 + 0.379286i
\(532\) −2.61282 4.52554i −0.113280 0.196207i
\(533\) −4.46443 + 7.73262i −0.193376 + 0.334937i
\(534\) −14.8689 16.5135i −0.643439 0.714611i
\(535\) 8.06488 + 24.8211i 0.348675 + 1.07311i
\(536\) −5.54383 + 6.15705i −0.239457 + 0.265944i
\(537\) −23.7149 10.5585i −1.02337 0.455634i
\(538\) 42.3200 8.99540i 1.82455 0.387819i
\(539\) 2.90943 + 27.6813i 0.125318 + 1.19232i
\(540\) −1.71375 + 16.3052i −0.0737480 + 0.701665i
\(541\) 13.9969 + 2.97513i 0.601774 + 0.127911i 0.498718 0.866765i \(-0.333804\pi\)
0.103056 + 0.994676i \(0.467138\pi\)
\(542\) 35.2222 + 25.5904i 1.51292 + 1.09920i
\(543\) 16.6968 + 12.1310i 0.716530 + 0.520590i
\(544\) 16.8812 + 3.58821i 0.723775 + 0.153843i
\(545\) −4.44054 + 42.2489i −0.190212 + 1.80975i
\(546\) 3.55391 + 33.8132i 0.152094 + 1.44707i
\(547\) −41.4411 + 8.80858i −1.77189 + 0.376628i −0.974067 0.226260i \(-0.927350\pi\)
−0.797826 + 0.602887i \(0.794017\pi\)
\(548\) 15.8781 + 7.06939i 0.678280 + 0.301990i
\(549\) 2.35016 2.61012i 0.100303 0.111397i
\(550\) −1.40527 4.32498i −0.0599209 0.184418i
\(551\) 0.571450 + 0.634660i 0.0243446 + 0.0270374i
\(552\) −2.18327 + 3.78154i −0.0929263 + 0.160953i
\(553\) 15.9413 + 27.6111i 0.677893 + 1.17414i
\(554\) −3.04747 + 9.37914i −0.129474 + 0.398481i
\(555\) −1.25953 + 0.560779i −0.0534640 + 0.0238037i
\(556\) 37.2949 27.0963i 1.58166 1.14914i
\(557\) 27.3019 1.15682 0.578409 0.815747i \(-0.303674\pi\)
0.578409 + 0.815747i \(0.303674\pi\)
\(558\) 0 0
\(559\) −0.562902 −0.0238082
\(560\) −23.2174 + 16.8684i −0.981114 + 0.712821i
\(561\) 17.8041 7.92689i 0.751689 0.334674i
\(562\) −4.26122 + 13.1147i −0.179749 + 0.553209i
\(563\) −2.59399 4.49293i −0.109324 0.189354i 0.806173 0.591680i \(-0.201535\pi\)
−0.915497 + 0.402326i \(0.868202\pi\)
\(564\) 13.1980 22.8597i 0.555737 0.962565i
\(565\) 27.5544 + 30.6023i 1.15922 + 1.28745i
\(566\) −4.63992 14.2802i −0.195030 0.600242i
\(567\) 27.6463 30.7044i 1.16104 1.28946i
\(568\) −0.742699 0.330671i −0.0311630 0.0138746i
\(569\) −2.31609 + 0.492300i −0.0970954 + 0.0206383i −0.256203 0.966623i \(-0.582472\pi\)
0.159108 + 0.987261i \(0.449138\pi\)
\(570\) −0.674566 6.41806i −0.0282544 0.268823i
\(571\) −2.12840 + 20.2504i −0.0890708 + 0.847452i 0.855203 + 0.518293i \(0.173432\pi\)
−0.944274 + 0.329160i \(0.893235\pi\)
\(572\) −20.0452 4.26075i −0.838134 0.178151i
\(573\) 18.1136 + 13.1603i 0.756705 + 0.549778i
\(574\) −26.3517 19.1456i −1.09990 0.799122i
\(575\) 1.68192 + 0.357503i 0.0701408 + 0.0149089i
\(576\) 1.67341 15.9214i 0.0697254 0.663393i
\(577\) −2.67402 25.4416i −0.111321 1.05915i −0.897459 0.441097i \(-0.854589\pi\)
0.786138 0.618051i \(-0.212077\pi\)
\(578\) 25.2772 5.37283i 1.05139 0.223480i
\(579\) 3.49970 + 1.55817i 0.145443 + 0.0647553i
\(580\) −4.96355 + 5.51258i −0.206100 + 0.228897i
\(581\) 5.88809 + 18.1217i 0.244279 + 0.751814i
\(582\) −19.9158 22.1187i −0.825534 0.916849i
\(583\) 20.3516 35.2501i 0.842879 1.45991i
\(584\) 4.31041 + 7.46585i 0.178366 + 0.308939i
\(585\) −2.38813 + 7.34992i −0.0987371 + 0.303882i
\(586\) 25.5770 11.3876i 1.05658 0.470418i
\(587\) −32.3299 + 23.4890i −1.33440 + 0.969495i −0.334766 + 0.942301i \(0.608657\pi\)
−0.999630 + 0.0271941i \(0.991343\pi\)
\(588\) −31.9072 −1.31583
\(589\) 0 0
\(590\) −28.3514 −1.16721
\(591\) 11.0719 8.04419i 0.455436 0.330894i
\(592\) −0.834079 + 0.371356i −0.0342804 + 0.0152626i
\(593\) −6.48230 + 19.9505i −0.266196 + 0.819268i 0.725219 + 0.688518i \(0.241738\pi\)
−0.991415 + 0.130750i \(0.958262\pi\)
\(594\) 13.5018 + 23.3857i 0.553984 + 0.959529i
\(595\) 9.18005 15.9003i 0.376345 0.651849i
\(596\) 18.9007 + 20.9914i 0.774204 + 0.859841i
\(597\) −0.612951 1.88647i −0.0250864 0.0772080i
\(598\) 9.70593 10.7795i 0.396905 0.440807i
\(599\) 19.1309 + 8.51762i 0.781667 + 0.348020i 0.758468 0.651710i \(-0.225948\pi\)
0.0231989 + 0.999731i \(0.492615\pi\)
\(600\) 0.652903 0.138779i 0.0266547 0.00566562i
\(601\) 1.73712 + 16.5276i 0.0708588 + 0.674176i 0.971082 + 0.238747i \(0.0767367\pi\)
−0.900223 + 0.435429i \(0.856597\pi\)
\(602\) 0.214645 2.04221i 0.00874829 0.0832345i
\(603\) 21.0007 + 4.46383i 0.855213 + 0.181781i
\(604\) 36.8843 + 26.7980i 1.50080 + 1.09040i
\(605\) −13.9117 10.1075i −0.565592 0.410927i
\(606\) −78.3232 16.6481i −3.18166 0.676283i
\(607\) −3.08896 + 29.3895i −0.125377 + 1.19288i 0.733133 + 0.680085i \(0.238057\pi\)
−0.858510 + 0.512797i \(0.828610\pi\)
\(608\) −0.525587 5.00063i −0.0213154 0.202802i
\(609\) 10.5916 2.25132i 0.429195 0.0912282i
\(610\) 9.89883 + 4.40724i 0.400792 + 0.178444i
\(611\) −7.51259 + 8.34357i −0.303927 + 0.337545i
\(612\) 2.37869 + 7.32085i 0.0961528 + 0.295928i
\(613\) 24.8246 + 27.5706i 1.00266 + 1.11356i 0.993526 + 0.113606i \(0.0362402\pi\)
0.00913195 + 0.999958i \(0.497093\pi\)
\(614\) 23.5453 40.7817i 0.950212 1.64582i
\(615\) −10.7442 18.6095i −0.433248 0.750407i
\(616\) 2.95798 9.10373i 0.119180 0.366800i
\(617\) −24.0657 + 10.7147i −0.968847 + 0.431358i −0.829267 0.558853i \(-0.811242\pi\)
−0.139580 + 0.990211i \(0.544575\pi\)
\(618\) 14.0420 10.2021i 0.564854 0.410390i
\(619\) −26.3796 −1.06029 −0.530144 0.847908i \(-0.677862\pi\)
−0.530144 + 0.847908i \(0.677862\pi\)
\(620\) 0 0
\(621\) −10.2104 −0.409730
\(622\) −15.9144 + 11.5625i −0.638109 + 0.463613i
\(623\) −16.8265 + 7.49166i −0.674141 + 0.300147i
\(624\) −4.58994 + 14.1264i −0.183745 + 0.565508i
\(625\) 13.6503 + 23.6430i 0.546012 + 0.945720i
\(626\) −29.1103 + 50.4204i −1.16348 + 2.01521i
\(627\) −3.79938 4.21964i −0.151733 0.168516i
\(628\) −4.11425 12.6623i −0.164176 0.505283i
\(629\) 0.390847 0.434080i 0.0155841 0.0173079i
\(630\) −25.7550 11.4668i −1.02610 0.456850i
\(631\) −19.5348 + 4.15226i −0.777669 + 0.165299i −0.579613 0.814892i \(-0.696796\pi\)
−0.198056 + 0.980191i \(0.563463\pi\)
\(632\) −0.551932 5.25129i −0.0219547 0.208885i
\(633\) −1.38234 + 13.1521i −0.0549430 + 0.522748i
\(634\) 32.0582 + 6.81418i 1.27319 + 0.270626i
\(635\) 26.9696 + 19.5946i 1.07026 + 0.777587i
\(636\) 37.7488 + 27.4261i 1.49684 + 1.08751i
\(637\) 13.2749 + 2.82167i 0.525972 + 0.111799i
\(638\) −1.27710 + 12.1508i −0.0505608 + 0.481053i
\(639\) 0.220215 + 2.09521i 0.00871157 + 0.0828851i
\(640\) 11.0604 2.35095i 0.437199 0.0929295i
\(641\) 21.2810 + 9.47491i 0.840549 + 0.374236i 0.781414 0.624014i \(-0.214499\pi\)
0.0591353 + 0.998250i \(0.481166\pi\)
\(642\) −32.9724 + 36.6195i −1.30132 + 1.44526i
\(643\) −12.0189 36.9903i −0.473978 1.45875i −0.847332 0.531064i \(-0.821792\pi\)
0.373354 0.927689i \(-0.378208\pi\)
\(644\) 18.9145 + 21.0067i 0.745336 + 0.827780i
\(645\) 0.677346 1.17320i 0.0266705 0.0461946i
\(646\) 1.36703 + 2.36777i 0.0537851 + 0.0931585i
\(647\) −0.689235 + 2.12125i −0.0270966 + 0.0833948i −0.963690 0.267022i \(-0.913960\pi\)
0.936594 + 0.350417i \(0.113960\pi\)
\(648\) −6.25107 + 2.78316i −0.245565 + 0.109333i
\(649\) −20.1811 + 14.6624i −0.792176 + 0.575550i
\(650\) −2.21734 −0.0869713
\(651\) 0 0
\(652\) 40.7894 1.59744
\(653\) 23.1162 16.7949i 0.904607 0.657235i −0.0350384 0.999386i \(-0.511155\pi\)
0.939645 + 0.342151i \(0.111155\pi\)
\(654\) −73.2749 + 32.6241i −2.86528 + 1.27570i
\(655\) 5.21559 16.0519i 0.203790 0.627201i
\(656\) −7.11497 12.3235i −0.277793 0.481151i
\(657\) 11.1699 19.3468i 0.435778 0.754790i
\(658\) −27.4059 30.4373i −1.06839 1.18657i
\(659\) 1.58766 + 4.88632i 0.0618466 + 0.190344i 0.977206 0.212294i \(-0.0680934\pi\)
−0.915359 + 0.402638i \(0.868093\pi\)
\(660\) 33.0009 36.6512i 1.28456 1.42665i
\(661\) −5.38576 2.39789i −0.209482 0.0932673i 0.299314 0.954155i \(-0.403242\pi\)
−0.508795 + 0.860888i \(0.669909\pi\)
\(662\) −26.2357 + 5.57656i −1.01968 + 0.216739i
\(663\) −0.993297 9.45059i −0.0385765 0.367030i
\(664\) 0.329856 3.13837i 0.0128009 0.121792i
\(665\) −5.23229 1.11216i −0.202899 0.0431276i
\(666\) −0.725620 0.527194i −0.0281172 0.0204284i
\(667\) −3.73740 2.71538i −0.144713 0.105140i
\(668\) −4.89553 1.04058i −0.189414 0.0402611i
\(669\) 3.55519 33.8253i 0.137451 1.30776i
\(670\) 6.92356 + 65.8733i 0.267481 + 2.54491i
\(671\) 9.32546 1.98219i 0.360005 0.0765215i
\(672\) −58.2414 25.9307i −2.24671 1.00030i
\(673\) 18.2427 20.2606i 0.703205 0.780988i −0.280678 0.959802i \(-0.590559\pi\)
0.983883 + 0.178814i \(0.0572259\pi\)
\(674\) −17.8434 54.9163i −0.687301 2.11530i
\(675\) 1.04439 + 1.15991i 0.0401984 + 0.0446448i
\(676\) 9.91286 17.1696i 0.381264 0.660368i
\(677\) 1.31511 + 2.27784i 0.0505438 + 0.0875444i 0.890190 0.455589i \(-0.150571\pi\)
−0.839647 + 0.543133i \(0.817238\pi\)
\(678\) −24.0263 + 73.9453i −0.922724 + 2.83985i
\(679\) −22.5379 + 10.0345i −0.864925 + 0.385090i
\(680\) −2.45997 + 1.78728i −0.0943357 + 0.0685389i
\(681\) 9.93738 0.380801
\(682\) 0 0
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) 1.81437 1.31821i 0.0693740 0.0504032i
\(685\) 16.2535 7.23652i 0.621014 0.276493i
\(686\) 1.17114 3.60441i 0.0447145 0.137617i
\(687\) −20.7717 35.9777i −0.792492 1.37264i
\(688\) 0.448549 0.776909i 0.0171008 0.0296194i
\(689\) −13.2799 14.7488i −0.505924 0.561886i
\(690\) 10.7874 + 33.2002i 0.410669 + 1.26391i
\(691\) 11.2721 12.5189i 0.428809 0.476241i −0.489558 0.871971i \(-0.662842\pi\)
0.918367 + 0.395730i \(0.129508\pi\)
\(692\) −11.5412 5.13849i −0.438732 0.195336i
\(693\) −24.2631 + 5.15729i −0.921680 + 0.195909i
\(694\) −1.15305 10.9705i −0.0437691 0.416435i
\(695\) 4.93258 46.9303i 0.187103 1.78017i
\(696\) −1.75413 0.372851i −0.0664900 0.0141329i
\(697\) 7.36512 + 5.35108i 0.278974 + 0.202686i
\(698\) 6.86966 + 4.99110i 0.260020 + 0.188916i
\(699\) −29.8169 6.33779i −1.12778 0.239717i
\(700\) 0.451674 4.29739i 0.0170717 0.162426i
\(701\) −2.21855 21.1081i −0.0837933 0.797240i −0.953036 0.302856i \(-0.902060\pi\)
0.869243 0.494385i \(-0.164607\pi\)
\(702\) 12.8789 2.73750i 0.486084 0.103320i
\(703\) −0.155467 0.0692184i −0.00586356 0.00261062i
\(704\) 29.0775 32.2938i 1.09590 1.21712i
\(705\) −8.34966 25.6976i −0.314467 0.967828i
\(706\) 30.2114 + 33.5531i 1.13702 + 1.26279i
\(707\) −33.1859 + 57.4796i −1.24808 + 2.16174i
\(708\) −14.2979 24.7647i −0.537348 0.930714i
\(709\) 15.8662 48.8313i 0.595869 1.83390i 0.0455172 0.998964i \(-0.485506\pi\)
0.550352 0.834933i \(-0.314494\pi\)
\(710\) −5.93757 + 2.64358i −0.222833 + 0.0992117i
\(711\) −11.0698 + 8.04266i −0.415149 + 0.301623i
\(712\) 3.05044 0.114320
\(713\) 0 0
\(714\) 34.6656 1.29733
\(715\) −16.9712 + 12.3303i −0.634686 + 0.461127i
\(716\) 25.4252 11.3200i 0.950185 0.423049i
\(717\) 4.49654 13.8389i 0.167926 0.516824i
\(718\) 7.33679 + 12.7077i 0.273807 + 0.474247i
\(719\) 20.0999 34.8141i 0.749601 1.29835i −0.198413 0.980119i \(-0.563579\pi\)
0.948014 0.318229i \(-0.103088\pi\)
\(720\) −8.24127 9.15285i −0.307134 0.341107i
\(721\) −4.44583 13.6829i −0.165571 0.509576i
\(722\) −25.8109 + 28.6659i −0.960581 + 1.06683i
\(723\) 22.4860 + 10.0114i 0.836262 + 0.372328i
\(724\) −21.6434 + 4.60044i −0.804370 + 0.170974i
\(725\) 0.0738164 + 0.702317i 0.00274147 + 0.0260834i
\(726\) 3.39377 32.2895i 0.125954 1.19838i
\(727\) 21.0144 + 4.46674i 0.779380 + 0.165662i 0.580389 0.814339i \(-0.302900\pi\)
0.198991 + 0.980001i \(0.436234\pi\)
\(728\) −3.77594 2.74338i −0.139946 0.101677i
\(729\) −1.46222 1.06236i −0.0541562 0.0393468i
\(730\) 67.4139 + 14.3293i 2.49510 + 0.530350i
\(731\) −0.0599920 + 0.570786i −0.00221889 + 0.0211113i
\(732\) 1.14239 + 10.8692i 0.0422241 + 0.401736i
\(733\) −21.9803 + 4.67205i −0.811860 + 0.172566i −0.595093 0.803657i \(-0.702885\pi\)
−0.216767 + 0.976223i \(0.569551\pi\)
\(734\) −30.5104 13.5841i −1.12616 0.501399i
\(735\) −21.8548 + 24.2722i −0.806126 + 0.895294i
\(736\) 8.40499 + 25.8679i 0.309812 + 0.953504i
\(737\) 38.9958 + 43.3092i 1.43643 + 1.59532i
\(738\) 6.98953 12.1062i 0.257288 0.445636i
\(739\) −26.2750 45.5097i −0.966542 1.67410i −0.705413 0.708797i \(-0.749238\pi\)
−0.261129 0.965304i \(-0.584095\pi\)
\(740\) 0.456777 1.40582i 0.0167915 0.0516788i
\(741\) −2.52922 + 1.12608i −0.0929132 + 0.0413676i
\(742\) 58.5729 42.5557i 2.15028 1.56227i
\(743\) −17.4032 −0.638460 −0.319230 0.947677i \(-0.603424\pi\)
−0.319230 + 0.947677i \(0.603424\pi\)
\(744\) 0 0
\(745\) 28.9145 1.05934
\(746\) 16.4603 11.9591i 0.602655 0.437854i
\(747\) −7.47050 + 3.32608i −0.273331 + 0.121695i
\(748\) −6.45678 + 19.8719i −0.236083 + 0.726589i
\(749\) 20.4224 + 35.3727i 0.746219 + 1.29249i
\(750\) −23.3530 + 40.4487i −0.852732 + 1.47698i
\(751\) −15.0179 16.6791i −0.548013 0.608630i 0.403974 0.914771i \(-0.367629\pi\)
−0.951986 + 0.306141i \(0.900962\pi\)
\(752\) −5.52927 17.0173i −0.201632 0.620559i
\(753\) 10.4422 11.5972i 0.380534 0.422626i
\(754\) 5.44220 + 2.42302i 0.198193 + 0.0882413i
\(755\) 45.6495 9.70310i 1.66136 0.353132i
\(756\) 2.68206 + 25.5181i 0.0975456 + 0.928084i
\(757\) 1.54627 14.7118i 0.0562002 0.534709i −0.929812 0.368035i \(-0.880031\pi\)
0.986012 0.166674i \(-0.0533027\pi\)
\(758\) 28.0021 + 5.95202i 1.01708 + 0.216187i
\(759\) 24.8487 + 18.0536i 0.901951 + 0.655306i
\(760\) 0.716709 + 0.520719i 0.0259978 + 0.0188885i
\(761\) 19.4664 + 4.13770i 0.705655 + 0.149992i 0.546742 0.837301i \(-0.315868\pi\)
0.158913 + 0.987293i \(0.449201\pi\)
\(762\) −6.57924 + 62.5973i −0.238341 + 2.26766i
\(763\) 6.94956 + 66.1207i 0.251591 + 2.39373i
\(764\) −23.4798 + 4.99079i −0.849470 + 0.180560i
\(765\) 7.19835 + 3.20491i 0.260257 + 0.115874i
\(766\) 14.2895 15.8701i 0.516301 0.573410i
\(767\) 3.75858 + 11.5677i 0.135714 + 0.417686i
\(768\) −14.7792 16.4140i −0.533300 0.592290i
\(769\) −2.09853 + 3.63477i −0.0756751 + 0.131073i −0.901380 0.433030i \(-0.857445\pi\)
0.825705 + 0.564103i \(0.190778\pi\)
\(770\) −38.2630 66.2734i −1.37890 2.38833i
\(771\) 16.3001 50.1665i 0.587033 1.80670i
\(772\) −3.75211 + 1.67055i −0.135041 + 0.0601242i
\(773\) −9.61002 + 6.98209i −0.345648 + 0.251128i −0.747041 0.664778i \(-0.768526\pi\)
0.401393 + 0.915906i \(0.368526\pi\)
\(774\) 0.881281 0.0316770
\(775\) 0 0
\(776\) 4.08584 0.146673
\(777\) −1.74565 + 1.26829i −0.0626248 + 0.0454996i
\(778\) −48.0161 + 21.3782i −1.72146 + 0.766444i
\(779\) 0.819628 2.52256i 0.0293662 0.0903799i
\(780\) −12.0238 20.8258i −0.430519 0.745682i
\(781\) −2.85931 + 4.95246i −0.102314 + 0.177213i
\(782\) −9.89608 10.9907i −0.353883 0.393027i
\(783\) −1.29582 3.98812i −0.0463088 0.142524i
\(784\) −14.4726 + 16.0734i −0.516877 + 0.574050i
\(785\) −12.4505 5.54330i −0.444376 0.197849i
\(786\) 31.1709 6.62557i 1.11183 0.236326i
\(787\) −0.207388 1.97316i −0.00739257 0.0703356i 0.990204 0.139631i \(-0.0445916\pi\)
−0.997596 + 0.0692953i \(0.977925\pi\)
\(788\) −1.53371 + 14.5922i −0.0546360 + 0.519827i
\(789\) −55.0093 11.6926i −1.95838 0.416267i
\(790\) −34.1511 24.8122i −1.21504 0.882780i
\(791\) 52.1386 + 37.8809i 1.85384 + 1.34689i
\(792\) 4.01832 + 0.854121i 0.142785 + 0.0303499i
\(793\) 0.485909 4.62312i 0.0172552 0.164172i
\(794\) −3.62989 34.5361i −0.128820 1.22564i
\(795\) 46.7194 9.93050i 1.65696 0.352199i
\(796\) 1.94275 + 0.864969i 0.0688590 + 0.0306580i
\(797\) −33.7150 + 37.4443i −1.19425 + 1.32635i −0.261766 + 0.965131i \(0.584305\pi\)
−0.932482 + 0.361215i \(0.882362\pi\)
\(798\) −3.12100 9.60544i −0.110482 0.340029i
\(799\) 7.65977 + 8.50704i 0.270983 + 0.300957i
\(800\) 2.07889 3.60074i 0.0734998 0.127305i
\(801\) −3.95241 6.84577i −0.139652 0.241884i
\(802\) −17.6879 + 54.4379i −0.624583 + 1.92227i
\(803\) 55.3971 24.6644i 1.95492 0.870387i
\(804\) −54.0481 + 39.2682i −1.90613 + 1.38488i
\(805\) 28.9356 1.01984
\(806\) 0 0
\(807\) 44.6701 1.57246
\(808\) 8.89281 6.46100i 0.312848 0.227297i
\(809\) −14.2261 + 6.33387i −0.500163 + 0.222687i −0.641282 0.767306i \(-0.721597\pi\)
0.141118 + 0.989993i \(0.454930\pi\)
\(810\) −16.9045 + 52.0268i −0.593964 + 1.82803i
\(811\) −10.3694 17.9604i −0.364119 0.630673i 0.624515 0.781013i \(-0.285297\pi\)
−0.988634 + 0.150340i \(0.951963\pi\)
\(812\) −5.80460 + 10.0539i −0.203702 + 0.352822i
\(813\) 30.0777 + 33.4047i 1.05487 + 1.17155i
\(814\) −0.752337 2.31546i −0.0263694 0.0811567i
\(815\) 27.9387 31.0290i 0.978649 1.08690i
\(816\) 13.8351 + 6.15977i 0.484325 + 0.215635i
\(817\) 0.163559 0.0347656i 0.00572222 0.00121630i
\(818\) 4.89737 + 46.5954i 0.171233 + 1.62917i
\(819\) −1.26425 + 12.0285i −0.0441764 + 0.420310i
\(820\) 22.5347 + 4.78991i 0.786947 + 0.167271i
\(821\) −15.8525 11.5175i −0.553256 0.401964i 0.275729 0.961235i \(-0.411081\pi\)
−0.828984 + 0.559272i \(0.811081\pi\)
\(822\) 27.1768 + 19.7451i 0.947899 + 0.688689i
\(823\) −2.05472 0.436743i −0.0716229 0.0152239i 0.171961 0.985104i \(-0.444990\pi\)
−0.243584 + 0.969880i \(0.578323\pi\)
\(824\) −0.249059 + 2.36964i −0.00867639 + 0.0825503i
\(825\) −0.490780 4.66946i −0.0170868 0.162570i
\(826\) −43.4011 + 9.22518i −1.51012 + 0.320985i
\(827\) −3.20211 1.42567i −0.111348 0.0495754i 0.350307 0.936635i \(-0.386077\pi\)
−0.461655 + 0.887060i \(0.652744\pi\)
\(828\) −8.11751 + 9.01540i −0.282103 + 0.313307i
\(829\) −0.645411 1.98637i −0.0224161 0.0689895i 0.939223 0.343308i \(-0.111548\pi\)
−0.961639 + 0.274319i \(0.911548\pi\)
\(830\) −16.8809 18.7482i −0.585946 0.650759i
\(831\) −5.09098 + 8.81784i −0.176604 + 0.305888i
\(832\) −10.5943 18.3498i −0.367290 0.636166i
\(833\) 4.27599 13.1601i 0.148154 0.455972i
\(834\) 81.3941 36.2390i 2.81845 1.25485i
\(835\) −4.14477 + 3.01135i −0.143436 + 0.104212i
\(836\) 6.08759 0.210544
\(837\) 0 0
\(838\) −12.8284 −0.443151
\(839\) 8.71583 6.33242i 0.300904 0.218620i −0.427080 0.904214i \(-0.640458\pi\)
0.727984 + 0.685594i \(0.240458\pi\)
\(840\) 10.2614 4.56866i 0.354052 0.157634i
\(841\) −8.37520 + 25.7762i −0.288800 + 0.888835i
\(842\) −6.79587 11.7708i −0.234201 0.405648i
\(843\) −7.11863 + 12.3298i −0.245178 + 0.424662i
\(844\) −9.48712 10.5365i −0.326560 0.362682i
\(845\) −6.27132 19.3011i −0.215740 0.663979i
\(846\) 11.7617 13.0627i 0.404377 0.449106i
\(847\) −24.5853 10.9461i −0.844760 0.376112i
\(848\) 30.9382 6.57613i 1.06242 0.225825i
\(849\) −1.62046 15.4176i −0.0556140 0.529132i
\(850\) −0.236316 + 2.24840i −0.00810558 + 0.0771194i
\(851\) 0.900446 + 0.191396i 0.0308669 + 0.00656096i
\(852\) −5.30352 3.85323i −0.181695 0.132010i
\(853\) −26.4147 19.1914i −0.904423 0.657102i 0.0351753 0.999381i \(-0.488801\pi\)
−0.939598 + 0.342280i \(0.888801\pi\)
\(854\) 16.5875 + 3.52577i 0.567611 + 0.120649i
\(855\) 0.239966 2.28312i 0.00820666 0.0780811i
\(856\) −0.707081 6.72743i −0.0241675 0.229939i
\(857\) 42.7781 9.09277i 1.46127 0.310603i 0.592402 0.805643i \(-0.298180\pi\)
0.868870 + 0.495040i \(0.164846\pi\)
\(858\) −36.1833 16.1099i −1.23528 0.549981i
\(859\) −16.3042 + 18.1077i −0.556294 + 0.617827i −0.954044 0.299667i \(-0.903124\pi\)
0.397750 + 0.917494i \(0.369791\pi\)
\(860\) 0.448815 + 1.38131i 0.0153045 + 0.0471023i
\(861\) −22.5028 24.9919i −0.766893 0.851721i
\(862\) −24.3140 + 42.1130i −0.828137 + 1.43438i
\(863\) 21.7570 + 37.6842i 0.740616 + 1.28279i 0.952215 + 0.305429i \(0.0987997\pi\)
−0.211599 + 0.977357i \(0.567867\pi\)
\(864\) −7.62934 + 23.4807i −0.259555 + 0.798829i
\(865\) −11.8141 + 5.25997i −0.401691 + 0.178844i
\(866\) −40.7578 + 29.6123i −1.38501 + 1.00627i
\(867\) 26.6808 0.906129
\(868\) 0 0
\(869\) −37.1415 −1.25994
\(870\) −11.5987 + 8.42696i −0.393233 + 0.285701i
\(871\) 25.9593 11.5578i 0.879596 0.391621i
\(872\) 3.40254 10.4719i 0.115224 0.354625i
\(873\) −5.29396 9.16941i −0.179173 0.310338i
\(874\) −2.15444 + 3.73160i −0.0728751 + 0.126223i
\(875\) 25.9049 + 28.7703i 0.875746 + 0.972614i
\(876\) 21.4810 + 66.1118i 0.725776 + 2.23371i
\(877\) −25.5901 + 28.4207i −0.864117 + 0.959699i −0.999517 0.0310921i \(-0.990101\pi\)
0.135400 + 0.990791i \(0.456768\pi\)
\(878\) 27.4602 + 12.2261i 0.926737 + 0.412610i
\(879\) 28.2748 6.00999i 0.953684 0.202712i
\(880\) −3.49459 33.2488i −0.117803 1.12082i
\(881\) −4.25864 + 40.5182i −0.143477 + 1.36509i 0.651590 + 0.758572i \(0.274102\pi\)
−0.795067 + 0.606522i \(0.792564\pi\)
\(882\) −20.7833 4.41762i −0.699809 0.148749i
\(883\) −26.7914 19.4651i −0.901604 0.655054i 0.0372736 0.999305i \(-0.488133\pi\)
−0.938877 + 0.344252i \(0.888133\pi\)
\(884\) 8.24226 + 5.98835i 0.277217 + 0.201410i
\(885\) −28.6322 6.08595i −0.962459 0.204577i
\(886\) 3.58812 34.1387i 0.120545 1.14691i
\(887\) −1.30321 12.3992i −0.0437575 0.416325i −0.994372 0.105949i \(-0.966212\pi\)
0.950614 0.310376i \(-0.100455\pi\)
\(888\) 0.349544 0.0742978i 0.0117299 0.00249327i
\(889\) 47.6616 + 21.2203i 1.59852 + 0.711707i
\(890\) 16.3181 18.1231i 0.546984 0.607487i
\(891\) 14.8736 + 45.7761i 0.498283 + 1.53356i
\(892\) 24.3996 + 27.0985i 0.816959 + 0.907325i
\(893\) 1.66758 2.88834i 0.0558035 0.0966545i
\(894\) 27.2966 + 47.2791i 0.912936 + 1.58125i
\(895\) 8.80368 27.0949i 0.294274 0.905684i
\(896\) 16.1665 7.19780i 0.540085 0.240461i
\(897\) 12.1160 8.80278i 0.404541 0.293916i
\(898\) 14.1263 0.471401
\(899\) 0 0
\(900\) 1.85446 0.0618154
\(901\) −16.3707 + 11.8940i −0.545389 + 0.396248i
\(902\) 34.6646 15.4337i 1.15421 0.513885i
\(903\) 0.655156 2.01636i 0.0218022 0.0671003i
\(904\) −5.33666 9.24337i −0.177495 0.307430i
\(905\) −11.3250 + 19.6155i −0.376456 + 0.652041i
\(906\) 58.9612 + 65.4831i 1.95886 + 2.17553i
\(907\) 5.22278 + 16.0741i 0.173419 + 0.533730i 0.999558 0.0297372i \(-0.00946703\pi\)
−0.826138 + 0.563467i \(0.809467\pi\)
\(908\) −7.12897 + 7.91753i −0.236583 + 0.262752i
\(909\) −26.0220 11.5857i −0.863096 0.384275i
\(910\) −36.4979 + 7.75788i −1.20989 + 0.257171i
\(911\) 5.69363 + 54.1713i 0.188638 + 1.79477i 0.523004 + 0.852330i \(0.324811\pi\)
−0.334366 + 0.942443i \(0.608522\pi\)
\(912\) 0.461209 4.38811i 0.0152722 0.145305i
\(913\) −21.7121 4.61505i −0.718566 0.152736i
\(914\) −35.9211 26.0982i −1.18816 0.863251i
\(915\) 9.05079 + 6.57578i 0.299210 + 0.217389i
\(916\) 43.5664 + 9.26032i 1.43947 + 0.305970i
\(917\) 2.76107 26.2698i 0.0911784 0.867505i
\(918\) −1.40325 13.3511i −0.0463143 0.440651i
\(919\) 8.57573 1.82283i 0.282887 0.0601295i −0.0642828 0.997932i \(-0.520476\pi\)
0.347170 + 0.937802i \(0.387143\pi\)
\(920\) −4.37784 1.94914i −0.144333 0.0642612i
\(921\) 32.5328 36.1313i 1.07199 1.19057i
\(922\) −5.55447 17.0949i −0.182927 0.562990i
\(923\) 1.86576 + 2.07214i 0.0614123 + 0.0682053i
\(924\) 38.5928 66.8447i 1.26961 2.19903i
\(925\) −0.0703606 0.121868i −0.00231344 0.00400700i
\(926\) 2.33709 7.19283i 0.0768016 0.236371i
\(927\) 5.64063 2.51137i 0.185263 0.0824843i
\(928\) −9.03714 + 6.56587i −0.296659 + 0.215535i
\(929\) −44.2868 −1.45300 −0.726501 0.687165i \(-0.758855\pi\)
−0.726501 + 0.687165i \(0.758855\pi\)
\(930\) 0 0
\(931\) −4.03150 −0.132127
\(932\) 26.4399 19.2097i 0.866069 0.629236i
\(933\) −18.5540 + 8.26077i −0.607431 + 0.270445i
\(934\) −1.97290 + 6.07196i −0.0645552 + 0.198681i
\(935\) 10.6943 + 18.5230i 0.349740 + 0.605767i
\(936\) 1.00153 1.73471i 0.0327361 0.0567006i
\(937\) −34.4713 38.2843i −1.12613 1.25069i −0.964569 0.263829i \(-0.915014\pi\)
−0.161559 0.986863i \(-0.551652\pi\)
\(938\) 32.0331 + 98.5877i 1.04592 + 3.21900i
\(939\) −40.2218 + 44.6709i −1.31259 + 1.45778i
\(940\) 26.4643 + 11.7827i 0.863171 + 0.384309i
\(941\) −38.3405 + 8.14952i −1.24986 + 0.265667i −0.784877 0.619651i \(-0.787274\pi\)
−0.464986 + 0.885318i \(0.653941\pi\)
\(942\) −2.68976 25.5914i −0.0876371 0.833812i
\(943\) −1.49973 + 14.2690i −0.0488380 + 0.464662i
\(944\) −18.9606 4.03021i −0.617116 0.131172i
\(945\) 21.2490 + 15.4383i 0.691231 + 0.502208i
\(946\) 1.93531 + 1.40608i 0.0629223 + 0.0457158i
\(947\) −55.6726 11.8336i −1.80912 0.384539i −0.825440 0.564490i \(-0.809073\pi\)
−0.983676 + 0.179951i \(0.942406\pi\)
\(948\) 4.45051 42.3437i 0.144546 1.37526i
\(949\) −3.09062 29.4053i −0.100326 0.954537i
\(950\) 0.644281 0.136946i 0.0209032 0.00444312i
\(951\) 30.9129 + 13.7633i 1.00242 + 0.446306i
\(952\) −3.18424 + 3.53645i −0.103202 + 0.114617i
\(953\) −4.71987 14.5263i −0.152892 0.470552i 0.845050 0.534688i \(-0.179571\pi\)
−0.997941 + 0.0641360i \(0.979571\pi\)
\(954\) 20.7911 + 23.0908i 0.673136 + 0.747593i
\(955\) −12.2859 + 21.2798i −0.397563 + 0.688599i
\(956\) 7.80028 + 13.5105i 0.252279 + 0.436960i
\(957\) −3.89804 + 11.9969i −0.126006 + 0.387806i
\(958\) −32.9572 + 14.6735i −1.06480 + 0.474078i
\(959\) 22.5266 16.3665i 0.727421 0.528503i
\(960\) 50.9928 1.64579
\(961\) 0 0
\(962\) −1.18709 −0.0382735
\(963\) −14.1815 + 10.3035i −0.456992 + 0.332024i
\(964\) −24.1077 + 10.7334i −0.776456 + 0.345701i
\(965\) −1.29920 + 3.99852i −0.0418226 + 0.128717i
\(966\) 27.3165 + 47.3136i 0.878895 + 1.52229i
\(967\) −5.64979 + 9.78573i −0.181685 + 0.314688i −0.942455 0.334334i \(-0.891489\pi\)
0.760769 + 0.649022i \(0.224822\pi\)
\(968\) 2.98232 + 3.31220i 0.0958553 + 0.106458i
\(969\) 0.872299 + 2.68466i 0.0280223 + 0.0862437i
\(970\) 21.8569 24.2745i 0.701782 0.779408i
\(971\) −14.4963 6.45418i −0.465210 0.207125i 0.160727 0.986999i \(-0.448616\pi\)
−0.625936 + 0.779874i \(0.715283\pi\)
\(972\) −33.4793 + 7.11625i −1.07385 + 0.228254i
\(973\) −7.71961 73.4472i −0.247479 2.35461i
\(974\) −6.23224 + 59.2958i −0.199694 + 1.89996i
\(975\) −2.23930 0.475977i −0.0717149 0.0152435i
\(976\) 5.99357 + 4.35458i 0.191849 + 0.139387i
\(977\) 13.3973 + 9.73371i 0.428617 + 0.311409i 0.781096 0.624411i \(-0.214661\pi\)
−0.352478 + 0.935820i \(0.614661\pi\)
\(978\) 77.1122 + 16.3907i 2.46577 + 0.524117i
\(979\) 2.24287 21.3395i 0.0716826 0.682014i
\(980\) −3.66028 34.8252i −0.116923 1.11245i
\(981\) −27.9097 + 5.93238i −0.891087 + 0.189406i
\(982\) −18.5998 8.28116i −0.593543 0.264262i
\(983\) 14.4866 16.0890i 0.462049 0.513158i −0.466422 0.884562i \(-0.654457\pi\)
0.928471 + 0.371405i \(0.121124\pi\)
\(984\) 1.72110 + 5.29699i 0.0548666 + 0.168862i
\(985\) 10.0500 + 11.1617i 0.320220 + 0.355640i
\(986\) 3.03697 5.26019i 0.0967169 0.167519i
\(987\) −21.1436 36.6217i −0.673007 1.16568i
\(988\) 0.917240 2.82297i 0.0291813 0.0898108i
\(989\) −0.826315 + 0.367899i −0.0262753 + 0.0116985i
\(990\) 26.5701 19.3043i 0.844455 0.613532i
\(991\) 32.3028 1.02613 0.513066 0.858349i \(-0.328510\pi\)
0.513066 + 0.858349i \(0.328510\pi\)
\(992\) 0 0
\(993\) −27.6925 −0.878796
\(994\) −8.22920 + 5.97887i −0.261014 + 0.189638i
\(995\) 1.98868 0.885417i 0.0630454 0.0280696i
\(996\) 7.86314 24.2002i 0.249153 0.766814i
\(997\) 5.74360 + 9.94821i 0.181902 + 0.315063i 0.942528 0.334127i \(-0.108441\pi\)
−0.760626 + 0.649190i \(0.775108\pi\)
\(998\) 11.2392 19.4669i 0.355771 0.616213i
\(999\) 0.559131 + 0.620978i 0.0176901 + 0.0196469i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.s.235.1 16
31.2 even 5 961.2.g.t.816.1 16
31.3 odd 30 961.2.g.j.844.2 16
31.4 even 5 961.2.g.k.846.2 16
31.5 even 3 961.2.d.p.388.1 16
31.6 odd 6 961.2.g.n.338.1 16
31.7 even 15 31.2.g.a.14.2 16
31.8 even 5 961.2.c.j.439.7 16
31.9 even 15 961.2.a.i.1.7 8
31.10 even 15 961.2.d.p.374.1 16
31.11 odd 30 961.2.d.n.628.4 16
31.12 odd 30 961.2.g.m.732.1 16
31.13 odd 30 961.2.d.n.531.4 16
31.14 even 15 961.2.c.j.521.7 16
31.15 odd 10 961.2.g.l.547.2 16
31.16 even 5 31.2.g.a.20.2 yes 16
31.17 odd 30 961.2.c.i.521.7 16
31.18 even 15 961.2.d.o.531.4 16
31.19 even 15 inner 961.2.g.s.732.1 16
31.20 even 15 961.2.d.o.628.4 16
31.21 odd 30 961.2.d.q.374.1 16
31.22 odd 30 961.2.a.j.1.7 8
31.23 odd 10 961.2.c.i.439.7 16
31.24 odd 30 961.2.g.l.448.2 16
31.25 even 3 961.2.g.t.338.1 16
31.26 odd 6 961.2.d.q.388.1 16
31.27 odd 10 961.2.g.j.846.2 16
31.28 even 15 961.2.g.k.844.2 16
31.29 odd 10 961.2.g.n.816.1 16
31.30 odd 2 961.2.g.m.235.1 16
93.38 odd 30 279.2.y.c.262.1 16
93.47 odd 10 279.2.y.c.82.1 16
93.53 even 30 8649.2.a.be.1.2 8
93.71 odd 30 8649.2.a.bf.1.2 8
124.7 odd 30 496.2.bg.c.417.2 16
124.47 odd 10 496.2.bg.c.113.2 16
155.7 odd 60 775.2.ck.a.324.3 32
155.38 odd 60 775.2.ck.a.324.2 32
155.47 odd 20 775.2.ck.a.299.2 32
155.69 even 30 775.2.bl.a.76.1 16
155.78 odd 20 775.2.ck.a.299.3 32
155.109 even 10 775.2.bl.a.51.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.2 16 31.7 even 15
31.2.g.a.20.2 yes 16 31.16 even 5
279.2.y.c.82.1 16 93.47 odd 10
279.2.y.c.262.1 16 93.38 odd 30
496.2.bg.c.113.2 16 124.47 odd 10
496.2.bg.c.417.2 16 124.7 odd 30
775.2.bl.a.51.1 16 155.109 even 10
775.2.bl.a.76.1 16 155.69 even 30
775.2.ck.a.299.2 32 155.47 odd 20
775.2.ck.a.299.3 32 155.78 odd 20
775.2.ck.a.324.2 32 155.38 odd 60
775.2.ck.a.324.3 32 155.7 odd 60
961.2.a.i.1.7 8 31.9 even 15
961.2.a.j.1.7 8 31.22 odd 30
961.2.c.i.439.7 16 31.23 odd 10
961.2.c.i.521.7 16 31.17 odd 30
961.2.c.j.439.7 16 31.8 even 5
961.2.c.j.521.7 16 31.14 even 15
961.2.d.n.531.4 16 31.13 odd 30
961.2.d.n.628.4 16 31.11 odd 30
961.2.d.o.531.4 16 31.18 even 15
961.2.d.o.628.4 16 31.20 even 15
961.2.d.p.374.1 16 31.10 even 15
961.2.d.p.388.1 16 31.5 even 3
961.2.d.q.374.1 16 31.21 odd 30
961.2.d.q.388.1 16 31.26 odd 6
961.2.g.j.844.2 16 31.3 odd 30
961.2.g.j.846.2 16 31.27 odd 10
961.2.g.k.844.2 16 31.28 even 15
961.2.g.k.846.2 16 31.4 even 5
961.2.g.l.448.2 16 31.24 odd 30
961.2.g.l.547.2 16 31.15 odd 10
961.2.g.m.235.1 16 31.30 odd 2
961.2.g.m.732.1 16 31.12 odd 30
961.2.g.n.338.1 16 31.6 odd 6
961.2.g.n.816.1 16 31.29 odd 10
961.2.g.s.235.1 16 1.1 even 1 trivial
961.2.g.s.732.1 16 31.19 even 15 inner
961.2.g.t.338.1 16 31.25 even 3
961.2.g.t.816.1 16 31.2 even 5
8649.2.a.be.1.2 8 93.53 even 30
8649.2.a.bf.1.2 8 93.71 odd 30