Properties

Label 961.2.g.n.338.1
Level $961$
Weight $2$
Character 961.338
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,6,-3,-11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 338.1
Root \(-0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 961.338
Dual form 961.2.g.n.816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67638 + 1.21796i) q^{2} +(-0.223627 + 2.12767i) q^{3} +(0.708788 - 2.18143i) q^{4} +(-1.17396 + 2.03335i) q^{5} +(-2.21654 - 3.83916i) q^{6} +(3.59424 - 0.763980i) q^{7} +(0.188054 + 0.578772i) q^{8} +(-1.54253 - 0.327876i) q^{9} +(-0.508547 - 4.83851i) q^{10} +(2.86431 + 3.18114i) q^{11} +(4.48286 + 1.99590i) q^{12} +(1.90675 - 0.848940i) q^{13} +(-5.09482 + 5.65838i) q^{14} +(-4.06377 - 2.95251i) q^{15} +(2.69109 + 1.95519i) q^{16} +(-1.42397 + 1.58148i) q^{17} +(2.98522 - 1.32910i) q^{18} +(-0.566412 - 0.252183i) q^{19} +(3.60352 + 4.00211i) q^{20} +(0.821728 + 7.81822i) q^{21} +(-8.67618 - 1.84418i) q^{22} +(1.03640 + 3.18973i) q^{23} +(-1.27349 + 0.270689i) q^{24} +(-0.256344 - 0.444001i) q^{25} +(-2.16247 + 3.74550i) q^{26} +(-0.940760 + 2.89536i) q^{27} +(0.880992 - 8.38208i) q^{28} +(-1.11435 + 0.809625i) q^{29} +10.4085 q^{30} -8.10976 q^{32} +(-7.40895 + 5.38292i) q^{33} +(0.460935 - 4.38551i) q^{34} +(-2.66604 + 8.20524i) q^{35} +(-1.80857 + 3.13253i) q^{36} +(0.137239 + 0.237704i) q^{37} +(1.25667 - 0.267114i) q^{38} +(1.37986 + 4.24679i) q^{39} +(-1.39761 - 0.297072i) q^{40} +(0.447164 + 4.25448i) q^{41} +(-10.8998 - 12.1055i) q^{42} +(-0.246376 - 0.109694i) q^{43} +(8.96960 - 3.99353i) q^{44} +(2.47755 - 2.75160i) q^{45} +(-5.62238 - 4.08489i) q^{46} +(-4.35183 - 3.16179i) q^{47} +(-4.76181 + 5.28853i) q^{48} +(5.94010 - 2.64470i) q^{49} +(0.970507 + 0.432098i) q^{50} +(-3.04643 - 3.38341i) q^{51} +(-0.500418 - 4.76116i) q^{52} +(9.30090 + 1.97697i) q^{53} +(-1.94937 - 5.99954i) q^{54} +(-9.83094 + 2.08963i) q^{55} +(1.11808 + 1.93658i) q^{56} +(0.663228 - 1.14874i) q^{57} +(0.881988 - 2.71448i) q^{58} +(0.609133 - 5.79551i) q^{59} +(-9.32103 + 6.77212i) q^{60} -2.22719 q^{61} -5.79474 q^{63} +(8.21287 - 5.96700i) q^{64} +(-0.512248 + 4.87371i) q^{65} +(5.86404 - 18.0477i) q^{66} +(6.80719 - 11.7904i) q^{67} +(2.44059 + 4.22722i) q^{68} +(-7.01846 + 1.49182i) q^{69} +(-5.52437 - 17.0022i) q^{70} +(1.30673 + 0.277754i) q^{71} +(-0.100315 - 0.954434i) q^{72} +(9.47892 + 10.5274i) q^{73} +(-0.519579 - 0.231331i) q^{74} +(1.00201 - 0.446125i) q^{75} +(-0.951585 + 1.05684i) q^{76} +(12.7253 + 9.24551i) q^{77} +(-7.48561 - 5.43861i) q^{78} +(-5.80579 + 6.44798i) q^{79} +(-7.13482 + 3.17662i) q^{80} +(-10.2720 - 4.57338i) q^{81} +(-5.93141 - 6.58750i) q^{82} +(-0.542030 - 5.15707i) q^{83} +(17.6373 + 3.74892i) q^{84} +(-1.54403 - 4.75202i) q^{85} +(0.546623 - 0.116188i) q^{86} +(-1.47342 - 2.55203i) q^{87} +(-1.30251 + 2.25601i) q^{88} +(-1.54897 + 4.76725i) q^{89} +(-0.801977 + 7.63030i) q^{90} +(6.20475 - 4.50802i) q^{91} +7.69274 q^{92} +11.1463 q^{94} +(1.17772 - 0.855663i) q^{95} +(1.81356 - 17.2549i) q^{96} +(2.07474 - 6.38538i) q^{97} +(-6.73673 + 11.6684i) q^{98} +(-3.37528 - 5.84615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 6 q^{4} - 3 q^{5} - 11 q^{6} + 12 q^{7} - 8 q^{8} + 5 q^{9} - 12 q^{10} + 2 q^{11} - 25 q^{12} - 18 q^{13} + 24 q^{14} - 4 q^{15} - 2 q^{16} + q^{17} - 8 q^{18} + 11 q^{19} - 18 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67638 + 1.21796i −1.18538 + 0.861230i −0.992768 0.120045i \(-0.961696\pi\)
−0.192612 + 0.981275i \(0.561696\pi\)
\(3\) −0.223627 + 2.12767i −0.129111 + 1.22841i 0.717637 + 0.696418i \(0.245224\pi\)
−0.846748 + 0.531994i \(0.821443\pi\)
\(4\) 0.708788 2.18143i 0.354394 1.09071i
\(5\) −1.17396 + 2.03335i −0.525009 + 0.909342i 0.474567 + 0.880219i \(0.342605\pi\)
−0.999576 + 0.0291228i \(0.990729\pi\)
\(6\) −2.21654 3.83916i −0.904898 1.56733i
\(7\) 3.59424 0.763980i 1.35850 0.288757i 0.529642 0.848221i \(-0.322326\pi\)
0.828855 + 0.559464i \(0.188993\pi\)
\(8\) 0.188054 + 0.578772i 0.0664872 + 0.204627i
\(9\) −1.54253 0.327876i −0.514178 0.109292i
\(10\) −0.508547 4.83851i −0.160817 1.53007i
\(11\) 2.86431 + 3.18114i 0.863621 + 0.959149i 0.999501 0.0315765i \(-0.0100528\pi\)
−0.135880 + 0.990725i \(0.543386\pi\)
\(12\) 4.48286 + 1.99590i 1.29409 + 0.576165i
\(13\) 1.90675 0.848940i 0.528838 0.235454i −0.124908 0.992168i \(-0.539863\pi\)
0.653745 + 0.756715i \(0.273197\pi\)
\(14\) −5.09482 + 5.65838i −1.36165 + 1.51226i
\(15\) −4.06377 2.95251i −1.04926 0.762334i
\(16\) 2.69109 + 1.95519i 0.672773 + 0.488798i
\(17\) −1.42397 + 1.58148i −0.345364 + 0.383565i −0.890654 0.454682i \(-0.849753\pi\)
0.545290 + 0.838247i \(0.316420\pi\)
\(18\) 2.98522 1.32910i 0.703622 0.313273i
\(19\) −0.566412 0.252183i −0.129944 0.0578547i 0.340735 0.940159i \(-0.389324\pi\)
−0.470679 + 0.882305i \(0.655991\pi\)
\(20\) 3.60352 + 4.00211i 0.805771 + 0.894900i
\(21\) 0.821728 + 7.81822i 0.179316 + 1.70607i
\(22\) −8.67618 1.84418i −1.84977 0.393180i
\(23\) 1.03640 + 3.18973i 0.216105 + 0.665104i 0.999073 + 0.0430417i \(0.0137048\pi\)
−0.782968 + 0.622062i \(0.786295\pi\)
\(24\) −1.27349 + 0.270689i −0.259950 + 0.0552541i
\(25\) −0.256344 0.444001i −0.0512688 0.0888002i
\(26\) −2.16247 + 3.74550i −0.424094 + 0.734553i
\(27\) −0.940760 + 2.89536i −0.181049 + 0.557213i
\(28\) 0.880992 8.38208i 0.166492 1.58406i
\(29\) −1.11435 + 0.809625i −0.206930 + 0.150344i −0.686424 0.727202i \(-0.740820\pi\)
0.479493 + 0.877545i \(0.340820\pi\)
\(30\) 10.4085 1.90032
\(31\) 0 0
\(32\) −8.10976 −1.43362
\(33\) −7.40895 + 5.38292i −1.28973 + 0.937046i
\(34\) 0.460935 4.38551i 0.0790498 0.752108i
\(35\) −2.66604 + 8.20524i −0.450644 + 1.38694i
\(36\) −1.80857 + 3.13253i −0.301428 + 0.522089i
\(37\) 0.137239 + 0.237704i 0.0225619 + 0.0390783i 0.877086 0.480334i \(-0.159484\pi\)
−0.854524 + 0.519412i \(0.826151\pi\)
\(38\) 1.25667 0.267114i 0.203859 0.0433316i
\(39\) 1.37986 + 4.24679i 0.220955 + 0.680030i
\(40\) −1.39761 0.297072i −0.220982 0.0469712i
\(41\) 0.447164 + 4.25448i 0.0698353 + 0.664438i 0.972310 + 0.233695i \(0.0750818\pi\)
−0.902475 + 0.430743i \(0.858252\pi\)
\(42\) −10.8998 12.1055i −1.68188 1.86792i
\(43\) −0.246376 0.109694i −0.0375720 0.0167281i 0.387865 0.921716i \(-0.373213\pi\)
−0.425437 + 0.904988i \(0.639879\pi\)
\(44\) 8.96960 3.99353i 1.35222 0.602047i
\(45\) 2.47755 2.75160i 0.369332 0.410185i
\(46\) −5.62238 4.08489i −0.828974 0.602285i
\(47\) −4.35183 3.16179i −0.634780 0.461195i 0.223273 0.974756i \(-0.428326\pi\)
−0.858053 + 0.513561i \(0.828326\pi\)
\(48\) −4.76181 + 5.28853i −0.687308 + 0.763333i
\(49\) 5.94010 2.64470i 0.848586 0.377815i
\(50\) 0.970507 + 0.432098i 0.137250 + 0.0611078i
\(51\) −3.04643 3.38341i −0.426586 0.473772i
\(52\) −0.500418 4.76116i −0.0693955 0.660254i
\(53\) 9.30090 + 1.97697i 1.27758 + 0.271557i 0.796241 0.604979i \(-0.206819\pi\)
0.481335 + 0.876537i \(0.340152\pi\)
\(54\) −1.94937 5.99954i −0.265276 0.816434i
\(55\) −9.83094 + 2.08963i −1.32560 + 0.281766i
\(56\) 1.11808 + 1.93658i 0.149410 + 0.258786i
\(57\) 0.663228 1.14874i 0.0878467 0.152155i
\(58\) 0.881988 2.71448i 0.115811 0.356429i
\(59\) 0.609133 5.79551i 0.0793024 0.754512i −0.880540 0.473972i \(-0.842820\pi\)
0.959842 0.280540i \(-0.0905135\pi\)
\(60\) −9.32103 + 6.77212i −1.20334 + 0.874278i
\(61\) −2.22719 −0.285162 −0.142581 0.989783i \(-0.545540\pi\)
−0.142581 + 0.989783i \(0.545540\pi\)
\(62\) 0 0
\(63\) −5.79474 −0.730068
\(64\) 8.21287 5.96700i 1.02661 0.745875i
\(65\) −0.512248 + 4.87371i −0.0635365 + 0.604510i
\(66\) 5.86404 18.0477i 0.721813 2.22151i
\(67\) 6.80719 11.7904i 0.831631 1.44043i −0.0651129 0.997878i \(-0.520741\pi\)
0.896744 0.442550i \(-0.145926\pi\)
\(68\) 2.44059 + 4.22722i 0.295965 + 0.512626i
\(69\) −7.01846 + 1.49182i −0.844923 + 0.179594i
\(70\) −5.52437 17.0022i −0.660288 2.03216i
\(71\) 1.30673 + 0.277754i 0.155080 + 0.0329634i 0.284798 0.958588i \(-0.408074\pi\)
−0.129717 + 0.991551i \(0.541407\pi\)
\(72\) −0.100315 0.954434i −0.0118222 0.112481i
\(73\) 9.47892 + 10.5274i 1.10942 + 1.23214i 0.970310 + 0.241863i \(0.0777584\pi\)
0.139113 + 0.990277i \(0.455575\pi\)
\(74\) −0.519579 0.231331i −0.0603998 0.0268917i
\(75\) 1.00201 0.446125i 0.115703 0.0515141i
\(76\) −0.951585 + 1.05684i −0.109154 + 0.121228i
\(77\) 12.7253 + 9.24551i 1.45019 + 1.05362i
\(78\) −7.48561 5.43861i −0.847578 0.615801i
\(79\) −5.80579 + 6.44798i −0.653202 + 0.725455i −0.975210 0.221282i \(-0.928976\pi\)
0.322007 + 0.946737i \(0.395642\pi\)
\(80\) −7.13482 + 3.17662i −0.797697 + 0.355157i
\(81\) −10.2720 4.57338i −1.14133 0.508153i
\(82\) −5.93141 6.58750i −0.655015 0.727468i
\(83\) −0.542030 5.15707i −0.0594955 0.566062i −0.983145 0.182825i \(-0.941476\pi\)
0.923650 0.383237i \(-0.125191\pi\)
\(84\) 17.6373 + 3.74892i 1.92439 + 0.409041i
\(85\) −1.54403 4.75202i −0.167473 0.515429i
\(86\) 0.546623 0.116188i 0.0589439 0.0125289i
\(87\) −1.47342 2.55203i −0.157967 0.273607i
\(88\) −1.30251 + 2.25601i −0.138848 + 0.240491i
\(89\) −1.54897 + 4.76725i −0.164191 + 0.505327i −0.998976 0.0452489i \(-0.985592\pi\)
0.834785 + 0.550576i \(0.185592\pi\)
\(90\) −0.801977 + 7.63030i −0.0845358 + 0.804305i
\(91\) 6.20475 4.50802i 0.650435 0.472569i
\(92\) 7.69274 0.802024
\(93\) 0 0
\(94\) 11.1463 1.14965
\(95\) 1.17772 0.855663i 0.120831 0.0877892i
\(96\) 1.81356 17.2549i 0.185096 1.76107i
\(97\) 2.07474 6.38538i 0.210657 0.648337i −0.788776 0.614681i \(-0.789285\pi\)
0.999433 0.0336562i \(-0.0107151\pi\)
\(98\) −6.73673 + 11.6684i −0.680512 + 1.17868i
\(99\) −3.37528 5.84615i −0.339228 0.587560i
\(100\) −1.15025 + 0.244493i −0.115025 + 0.0244493i
\(101\) −5.58165 17.1786i −0.555395 1.70933i −0.694898 0.719108i \(-0.744550\pi\)
0.139503 0.990222i \(-0.455450\pi\)
\(102\) 9.22784 + 1.96144i 0.913693 + 0.194211i
\(103\) −0.409262 3.89387i −0.0403258 0.383675i −0.996007 0.0892719i \(-0.971546\pi\)
0.955681 0.294403i \(-0.0951207\pi\)
\(104\) 0.849915 + 0.943927i 0.0833411 + 0.0925596i
\(105\) −16.8619 7.50738i −1.64555 0.732645i
\(106\) −17.9997 + 8.01399i −1.74829 + 0.778388i
\(107\) 7.43780 8.26052i 0.719040 0.798574i −0.267245 0.963629i \(-0.586113\pi\)
0.986284 + 0.165054i \(0.0527799\pi\)
\(108\) 5.64922 + 4.10440i 0.543596 + 0.394946i
\(109\) −14.6379 10.6350i −1.40205 1.01865i −0.994419 0.105505i \(-0.966354\pi\)
−0.407633 0.913146i \(-0.633646\pi\)
\(110\) 13.9353 15.4767i 1.32868 1.47565i
\(111\) −0.536447 + 0.238841i −0.0509173 + 0.0226698i
\(112\) 11.1662 + 4.97150i 1.05510 + 0.469762i
\(113\) 11.7357 + 13.0338i 1.10400 + 1.22612i 0.972028 + 0.234867i \(0.0754655\pi\)
0.131976 + 0.991253i \(0.457868\pi\)
\(114\) 0.287305 + 2.73352i 0.0269085 + 0.256018i
\(115\) −7.70252 1.63722i −0.718264 0.152672i
\(116\) 0.976297 + 3.00473i 0.0906469 + 0.278982i
\(117\) −3.21958 + 0.684342i −0.297650 + 0.0632675i
\(118\) 6.03758 + 10.4574i 0.555804 + 0.962681i
\(119\) −3.90988 + 6.77211i −0.358418 + 0.620798i
\(120\) 0.944616 2.90723i 0.0862312 0.265392i
\(121\) −0.765555 + 7.28377i −0.0695959 + 0.662161i
\(122\) 3.73362 2.71263i 0.338026 0.245590i
\(123\) −9.15213 −0.825220
\(124\) 0 0
\(125\) −10.5358 −0.942352
\(126\) 9.71419 7.05777i 0.865409 0.628756i
\(127\) −1.48412 + 14.1205i −0.131695 + 1.25299i 0.706536 + 0.707677i \(0.250257\pi\)
−0.838231 + 0.545315i \(0.816410\pi\)
\(128\) −1.48821 + 4.58025i −0.131541 + 0.404841i
\(129\) 0.288489 0.499677i 0.0254000 0.0439941i
\(130\) −5.07728 8.79410i −0.445307 0.771294i
\(131\) −7.03143 + 1.49458i −0.614339 + 0.130582i −0.504563 0.863375i \(-0.668346\pi\)
−0.109775 + 0.993956i \(0.535013\pi\)
\(132\) 6.49106 + 19.9774i 0.564974 + 1.73881i
\(133\) −2.22849 0.473679i −0.193234 0.0410732i
\(134\) 2.94882 + 28.0561i 0.254739 + 2.42368i
\(135\) −4.78288 5.31192i −0.411644 0.457177i
\(136\) −1.18310 0.526750i −0.101450 0.0451684i
\(137\) −6.92253 + 3.08211i −0.591432 + 0.263322i −0.680553 0.732698i \(-0.738261\pi\)
0.0891219 + 0.996021i \(0.471594\pi\)
\(138\) 9.94863 11.0491i 0.846884 0.940560i
\(139\) −16.2598 11.8134i −1.37914 1.00200i −0.996960 0.0779138i \(-0.975174\pi\)
−0.382178 0.924089i \(-0.624826\pi\)
\(140\) 16.0095 + 11.6316i 1.35305 + 0.983046i
\(141\) 7.70044 8.55221i 0.648494 0.720226i
\(142\) −2.52887 + 1.12593i −0.212218 + 0.0944857i
\(143\) 8.16212 + 3.63401i 0.682551 + 0.303891i
\(144\) −3.51004 3.89830i −0.292503 0.324858i
\(145\) −0.338050 3.21634i −0.0280736 0.267102i
\(146\) −28.7123 6.10298i −2.37624 0.505086i
\(147\) 4.29869 + 13.2300i 0.354550 + 1.09119i
\(148\) 0.615807 0.130894i 0.0506190 0.0107594i
\(149\) −6.15749 10.6651i −0.504441 0.873717i −0.999987 0.00513554i \(-0.998365\pi\)
0.495546 0.868582i \(-0.334968\pi\)
\(150\) −1.13639 + 1.96829i −0.0927862 + 0.160710i
\(151\) 6.14232 18.9041i 0.499855 1.53840i −0.309397 0.950933i \(-0.600127\pi\)
0.809252 0.587462i \(-0.199873\pi\)
\(152\) 0.0394401 0.375247i 0.00319901 0.0304366i
\(153\) 2.71505 1.97260i 0.219499 0.159475i
\(154\) −32.5932 −2.62644
\(155\) 0 0
\(156\) 10.2421 0.820023
\(157\) 4.69603 3.41187i 0.374784 0.272297i −0.384408 0.923163i \(-0.625594\pi\)
0.759192 + 0.650867i \(0.225594\pi\)
\(158\) 1.87932 17.8805i 0.149510 1.42250i
\(159\) −6.28627 + 19.3472i −0.498534 + 1.53433i
\(160\) 9.52050 16.4900i 0.752662 1.30365i
\(161\) 6.16198 + 10.6729i 0.485632 + 0.841139i
\(162\) 22.7899 4.84415i 1.79055 0.380593i
\(163\) 5.49535 + 16.9129i 0.430429 + 1.32472i 0.897699 + 0.440610i \(0.145238\pi\)
−0.467270 + 0.884115i \(0.654762\pi\)
\(164\) 9.59778 + 2.04007i 0.749461 + 0.159303i
\(165\) −2.24758 21.3843i −0.174974 1.66477i
\(166\) 7.18977 + 7.98505i 0.558034 + 0.619760i
\(167\) −1.99338 0.887512i −0.154253 0.0686777i 0.328158 0.944623i \(-0.393572\pi\)
−0.482411 + 0.875945i \(0.660239\pi\)
\(168\) −4.37043 + 1.94584i −0.337186 + 0.150125i
\(169\) −5.78370 + 6.42345i −0.444900 + 0.494111i
\(170\) 8.37616 + 6.08564i 0.642422 + 0.466747i
\(171\) 0.791026 + 0.574714i 0.0604912 + 0.0439495i
\(172\) −0.413918 + 0.459702i −0.0315609 + 0.0350520i
\(173\) −5.03174 + 2.24028i −0.382556 + 0.170325i −0.588999 0.808134i \(-0.700478\pi\)
0.206443 + 0.978459i \(0.433811\pi\)
\(174\) 5.57829 + 2.48361i 0.422889 + 0.188282i
\(175\) −1.26057 1.40001i −0.0952902 0.105831i
\(176\) 1.48838 + 14.1610i 0.112191 + 1.06743i
\(177\) 12.1947 + 2.59207i 0.916612 + 0.194832i
\(178\) −3.20966 9.87832i −0.240574 0.740411i
\(179\) 11.8687 2.52278i 0.887111 0.188561i 0.258249 0.966078i \(-0.416854\pi\)
0.628862 + 0.777517i \(0.283521\pi\)
\(180\) −4.24636 7.35491i −0.316505 0.548202i
\(181\) 4.82344 8.35444i 0.358523 0.620980i −0.629191 0.777251i \(-0.716614\pi\)
0.987714 + 0.156270i \(0.0499471\pi\)
\(182\) −4.91094 + 15.1143i −0.364023 + 1.12035i
\(183\) 0.498060 4.73873i 0.0368177 0.350297i
\(184\) −1.65122 + 1.19968i −0.121730 + 0.0884418i
\(185\) −0.644448 −0.0473808
\(186\) 0 0
\(187\) −9.10960 −0.666160
\(188\) −9.98175 + 7.25216i −0.727994 + 0.528918i
\(189\) −1.16932 + 11.1254i −0.0850557 + 0.809251i
\(190\) −0.932141 + 2.86884i −0.0676246 + 0.208127i
\(191\) −5.23270 + 9.06331i −0.378625 + 0.655798i −0.990862 0.134876i \(-0.956936\pi\)
0.612237 + 0.790674i \(0.290270\pi\)
\(192\) 10.8592 + 18.8087i 0.783695 + 1.35740i
\(193\) 1.75152 0.372297i 0.126077 0.0267985i −0.144441 0.989513i \(-0.546138\pi\)
0.270518 + 0.962715i \(0.412805\pi\)
\(194\) 4.29910 + 13.2313i 0.308658 + 0.949951i
\(195\) −10.2551 2.17979i −0.734384 0.156098i
\(196\) −1.55895 14.8324i −0.111354 1.05946i
\(197\) −4.28040 4.75387i −0.304966 0.338699i 0.571109 0.820874i \(-0.306513\pi\)
−0.876075 + 0.482175i \(0.839847\pi\)
\(198\) 12.7786 + 5.68942i 0.908139 + 0.404329i
\(199\) −0.847000 + 0.377108i −0.0600422 + 0.0267325i −0.436538 0.899686i \(-0.643796\pi\)
0.376496 + 0.926418i \(0.377129\pi\)
\(200\) 0.208769 0.231861i 0.0147622 0.0163950i
\(201\) 23.5638 + 17.1201i 1.66207 + 1.20756i
\(202\) 30.2798 + 21.9996i 2.13048 + 1.54788i
\(203\) −3.38672 + 3.76133i −0.237701 + 0.263994i
\(204\) −9.53993 + 4.24745i −0.667928 + 0.297381i
\(205\) −9.17580 4.08533i −0.640866 0.285332i
\(206\) 5.42867 + 6.02915i 0.378233 + 0.420071i
\(207\) −0.552856 5.26007i −0.0384262 0.365600i
\(208\) 6.79108 + 1.44349i 0.470877 + 0.100088i
\(209\) −0.820151 2.52416i −0.0567310 0.174600i
\(210\) 37.4106 7.95187i 2.58158 0.548731i
\(211\) 3.09072 + 5.35328i 0.212774 + 0.368535i 0.952582 0.304283i \(-0.0984169\pi\)
−0.739808 + 0.672818i \(0.765084\pi\)
\(212\) 10.9050 18.8880i 0.748957 1.29723i
\(213\) −0.883191 + 2.71818i −0.0605152 + 0.186247i
\(214\) −2.40760 + 22.9067i −0.164580 + 1.56587i
\(215\) 0.512281 0.372194i 0.0349373 0.0253834i
\(216\) −1.85267 −0.126058
\(217\) 0 0
\(218\) 37.4917 2.53926
\(219\) −24.5186 + 17.8138i −1.65681 + 1.20375i
\(220\) −2.40968 + 22.9266i −0.162461 + 1.54571i
\(221\) −1.37258 + 4.22436i −0.0923295 + 0.284161i
\(222\) 0.608389 1.05376i 0.0408324 0.0707238i
\(223\) 7.94891 + 13.7679i 0.532298 + 0.921968i 0.999289 + 0.0377054i \(0.0120048\pi\)
−0.466991 + 0.884262i \(0.654662\pi\)
\(224\) −29.1485 + 6.19570i −1.94756 + 0.413967i
\(225\) 0.249842 + 0.768936i 0.0166562 + 0.0512624i
\(226\) −35.5483 7.55602i −2.36463 0.502619i
\(227\) 0.485530 + 4.61951i 0.0322258 + 0.306608i 0.998748 + 0.0500248i \(0.0159300\pi\)
−0.966522 + 0.256583i \(0.917403\pi\)
\(228\) −2.03581 2.26100i −0.134825 0.149738i
\(229\) 17.7396 + 7.89816i 1.17226 + 0.521925i 0.898114 0.439762i \(-0.144937\pi\)
0.274149 + 0.961687i \(0.411604\pi\)
\(230\) 14.9064 6.63678i 0.982902 0.437616i
\(231\) −22.5171 + 25.0078i −1.48152 + 1.64539i
\(232\) −0.678147 0.492703i −0.0445225 0.0323475i
\(233\) 11.5273 + 8.37505i 0.755176 + 0.548667i 0.897427 0.441163i \(-0.145434\pi\)
−0.142251 + 0.989831i \(0.545434\pi\)
\(234\) 4.56374 5.06854i 0.298341 0.331341i
\(235\) 11.5379 5.13700i 0.752649 0.335101i
\(236\) −12.2107 5.43657i −0.794852 0.353891i
\(237\) −12.4209 13.7948i −0.806821 0.896066i
\(238\) −1.69373 16.1147i −0.109788 1.04456i
\(239\) −6.65289 1.41412i −0.430340 0.0914715i −0.0123509 0.999924i \(-0.503932\pi\)
−0.417989 + 0.908452i \(0.637265\pi\)
\(240\) −5.16327 15.8909i −0.333288 1.02575i
\(241\) −11.2537 + 2.39205i −0.724915 + 0.154085i −0.555568 0.831471i \(-0.687499\pi\)
−0.169347 + 0.985557i \(0.554166\pi\)
\(242\) −7.58800 13.1428i −0.487775 0.844851i
\(243\) 7.46119 12.9232i 0.478636 0.829021i
\(244\) −1.57861 + 4.85845i −0.101060 + 0.311030i
\(245\) −1.59581 + 15.1831i −0.101952 + 0.970011i
\(246\) 15.3425 11.1470i 0.978200 0.710704i
\(247\) −1.29410 −0.0823413
\(248\) 0 0
\(249\) 11.0938 0.703039
\(250\) 17.6620 12.8322i 1.11705 0.811581i
\(251\) −0.762473 + 7.25445i −0.0481269 + 0.457897i 0.943747 + 0.330669i \(0.107274\pi\)
−0.991874 + 0.127227i \(0.959392\pi\)
\(252\) −4.10724 + 12.6408i −0.258732 + 0.796295i
\(253\) −7.17837 + 12.4333i −0.451300 + 0.781675i
\(254\) −14.7103 25.4790i −0.923005 1.59869i
\(255\) 10.4560 2.22250i 0.654782 0.139178i
\(256\) 3.19031 + 9.81877i 0.199395 + 0.613673i
\(257\) 24.1169 + 5.12621i 1.50437 + 0.319764i 0.885096 0.465409i \(-0.154093\pi\)
0.619276 + 0.785173i \(0.287426\pi\)
\(258\) 0.124971 + 1.18902i 0.00778035 + 0.0740250i
\(259\) 0.674870 + 0.749519i 0.0419344 + 0.0465728i
\(260\) 10.2686 + 4.57186i 0.636830 + 0.283535i
\(261\) 1.98439 0.883505i 0.122830 0.0546876i
\(262\) 9.96702 11.0695i 0.615764 0.683876i
\(263\) −21.2666 15.4511i −1.31136 0.952757i −0.999997 0.00246465i \(-0.999215\pi\)
−0.311360 0.950292i \(-0.600785\pi\)
\(264\) −4.50877 3.27581i −0.277495 0.201612i
\(265\) −14.9387 + 16.5911i −0.917678 + 1.01918i
\(266\) 4.31272 1.92015i 0.264430 0.117732i
\(267\) −9.79675 4.36179i −0.599551 0.266937i
\(268\) −20.8950 23.2063i −1.27637 1.41755i
\(269\) −2.18253 20.7654i −0.133071 1.26609i −0.833561 0.552427i \(-0.813702\pi\)
0.700490 0.713662i \(-0.252965\pi\)
\(270\) 14.4876 + 3.07944i 0.881690 + 0.187409i
\(271\) 6.49271 + 19.9825i 0.394404 + 1.21385i 0.929425 + 0.369012i \(0.120304\pi\)
−0.535021 + 0.844839i \(0.679696\pi\)
\(272\) −6.92414 + 1.47177i −0.419837 + 0.0892392i
\(273\) 8.20403 + 14.2098i 0.496530 + 0.860016i
\(274\) 7.85091 13.5982i 0.474291 0.821496i
\(275\) 0.678179 2.08722i 0.0408958 0.125864i
\(276\) −1.72031 + 16.3676i −0.103550 + 0.985216i
\(277\) −3.85034 + 2.79744i −0.231345 + 0.168082i −0.697418 0.716664i \(-0.745668\pi\)
0.466074 + 0.884746i \(0.345668\pi\)
\(278\) 41.6459 2.49776
\(279\) 0 0
\(280\) −5.25032 −0.313767
\(281\) 5.38386 3.91160i 0.321174 0.233347i −0.415502 0.909592i \(-0.636394\pi\)
0.736676 + 0.676246i \(0.236394\pi\)
\(282\) −2.49261 + 23.7156i −0.148433 + 1.41224i
\(283\) −2.23921 + 6.89159i −0.133107 + 0.409662i −0.995291 0.0969338i \(-0.969096\pi\)
0.862183 + 0.506596i \(0.169096\pi\)
\(284\) 1.53210 2.65367i 0.0909132 0.157466i
\(285\) 1.55720 + 2.69715i 0.0922406 + 0.159765i
\(286\) −18.1089 + 3.84917i −1.07080 + 0.227606i
\(287\) 4.85755 + 14.9500i 0.286732 + 0.882471i
\(288\) 12.5096 + 2.65899i 0.737134 + 0.156683i
\(289\) 1.30360 + 12.4029i 0.0766822 + 0.729583i
\(290\) 4.48408 + 4.98007i 0.263314 + 0.292440i
\(291\) 13.1220 + 5.84230i 0.769227 + 0.342482i
\(292\) 29.6833 13.2159i 1.73708 0.773400i
\(293\) 9.04097 10.0410i 0.528179 0.586602i −0.418727 0.908112i \(-0.637524\pi\)
0.946906 + 0.321510i \(0.104190\pi\)
\(294\) −23.3199 16.9429i −1.36004 0.988131i
\(295\) 11.0692 + 8.04226i 0.644475 + 0.468238i
\(296\) −0.111768 + 0.124131i −0.00649639 + 0.00721497i
\(297\) −11.9052 + 5.30052i −0.690808 + 0.307567i
\(298\) 23.3120 + 10.3792i 1.35043 + 0.601248i
\(299\) 4.68405 + 5.20217i 0.270886 + 0.300849i
\(300\) −0.262974 2.50203i −0.0151828 0.144455i
\(301\) −0.969340 0.206040i −0.0558718 0.0118759i
\(302\) 12.7276 + 39.1716i 0.732393 + 2.25407i
\(303\) 37.7985 8.03433i 2.17147 0.461560i
\(304\) −1.03120 1.78609i −0.0591434 0.102439i
\(305\) 2.61462 4.52866i 0.149713 0.259310i
\(306\) −2.14891 + 6.61367i −0.122845 + 0.378078i
\(307\) 2.37550 22.6013i 0.135577 1.28993i −0.689243 0.724530i \(-0.742057\pi\)
0.824820 0.565396i \(-0.191277\pi\)
\(308\) 29.1880 21.2063i 1.66314 1.20834i
\(309\) 8.37640 0.476517
\(310\) 0 0
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) −2.19843 + 1.59725i −0.124462 + 0.0904266i
\(313\) 2.93694 27.9431i 0.166006 1.57944i −0.521494 0.853255i \(-0.674625\pi\)
0.687500 0.726184i \(-0.258708\pi\)
\(314\) −3.71682 + 11.4392i −0.209752 + 0.645551i
\(315\) 6.80276 11.7827i 0.383292 0.663882i
\(316\) 9.95072 + 17.2352i 0.559772 + 0.969553i
\(317\) 15.4712 3.28850i 0.868949 0.184701i 0.248198 0.968709i \(-0.420161\pi\)
0.620750 + 0.784008i \(0.286828\pi\)
\(318\) −13.0259 40.0896i −0.730457 2.24812i
\(319\) −5.76738 1.22589i −0.322911 0.0686369i
\(320\) 2.49146 + 23.7046i 0.139277 + 1.32513i
\(321\) 15.9124 + 17.6725i 0.888142 + 0.986382i
\(322\) −23.3290 10.3867i −1.30007 0.578829i
\(323\) 1.20538 0.536668i 0.0670690 0.0298610i
\(324\) −17.2571 + 19.1660i −0.958730 + 1.06478i
\(325\) −0.865715 0.628979i −0.0480212 0.0348895i
\(326\) −29.8116 21.6594i −1.65111 1.19960i
\(327\) 25.9013 28.7663i 1.43234 1.59078i
\(328\) −2.37828 + 1.05888i −0.131319 + 0.0584668i
\(329\) −18.0571 8.03954i −0.995520 0.443234i
\(330\) 29.8131 + 33.1108i 1.64116 + 1.82269i
\(331\) 1.35303 + 12.8732i 0.0743692 + 0.707576i 0.966651 + 0.256097i \(0.0824367\pi\)
−0.892282 + 0.451479i \(0.850897\pi\)
\(332\) −11.6340 2.47287i −0.638496 0.135717i
\(333\) −0.133758 0.411664i −0.00732988 0.0225591i
\(334\) 4.42263 0.940059i 0.241995 0.0514377i
\(335\) 15.9827 + 27.6828i 0.873228 + 1.51247i
\(336\) −13.0748 + 22.6462i −0.713287 + 1.23545i
\(337\) 8.61116 26.5024i 0.469080 1.44368i −0.384698 0.923042i \(-0.625694\pi\)
0.853778 0.520637i \(-0.174306\pi\)
\(338\) 1.87217 17.8125i 0.101832 0.968871i
\(339\) −30.3561 + 22.0550i −1.64872 + 1.19786i
\(340\) −11.4606 −0.621537
\(341\) 0 0
\(342\) −2.02604 −0.109556
\(343\) −1.47969 + 1.07506i −0.0798956 + 0.0580476i
\(344\) 0.0171555 0.163224i 0.000924964 0.00880045i
\(345\) 5.20597 16.0223i 0.280280 0.862612i
\(346\) 5.70655 9.88403i 0.306786 0.531369i
\(347\) 2.66175 + 4.61029i 0.142890 + 0.247493i 0.928584 0.371123i \(-0.121027\pi\)
−0.785693 + 0.618616i \(0.787694\pi\)
\(348\) −6.61141 + 1.40530i −0.354409 + 0.0753319i
\(349\) −1.26632 3.89734i −0.0677847 0.208620i 0.911427 0.411463i \(-0.134982\pi\)
−0.979211 + 0.202843i \(0.934982\pi\)
\(350\) 3.81835 + 0.811616i 0.204100 + 0.0433827i
\(351\) 0.664194 + 6.31938i 0.0354520 + 0.337304i
\(352\) −23.2289 25.7983i −1.23810 1.37505i
\(353\) −19.9056 8.86253i −1.05947 0.471705i −0.198360 0.980129i \(-0.563562\pi\)
−0.861107 + 0.508424i \(0.830228\pi\)
\(354\) −23.6001 + 10.5074i −1.25433 + 0.558464i
\(355\) −2.09882 + 2.33097i −0.111394 + 0.123715i
\(356\) 9.30151 + 6.75794i 0.492979 + 0.358170i
\(357\) −13.5345 9.83337i −0.716320 0.520437i
\(358\) −16.8239 + 18.6848i −0.889170 + 0.987523i
\(359\) −6.46921 + 2.88028i −0.341432 + 0.152015i −0.570288 0.821445i \(-0.693168\pi\)
0.228856 + 0.973460i \(0.426502\pi\)
\(360\) 2.05846 + 0.916487i 0.108491 + 0.0483031i
\(361\) −12.4563 13.8341i −0.655592 0.728109i
\(362\) 2.08947 + 19.8800i 0.109820 + 1.04487i
\(363\) −15.3263 3.25770i −0.804421 0.170985i
\(364\) −5.43605 16.7304i −0.284927 0.876914i
\(365\) −32.5337 + 6.91526i −1.70289 + 0.361961i
\(366\) 4.93665 + 8.55053i 0.258043 + 0.446943i
\(367\) −8.05884 + 13.9583i −0.420668 + 0.728619i −0.996005 0.0892980i \(-0.971538\pi\)
0.575337 + 0.817917i \(0.304871\pi\)
\(368\) −3.44747 + 10.6102i −0.179712 + 0.553096i
\(369\) 0.705175 6.70930i 0.0367100 0.349272i
\(370\) 1.08034 0.784913i 0.0561642 0.0408057i
\(371\) 34.9401 1.81400
\(372\) 0 0
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) 15.2712 11.0951i 0.789653 0.573716i
\(375\) 2.35609 22.4167i 0.121668 1.15760i
\(376\) 1.01157 3.11331i 0.0521680 0.160557i
\(377\) −1.43747 + 2.48977i −0.0740335 + 0.128230i
\(378\) −11.5900 20.0745i −0.596127 1.03252i
\(379\) 13.5137 2.87243i 0.694153 0.147547i 0.152694 0.988274i \(-0.451205\pi\)
0.541460 + 0.840727i \(0.317872\pi\)
\(380\) −1.03181 3.17559i −0.0529309 0.162904i
\(381\) −29.7119 6.31546i −1.52219 0.323551i
\(382\) −2.26676 21.5668i −0.115978 1.10345i
\(383\) −6.89608 7.65887i −0.352373 0.391350i 0.540734 0.841193i \(-0.318146\pi\)
−0.893107 + 0.449844i \(0.851480\pi\)
\(384\) −9.41247 4.19070i −0.480328 0.213856i
\(385\) −33.7384 + 15.0213i −1.71947 + 0.765555i
\(386\) −2.48277 + 2.75740i −0.126370 + 0.140348i
\(387\) 0.344078 + 0.249987i 0.0174905 + 0.0127076i
\(388\) −12.4587 9.05177i −0.632494 0.459534i
\(389\) 16.9728 18.8502i 0.860554 0.955742i −0.138849 0.990314i \(-0.544340\pi\)
0.999402 + 0.0345719i \(0.0110068\pi\)
\(390\) 19.8464 8.83618i 1.00496 0.447437i
\(391\) −6.52030 2.90302i −0.329746 0.146812i
\(392\) 2.64774 + 2.94062i 0.133731 + 0.148523i
\(393\) −1.60755 15.2948i −0.0810900 0.771520i
\(394\) 12.9656 + 2.75593i 0.653198 + 0.138842i
\(395\) −6.29527 19.3749i −0.316749 0.974855i
\(396\) −15.1453 + 3.21923i −0.761080 + 0.161773i
\(397\) −8.37941 14.5136i −0.420550 0.728415i 0.575443 0.817842i \(-0.304830\pi\)
−0.995993 + 0.0894272i \(0.971496\pi\)
\(398\) 0.960590 1.66379i 0.0481500 0.0833983i
\(399\) 1.50618 4.63556i 0.0754035 0.232068i
\(400\) 0.178262 1.69605i 0.00891310 0.0848025i
\(401\) −22.3479 + 16.2367i −1.11600 + 0.810823i −0.983598 0.180372i \(-0.942270\pi\)
−0.132404 + 0.991196i \(0.542270\pi\)
\(402\) −60.3537 −3.01017
\(403\) 0 0
\(404\) −41.4300 −2.06122
\(405\) 21.3581 15.5176i 1.06129 0.771075i
\(406\) 1.09627 10.4303i 0.0544070 0.517648i
\(407\) −0.363076 + 1.11743i −0.0179970 + 0.0553891i
\(408\) 1.38532 2.39945i 0.0685838 0.118791i
\(409\) −11.3053 19.5814i −0.559013 0.968239i −0.997579 0.0695399i \(-0.977847\pi\)
0.438566 0.898699i \(-0.355486\pi\)
\(410\) 20.3579 4.32721i 1.00541 0.213706i
\(411\) −5.00965 15.4181i −0.247108 0.760519i
\(412\) −8.78427 1.86716i −0.432770 0.0919881i
\(413\) −2.23828 21.2959i −0.110139 1.04790i
\(414\) 7.33337 + 8.14453i 0.360415 + 0.400282i
\(415\) 11.1225 + 4.95204i 0.545980 + 0.243086i
\(416\) −15.4633 + 6.88470i −0.758150 + 0.337550i
\(417\) 28.7712 31.9537i 1.40893 1.56478i
\(418\) 4.44922 + 3.23255i 0.217619 + 0.158109i
\(419\) 5.00860 + 3.63896i 0.244686 + 0.177775i 0.703368 0.710825i \(-0.251678\pi\)
−0.458682 + 0.888600i \(0.651678\pi\)
\(420\) −28.3283 + 31.4617i −1.38228 + 1.53518i
\(421\) 5.99225 2.66792i 0.292045 0.130027i −0.255485 0.966813i \(-0.582235\pi\)
0.547529 + 0.836786i \(0.315568\pi\)
\(422\) −11.7013 5.20976i −0.569611 0.253607i
\(423\) 5.67618 + 6.30404i 0.275985 + 0.306513i
\(424\) 0.604861 + 5.75487i 0.0293747 + 0.279481i
\(425\) 1.06721 + 0.226842i 0.0517671 + 0.0110034i
\(426\) −1.83008 5.63240i −0.0886676 0.272891i
\(427\) −8.00506 + 1.70153i −0.387392 + 0.0823427i
\(428\) −12.7479 22.0800i −0.616192 1.06728i
\(429\) −9.55725 + 16.5536i −0.461428 + 0.799217i
\(430\) −0.405460 + 1.24788i −0.0195530 + 0.0601780i
\(431\) −2.45304 + 23.3391i −0.118159 + 1.12421i 0.761355 + 0.648335i \(0.224534\pi\)
−0.879514 + 0.475872i \(0.842132\pi\)
\(432\) −8.19266 + 5.95232i −0.394170 + 0.286381i
\(433\) −24.3130 −1.16841 −0.584203 0.811607i \(-0.698593\pi\)
−0.584203 + 0.811607i \(0.698593\pi\)
\(434\) 0 0
\(435\) 6.91890 0.331736
\(436\) −33.5747 + 24.3934i −1.60793 + 1.16823i
\(437\) 0.217362 2.06806i 0.0103978 0.0989289i
\(438\) 19.4060 59.7255i 0.927254 2.85379i
\(439\) −7.25318 + 12.5629i −0.346175 + 0.599593i −0.985567 0.169288i \(-0.945853\pi\)
0.639391 + 0.768881i \(0.279186\pi\)
\(440\) −3.05817 5.29690i −0.145792 0.252520i
\(441\) −10.0299 + 2.13193i −0.477617 + 0.101521i
\(442\) −2.84415 8.75338i −0.135282 0.416356i
\(443\) 16.2040 + 3.44426i 0.769874 + 0.163642i 0.576072 0.817399i \(-0.304585\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(444\) 0.140788 + 1.33951i 0.00668150 + 0.0635702i
\(445\) −7.87506 8.74614i −0.373314 0.414607i
\(446\) −30.0942 13.3988i −1.42500 0.634452i
\(447\) 24.0688 10.7161i 1.13841 0.506854i
\(448\) 24.9604 27.7213i 1.17927 1.30971i
\(449\) 5.51532 + 4.00712i 0.260284 + 0.189107i 0.710272 0.703927i \(-0.248572\pi\)
−0.449988 + 0.893035i \(0.648572\pi\)
\(450\) −1.35537 0.984731i −0.0638926 0.0464207i
\(451\) −12.2533 + 13.6086i −0.576984 + 0.640805i
\(452\) 36.7505 16.3624i 1.72860 0.769621i
\(453\) 38.8482 + 17.2963i 1.82525 + 0.812652i
\(454\) −6.44033 7.15271i −0.302260 0.335693i
\(455\) 1.88228 + 17.9087i 0.0882425 + 0.839571i
\(456\) 0.789583 + 0.167831i 0.0369756 + 0.00785941i
\(457\) −6.62154 20.3790i −0.309742 0.953289i −0.977865 0.209238i \(-0.932902\pi\)
0.668122 0.744051i \(-0.267098\pi\)
\(458\) −39.3579 + 8.36579i −1.83908 + 0.390908i
\(459\) −3.23934 5.61070i −0.151200 0.261885i
\(460\) −9.03094 + 15.6420i −0.421070 + 0.729314i
\(461\) 2.68057 8.24994i 0.124847 0.384238i −0.869027 0.494766i \(-0.835254\pi\)
0.993873 + 0.110527i \(0.0352540\pi\)
\(462\) 7.28873 69.3477i 0.339103 3.22635i
\(463\) 2.95281 2.14534i 0.137229 0.0997025i −0.517053 0.855953i \(-0.672971\pi\)
0.654282 + 0.756251i \(0.272971\pi\)
\(464\) −4.58180 −0.212705
\(465\) 0 0
\(466\) −29.5246 −1.36770
\(467\) 2.49267 1.81103i 0.115347 0.0838045i −0.528616 0.848861i \(-0.677289\pi\)
0.643963 + 0.765056i \(0.277289\pi\)
\(468\) −0.789157 + 7.50832i −0.0364788 + 0.347072i
\(469\) 15.4591 47.5782i 0.713834 2.19696i
\(470\) −13.0852 + 22.6643i −0.603577 + 1.04543i
\(471\) 6.20917 + 10.7546i 0.286104 + 0.495546i
\(472\) 3.46883 0.737322i 0.159666 0.0339380i
\(473\) −0.356747 1.09795i −0.0164032 0.0504839i
\(474\) 37.6236 + 7.99714i 1.72811 + 0.367321i
\(475\) 0.0332269 + 0.316133i 0.00152456 + 0.0145052i
\(476\) 12.0016 + 13.3291i 0.550092 + 0.610939i
\(477\) −13.6988 6.09908i −0.627223 0.279258i
\(478\) 12.8751 5.73237i 0.588894 0.262193i
\(479\) −11.6497 + 12.9383i −0.532289 + 0.591167i −0.947976 0.318341i \(-0.896874\pi\)
0.415687 + 0.909508i \(0.363541\pi\)
\(480\) 32.9562 + 23.9441i 1.50424 + 1.09289i
\(481\) 0.463476 + 0.336735i 0.0211327 + 0.0153538i
\(482\) 15.9521 17.7166i 0.726597 0.806968i
\(483\) −24.0863 + 10.7239i −1.09597 + 0.487955i
\(484\) 15.3464 + 6.83266i 0.697563 + 0.310575i
\(485\) 10.5481 + 11.7148i 0.478963 + 0.531942i
\(486\) 3.23212 + 30.7516i 0.146612 + 1.39492i
\(487\) 28.1448 + 5.98237i 1.27536 + 0.271087i 0.795338 0.606167i \(-0.207294\pi\)
0.480027 + 0.877254i \(0.340627\pi\)
\(488\) −0.418832 1.28903i −0.0189596 0.0583518i
\(489\) −37.2141 + 7.91010i −1.68288 + 0.357707i
\(490\) −15.8172 27.3963i −0.714550 1.23764i
\(491\) −4.91284 + 8.50929i −0.221713 + 0.384019i −0.955328 0.295546i \(-0.904498\pi\)
0.733615 + 0.679565i \(0.237832\pi\)
\(492\) −6.48693 + 19.9647i −0.292453 + 0.900078i
\(493\) 0.306401 2.91521i 0.0137996 0.131294i
\(494\) 2.16940 1.57616i 0.0976058 0.0709148i
\(495\) 15.8497 0.712391
\(496\) 0 0
\(497\) 4.90891 0.220195
\(498\) −18.5974 + 13.5118i −0.833369 + 0.605478i
\(499\) −1.13393 + 10.7886i −0.0507615 + 0.482963i 0.939379 + 0.342882i \(0.111403\pi\)
−0.990140 + 0.140081i \(0.955264\pi\)
\(500\) −7.46766 + 22.9831i −0.333964 + 1.02784i
\(501\) 2.33411 4.04280i 0.104280 0.180619i
\(502\) −7.55745 13.0899i −0.337305 0.584230i
\(503\) −8.37387 + 1.77992i −0.373372 + 0.0793628i −0.390776 0.920486i \(-0.627793\pi\)
0.0174036 + 0.999849i \(0.494460\pi\)
\(504\) −1.08973 3.35383i −0.0485402 0.149391i
\(505\) 41.4826 + 8.81741i 1.84595 + 0.392369i
\(506\) −3.10961 29.5859i −0.138239 1.31526i
\(507\) −12.3736 13.7423i −0.549531 0.610316i
\(508\) 29.7509 + 13.2460i 1.31998 + 0.587694i
\(509\) 36.1603 16.0996i 1.60278 0.713601i 0.606124 0.795370i \(-0.292724\pi\)
0.996651 + 0.0817689i \(0.0260569\pi\)
\(510\) −14.8214 + 16.4608i −0.656301 + 0.728897i
\(511\) 42.1123 + 30.5963i 1.86294 + 1.35350i
\(512\) −25.0995 18.2358i −1.10925 0.805918i
\(513\) 1.26302 1.40272i 0.0557636 0.0619318i
\(514\) −46.6727 + 20.7800i −2.05864 + 0.916567i
\(515\) 8.39806 + 3.73906i 0.370063 + 0.164763i
\(516\) −0.885532 0.983483i −0.0389834 0.0432954i
\(517\) −2.40690 22.9001i −0.105855 1.00715i
\(518\) −2.04423 0.434514i −0.0898181 0.0190914i
\(519\) −3.64134 11.2069i −0.159837 0.491927i
\(520\) −2.91710 + 0.620048i −0.127923 + 0.0271909i
\(521\) 0.674660 + 1.16855i 0.0295574 + 0.0511949i 0.880426 0.474184i \(-0.157257\pi\)
−0.850868 + 0.525379i \(0.823924\pi\)
\(522\) −2.25051 + 3.89800i −0.0985022 + 0.170611i
\(523\) −8.79861 + 27.0793i −0.384736 + 1.18410i 0.551935 + 0.833887i \(0.313890\pi\)
−0.936671 + 0.350210i \(0.886110\pi\)
\(524\) −1.72349 + 16.3979i −0.0752909 + 0.716345i
\(525\) 3.26065 2.36900i 0.142306 0.103392i
\(526\) 54.4699 2.37500
\(527\) 0 0
\(528\) −30.4628 −1.32572
\(529\) 9.50718 6.90737i 0.413356 0.300320i
\(530\) 4.83562 46.0078i 0.210046 1.99845i
\(531\) −2.83982 + 8.74006i −0.123238 + 0.379286i
\(532\) −2.61282 + 4.52554i −0.113280 + 0.196207i
\(533\) 4.46443 + 7.73262i 0.193376 + 0.334937i
\(534\) 21.7356 4.62004i 0.940591 0.199929i
\(535\) 8.06488 + 24.8211i 0.348675 + 1.07311i
\(536\) 8.10408 + 1.72257i 0.350043 + 0.0744039i
\(537\) 2.71347 + 25.8169i 0.117095 + 1.11408i
\(538\) 28.9503 + 32.1525i 1.24813 + 1.38619i
\(539\) 25.4275 + 11.3210i 1.09524 + 0.487631i
\(540\) −14.9776 + 6.66846i −0.644534 + 0.286965i
\(541\) −9.57499 + 10.6341i −0.411661 + 0.457196i −0.912942 0.408088i \(-0.866196\pi\)
0.501281 + 0.865284i \(0.332862\pi\)
\(542\) −35.2222 25.5904i −1.51292 1.09920i
\(543\) 16.6968 + 12.1310i 0.716530 + 0.520590i
\(544\) 11.5481 12.8254i 0.495119 0.549886i
\(545\) 38.8089 17.2788i 1.66239 0.740145i
\(546\) −31.0601 13.8288i −1.32925 0.591820i
\(547\) 28.3490 + 31.4848i 1.21212 + 1.34619i 0.921029 + 0.389494i \(0.127350\pi\)
0.291087 + 0.956697i \(0.405983\pi\)
\(548\) 1.81678 + 17.2856i 0.0776092 + 0.738402i
\(549\) 3.43551 + 0.730241i 0.146624 + 0.0311659i
\(550\) 1.40527 + 4.32498i 0.0599209 + 0.184418i
\(551\) 0.835357 0.177561i 0.0355874 0.00756434i
\(552\) −2.18327 3.78154i −0.0929263 0.160953i
\(553\) −15.9413 + 27.6111i −0.677893 + 1.17414i
\(554\) 3.04747 9.37914i 0.129474 0.398481i
\(555\) 0.144116 1.37117i 0.00611739 0.0582031i
\(556\) −37.2949 + 27.0963i −1.58166 + 1.14914i
\(557\) −27.3019 −1.15682 −0.578409 0.815747i \(-0.696326\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(558\) 0 0
\(559\) −0.562902 −0.0238082
\(560\) −23.2174 + 16.8684i −0.981114 + 0.712821i
\(561\) 2.03715 19.3822i 0.0860087 0.818319i
\(562\) −4.26122 + 13.1147i −0.179749 + 0.553209i
\(563\) −2.59399 + 4.49293i −0.109324 + 0.189354i −0.915497 0.402326i \(-0.868202\pi\)
0.806173 + 0.591680i \(0.201535\pi\)
\(564\) −13.1980 22.8597i −0.555737 0.962565i
\(565\) −40.2796 + 8.56169i −1.69457 + 0.360193i
\(566\) −4.63992 14.2802i −0.195030 0.600242i
\(567\) −40.4139 8.59025i −1.69723 0.360756i
\(568\) 0.0849801 + 0.808532i 0.00356569 + 0.0339252i
\(569\) −1.58439 1.75964i −0.0664210 0.0737680i 0.709018 0.705190i \(-0.249138\pi\)
−0.775439 + 0.631422i \(0.782472\pi\)
\(570\) −5.89549 2.62484i −0.246935 0.109942i
\(571\) −18.6016 + 8.28194i −0.778451 + 0.346589i −0.757198 0.653186i \(-0.773432\pi\)
−0.0212528 + 0.999774i \(0.506765\pi\)
\(572\) 13.7125 15.2293i 0.573350 0.636770i
\(573\) −18.1136 13.1603i −0.756705 0.549778i
\(574\) −26.3517 19.1456i −1.09990 0.799122i
\(575\) 1.15057 1.27783i 0.0479819 0.0532893i
\(576\) −14.6251 + 6.51150i −0.609378 + 0.271313i
\(577\) 23.3701 + 10.4050i 0.972910 + 0.433167i 0.830731 0.556674i \(-0.187923\pi\)
0.142178 + 0.989841i \(0.454589\pi\)
\(578\) −17.2916 19.2043i −0.719236 0.798792i
\(579\) 0.400438 + 3.80992i 0.0166416 + 0.158335i
\(580\) −7.25581 1.54227i −0.301281 0.0640392i
\(581\) −5.88809 18.1217i −0.244279 0.751814i
\(582\) −29.1132 + 6.18821i −1.20678 + 0.256509i
\(583\) 20.3516 + 35.2501i 0.842879 + 1.45991i
\(584\) −4.31041 + 7.46585i −0.178366 + 0.308939i
\(585\) 2.38813 7.34992i 0.0987371 0.303882i
\(586\) −2.92654 + 27.8441i −0.120894 + 1.15023i
\(587\) 32.3299 23.4890i 1.33440 0.969495i 0.334766 0.942301i \(-0.391343\pi\)
0.999630 0.0271941i \(-0.00865722\pi\)
\(588\) 31.9072 1.31583
\(589\) 0 0
\(590\) −28.3514 −1.16721
\(591\) 11.0719 8.04419i 0.455436 0.330894i
\(592\) −0.0954358 + 0.908011i −0.00392239 + 0.0373190i
\(593\) −6.48230 + 19.9505i −0.266196 + 0.819268i 0.725219 + 0.688518i \(0.241738\pi\)
−0.991415 + 0.130750i \(0.958262\pi\)
\(594\) 13.5018 23.3857i 0.553984 0.959529i
\(595\) −9.18005 15.9003i −0.376345 0.651849i
\(596\) −27.6294 + 5.87282i −1.13175 + 0.240560i
\(597\) −0.612951 1.88647i −0.0250864 0.0772080i
\(598\) −14.1883 3.01582i −0.580203 0.123326i
\(599\) −2.18897 20.8266i −0.0894388 0.850954i −0.943632 0.330997i \(-0.892615\pi\)
0.854193 0.519956i \(-0.174052\pi\)
\(600\) 0.446638 + 0.496041i 0.0182339 + 0.0202508i
\(601\) 15.1819 + 6.75942i 0.619283 + 0.275723i 0.692302 0.721608i \(-0.256597\pi\)
−0.0730189 + 0.997331i \(0.523263\pi\)
\(602\) 1.87593 0.835219i 0.0764573 0.0340410i
\(603\) −14.3661 + 15.9552i −0.585034 + 0.649746i
\(604\) −36.8843 26.7980i −1.50080 1.09040i
\(605\) −13.9117 10.1075i −0.565592 0.410927i
\(606\) −53.5793 + 59.5058i −2.17651 + 2.41726i
\(607\) 26.9965 12.0196i 1.09575 0.487861i 0.222404 0.974955i \(-0.428610\pi\)
0.873350 + 0.487093i \(0.161943\pi\)
\(608\) 4.59347 + 2.04514i 0.186290 + 0.0829415i
\(609\) −7.24552 8.04696i −0.293603 0.326079i
\(610\) 1.13263 + 10.7763i 0.0458589 + 0.436318i
\(611\) −10.9820 2.33430i −0.444286 0.0944358i
\(612\) −2.37869 7.32085i −0.0961528 0.295928i
\(613\) 36.2891 7.71349i 1.46570 0.311545i 0.595149 0.803616i \(-0.297093\pi\)
0.870555 + 0.492071i \(0.163760\pi\)
\(614\) 23.5453 + 40.7817i 0.950212 + 1.64582i
\(615\) 10.7442 18.6095i 0.433248 0.750407i
\(616\) −2.95798 + 9.10373i −0.119180 + 0.366800i
\(617\) 2.75361 26.1988i 0.110856 1.05472i −0.787758 0.615985i \(-0.788758\pi\)
0.898614 0.438740i \(-0.144575\pi\)
\(618\) −14.0420 + 10.2021i −0.564854 + 0.410390i
\(619\) 26.3796 1.06029 0.530144 0.847908i \(-0.322138\pi\)
0.530144 + 0.847908i \(0.322138\pi\)
\(620\) 0 0
\(621\) −10.2104 −0.409730
\(622\) −15.9144 + 11.5625i −0.638109 + 0.463613i
\(623\) −1.92530 + 18.3180i −0.0771356 + 0.733897i
\(624\) −4.58994 + 14.1264i −0.183745 + 0.565508i
\(625\) 13.6503 23.6430i 0.546012 0.945720i
\(626\) 29.1103 + 50.4204i 1.16348 + 2.01521i
\(627\) 5.55400 1.18054i 0.221805 0.0471462i
\(628\) −4.11425 12.6623i −0.164176 0.505283i
\(629\) −0.571348 0.121444i −0.0227811 0.00484228i
\(630\) 2.94690 + 28.0379i 0.117407 + 1.11706i
\(631\) −13.3634 14.8415i −0.531987 0.590832i 0.415911 0.909405i \(-0.363463\pi\)
−0.947898 + 0.318574i \(0.896796\pi\)
\(632\) −4.82371 2.14766i −0.191877 0.0854291i
\(633\) −12.0812 + 5.37889i −0.480184 + 0.213792i
\(634\) −21.9303 + 24.3561i −0.870965 + 0.967305i
\(635\) −26.9696 19.5946i −1.07026 0.777587i
\(636\) 37.7488 + 27.4261i 1.49684 + 1.08751i
\(637\) 9.08110 10.0856i 0.359806 0.399605i
\(638\) 11.1614 4.96938i 0.441885 0.196740i
\(639\) −1.92461 0.856891i −0.0761364 0.0338981i
\(640\) −7.56616 8.40308i −0.299079 0.332161i
\(641\) 2.43499 + 23.1673i 0.0961761 + 0.915055i 0.931118 + 0.364717i \(0.118834\pi\)
−0.834942 + 0.550338i \(0.814499\pi\)
\(642\) −48.1996 10.2451i −1.90229 0.404344i
\(643\) 12.0189 + 36.9903i 0.473978 + 1.45875i 0.847332 + 0.531064i \(0.178208\pi\)
−0.373354 + 0.927689i \(0.621792\pi\)
\(644\) 27.6496 5.87710i 1.08955 0.231590i
\(645\) 0.677346 + 1.17320i 0.0266705 + 0.0461946i
\(646\) −1.36703 + 2.36777i −0.0537851 + 0.0931585i
\(647\) 0.689235 2.12125i 0.0270966 0.0833948i −0.936594 0.350417i \(-0.886040\pi\)
0.963690 + 0.267022i \(0.0860398\pi\)
\(648\) 0.715252 6.80517i 0.0280978 0.267332i
\(649\) 20.1811 14.6624i 0.792176 0.575550i
\(650\) 2.21734 0.0869713
\(651\) 0 0
\(652\) 40.7894 1.59744
\(653\) 23.1162 16.7949i 0.904607 0.657235i −0.0350384 0.999386i \(-0.511155\pi\)
0.939645 + 0.342151i \(0.111155\pi\)
\(654\) −8.38416 + 79.7700i −0.327847 + 3.11925i
\(655\) 5.21559 16.0519i 0.203790 0.627201i
\(656\) −7.11497 + 12.3235i −0.277793 + 0.481151i
\(657\) −11.1699 19.3468i −0.435778 0.754790i
\(658\) 40.0624 8.51553i 1.56180 0.331970i
\(659\) 1.58766 + 4.88632i 0.0618466 + 0.190344i 0.977206 0.212294i \(-0.0680934\pi\)
−0.915359 + 0.402638i \(0.868093\pi\)
\(660\) −48.2414 10.2540i −1.87779 0.399137i
\(661\) 0.616242 + 5.86315i 0.0239690 + 0.228050i 0.999948 + 0.0101859i \(0.00324233\pi\)
−0.975979 + 0.217864i \(0.930091\pi\)
\(662\) −17.9473 19.9325i −0.697541 0.774698i
\(663\) −8.68110 3.86507i −0.337146 0.150107i
\(664\) 2.88284 1.28352i 0.111876 0.0498103i
\(665\) 3.57930 3.97522i 0.138799 0.154152i
\(666\) 0.725620 + 0.527194i 0.0281172 + 0.0204284i
\(667\) −3.73740 2.71538i −0.144713 0.105140i
\(668\) −3.34893 + 3.71936i −0.129574 + 0.143906i
\(669\) −31.0712 + 13.8338i −1.20128 + 0.534845i
\(670\) −60.5097 26.9407i −2.33770 1.04081i
\(671\) −6.37935 7.08499i −0.246272 0.273513i
\(672\) −6.66402 63.4039i −0.257070 2.44586i
\(673\) 26.6675 + 5.66836i 1.02796 + 0.218499i 0.690874 0.722975i \(-0.257226\pi\)
0.337084 + 0.941474i \(0.390559\pi\)
\(674\) 17.8434 + 54.9163i 0.687301 + 2.11530i
\(675\) 1.52670 0.324510i 0.0587628 0.0124904i
\(676\) 9.91286 + 17.1696i 0.381264 + 0.660368i
\(677\) −1.31511 + 2.27784i −0.0505438 + 0.0875444i −0.890190 0.455589i \(-0.849429\pi\)
0.839647 + 0.543133i \(0.182762\pi\)
\(678\) 24.0263 73.9453i 0.922724 2.83985i
\(679\) 2.57880 24.5357i 0.0989653 0.941592i
\(680\) 2.45997 1.78728i 0.0943357 0.0685389i
\(681\) −9.93738 −0.380801
\(682\) 0 0
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) 1.81437 1.31821i 0.0693740 0.0504032i
\(685\) 1.85973 17.6942i 0.0710568 0.676060i
\(686\) 1.17114 3.60441i 0.0447145 0.137617i
\(687\) −20.7717 + 35.9777i −0.792492 + 1.37264i
\(688\) −0.448549 0.776909i −0.0171008 0.0296194i
\(689\) 19.4128 4.12632i 0.739570 0.157200i
\(690\) 10.7874 + 33.2002i 0.410669 + 1.26391i
\(691\) −16.4777 3.50244i −0.626841 0.133239i −0.116471 0.993194i \(-0.537158\pi\)
−0.510370 + 0.859955i \(0.670492\pi\)
\(692\) 1.32056 + 12.5643i 0.0502000 + 0.477621i
\(693\) −16.5979 18.4338i −0.630502 0.700244i
\(694\) −10.0773 4.48669i −0.382528 0.170313i
\(695\) 43.1091 19.1934i 1.63522 0.728048i
\(696\) 1.19996 1.33269i 0.0454844 0.0505156i
\(697\) −7.36512 5.35108i −0.278974 0.202686i
\(698\) 6.86966 + 4.99110i 0.260020 + 0.188916i
\(699\) −20.3972 + 22.6533i −0.771491 + 0.856828i
\(700\) −3.94749 + 1.75754i −0.149201 + 0.0664286i
\(701\) 19.3894 + 8.63271i 0.732327 + 0.326053i 0.738799 0.673926i \(-0.235393\pi\)
−0.00647177 + 0.999979i \(0.502060\pi\)
\(702\) −8.81021 9.78473i −0.332520 0.369301i
\(703\) −0.0177887 0.169248i −0.000670912 0.00638330i
\(704\) 42.5060 + 9.03494i 1.60201 + 0.340517i
\(705\) 8.34966 + 25.6976i 0.314467 + 0.967828i
\(706\) 44.1636 9.38726i 1.66212 0.353294i
\(707\) −33.1859 57.4796i −1.24808 2.16174i
\(708\) 14.2979 24.7647i 0.537348 0.930714i
\(709\) −15.8662 + 48.8313i −0.595869 + 1.83390i −0.0455172 + 0.998964i \(0.514494\pi\)
−0.550352 + 0.834933i \(0.685506\pi\)
\(710\) 0.679381 6.46388i 0.0254967 0.242585i
\(711\) 11.0698 8.04266i 0.415149 0.301623i
\(712\) −3.05044 −0.114320
\(713\) 0 0
\(714\) 34.6656 1.29733
\(715\) −16.9712 + 12.3303i −0.634686 + 0.461127i
\(716\) 2.90917 27.6789i 0.108721 1.03441i
\(717\) 4.49654 13.8389i 0.167926 0.516824i
\(718\) 7.33679 12.7077i 0.273807 0.474247i
\(719\) −20.0999 34.8141i −0.749601 1.29835i −0.948014 0.318229i \(-0.896912\pi\)
0.198413 0.980119i \(-0.436421\pi\)
\(720\) 12.0472 2.56072i 0.448974 0.0954324i
\(721\) −4.44583 13.6829i −0.165571 0.509576i
\(722\) 37.7308 + 8.01993i 1.40420 + 0.298471i
\(723\) −2.57286 24.4791i −0.0956857 0.910388i
\(724\) −14.8058 16.4435i −0.550253 0.611118i
\(725\) 0.645132 + 0.287231i 0.0239596 + 0.0106675i
\(726\) 29.6604 13.2057i 1.10080 0.490109i
\(727\) −14.3755 + 15.9656i −0.533158 + 0.592132i −0.948201 0.317670i \(-0.897100\pi\)
0.415044 + 0.909802i \(0.363766\pi\)
\(728\) 3.77594 + 2.74338i 0.139946 + 0.101677i
\(729\) −1.46222 1.06236i −0.0541562 0.0393468i
\(730\) 46.1164 51.2175i 1.70685 1.89564i
\(731\) 0.524311 0.233438i 0.0193924 0.00863403i
\(732\) −9.98416 4.44524i −0.369025 0.164301i
\(733\) 15.0363 + 16.6995i 0.555377 + 0.616808i 0.953818 0.300386i \(-0.0971153\pi\)
−0.398441 + 0.917194i \(0.630449\pi\)
\(734\) −3.49102 33.2148i −0.128856 1.22598i
\(735\) −31.9477 6.79070i −1.17841 0.250479i
\(736\) −8.40499 25.8679i −0.309812 0.953504i
\(737\) 57.0048 12.1167i 2.09980 0.446326i
\(738\) 6.98953 + 12.1062i 0.257288 + 0.445636i
\(739\) 26.2750 45.5097i 0.966542 1.67410i 0.261129 0.965304i \(-0.415905\pi\)
0.705413 0.708797i \(-0.250762\pi\)
\(740\) −0.456777 + 1.40582i −0.0167915 + 0.0516788i
\(741\) 0.289395 2.75341i 0.0106312 0.101149i
\(742\) −58.5729 + 42.5557i −2.15028 + 1.56227i
\(743\) 17.4032 0.638460 0.319230 0.947677i \(-0.396576\pi\)
0.319230 + 0.947677i \(0.396576\pi\)
\(744\) 0 0
\(745\) 28.9145 1.05934
\(746\) 16.4603 11.9591i 0.602655 0.437854i
\(747\) −0.854779 + 8.13268i −0.0312747 + 0.297559i
\(748\) −6.45678 + 19.8719i −0.236083 + 0.726589i
\(749\) 20.4224 35.3727i 0.746219 1.29249i
\(750\) 23.3530 + 40.4487i 0.852732 + 1.47698i
\(751\) 21.9535 4.66636i 0.801095 0.170278i 0.210867 0.977515i \(-0.432371\pi\)
0.590228 + 0.807237i \(0.299038\pi\)
\(752\) −5.52927 17.0173i −0.201632 0.620559i
\(753\) −15.2646 3.24459i −0.556272 0.118239i
\(754\) −0.622700 5.92460i −0.0226774 0.215761i
\(755\) 31.2279 + 34.6821i 1.13650 + 1.26221i
\(756\) 23.4403 + 10.4363i 0.852517 + 0.379565i
\(757\) 13.5139 6.01679i 0.491172 0.218684i −0.146178 0.989258i \(-0.546697\pi\)
0.637350 + 0.770574i \(0.280031\pi\)
\(758\) −19.1556 + 21.2745i −0.695764 + 0.772724i
\(759\) −24.8487 18.0536i −0.901951 0.655306i
\(760\) 0.716709 + 0.520719i 0.0259978 + 0.0188885i
\(761\) 13.3165 14.7895i 0.482724 0.536120i −0.451753 0.892143i \(-0.649201\pi\)
0.934477 + 0.356024i \(0.115868\pi\)
\(762\) 57.5005 25.6009i 2.08302 0.927421i
\(763\) −60.7370 27.0418i −2.19883 0.978980i
\(764\) 16.0621 + 17.8387i 0.581105 + 0.645382i
\(765\) 0.823639 + 7.83641i 0.0297787 + 0.283326i
\(766\) 20.8887 + 4.44002i 0.754738 + 0.160425i
\(767\) −3.75858 11.5677i −0.135714 0.417686i
\(768\) −21.6046 + 4.59219i −0.779588 + 0.165706i
\(769\) −2.09853 3.63477i −0.0756751 0.131073i 0.825705 0.564103i \(-0.190778\pi\)
−0.901380 + 0.433030i \(0.857445\pi\)
\(770\) 38.2630 66.2734i 1.37890 2.38833i
\(771\) −16.3001 + 50.1665i −0.587033 + 1.80670i
\(772\) 0.429318 4.08469i 0.0154515 0.147011i
\(773\) 9.61002 6.98209i 0.345648 0.251128i −0.401393 0.915906i \(-0.631474\pi\)
0.747041 + 0.664778i \(0.231474\pi\)
\(774\) −0.881281 −0.0316770
\(775\) 0 0
\(776\) 4.08584 0.146673
\(777\) −1.74565 + 1.26829i −0.0626248 + 0.0454996i
\(778\) −5.49404 + 52.2723i −0.196971 + 1.87405i
\(779\) 0.819628 2.52256i 0.0293662 0.0903799i
\(780\) −12.0238 + 20.8258i −0.430519 + 0.745682i
\(781\) 2.85931 + 4.95246i 0.102314 + 0.177213i
\(782\) 14.4663 3.07490i 0.517313 0.109958i
\(783\) −1.29582 3.98812i −0.0463088 0.142524i
\(784\) 21.1563 + 4.49690i 0.755581 + 0.160604i
\(785\) 1.42459 + 13.5541i 0.0508458 + 0.483765i
\(786\) 21.3233 + 23.6820i 0.760579 + 0.844708i
\(787\) −1.81250 0.806978i −0.0646087 0.0287657i 0.374178 0.927357i \(-0.377925\pi\)
−0.438787 + 0.898591i \(0.644592\pi\)
\(788\) −13.4041 + 5.96789i −0.477502 + 0.212597i
\(789\) 37.6307 41.7931i 1.33969 1.48787i
\(790\) 34.1511 + 24.8122i 1.21504 + 0.882780i
\(791\) 52.1386 + 37.8809i 1.85384 + 1.34689i
\(792\) 2.74885 3.05291i 0.0976762 0.108480i
\(793\) −4.24669 + 1.89075i −0.150805 + 0.0671425i
\(794\) 31.7241 + 14.1245i 1.12584 + 0.501258i
\(795\) −31.9597 35.4949i −1.13350 1.25887i
\(796\) 0.222291 + 2.11496i 0.00787889 + 0.0749627i
\(797\) −49.2853 10.4759i −1.74577 0.371076i −0.779063 0.626946i \(-0.784305\pi\)
−0.966711 + 0.255870i \(0.917638\pi\)
\(798\) 3.12100 + 9.60544i 0.110482 + 0.340029i
\(799\) 11.1972 2.38004i 0.396128 0.0841997i
\(800\) 2.07889 + 3.60074i 0.0734998 + 0.127305i
\(801\) 3.95241 6.84577i 0.139652 0.241884i
\(802\) 17.6879 54.4379i 0.624583 1.92227i
\(803\) −6.33857 + 60.3075i −0.223683 + 2.12820i
\(804\) 54.0481 39.2682i 1.90613 1.38488i
\(805\) −28.9356 −1.01984
\(806\) 0 0
\(807\) 44.6701 1.57246
\(808\) 8.89281 6.46100i 0.312848 0.227297i
\(809\) −1.62776 + 15.4871i −0.0572290 + 0.544498i 0.927918 + 0.372784i \(0.121597\pi\)
−0.985147 + 0.171713i \(0.945070\pi\)
\(810\) −16.9045 + 52.0268i −0.593964 + 1.82803i
\(811\) −10.3694 + 17.9604i −0.364119 + 0.630673i −0.988634 0.150340i \(-0.951963\pi\)
0.624515 + 0.781013i \(0.285297\pi\)
\(812\) 5.80460 + 10.0539i 0.203702 + 0.352822i
\(813\) −43.9682 + 9.34572i −1.54203 + 0.327769i
\(814\) −0.752337 2.31546i −0.0263694 0.0811567i
\(815\) −40.8413 8.68108i −1.43061 0.304085i
\(816\) −1.58302 15.0614i −0.0554167 0.527255i
\(817\) 0.111888 + 0.124264i 0.00391445 + 0.00434744i
\(818\) 42.8015 + 19.0565i 1.49652 + 0.666293i
\(819\) −11.0491 + 4.91939i −0.386087 + 0.171897i
\(820\) −15.4155 + 17.1207i −0.538334 + 0.597881i
\(821\) 15.8525 + 11.5175i 0.553256 + 0.401964i 0.828984 0.559272i \(-0.188919\pi\)
−0.275729 + 0.961235i \(0.588919\pi\)
\(822\) 27.1768 + 19.7451i 0.947899 + 0.688689i
\(823\) −1.40559 + 1.56106i −0.0489958 + 0.0544153i −0.767144 0.641474i \(-0.778323\pi\)
0.718149 + 0.695890i \(0.244990\pi\)
\(824\) 2.17670 0.969129i 0.0758289 0.0337612i
\(825\) 4.28926 + 1.90970i 0.149333 + 0.0664873i
\(826\) 29.6898 + 32.9738i 1.03304 + 1.14731i
\(827\) −0.366387 3.48594i −0.0127405 0.121218i 0.986303 0.164943i \(-0.0527441\pi\)
−0.999044 + 0.0437252i \(0.986077\pi\)
\(828\) −11.8663 2.52226i −0.412383 0.0876548i
\(829\) 0.645411 + 1.98637i 0.0224161 + 0.0689895i 0.961639 0.274319i \(-0.0884524\pi\)
−0.939223 + 0.343308i \(0.888452\pi\)
\(830\) −24.6769 + 5.24523i −0.856547 + 0.182065i
\(831\) −5.09098 8.81784i −0.176604 0.305888i
\(832\) 10.5943 18.3498i 0.367290 0.636166i
\(833\) −4.27599 + 13.1601i −0.148154 + 0.455972i
\(834\) −9.31317 + 88.6089i −0.322489 + 3.06828i
\(835\) 4.14477 3.01135i 0.143436 0.104212i
\(836\) −6.08759 −0.210544
\(837\) 0 0
\(838\) −12.8284 −0.443151
\(839\) 8.71583 6.33242i 0.300904 0.218620i −0.427080 0.904214i \(-0.640458\pi\)
0.727984 + 0.685594i \(0.240458\pi\)
\(840\) 1.17411 11.1710i 0.0405108 0.385435i
\(841\) −8.37520 + 25.7762i −0.288800 + 0.888835i
\(842\) −6.79587 + 11.7708i −0.234201 + 0.405648i
\(843\) 7.11863 + 12.3298i 0.245178 + 0.424662i
\(844\) 13.8685 2.94783i 0.477372 0.101469i
\(845\) −6.27132 19.3011i −0.215740 0.663979i
\(846\) −17.1935 3.65460i −0.591125 0.125648i
\(847\) 2.81306 + 26.7645i 0.0966580 + 0.919640i
\(848\) 21.1642 + 23.5052i 0.726782 + 0.807173i
\(849\) −14.1623 6.30546i −0.486049 0.216403i
\(850\) −2.06533 + 0.919543i −0.0708402 + 0.0315401i
\(851\) −0.615976 + 0.684111i −0.0211154 + 0.0234510i
\(852\) 5.30352 + 3.85323i 0.181695 + 0.132010i
\(853\) −26.4147 19.1914i −0.904423 0.657102i 0.0351753 0.999381i \(-0.488801\pi\)
−0.939598 + 0.342280i \(0.888801\pi\)
\(854\) 11.3471 12.6023i 0.388291 0.431241i
\(855\) −2.09722 + 0.933744i −0.0717236 + 0.0319334i
\(856\) 6.17967 + 2.75136i 0.211217 + 0.0940397i
\(857\) −29.2636 32.5005i −0.999626 1.11020i −0.993908 0.110214i \(-0.964846\pi\)
−0.00571842 0.999984i \(-0.501820\pi\)
\(858\) −4.14012 39.3906i −0.141341 1.34477i
\(859\) −23.8338 5.06604i −0.813200 0.172851i −0.217503 0.976060i \(-0.569791\pi\)
−0.595698 + 0.803209i \(0.703124\pi\)
\(860\) −0.448815 1.38131i −0.0153045 0.0471023i
\(861\) −32.8950 + 6.99205i −1.12106 + 0.238288i
\(862\) −24.3140 42.1130i −0.828137 1.43438i
\(863\) −21.7570 + 37.6842i −0.740616 + 1.28279i 0.211599 + 0.977357i \(0.432133\pi\)
−0.952215 + 0.305429i \(0.901200\pi\)
\(864\) 7.62934 23.4807i 0.259555 0.798829i
\(865\) 1.35178 12.8613i 0.0459617 0.437297i
\(866\) 40.7578 29.6123i 1.38501 1.00627i
\(867\) −26.6808 −0.906129
\(868\) 0 0
\(869\) −37.1415 −1.25994
\(870\) −11.5987 + 8.42696i −0.393233 + 0.285701i
\(871\) 2.97027 28.2603i 0.100644 0.957563i
\(872\) 3.40254 10.4719i 0.115224 0.354625i
\(873\) −5.29396 + 9.16941i −0.179173 + 0.310338i
\(874\) 2.15444 + 3.73160i 0.0728751 + 0.126223i
\(875\) −37.8683 + 8.04915i −1.28018 + 0.272111i
\(876\) 21.4810 + 66.1118i 0.725776 + 2.23371i
\(877\) 37.4081 + 7.95134i 1.26318 + 0.268498i 0.790350 0.612655i \(-0.209899\pi\)
0.472832 + 0.881153i \(0.343232\pi\)
\(878\) −3.14201 29.8943i −0.106038 1.00888i
\(879\) 19.3422 + 21.4817i 0.652395 + 0.724559i
\(880\) −30.5416 13.5980i −1.02956 0.458388i
\(881\) −37.2191 + 16.5710i −1.25394 + 0.558292i −0.922797 0.385287i \(-0.874102\pi\)
−0.331148 + 0.943579i \(0.607436\pi\)
\(882\) 14.2174 15.7900i 0.478725 0.531678i
\(883\) 26.7914 + 19.4651i 0.901604 + 0.655054i 0.938877 0.344252i \(-0.111867\pi\)
−0.0372736 + 0.999305i \(0.511867\pi\)
\(884\) 8.24226 + 5.98835i 0.277217 + 0.201410i
\(885\) −19.5867 + 21.7532i −0.658399 + 0.731226i
\(886\) −31.3590 + 13.9619i −1.05353 + 0.469061i
\(887\) 11.3896 + 5.07100i 0.382427 + 0.170267i 0.588941 0.808176i \(-0.299545\pi\)
−0.206514 + 0.978444i \(0.566212\pi\)
\(888\) −0.239116 0.265565i −0.00802420 0.00891178i
\(889\) 5.45348 + 51.8864i 0.182904 + 1.74021i
\(890\) 23.8541 + 5.07034i 0.799591 + 0.169958i
\(891\) −14.8736 45.7761i −0.498283 1.53356i
\(892\) 35.6678 7.58142i 1.19425 0.253845i
\(893\) 1.66758 + 2.88834i 0.0558035 + 0.0966545i
\(894\) −27.2966 + 47.2791i −0.912936 + 1.58125i
\(895\) −8.80368 + 27.0949i −0.294274 + 0.905684i
\(896\) −1.84978 + 17.5995i −0.0617969 + 0.587958i
\(897\) −12.1160 + 8.80278i −0.404541 + 0.293916i
\(898\) −14.1263 −0.471401
\(899\) 0 0
\(900\) 1.85446 0.0618154
\(901\) −16.3707 + 11.8940i −0.545389 + 0.396248i
\(902\) 3.96635 37.7373i 0.132065 1.25651i
\(903\) 0.655156 2.01636i 0.0218022 0.0671003i
\(904\) −5.33666 + 9.24337i −0.177495 + 0.307430i
\(905\) 11.3250 + 19.6155i 0.376456 + 0.652041i
\(906\) −86.1906 + 18.3204i −2.86349 + 0.608654i
\(907\) 5.22278 + 16.0741i 0.173419 + 0.533730i 0.999558 0.0297372i \(-0.00946703\pi\)
−0.826138 + 0.563467i \(0.809467\pi\)
\(908\) 10.4213 + 2.21511i 0.345842 + 0.0735109i
\(909\) 2.97746 + 28.3286i 0.0987560 + 0.939600i
\(910\) −24.9675 27.7292i −0.827664 0.919214i
\(911\) 49.7605 + 22.1548i 1.64864 + 0.734021i 0.999642 0.0267695i \(-0.00852200\pi\)
0.648997 + 0.760791i \(0.275189\pi\)
\(912\) 4.03082 1.79464i 0.133474 0.0594264i
\(913\) 14.8528 16.4957i 0.491556 0.545929i
\(914\) 35.9211 + 26.0982i 1.18816 + 0.863251i
\(915\) 9.05079 + 6.57578i 0.299210 + 0.217389i
\(916\) 29.8029 33.0994i 0.984714 1.09364i
\(917\) −24.1308 + 10.7437i −0.796870 + 0.354790i
\(918\) 12.2640 + 5.46028i 0.404772 + 0.180216i
\(919\) −5.86648 6.51539i −0.193517 0.214923i 0.638575 0.769559i \(-0.279524\pi\)
−0.832093 + 0.554636i \(0.812857\pi\)
\(920\) −0.500915 4.76589i −0.0165147 0.157127i
\(921\) 47.5570 + 10.1085i 1.56706 + 0.333088i
\(922\) 5.55447 + 17.0949i 0.182927 + 0.562990i
\(923\) 2.72741 0.579728i 0.0897737 0.0190820i
\(924\) 38.5928 + 66.8447i 1.26961 + 2.19903i
\(925\) 0.0703606 0.121868i 0.00231344 0.00400700i
\(926\) −2.33709 + 7.19283i −0.0768016 + 0.236371i
\(927\) −0.645405 + 6.14062i −0.0211979 + 0.201684i
\(928\) 9.03714 6.56587i 0.296659 0.215535i
\(929\) 44.2868 1.45300 0.726501 0.687165i \(-0.241145\pi\)
0.726501 + 0.687165i \(0.241145\pi\)
\(930\) 0 0
\(931\) −4.03150 −0.132127
\(932\) 26.4399 19.2097i 0.866069 0.629236i
\(933\) −2.12296 + 20.1986i −0.0695026 + 0.661273i
\(934\) −1.97290 + 6.07196i −0.0645552 + 0.198681i
\(935\) 10.6943 18.5230i 0.349740 0.605767i
\(936\) −1.00153 1.73471i −0.0327361 0.0567006i
\(937\) 50.3908 10.7109i 1.64620 0.349910i 0.710768 0.703427i \(-0.248348\pi\)
0.935428 + 0.353517i \(0.115014\pi\)
\(938\) 32.0331 + 98.5877i 1.04592 + 3.21900i
\(939\) 58.7970 + 12.4977i 1.91877 + 0.407847i
\(940\) −3.02807 28.8101i −0.0987646 0.939682i
\(941\) −26.2279 29.1291i −0.855006 0.949580i 0.144195 0.989549i \(-0.453941\pi\)
−0.999201 + 0.0399692i \(0.987274\pi\)
\(942\) −23.5077 10.4663i −0.765921 0.341010i
\(943\) −13.1072 + 5.83569i −0.426828 + 0.190036i
\(944\) 12.9706 14.4053i 0.422156 0.468852i
\(945\) −21.2490 15.4383i −0.691231 0.502208i
\(946\) 1.93531 + 1.40608i 0.0629223 + 0.0457158i
\(947\) −38.0845 + 42.2971i −1.23758 + 1.37447i −0.335996 + 0.941864i \(0.609073\pi\)
−0.901583 + 0.432606i \(0.857594\pi\)
\(948\) −38.8960 + 17.3176i −1.26328 + 0.562450i
\(949\) 27.0111 + 12.0261i 0.876817 + 0.390384i
\(950\) −0.440739 0.489491i −0.0142995 0.0158812i
\(951\) 3.53707 + 33.6530i 0.114697 + 1.09127i
\(952\) −4.65478 0.989403i −0.150862 0.0320667i
\(953\) 4.71987 + 14.5263i 0.152892 + 0.470552i 0.997941 0.0641360i \(-0.0204292\pi\)
−0.845050 + 0.534688i \(0.820429\pi\)
\(954\) 30.3928 6.46019i 0.984003 0.209156i
\(955\) −12.2859 21.2798i −0.397563 0.688599i
\(956\) −7.80028 + 13.5105i −0.252279 + 0.436960i
\(957\) 3.89804 11.9969i 0.126006 0.387806i
\(958\) 3.77098 35.8785i 0.121835 1.15918i
\(959\) −22.5266 + 16.3665i −0.727421 + 0.528503i
\(960\) −50.9928 −1.64579
\(961\) 0 0
\(962\) −1.18709 −0.0382735
\(963\) −14.1815 + 10.3035i −0.456992 + 0.332024i
\(964\) −2.75842 + 26.2446i −0.0888427 + 0.845281i
\(965\) −1.29920 + 3.99852i −0.0418226 + 0.128717i
\(966\) 27.3165 47.3136i 0.878895 1.52229i
\(967\) 5.64979 + 9.78573i 0.181685 + 0.314688i 0.942455 0.334334i \(-0.108511\pi\)
−0.760769 + 0.649022i \(0.775178\pi\)
\(968\) −4.35961 + 0.926663i −0.140123 + 0.0297841i
\(969\) 0.872299 + 2.68466i 0.0280223 + 0.0862437i
\(970\) −31.9508 6.79135i −1.02588 0.218057i
\(971\) 1.65868 + 15.7813i 0.0532296 + 0.506446i 0.988359 + 0.152139i \(0.0486163\pi\)
−0.935129 + 0.354306i \(0.884717\pi\)
\(972\) −22.9025 25.4358i −0.734599 0.815855i
\(973\) −67.4669 30.0382i −2.16289 0.962981i
\(974\) −54.4678 + 24.2506i −1.74526 + 0.777040i
\(975\) 1.53186 1.70130i 0.0490587 0.0544852i
\(976\) −5.99357 4.35458i −0.191849 0.139387i
\(977\) 13.3973 + 9.73371i 0.428617 + 0.311409i 0.781096 0.624411i \(-0.214661\pi\)
−0.352478 + 0.935820i \(0.614661\pi\)
\(978\) 52.7508 58.5857i 1.68679 1.87337i
\(979\) −19.6020 + 8.72737i −0.626483 + 0.278928i
\(980\) 31.9897 + 14.2427i 1.02187 + 0.454967i
\(981\) 19.0924 + 21.2043i 0.609574 + 0.677001i
\(982\) −2.12820 20.2485i −0.0679136 0.646155i
\(983\) 21.1767 + 4.50125i 0.675432 + 0.143568i 0.532843 0.846214i \(-0.321124\pi\)
0.142590 + 0.989782i \(0.454457\pi\)
\(984\) −1.72110 5.29699i −0.0548666 0.168862i
\(985\) 14.6913 3.12273i 0.468103 0.0994984i
\(986\) 3.03697 + 5.26019i 0.0967169 + 0.167519i
\(987\) 21.1436 36.6217i 0.673007 1.16568i
\(988\) −0.917240 + 2.82297i −0.0291813 + 0.0898108i
\(989\) 0.0945475 0.899560i 0.00300644 0.0286043i
\(990\) −26.5701 + 19.3043i −0.844455 + 0.613532i
\(991\) −32.3028 −1.02613 −0.513066 0.858349i \(-0.671490\pi\)
−0.513066 + 0.858349i \(0.671490\pi\)
\(992\) 0 0
\(993\) −27.6925 −0.878796
\(994\) −8.22920 + 5.97887i −0.261014 + 0.189638i
\(995\) 0.227546 2.16496i 0.00721369 0.0686337i
\(996\) 7.86314 24.2002i 0.249153 0.766814i
\(997\) 5.74360 9.94821i 0.181902 0.315063i −0.760626 0.649190i \(-0.775108\pi\)
0.942528 + 0.334127i \(0.108441\pi\)
\(998\) −11.2392 19.4669i −0.355771 0.616213i
\(999\) −0.817348 + 0.173733i −0.0258597 + 0.00549666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.n.338.1 16
31.2 even 5 961.2.g.m.732.1 16
31.3 odd 30 961.2.d.o.531.4 16
31.4 even 5 961.2.g.l.448.2 16
31.5 even 3 961.2.g.m.235.1 16
31.6 odd 6 961.2.d.p.388.1 16
31.7 even 15 961.2.d.n.628.4 16
31.8 even 5 961.2.c.i.521.7 16
31.9 even 15 961.2.c.i.439.7 16
31.10 even 15 inner 961.2.g.n.816.1 16
31.11 odd 30 961.2.g.k.846.2 16
31.12 odd 30 961.2.d.p.374.1 16
31.13 odd 30 31.2.g.a.20.2 yes 16
31.14 even 15 961.2.a.j.1.7 8
31.15 odd 10 961.2.g.k.844.2 16
31.16 even 5 961.2.g.j.844.2 16
31.17 odd 30 961.2.a.i.1.7 8
31.18 even 15 961.2.g.l.547.2 16
31.19 even 15 961.2.d.q.374.1 16
31.20 even 15 961.2.g.j.846.2 16
31.21 odd 30 961.2.g.t.816.1 16
31.22 odd 30 961.2.c.j.439.7 16
31.23 odd 10 961.2.c.j.521.7 16
31.24 odd 30 961.2.d.o.628.4 16
31.25 even 3 961.2.d.q.388.1 16
31.26 odd 6 961.2.g.s.235.1 16
31.27 odd 10 31.2.g.a.14.2 16
31.28 even 15 961.2.d.n.531.4 16
31.29 odd 10 961.2.g.s.732.1 16
31.30 odd 2 961.2.g.t.338.1 16
93.14 odd 30 8649.2.a.be.1.2 8
93.17 even 30 8649.2.a.bf.1.2 8
93.44 even 30 279.2.y.c.82.1 16
93.89 even 10 279.2.y.c.262.1 16
124.27 even 10 496.2.bg.c.417.2 16
124.75 even 30 496.2.bg.c.113.2 16
155.13 even 60 775.2.ck.a.299.3 32
155.27 even 20 775.2.ck.a.324.3 32
155.44 odd 30 775.2.bl.a.51.1 16
155.58 even 20 775.2.ck.a.324.2 32
155.89 odd 10 775.2.bl.a.76.1 16
155.137 even 60 775.2.ck.a.299.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.2 16 31.27 odd 10
31.2.g.a.20.2 yes 16 31.13 odd 30
279.2.y.c.82.1 16 93.44 even 30
279.2.y.c.262.1 16 93.89 even 10
496.2.bg.c.113.2 16 124.75 even 30
496.2.bg.c.417.2 16 124.27 even 10
775.2.bl.a.51.1 16 155.44 odd 30
775.2.bl.a.76.1 16 155.89 odd 10
775.2.ck.a.299.2 32 155.137 even 60
775.2.ck.a.299.3 32 155.13 even 60
775.2.ck.a.324.2 32 155.58 even 20
775.2.ck.a.324.3 32 155.27 even 20
961.2.a.i.1.7 8 31.17 odd 30
961.2.a.j.1.7 8 31.14 even 15
961.2.c.i.439.7 16 31.9 even 15
961.2.c.i.521.7 16 31.8 even 5
961.2.c.j.439.7 16 31.22 odd 30
961.2.c.j.521.7 16 31.23 odd 10
961.2.d.n.531.4 16 31.28 even 15
961.2.d.n.628.4 16 31.7 even 15
961.2.d.o.531.4 16 31.3 odd 30
961.2.d.o.628.4 16 31.24 odd 30
961.2.d.p.374.1 16 31.12 odd 30
961.2.d.p.388.1 16 31.6 odd 6
961.2.d.q.374.1 16 31.19 even 15
961.2.d.q.388.1 16 31.25 even 3
961.2.g.j.844.2 16 31.16 even 5
961.2.g.j.846.2 16 31.20 even 15
961.2.g.k.844.2 16 31.15 odd 10
961.2.g.k.846.2 16 31.11 odd 30
961.2.g.l.448.2 16 31.4 even 5
961.2.g.l.547.2 16 31.18 even 15
961.2.g.m.235.1 16 31.5 even 3
961.2.g.m.732.1 16 31.2 even 5
961.2.g.n.338.1 16 1.1 even 1 trivial
961.2.g.n.816.1 16 31.10 even 15 inner
961.2.g.s.235.1 16 31.26 odd 6
961.2.g.s.732.1 16 31.29 odd 10
961.2.g.t.338.1 16 31.30 odd 2
961.2.g.t.816.1 16 31.21 odd 30
8649.2.a.be.1.2 8 93.14 odd 30
8649.2.a.bf.1.2 8 93.17 even 30