Properties

Label 961.2.g.j.448.2
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-3,-14,-3,-11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.2
Root \(-0.176392i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.j.547.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.380762 - 1.17187i) q^{2} +(-1.38843 + 1.54201i) q^{3} +(0.389745 + 0.283166i) q^{4} +(0.772811 - 1.33855i) q^{5} +(1.27836 + 2.21419i) q^{6} +(0.397601 - 3.78292i) q^{7} +(2.47393 - 1.79742i) q^{8} +(-0.136464 - 1.29837i) q^{9} +(-1.27434 - 1.41530i) q^{10} +(3.43632 - 1.52995i) q^{11} +(-0.977778 + 0.207833i) q^{12} +(-2.57748 - 0.547860i) q^{13} +(-4.28168 - 1.90633i) q^{14} +(0.991057 + 3.05016i) q^{15} +(-0.866611 - 2.66715i) q^{16} +(-3.44803 - 1.53516i) q^{17} +(-1.57347 - 0.334452i) q^{18} +(-5.96505 + 1.26791i) q^{19} +(0.680232 - 0.302859i) q^{20} +(5.28125 + 5.86542i) q^{21} +(-0.484473 - 4.60946i) q^{22} +(0.736082 - 0.534795i) q^{23} +(-0.663250 + 6.31040i) q^{24} +(1.30553 + 2.26124i) q^{25} +(-1.62343 + 2.81186i) q^{26} +(-2.84451 - 2.06665i) q^{27} +(1.22616 - 1.36179i) q^{28} +(2.10397 - 6.47535i) q^{29} +3.95173 q^{30} +2.66037 q^{32} +(-2.41190 + 7.42306i) q^{33} +(-3.11188 + 3.45610i) q^{34} +(-4.75635 - 3.45569i) q^{35} +(0.314468 - 0.544675i) q^{36} +(-0.907032 - 1.57103i) q^{37} +(-0.785445 + 7.47301i) q^{38} +(4.42345 - 3.21383i) q^{39} +(-0.494046 - 4.70054i) q^{40} +(0.225594 + 0.250547i) q^{41} +(8.88438 - 3.95558i) q^{42} +(3.79912 - 0.807528i) q^{43} +(1.77252 + 0.376761i) q^{44} +(-1.84339 - 0.820730i) q^{45} +(-0.346435 - 1.06622i) q^{46} +(-0.367467 - 1.13095i) q^{47} +(5.31600 + 2.36684i) q^{48} +(-7.30537 - 1.55280i) q^{49} +(3.14696 - 0.668907i) q^{50} +(7.15458 - 3.18542i) q^{51} +(-0.849425 - 0.943382i) q^{52} +(-0.245028 - 2.33128i) q^{53} +(-3.50492 + 2.54647i) q^{54} +(0.607718 - 5.78205i) q^{55} +(-5.81584 - 10.0733i) q^{56} +(6.32692 - 10.9586i) q^{57} +(-6.78713 - 4.93114i) q^{58} +(5.20505 - 5.78080i) q^{59} +(-0.477443 + 1.46942i) q^{60} +2.72343 q^{61} -4.96588 q^{63} +(2.74619 - 8.45191i) q^{64} +(-2.72524 + 3.02669i) q^{65} +(7.78047 + 5.65284i) q^{66} +(3.71059 - 6.42693i) q^{67} +(-0.909147 - 1.57469i) q^{68} +(-0.197340 + 1.87757i) q^{69} +(-5.86065 + 4.25801i) q^{70} +(0.532905 + 5.07025i) q^{71} +(-2.67131 - 2.96679i) q^{72} +(-4.92560 + 2.19302i) q^{73} +(-2.18639 + 0.464732i) q^{74} +(-5.29947 - 1.12644i) q^{75} +(-2.68388 - 1.19494i) q^{76} +(-4.42139 - 13.6076i) q^{77} +(-2.08189 - 6.40740i) q^{78} +(8.89540 + 3.96049i) q^{79} +(-4.23984 - 0.901206i) q^{80} +(10.9672 - 2.33114i) q^{81} +(0.379505 - 0.168967i) q^{82} +(5.61745 + 6.23881i) q^{83} +(0.397451 + 3.78149i) q^{84} +(-4.71957 + 3.42897i) q^{85} +(0.500247 - 4.75953i) q^{86} +(7.06383 + 12.2349i) q^{87} +(5.75127 - 9.96149i) q^{88} +(4.12243 + 2.99512i) q^{89} +(-1.66368 + 1.84770i) q^{90} +(-3.09732 + 9.53258i) q^{91} +0.438320 q^{92} -1.46523 q^{94} +(-2.91270 + 8.96437i) q^{95} +(-3.69374 + 4.10231i) q^{96} +(-8.82979 - 6.41522i) q^{97} +(-4.60129 + 7.96966i) q^{98} +(-2.45537 - 4.25283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 3 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} + 7 q^{11} + 10 q^{12} - 8 q^{13} - 21 q^{14} - 14 q^{15} - 2 q^{16} - 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.380762 1.17187i 0.269240 0.828634i −0.721447 0.692470i \(-0.756523\pi\)
0.990686 0.136164i \(-0.0434774\pi\)
\(3\) −1.38843 + 1.54201i −0.801610 + 0.890278i −0.995881 0.0906699i \(-0.971099\pi\)
0.194271 + 0.980948i \(0.437766\pi\)
\(4\) 0.389745 + 0.283166i 0.194873 + 0.141583i
\(5\) 0.772811 1.33855i 0.345612 0.598617i −0.639853 0.768497i \(-0.721005\pi\)
0.985465 + 0.169880i \(0.0543381\pi\)
\(6\) 1.27836 + 2.21419i 0.521890 + 0.903939i
\(7\) 0.397601 3.78292i 0.150279 1.42981i −0.616225 0.787570i \(-0.711339\pi\)
0.766504 0.642239i \(-0.221995\pi\)
\(8\) 2.47393 1.79742i 0.874666 0.635482i
\(9\) −0.136464 1.29837i −0.0454880 0.432789i
\(10\) −1.27434 1.41530i −0.402982 0.447557i
\(11\) 3.43632 1.52995i 1.03609 0.461297i 0.183029 0.983108i \(-0.441410\pi\)
0.853062 + 0.521810i \(0.174743\pi\)
\(12\) −0.977778 + 0.207833i −0.282260 + 0.0599963i
\(13\) −2.57748 0.547860i −0.714865 0.151949i −0.163899 0.986477i \(-0.552407\pi\)
−0.550966 + 0.834528i \(0.685740\pi\)
\(14\) −4.28168 1.90633i −1.14433 0.509488i
\(15\) 0.991057 + 3.05016i 0.255890 + 0.787548i
\(16\) −0.866611 2.66715i −0.216653 0.666789i
\(17\) −3.44803 1.53516i −0.836270 0.372332i −0.0565041 0.998402i \(-0.517995\pi\)
−0.779766 + 0.626071i \(0.784662\pi\)
\(18\) −1.57347 0.334452i −0.370871 0.0788311i
\(19\) −5.96505 + 1.26791i −1.36848 + 0.290879i −0.832814 0.553553i \(-0.813272\pi\)
−0.535663 + 0.844432i \(0.679938\pi\)
\(20\) 0.680232 0.302859i 0.152104 0.0677212i
\(21\) 5.28125 + 5.86542i 1.15246 + 1.27994i
\(22\) −0.484473 4.60946i −0.103290 0.982739i
\(23\) 0.736082 0.534795i 0.153484 0.111512i −0.508393 0.861125i \(-0.669760\pi\)
0.661877 + 0.749613i \(0.269760\pi\)
\(24\) −0.663250 + 6.31040i −0.135385 + 1.28811i
\(25\) 1.30553 + 2.26124i 0.261105 + 0.452247i
\(26\) −1.62343 + 2.81186i −0.318380 + 0.551450i
\(27\) −2.84451 2.06665i −0.547425 0.397728i
\(28\) 1.22616 1.36179i 0.231722 0.257354i
\(29\) 2.10397 6.47535i 0.390697 1.20244i −0.541565 0.840659i \(-0.682168\pi\)
0.932262 0.361784i \(-0.117832\pi\)
\(30\) 3.95173 0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) −2.41190 + 7.42306i −0.419858 + 1.29219i
\(34\) −3.11188 + 3.45610i −0.533684 + 0.592716i
\(35\) −4.75635 3.45569i −0.803970 0.584119i
\(36\) 0.314468 0.544675i 0.0524114 0.0907792i
\(37\) −0.907032 1.57103i −0.149115 0.258275i 0.781786 0.623547i \(-0.214309\pi\)
−0.930901 + 0.365272i \(0.880976\pi\)
\(38\) −0.785445 + 7.47301i −0.127416 + 1.21228i
\(39\) 4.42345 3.21383i 0.708320 0.514624i
\(40\) −0.494046 4.70054i −0.0781156 0.743220i
\(41\) 0.225594 + 0.250547i 0.0352318 + 0.0391289i 0.760503 0.649334i \(-0.224952\pi\)
−0.725271 + 0.688463i \(0.758286\pi\)
\(42\) 8.88438 3.95558i 1.37089 0.610360i
\(43\) 3.79912 0.807528i 0.579360 0.123147i 0.0910953 0.995842i \(-0.470963\pi\)
0.488265 + 0.872695i \(0.337630\pi\)
\(44\) 1.77252 + 0.376761i 0.267218 + 0.0567989i
\(45\) −1.84339 0.820730i −0.274796 0.122347i
\(46\) −0.346435 1.06622i −0.0510791 0.157205i
\(47\) −0.367467 1.13095i −0.0536005 0.164965i 0.920673 0.390335i \(-0.127641\pi\)
−0.974273 + 0.225370i \(0.927641\pi\)
\(48\) 5.31600 + 2.36684i 0.767298 + 0.341623i
\(49\) −7.30537 1.55280i −1.04362 0.221829i
\(50\) 3.14696 0.668907i 0.445047 0.0945977i
\(51\) 7.15458 3.18542i 1.00184 0.446048i
\(52\) −0.849425 0.943382i −0.117794 0.130824i
\(53\) −0.245028 2.33128i −0.0336572 0.320227i −0.998377 0.0569483i \(-0.981863\pi\)
0.964720 0.263278i \(-0.0848037\pi\)
\(54\) −3.50492 + 2.54647i −0.476959 + 0.346531i
\(55\) 0.607718 5.78205i 0.0819446 0.779651i
\(56\) −5.81584 10.0733i −0.777175 1.34611i
\(57\) 6.32692 10.9586i 0.838022 1.45150i
\(58\) −6.78713 4.93114i −0.891194 0.647490i
\(59\) 5.20505 5.78080i 0.677640 0.752596i −0.302011 0.953305i \(-0.597658\pi\)
0.979651 + 0.200709i \(0.0643245\pi\)
\(60\) −0.477443 + 1.46942i −0.0616377 + 0.189701i
\(61\) 2.72343 0.348700 0.174350 0.984684i \(-0.444218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) 2.74619 8.45191i 0.343274 1.05649i
\(65\) −2.72524 + 3.02669i −0.338025 + 0.375415i
\(66\) 7.78047 + 5.65284i 0.957709 + 0.695817i
\(67\) 3.71059 6.42693i 0.453321 0.785175i −0.545269 0.838261i \(-0.683573\pi\)
0.998590 + 0.0530864i \(0.0169059\pi\)
\(68\) −0.909147 1.57469i −0.110250 0.190959i
\(69\) −0.197340 + 1.87757i −0.0237570 + 0.226033i
\(70\) −5.86065 + 4.25801i −0.700481 + 0.508929i
\(71\) 0.532905 + 5.07025i 0.0632442 + 0.601728i 0.979543 + 0.201234i \(0.0644950\pi\)
−0.916299 + 0.400495i \(0.868838\pi\)
\(72\) −2.67131 2.96679i −0.314817 0.349640i
\(73\) −4.92560 + 2.19302i −0.576498 + 0.256674i −0.674208 0.738541i \(-0.735515\pi\)
0.0977099 + 0.995215i \(0.468848\pi\)
\(74\) −2.18639 + 0.464732i −0.254163 + 0.0540240i
\(75\) −5.29947 1.12644i −0.611930 0.130070i
\(76\) −2.68388 1.19494i −0.307862 0.137069i
\(77\) −4.42139 13.6076i −0.503865 1.55074i
\(78\) −2.08189 6.40740i −0.235728 0.725495i
\(79\) 8.89540 + 3.96049i 1.00081 + 0.445590i 0.840695 0.541509i \(-0.182147\pi\)
0.160115 + 0.987098i \(0.448813\pi\)
\(80\) −4.23984 0.901206i −0.474029 0.100758i
\(81\) 10.9672 2.33114i 1.21857 0.259016i
\(82\) 0.379505 0.168967i 0.0419094 0.0186592i
\(83\) 5.61745 + 6.23881i 0.616595 + 0.684798i 0.967863 0.251477i \(-0.0809162\pi\)
−0.351268 + 0.936275i \(0.614249\pi\)
\(84\) 0.397451 + 3.78149i 0.0433654 + 0.412595i
\(85\) −4.71957 + 3.42897i −0.511909 + 0.371924i
\(86\) 0.500247 4.75953i 0.0539430 0.513234i
\(87\) 7.06383 + 12.2349i 0.757322 + 1.31172i
\(88\) 5.75127 9.96149i 0.613087 1.06190i
\(89\) 4.12243 + 2.99512i 0.436976 + 0.317482i 0.784432 0.620214i \(-0.212954\pi\)
−0.347456 + 0.937696i \(0.612954\pi\)
\(90\) −1.66368 + 1.84770i −0.175367 + 0.194765i
\(91\) −3.09732 + 9.53258i −0.324688 + 0.999285i
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) −2.91270 + 8.96437i −0.298837 + 0.919725i
\(96\) −3.69374 + 4.10231i −0.376991 + 0.418690i
\(97\) −8.82979 6.41522i −0.896530 0.651367i 0.0410427 0.999157i \(-0.486932\pi\)
−0.937572 + 0.347791i \(0.886932\pi\)
\(98\) −4.60129 + 7.96966i −0.464800 + 0.805057i
\(99\) −2.45537 4.25283i −0.246774 0.427426i
\(100\) −0.131484 + 1.25099i −0.0131484 + 0.125099i
\(101\) 0.322577 0.234366i 0.0320976 0.0233203i −0.571621 0.820518i \(-0.693685\pi\)
0.603718 + 0.797198i \(0.293685\pi\)
\(102\) −1.00869 9.59709i −0.0998757 0.950253i
\(103\) 2.19261 + 2.43514i 0.216044 + 0.239941i 0.841419 0.540383i \(-0.181721\pi\)
−0.625375 + 0.780324i \(0.715054\pi\)
\(104\) −7.36124 + 3.27743i −0.721829 + 0.321379i
\(105\) 11.9326 2.53634i 1.16450 0.247522i
\(106\) −2.82525 0.600525i −0.274412 0.0583282i
\(107\) 2.88392 + 1.28401i 0.278799 + 0.124129i 0.541373 0.840782i \(-0.317905\pi\)
−0.262574 + 0.964912i \(0.584571\pi\)
\(108\) −0.523425 1.61094i −0.0503666 0.155013i
\(109\) 2.14959 + 6.61576i 0.205893 + 0.633675i 0.999676 + 0.0254724i \(0.00810899\pi\)
−0.793782 + 0.608202i \(0.791891\pi\)
\(110\) −6.54439 2.91375i −0.623983 0.277815i
\(111\) 3.68188 + 0.782608i 0.349469 + 0.0742819i
\(112\) −10.4342 + 2.21786i −0.985939 + 0.209568i
\(113\) −13.9286 + 6.20143i −1.31030 + 0.583381i −0.938611 0.344978i \(-0.887886\pi\)
−0.371685 + 0.928359i \(0.621220\pi\)
\(114\) −10.4329 11.5869i −0.977130 1.08521i
\(115\) −0.146996 1.39858i −0.0137075 0.130418i
\(116\) 2.65362 1.92796i 0.246382 0.179007i
\(117\) −0.359591 + 3.42128i −0.0332442 + 0.316298i
\(118\) −4.79243 8.30073i −0.441179 0.764144i
\(119\) −7.17834 + 12.4332i −0.658037 + 1.13975i
\(120\) 7.93421 + 5.76454i 0.724291 + 0.526228i
\(121\) 2.10714 2.34021i 0.191558 0.212747i
\(122\) 1.03698 3.19150i 0.0938838 0.288945i
\(123\) −0.699567 −0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) −1.89082 + 5.81935i −0.168448 + 0.518429i
\(127\) 13.5341 15.0311i 1.20096 1.33380i 0.272589 0.962131i \(-0.412120\pi\)
0.928367 0.371666i \(-0.121213\pi\)
\(128\) −4.55428 3.30888i −0.402545 0.292466i
\(129\) −4.02960 + 6.97946i −0.354786 + 0.614508i
\(130\) 2.50920 + 4.34607i 0.220072 + 0.381175i
\(131\) −1.32242 + 12.5820i −0.115540 + 1.09929i 0.771062 + 0.636760i \(0.219726\pi\)
−0.886602 + 0.462532i \(0.846941\pi\)
\(132\) −3.04199 + 2.21013i −0.264771 + 0.192367i
\(133\) 2.42470 + 23.0694i 0.210248 + 2.00037i
\(134\) −6.11865 6.79545i −0.528571 0.587037i
\(135\) −4.96458 + 2.21038i −0.427283 + 0.190239i
\(136\) −11.2895 + 2.39966i −0.968067 + 0.205769i
\(137\) −9.66215 2.05375i −0.825494 0.175464i −0.224252 0.974531i \(-0.571994\pi\)
−0.601242 + 0.799067i \(0.705327\pi\)
\(138\) 2.12512 + 0.946163i 0.180902 + 0.0805427i
\(139\) 4.78945 + 14.7404i 0.406236 + 1.25026i 0.919859 + 0.392249i \(0.128303\pi\)
−0.513623 + 0.858016i \(0.671697\pi\)
\(140\) −0.875229 2.69368i −0.0739704 0.227657i
\(141\) 2.25413 + 1.00360i 0.189832 + 0.0845186i
\(142\) 6.14456 + 1.30607i 0.515640 + 0.109603i
\(143\) −9.69526 + 2.06079i −0.810758 + 0.172332i
\(144\) −3.34469 + 1.48915i −0.278724 + 0.124096i
\(145\) −7.04160 7.82049i −0.584773 0.649457i
\(146\) 0.694441 + 6.60716i 0.0574723 + 0.546813i
\(147\) 12.5374 9.10897i 1.03407 0.751295i
\(148\) 0.0913504 0.869141i 0.00750895 0.0714429i
\(149\) 7.62162 + 13.2010i 0.624388 + 1.08147i 0.988659 + 0.150178i \(0.0479848\pi\)
−0.364271 + 0.931293i \(0.618682\pi\)
\(150\) −3.33787 + 5.78136i −0.272536 + 0.472046i
\(151\) −0.211823 0.153899i −0.0172379 0.0125241i 0.579133 0.815233i \(-0.303391\pi\)
−0.596371 + 0.802709i \(0.703391\pi\)
\(152\) −12.4782 + 13.8584i −1.01211 + 1.12406i
\(153\) −1.52267 + 4.68631i −0.123101 + 0.378866i
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) 4.92157 15.1470i 0.392784 1.20886i −0.537890 0.843015i \(-0.680778\pi\)
0.930674 0.365850i \(-0.119222\pi\)
\(158\) 8.02819 8.91621i 0.638688 0.709335i
\(159\) 3.93506 + 2.85899i 0.312071 + 0.226733i
\(160\) 2.05597 3.56104i 0.162538 0.281525i
\(161\) −1.73042 2.99717i −0.136376 0.236210i
\(162\) 1.44410 13.7397i 0.113459 1.07949i
\(163\) 0.107741 0.0782785i 0.00843894 0.00613125i −0.583558 0.812072i \(-0.698340\pi\)
0.591997 + 0.805940i \(0.298340\pi\)
\(164\) 0.0169775 + 0.161530i 0.00132572 + 0.0126134i
\(165\) 8.07218 + 8.96507i 0.628419 + 0.697930i
\(166\) 9.44996 4.20739i 0.733459 0.326557i
\(167\) −3.86249 + 0.820997i −0.298888 + 0.0635307i −0.354915 0.934899i \(-0.615490\pi\)
0.0560266 + 0.998429i \(0.482157\pi\)
\(168\) 23.6080 + 5.01804i 1.82140 + 0.387150i
\(169\) −5.53283 2.46338i −0.425603 0.189491i
\(170\) 2.22125 + 6.83632i 0.170362 + 0.524322i
\(171\) 2.46023 + 7.57181i 0.188139 + 0.579031i
\(172\) 1.70935 + 0.761053i 0.130337 + 0.0580298i
\(173\) 14.1410 + 3.00577i 1.07512 + 0.228524i 0.711260 0.702929i \(-0.248125\pi\)
0.363862 + 0.931453i \(0.381458\pi\)
\(174\) 17.0273 3.61926i 1.29084 0.274376i
\(175\) 9.07316 4.03963i 0.685866 0.305367i
\(176\) −7.05857 7.83933i −0.532060 0.590912i
\(177\) 1.68718 + 16.0525i 0.126816 + 1.20658i
\(178\) 5.07954 3.69050i 0.380727 0.276615i
\(179\) −1.85223 + 17.6228i −0.138442 + 1.31719i 0.675981 + 0.736919i \(0.263720\pi\)
−0.814423 + 0.580272i \(0.802946\pi\)
\(180\) −0.486049 0.841862i −0.0362280 0.0627487i
\(181\) −6.02958 + 10.4435i −0.448175 + 0.776262i −0.998267 0.0588418i \(-0.981259\pi\)
0.550092 + 0.835104i \(0.314593\pi\)
\(182\) 9.99155 + 7.25929i 0.740623 + 0.538094i
\(183\) −3.78129 + 4.19955i −0.279521 + 0.310440i
\(184\) 0.859766 2.64609i 0.0633828 0.195072i
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) 0.177028 0.544835i 0.0129111 0.0397362i
\(189\) −8.94897 + 9.93884i −0.650942 + 0.722944i
\(190\) 9.39599 + 6.82658i 0.681656 + 0.495252i
\(191\) −2.53576 + 4.39207i −0.183481 + 0.317799i −0.943064 0.332612i \(-0.892070\pi\)
0.759583 + 0.650411i \(0.225403\pi\)
\(192\) 9.22001 + 15.9695i 0.665397 + 1.15250i
\(193\) 2.09493 19.9320i 0.150797 1.43473i −0.613411 0.789764i \(-0.710203\pi\)
0.764208 0.644970i \(-0.223130\pi\)
\(194\) −10.8798 + 7.90466i −0.781126 + 0.567521i
\(195\) −0.883369 8.40469i −0.0632593 0.601872i
\(196\) −2.40753 2.67383i −0.171966 0.190988i
\(197\) −19.8316 + 8.82959i −1.41294 + 0.629082i −0.964344 0.264652i \(-0.914743\pi\)
−0.448597 + 0.893734i \(0.648076\pi\)
\(198\) −5.91866 + 1.25805i −0.420621 + 0.0894057i
\(199\) 14.8341 + 3.15309i 1.05156 + 0.223516i 0.701102 0.713061i \(-0.252692\pi\)
0.350460 + 0.936578i \(0.386025\pi\)
\(200\) 7.29416 + 3.24757i 0.515775 + 0.229638i
\(201\) 4.75848 + 14.6451i 0.335637 + 1.03299i
\(202\) −0.151820 0.467255i −0.0106820 0.0328759i
\(203\) −23.6592 10.5338i −1.66055 0.739325i
\(204\) 3.69047 + 0.784433i 0.258384 + 0.0549213i
\(205\) 0.509711 0.108342i 0.0355998 0.00756697i
\(206\) 3.68852 1.64223i 0.256991 0.114420i
\(207\) −0.794809 0.882725i −0.0552431 0.0613536i
\(208\) 0.772445 + 7.34932i 0.0535594 + 0.509584i
\(209\) −18.5580 + 13.4832i −1.28368 + 0.932651i
\(210\) 1.57121 14.9491i 0.108424 1.03159i
\(211\) −3.15220 5.45978i −0.217007 0.375867i 0.736885 0.676018i \(-0.236296\pi\)
−0.953891 + 0.300152i \(0.902963\pi\)
\(212\) 0.564643 0.977990i 0.0387798 0.0671687i
\(213\) −8.55826 6.21794i −0.586403 0.426046i
\(214\) 2.60277 2.89067i 0.177922 0.197602i
\(215\) 1.85509 5.70937i 0.126516 0.389376i
\(216\) −10.7517 −0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) 3.45720 10.6402i 0.233616 0.718996i
\(220\) 1.87414 2.08144i 0.126354 0.140331i
\(221\) 8.04618 + 5.84589i 0.541245 + 0.393237i
\(222\) 2.31903 4.01668i 0.155643 0.269582i
\(223\) 3.69455 + 6.39915i 0.247406 + 0.428519i 0.962805 0.270196i \(-0.0870887\pi\)
−0.715400 + 0.698716i \(0.753755\pi\)
\(224\) 1.05777 10.0640i 0.0706750 0.672428i
\(225\) 2.75776 2.00363i 0.183851 0.133575i
\(226\) 1.96374 + 18.6838i 0.130626 + 1.24282i
\(227\) 12.8739 + 14.2979i 0.854473 + 0.948988i 0.999180 0.0404864i \(-0.0128908\pi\)
−0.144707 + 0.989474i \(0.546224\pi\)
\(228\) 5.56898 2.47947i 0.368815 0.164207i
\(229\) −5.95409 + 1.26558i −0.393457 + 0.0836319i −0.400392 0.916344i \(-0.631126\pi\)
0.00693463 + 0.999976i \(0.497793\pi\)
\(230\) −1.69491 0.360265i −0.111759 0.0237552i
\(231\) 27.1219 + 12.0754i 1.78449 + 0.794505i
\(232\) −6.43383 19.8013i −0.422401 1.30002i
\(233\) 5.41646 + 16.6702i 0.354844 + 1.09210i 0.956100 + 0.293042i \(0.0946675\pi\)
−0.601255 + 0.799057i \(0.705333\pi\)
\(234\) 3.87236 + 1.72409i 0.253144 + 0.112707i
\(235\) −1.79781 0.382136i −0.117276 0.0249278i
\(236\) 3.66557 0.779142i 0.238608 0.0507178i
\(237\) −18.4577 + 8.21791i −1.19896 + 0.533811i
\(238\) 11.8369 + 13.1462i 0.767269 + 0.852139i
\(239\) −2.91760 27.7591i −0.188724 1.79559i −0.522192 0.852828i \(-0.674886\pi\)
0.333468 0.942761i \(-0.391781\pi\)
\(240\) 7.27639 5.28660i 0.469689 0.341249i
\(241\) 2.37799 22.6251i 0.153180 1.45741i −0.600213 0.799841i \(-0.704917\pi\)
0.753393 0.657571i \(-0.228416\pi\)
\(242\) −1.94010 3.36034i −0.124714 0.216011i
\(243\) −6.35849 + 11.0132i −0.407897 + 0.706499i
\(244\) 1.06144 + 0.771185i 0.0679520 + 0.0493701i
\(245\) −7.72418 + 8.57857i −0.493480 + 0.548065i
\(246\) −0.266369 + 0.819798i −0.0169830 + 0.0522684i
\(247\) 16.0694 1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) 4.47921 13.7856i 0.283290 0.871878i
\(251\) 10.8630 12.0646i 0.685666 0.761510i −0.295359 0.955386i \(-0.595439\pi\)
0.981026 + 0.193876i \(0.0621061\pi\)
\(252\) −1.93543 1.40617i −0.121921 0.0885805i
\(253\) 1.71121 2.96390i 0.107583 0.186339i
\(254\) −12.4612 21.5834i −0.781884 1.35426i
\(255\) 1.26530 12.0385i 0.0792359 0.753879i
\(256\) 8.76759 6.37002i 0.547974 0.398126i
\(257\) −2.44096 23.2242i −0.152263 1.44868i −0.757602 0.652717i \(-0.773629\pi\)
0.605339 0.795968i \(-0.293037\pi\)
\(258\) 6.64468 + 7.37966i 0.413679 + 0.459438i
\(259\) −6.30370 + 2.80659i −0.391693 + 0.174393i
\(260\) −1.91921 + 0.407940i −0.119024 + 0.0252994i
\(261\) −8.69451 1.84808i −0.538177 0.114393i
\(262\) 14.2409 + 6.34044i 0.879803 + 0.391714i
\(263\) 3.21203 + 9.88562i 0.198062 + 0.609574i 0.999927 + 0.0120680i \(0.00384144\pi\)
−0.801865 + 0.597506i \(0.796159\pi\)
\(264\) 7.37545 + 22.6993i 0.453928 + 1.39705i
\(265\) −3.30990 1.47366i −0.203325 0.0905263i
\(266\) 27.9575 + 5.94255i 1.71419 + 0.364361i
\(267\) −10.3422 + 2.19830i −0.632932 + 0.134534i
\(268\) 3.26608 1.45415i 0.199507 0.0888264i
\(269\) 2.95625 + 3.28325i 0.180246 + 0.200183i 0.826496 0.562942i \(-0.190331\pi\)
−0.646251 + 0.763125i \(0.723664\pi\)
\(270\) 0.699937 + 6.65945i 0.0425968 + 0.405281i
\(271\) 4.97777 3.61656i 0.302378 0.219691i −0.426241 0.904610i \(-0.640162\pi\)
0.728619 + 0.684919i \(0.240162\pi\)
\(272\) −1.10641 + 10.5268i −0.0670862 + 0.638282i
\(273\) −10.3989 18.0114i −0.629369 1.09010i
\(274\) −6.08571 + 10.5408i −0.367651 + 0.636790i
\(275\) 7.94578 + 5.77295i 0.479149 + 0.348122i
\(276\) −0.608577 + 0.675893i −0.0366320 + 0.0406840i
\(277\) −6.81302 + 20.9683i −0.409355 + 1.25987i 0.507849 + 0.861446i \(0.330441\pi\)
−0.917204 + 0.398419i \(0.869559\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) −9.50955 + 29.2674i −0.567292 + 1.74595i 0.0937474 + 0.995596i \(0.470115\pi\)
−0.661040 + 0.750351i \(0.729885\pi\)
\(282\) 2.03437 2.25940i 0.121145 0.134545i
\(283\) 17.2687 + 12.5464i 1.02652 + 0.745807i 0.967608 0.252456i \(-0.0812383\pi\)
0.0589075 + 0.998263i \(0.481238\pi\)
\(284\) −1.22803 + 2.12701i −0.0728701 + 0.126215i
\(285\) −9.77904 16.9378i −0.579260 1.00331i
\(286\) −1.27662 + 12.1462i −0.0754880 + 0.718220i
\(287\) 1.03750 0.753786i 0.0612415 0.0444946i
\(288\) −0.363045 3.45414i −0.0213926 0.203537i
\(289\) −1.84303 2.04689i −0.108413 0.120405i
\(290\) −11.8457 + 5.27406i −0.695606 + 0.309704i
\(291\) 22.1519 4.70852i 1.29856 0.276018i
\(292\) −2.54072 0.540047i −0.148684 0.0316038i
\(293\) −1.64349 0.731730i −0.0960139 0.0427481i 0.358168 0.933657i \(-0.383402\pi\)
−0.454182 + 0.890909i \(0.650068\pi\)
\(294\) −5.90071 18.1605i −0.344136 1.05914i
\(295\) −3.71535 11.4347i −0.216316 0.665753i
\(296\) −5.06772 2.25629i −0.294555 0.131144i
\(297\) −12.9365 2.74974i −0.750653 0.159556i
\(298\) 18.3719 3.90506i 1.06425 0.226214i
\(299\) −2.19023 + 0.975153i −0.126664 + 0.0563946i
\(300\) −1.74647 1.93966i −0.100833 0.111986i
\(301\) −1.54428 14.6928i −0.0890108 0.846882i
\(302\) −0.261003 + 0.189630i −0.0150190 + 0.0109120i
\(303\) −0.0864815 + 0.822816i −0.00496823 + 0.0472696i
\(304\) 8.55109 + 14.8109i 0.490439 + 0.849465i
\(305\) 2.10470 3.64545i 0.120515 0.208738i
\(306\) 4.91195 + 3.56874i 0.280797 + 0.204011i
\(307\) 17.9122 19.8935i 1.02230 1.13538i 0.0315799 0.999501i \(-0.489946\pi\)
0.990725 0.135883i \(-0.0433872\pi\)
\(308\) 2.13001 6.55551i 0.121369 0.373535i
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 5.16673 15.9016i 0.292509 0.900249i
\(313\) 7.58983 8.42936i 0.429003 0.476456i −0.489425 0.872046i \(-0.662793\pi\)
0.918427 + 0.395590i \(0.129460\pi\)
\(314\) −15.8763 11.5348i −0.895953 0.650948i
\(315\) −3.83769 + 6.64708i −0.216229 + 0.374520i
\(316\) 2.34546 + 4.06246i 0.131943 + 0.228531i
\(317\) −2.70534 + 25.7396i −0.151947 + 1.44568i 0.607092 + 0.794632i \(0.292336\pi\)
−0.759038 + 0.651046i \(0.774331\pi\)
\(318\) 4.84867 3.52277i 0.271900 0.197547i
\(319\) −2.67704 25.4704i −0.149886 1.42607i
\(320\) −9.19100 10.2076i −0.513793 0.570624i
\(321\) −5.98407 + 2.66428i −0.333998 + 0.148706i
\(322\) −4.17116 + 0.886608i −0.232450 + 0.0494087i
\(323\) 22.5141 + 4.78553i 1.25272 + 0.266274i
\(324\) 4.93450 + 2.19698i 0.274139 + 0.122055i
\(325\) −2.12612 6.54354i −0.117936 0.362970i
\(326\) −0.0507081 0.156064i −0.00280846 0.00864356i
\(327\) −13.1861 5.87083i −0.729193 0.324657i
\(328\) 1.00844 + 0.214351i 0.0556818 + 0.0118355i
\(329\) −4.42439 + 0.940432i −0.243924 + 0.0518477i
\(330\) 13.5794 6.04595i 0.747523 0.332819i
\(331\) −0.512412 0.569091i −0.0281647 0.0312801i 0.728898 0.684622i \(-0.240033\pi\)
−0.757063 + 0.653342i \(0.773366\pi\)
\(332\) 0.422752 + 4.02222i 0.0232015 + 0.220748i
\(333\) −1.91599 + 1.39205i −0.104996 + 0.0762839i
\(334\) −0.508591 + 4.83892i −0.0278289 + 0.264774i
\(335\) −5.73517 9.93361i −0.313346 0.542731i
\(336\) 11.0672 19.1689i 0.603765 1.04575i
\(337\) 1.93706 + 1.40736i 0.105519 + 0.0766637i 0.639293 0.768963i \(-0.279227\pi\)
−0.533775 + 0.845627i \(0.679227\pi\)
\(338\) −4.99344 + 5.54578i −0.271607 + 0.301650i
\(339\) 9.77628 30.0883i 0.530974 1.63417i
\(340\) −2.81040 −0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) −0.550776 + 1.69511i −0.0297391 + 0.0915276i
\(344\) 7.94729 8.82636i 0.428489 0.475886i
\(345\) 2.36071 + 1.71516i 0.127096 + 0.0923408i
\(346\) 8.90672 15.4269i 0.478828 0.829355i
\(347\) 2.82890 + 4.89980i 0.151863 + 0.263035i 0.931912 0.362683i \(-0.118139\pi\)
−0.780049 + 0.625718i \(0.784806\pi\)
\(348\) −0.711423 + 6.76873i −0.0381363 + 0.362842i
\(349\) −23.5162 + 17.0855i −1.25879 + 0.914566i −0.998698 0.0510167i \(-0.983754\pi\)
−0.260095 + 0.965583i \(0.583754\pi\)
\(350\) −1.27919 12.1707i −0.0683754 0.650549i
\(351\) 6.19942 + 6.88516i 0.330901 + 0.367502i
\(352\) 9.14190 4.07024i 0.487265 0.216944i
\(353\) −18.8540 + 4.00754i −1.00350 + 0.213300i −0.680223 0.733006i \(-0.738117\pi\)
−0.323274 + 0.946305i \(0.604784\pi\)
\(354\) 19.4537 + 4.13502i 1.03395 + 0.219774i
\(355\) 7.19861 + 3.20503i 0.382063 + 0.170105i
\(356\) 0.758579 + 2.33467i 0.0402046 + 0.123737i
\(357\) −9.20553 28.3317i −0.487209 1.49947i
\(358\) 19.9463 + 8.88067i 1.05420 + 0.469358i
\(359\) −10.1182 2.15069i −0.534019 0.113509i −0.0669943 0.997753i \(-0.521341\pi\)
−0.467025 + 0.884244i \(0.654674\pi\)
\(360\) −6.03561 + 1.28291i −0.318105 + 0.0676152i
\(361\) 16.6169 7.39831i 0.874573 0.389385i
\(362\) 9.94259 + 11.0424i 0.522571 + 0.580374i
\(363\) 0.683013 + 6.49844i 0.0358489 + 0.341079i
\(364\) −3.90647 + 2.83822i −0.204755 + 0.148763i
\(365\) −0.871099 + 8.28795i −0.0455954 + 0.433811i
\(366\) 3.48154 + 6.03020i 0.181983 + 0.315203i
\(367\) −0.0682819 + 0.118268i −0.00356428 + 0.00617352i −0.867802 0.496910i \(-0.834468\pi\)
0.864238 + 0.503084i \(0.167801\pi\)
\(368\) −2.06428 1.49978i −0.107608 0.0781817i
\(369\) 0.294517 0.327095i 0.0153320 0.0170279i
\(370\) −1.06760 + 3.28574i −0.0555020 + 0.170818i
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) −5.40578 + 16.6373i −0.279526 + 0.860294i
\(375\) −16.3332 + 18.1399i −0.843444 + 0.936739i
\(376\) −2.94187 2.13739i −0.151715 0.110228i
\(377\) −8.97053 + 15.5374i −0.462006 + 0.800218i
\(378\) 8.23955 + 14.2713i 0.423797 + 0.734038i
\(379\) 0.481681 4.58289i 0.0247423 0.235407i −0.975161 0.221497i \(-0.928906\pi\)
0.999903 0.0139098i \(-0.00442778\pi\)
\(380\) −3.67362 + 2.66904i −0.188453 + 0.136919i
\(381\) 4.38698 + 41.7393i 0.224752 + 2.13837i
\(382\) 4.18139 + 4.64390i 0.213938 + 0.237603i
\(383\) 29.5028 13.1355i 1.50752 0.671191i 0.523955 0.851746i \(-0.324456\pi\)
0.983565 + 0.180555i \(0.0577893\pi\)
\(384\) 11.4256 2.42859i 0.583061 0.123933i
\(385\) −21.6314 4.59790i −1.10244 0.234330i
\(386\) −22.5599 10.0443i −1.14827 0.511242i
\(387\) −1.56691 4.82246i −0.0796506 0.245139i
\(388\) −1.62479 5.00060i −0.0824864 0.253867i
\(389\) 32.2219 + 14.3461i 1.63372 + 0.727377i 0.998971 0.0453451i \(-0.0144387\pi\)
0.634744 + 0.772722i \(0.281105\pi\)
\(390\) −10.1855 2.16500i −0.515764 0.109629i
\(391\) −3.35903 + 0.713984i −0.169873 + 0.0361077i
\(392\) −20.8640 + 9.28925i −1.05379 + 0.469178i
\(393\) −17.5654 19.5084i −0.886058 0.984067i
\(394\) 2.79597 + 26.6019i 0.140859 + 1.34018i
\(395\) 12.1758 8.84621i 0.612629 0.445101i
\(396\) 0.247289 2.35280i 0.0124268 0.118233i
\(397\) 2.01701 + 3.49356i 0.101231 + 0.175337i 0.912192 0.409763i \(-0.134389\pi\)
−0.810961 + 0.585100i \(0.801055\pi\)
\(398\) 9.34326 16.1830i 0.468335 0.811181i
\(399\) −38.9398 28.2914i −1.94943 1.41634i
\(400\) 4.89968 5.44165i 0.244984 0.272083i
\(401\) −7.68933 + 23.6653i −0.383987 + 1.18179i 0.553225 + 0.833032i \(0.313397\pi\)
−0.937212 + 0.348759i \(0.886603\pi\)
\(402\) 18.9739 0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) 5.35520 16.4816i 0.266102 0.818978i
\(406\) −21.3527 + 23.7146i −1.05972 + 1.17693i
\(407\) −5.52044 4.01084i −0.273638 0.198810i
\(408\) 11.9744 20.7403i 0.592821 1.02680i
\(409\) 1.75361 + 3.03734i 0.0867105 + 0.150187i 0.906119 0.423023i \(-0.139031\pi\)
−0.819408 + 0.573210i \(0.805698\pi\)
\(410\) 0.0671160 0.638566i 0.00331462 0.0315365i
\(411\) 16.5821 12.0476i 0.817936 0.594265i
\(412\) 0.165009 + 1.56996i 0.00812942 + 0.0773462i
\(413\) −19.7988 21.9888i −0.974234 1.08200i
\(414\) −1.33707 + 0.595301i −0.0657133 + 0.0292575i
\(415\) 12.6922 2.69781i 0.623034 0.132430i
\(416\) −6.85706 1.45751i −0.336195 0.0714604i
\(417\) −29.3796 13.0806i −1.43873 0.640562i
\(418\) 8.73429 + 26.8814i 0.427208 + 1.31481i
\(419\) 1.27325 + 3.91865i 0.0622022 + 0.191439i 0.977328 0.211729i \(-0.0679093\pi\)
−0.915126 + 0.403167i \(0.867909\pi\)
\(420\) 5.36886 + 2.39037i 0.261974 + 0.116638i
\(421\) −26.9982 5.73865i −1.31581 0.279685i −0.504052 0.863673i \(-0.668158\pi\)
−0.811762 + 0.583989i \(0.801491\pi\)
\(422\) −7.59836 + 1.61508i −0.369883 + 0.0786210i
\(423\) −1.41824 + 0.631441i −0.0689571 + 0.0307017i
\(424\) −4.79647 5.32702i −0.232937 0.258703i
\(425\) −1.03013 9.80100i −0.0499685 0.475419i
\(426\) −10.5453 + 7.66158i −0.510919 + 0.371205i
\(427\) 1.08284 10.3025i 0.0524023 0.498574i
\(428\) 0.760408 + 1.31706i 0.0367557 + 0.0636627i
\(429\) 10.2834 17.8114i 0.496488 0.859943i
\(430\) −5.98427 4.34783i −0.288587 0.209671i
\(431\) −9.95261 + 11.0535i −0.479400 + 0.532428i −0.933526 0.358510i \(-0.883285\pi\)
0.454126 + 0.890938i \(0.349952\pi\)
\(432\) −3.04701 + 9.37772i −0.146599 + 0.451186i
\(433\) −9.26195 −0.445101 −0.222550 0.974921i \(-0.571438\pi\)
−0.222550 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) −1.03557 + 3.18715i −0.0495947 + 0.152637i
\(437\) −3.71269 + 4.12336i −0.177602 + 0.197247i
\(438\) −11.1525 8.10275i −0.532886 0.387164i
\(439\) −8.85909 + 15.3444i −0.422821 + 0.732348i −0.996214 0.0869324i \(-0.972294\pi\)
0.573393 + 0.819281i \(0.305627\pi\)
\(440\) −8.88929 15.3967i −0.423780 0.734009i
\(441\) −1.01919 + 9.69696i −0.0485329 + 0.461760i
\(442\) 9.91428 7.20314i 0.471574 0.342619i
\(443\) 1.92857 + 18.3492i 0.0916293 + 0.871795i 0.939720 + 0.341944i \(0.111085\pi\)
−0.848091 + 0.529851i \(0.822248\pi\)
\(444\) 1.21339 + 1.34760i 0.0575848 + 0.0639544i
\(445\) 7.19497 3.20341i 0.341074 0.151856i
\(446\) 8.90569 1.89296i 0.421697 0.0896344i
\(447\) −30.9382 6.57611i −1.46333 0.311039i
\(448\) −30.8810 13.7491i −1.45899 0.649584i
\(449\) −7.01784 21.5987i −0.331192 1.01931i −0.968567 0.248752i \(-0.919980\pi\)
0.637375 0.770554i \(-0.280020\pi\)
\(450\) −1.29793 3.99463i −0.0611852 0.188309i
\(451\) 1.15854 + 0.515814i 0.0545534 + 0.0242888i
\(452\) −7.18465 1.52715i −0.337938 0.0718309i
\(453\) 0.531414 0.112956i 0.0249680 0.00530712i
\(454\) 21.6572 9.64240i 1.01642 0.452540i
\(455\) 10.3662 + 11.5128i 0.485974 + 0.539728i
\(456\) −4.04471 38.4828i −0.189411 1.80212i
\(457\) −13.0752 + 9.49970i −0.611633 + 0.444377i −0.849989 0.526800i \(-0.823392\pi\)
0.238356 + 0.971178i \(0.423392\pi\)
\(458\) −0.784001 + 7.45927i −0.0366340 + 0.348549i
\(459\) 6.63529 + 11.4927i 0.309709 + 0.536432i
\(460\) 0.338739 0.586713i 0.0157938 0.0273556i
\(461\) 17.4252 + 12.6602i 0.811573 + 0.589642i 0.914286 0.405069i \(-0.132752\pi\)
−0.102713 + 0.994711i \(0.532752\pi\)
\(462\) 24.4778 27.1853i 1.13881 1.26478i
\(463\) 5.41083 16.6528i 0.251462 0.773922i −0.743044 0.669243i \(-0.766619\pi\)
0.994506 0.104679i \(-0.0333815\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) −3.64845 + 11.2288i −0.168830 + 0.519605i −0.999298 0.0374608i \(-0.988073\pi\)
0.830468 + 0.557066i \(0.188073\pi\)
\(468\) −1.10894 + 1.23160i −0.0512608 + 0.0569309i
\(469\) −22.8372 16.5922i −1.05453 0.766158i
\(470\) −1.13235 + 1.96129i −0.0522314 + 0.0904674i
\(471\) 16.5236 + 28.6197i 0.761366 + 1.31872i
\(472\) 2.48644 23.6569i 0.114448 1.08890i
\(473\) 11.8195 8.58739i 0.543463 0.394849i
\(474\) 2.60228 + 24.7590i 0.119527 + 1.13722i
\(475\) −10.6546 11.8331i −0.488865 0.542940i
\(476\) −6.31840 + 2.81313i −0.289603 + 0.128940i
\(477\) −2.99343 + 0.636273i −0.137060 + 0.0291329i
\(478\) −33.6409 7.15059i −1.53870 0.327060i
\(479\) −14.4420 6.42999i −0.659871 0.293794i 0.0493480 0.998782i \(-0.484286\pi\)
−0.709219 + 0.704988i \(0.750952\pi\)
\(480\) 2.63658 + 8.11456i 0.120343 + 0.370377i
\(481\) 1.47715 + 4.54621i 0.0673525 + 0.207290i
\(482\) −25.6081 11.4015i −1.16642 0.519323i
\(483\) 7.02423 + 1.49305i 0.319613 + 0.0679359i
\(484\) 1.48392 0.315416i 0.0674507 0.0143371i
\(485\) −15.4108 + 6.86135i −0.699770 + 0.311558i
\(486\) 10.4849 + 11.6447i 0.475607 + 0.528215i
\(487\) 1.33709 + 12.7216i 0.0605894 + 0.576469i 0.982132 + 0.188192i \(0.0602629\pi\)
−0.921543 + 0.388277i \(0.873070\pi\)
\(488\) 6.73758 4.89514i 0.304996 0.221593i
\(489\) −0.0288849 + 0.274822i −0.00130622 + 0.0124279i
\(490\) 7.11185 + 12.3181i 0.321281 + 0.556475i
\(491\) −9.26410 + 16.0459i −0.418083 + 0.724141i −0.995747 0.0921341i \(-0.970631\pi\)
0.577664 + 0.816275i \(0.303964\pi\)
\(492\) −0.272653 0.198094i −0.0122921 0.00893076i
\(493\) −17.1953 + 19.0973i −0.774436 + 0.860098i
\(494\) 6.11864 18.8312i 0.275290 0.847257i
\(495\) −7.59016 −0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) −6.63277 + 20.4136i −0.297221 + 0.914754i
\(499\) −27.3589 + 30.3852i −1.22475 + 1.36023i −0.312860 + 0.949799i \(0.601287\pi\)
−0.911894 + 0.410427i \(0.865380\pi\)
\(500\) 4.58489 + 3.33112i 0.205042 + 0.148972i
\(501\) 4.09681 7.09588i 0.183032 0.317021i
\(502\) −10.0018 17.3237i −0.446404 0.773195i
\(503\) −2.09863 + 19.9671i −0.0935732 + 0.890290i 0.842550 + 0.538618i \(0.181053\pi\)
−0.936123 + 0.351672i \(0.885613\pi\)
\(504\) −12.2852 + 8.92575i −0.547228 + 0.397585i
\(505\) −0.0644190 0.612906i −0.00286661 0.0272739i
\(506\) −2.82172 3.13384i −0.125441 0.139316i
\(507\) 11.4805 5.11144i 0.509867 0.227007i
\(508\) 9.53115 2.02591i 0.422877 0.0898852i
\(509\) −31.2139 6.63471i −1.38353 0.294079i −0.544773 0.838583i \(-0.683384\pi\)
−0.838758 + 0.544505i \(0.816718\pi\)
\(510\) −13.6257 6.06655i −0.603356 0.268631i
\(511\) 6.33760 + 19.5051i 0.280359 + 0.862855i
\(512\) −7.60561 23.4076i −0.336123 1.03448i
\(513\) 19.5880 + 8.72112i 0.864830 + 0.385047i
\(514\) −28.1450 5.98241i −1.24142 0.263873i
\(515\) 4.95402 1.05301i 0.218300 0.0464012i
\(516\) −3.54687 + 1.57917i −0.156142 + 0.0695189i
\(517\) −2.99303 3.32409i −0.131633 0.146193i
\(518\) 0.888733 + 8.45573i 0.0390487 + 0.371524i
\(519\) −24.2687 + 17.6323i −1.06528 + 0.773970i
\(520\) −1.30184 + 12.3862i −0.0570896 + 0.543171i
\(521\) −1.05378 1.82520i −0.0461670 0.0799635i 0.842019 0.539449i \(-0.181367\pi\)
−0.888185 + 0.459485i \(0.848034\pi\)
\(522\) −5.47624 + 9.48512i −0.239688 + 0.415152i
\(523\) 3.97047 + 2.88471i 0.173616 + 0.126140i 0.671200 0.741276i \(-0.265779\pi\)
−0.497584 + 0.867416i \(0.665779\pi\)
\(524\) −4.07820 + 4.52930i −0.178157 + 0.197863i
\(525\) −6.36830 + 19.5996i −0.277935 + 0.855397i
\(526\) 12.8076 0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) −6.85158 + 21.0870i −0.297895 + 0.916826i
\(530\) −2.98722 + 3.31764i −0.129756 + 0.144109i
\(531\) −8.21591 5.96921i −0.356540 0.259042i
\(532\) −5.58748 + 9.67780i −0.242248 + 0.419586i
\(533\) −0.444199 0.769375i −0.0192404 0.0333253i
\(534\) −1.36180 + 12.9567i −0.0589309 + 0.560690i
\(535\) 3.94743 2.86798i 0.170662 0.123993i
\(536\) −2.37212 22.5692i −0.102460 0.974843i
\(537\) −24.6028 27.3242i −1.06169 1.17913i
\(538\) 4.97315 2.21419i 0.214408 0.0954605i
\(539\) −27.4793 + 5.84091i −1.18362 + 0.251586i
\(540\) −2.56083 0.544321i −0.110200 0.0234238i
\(541\) −11.3618 5.05859i −0.488481 0.217486i 0.147690 0.989034i \(-0.452816\pi\)
−0.636171 + 0.771548i \(0.719483\pi\)
\(542\) −2.34278 7.21033i −0.100631 0.309710i
\(543\) −7.73236 23.7978i −0.331827 1.02126i
\(544\) −9.17304 4.08410i −0.393291 0.175104i
\(545\) 10.5167 + 2.23540i 0.450488 + 0.0957541i
\(546\) −25.0664 + 5.32804i −1.07274 + 0.228019i
\(547\) −12.7577 + 5.68008i −0.545479 + 0.242863i −0.660926 0.750451i \(-0.729836\pi\)
0.115448 + 0.993314i \(0.463170\pi\)
\(548\) −3.18422 3.53644i −0.136023 0.151069i
\(549\) −0.371651 3.53602i −0.0158617 0.150914i
\(550\) 9.79058 7.11327i 0.417472 0.303311i
\(551\) −4.34012 + 41.2935i −0.184895 + 1.75916i
\(552\) 2.88656 + 4.99967i 0.122860 + 0.212800i
\(553\) 18.5190 32.0759i 0.787509 1.36401i
\(554\) 21.9779 + 15.9679i 0.933752 + 0.678411i
\(555\) 3.89296 4.32357i 0.165247 0.183525i
\(556\) −2.30732 + 7.10121i −0.0978523 + 0.301159i
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) −5.09496 + 15.6807i −0.215301 + 0.662629i
\(561\) 19.7119 21.8923i 0.832237 0.924293i
\(562\) 30.6766 + 22.2878i 1.29401 + 0.940156i
\(563\) 15.0134 26.0039i 0.632738 1.09593i −0.354252 0.935150i \(-0.615264\pi\)
0.986990 0.160784i \(-0.0514023\pi\)
\(564\) 0.594349 + 1.02944i 0.0250266 + 0.0433474i
\(565\) −2.46329 + 23.4367i −0.103632 + 0.985989i
\(566\) 21.2780 15.4594i 0.894380 0.649805i
\(567\) −4.45797 42.4148i −0.187217 1.78125i
\(568\) 10.4317 + 11.5856i 0.437705 + 0.486121i
\(569\) 36.8810 16.4205i 1.54613 0.688383i 0.556348 0.830949i \(-0.312202\pi\)
0.989785 + 0.142567i \(0.0455355\pi\)
\(570\) −23.5723 + 5.01045i −0.987335 + 0.209865i
\(571\) 41.6706 + 8.85736i 1.74386 + 0.370669i 0.966155 0.257961i \(-0.0830505\pi\)
0.777705 + 0.628630i \(0.216384\pi\)
\(572\) −4.36223 1.94219i −0.182394 0.0812070i
\(573\) −3.25187 10.0082i −0.135849 0.418100i
\(574\) −0.488296 1.50282i −0.0203811 0.0627265i
\(575\) 2.17027 + 0.966267i 0.0905065 + 0.0402961i
\(576\) −11.3484 2.41219i −0.472852 0.100508i
\(577\) 6.39490 1.35928i 0.266223 0.0565875i −0.0728659 0.997342i \(-0.523215\pi\)
0.339089 + 0.940754i \(0.389881\pi\)
\(578\) −3.10044 + 1.38040i −0.128961 + 0.0574172i
\(579\) 27.8265 + 30.9045i 1.15643 + 1.28435i
\(580\) −0.529930 5.04195i −0.0220041 0.209355i
\(581\) 25.8344 18.7698i 1.07179 0.778703i
\(582\) 2.91683 27.7518i 0.120907 1.15035i
\(583\) −4.40874 7.63617i −0.182591 0.316258i
\(584\) −8.24383 + 14.2787i −0.341132 + 0.590858i
\(585\) 4.30166 + 3.12534i 0.177852 + 0.129217i
\(586\) −1.48327 + 1.64734i −0.0612733 + 0.0680509i
\(587\) 6.60607 20.3314i 0.272662 0.839167i −0.717167 0.696902i \(-0.754561\pi\)
0.989829 0.142265i \(-0.0454386\pi\)
\(588\) 7.46576 0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) 13.9195 42.8397i 0.572570 1.76219i
\(592\) −3.40412 + 3.78066i −0.139909 + 0.155384i
\(593\) −21.0268 15.2769i −0.863468 0.627347i 0.0653579 0.997862i \(-0.479181\pi\)
−0.928826 + 0.370515i \(0.879181\pi\)
\(594\) −8.14807 + 14.1129i −0.334319 + 0.579058i
\(595\) 11.0950 + 19.2171i 0.454851 + 0.787824i
\(596\) −0.767600 + 7.30323i −0.0314421 + 0.299152i
\(597\) −25.4582 + 18.4965i −1.04193 + 0.757010i
\(598\) 0.308792 + 2.93796i 0.0126274 + 0.120142i
\(599\) −6.14794 6.82798i −0.251198 0.278984i 0.604337 0.796729i \(-0.293438\pi\)
−0.855535 + 0.517745i \(0.826772\pi\)
\(600\) −15.1352 + 6.73862i −0.617892 + 0.275103i
\(601\) 32.5909 6.92742i 1.32941 0.282575i 0.512177 0.858880i \(-0.328839\pi\)
0.817235 + 0.576305i \(0.195506\pi\)
\(602\) −17.8060 3.78479i −0.725720 0.154257i
\(603\) −8.85089 3.94067i −0.360436 0.160476i
\(604\) −0.0389782 0.119962i −0.00158600 0.00488120i
\(605\) −1.50407 4.62905i −0.0611491 0.188197i
\(606\) 0.931301 + 0.414642i 0.0378315 + 0.0168437i
\(607\) 47.6365 + 10.1255i 1.93351 + 0.410980i 0.998395 + 0.0566271i \(0.0180346\pi\)
0.935112 + 0.354353i \(0.115299\pi\)
\(608\) −15.8693 + 3.37311i −0.643583 + 0.136798i
\(609\) 49.0923 21.8573i 1.98932 0.885702i
\(610\) −3.47058 3.85447i −0.140520 0.156063i
\(611\) 0.327538 + 3.11631i 0.0132508 + 0.126073i
\(612\) −1.92046 + 1.39530i −0.0776300 + 0.0564015i
\(613\) 2.18611 20.7994i 0.0882961 0.840081i −0.857317 0.514788i \(-0.827870\pi\)
0.945613 0.325293i \(-0.105463\pi\)
\(614\) −16.4923 28.5654i −0.665573 1.15281i
\(615\) −0.540633 + 0.936404i −0.0218004 + 0.0377594i
\(616\) −35.3968 25.7173i −1.42618 1.03618i
\(617\) 30.3678 33.7269i 1.22256 1.35779i 0.309015 0.951057i \(-0.400001\pi\)
0.913546 0.406735i \(-0.133333\pi\)
\(618\) −2.58891 + 7.96784i −0.104141 + 0.320514i
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) 1.59202 4.89973i 0.0638341 0.196461i
\(623\) 12.9694 14.4039i 0.519607 0.577082i
\(624\) −12.4052 9.01290i −0.496605 0.360805i
\(625\) 2.56358 4.44025i 0.102543 0.177610i
\(626\) −6.98816 12.1038i −0.279303 0.483767i
\(627\) 4.97532 47.3370i 0.198695 1.89046i
\(628\) 6.20729 4.50986i 0.247698 0.179963i
\(629\) 0.715695 + 6.80938i 0.0285366 + 0.271508i
\(630\) 6.32823 + 7.02821i 0.252123 + 0.280011i
\(631\) 9.75390 4.34271i 0.388296 0.172881i −0.203297 0.979117i \(-0.565166\pi\)
0.591594 + 0.806236i \(0.298499\pi\)
\(632\) 29.1252 6.19076i 1.15854 0.246255i
\(633\) 12.7956 + 2.71979i 0.508580 + 0.108102i
\(634\) 29.1332 + 12.9709i 1.15703 + 0.515142i
\(635\) −9.66059 29.7322i −0.383369 1.17989i
\(636\) 0.724101 + 2.22855i 0.0287125 + 0.0883679i
\(637\) 17.9787 + 8.00465i 0.712343 + 0.317156i
\(638\) −30.8672 6.56102i −1.22204 0.259753i
\(639\) 6.51033 1.38381i 0.257545 0.0547428i
\(640\) −7.94869 + 3.53899i −0.314200 + 0.139891i
\(641\) −15.9669 17.7330i −0.630653 0.700411i 0.340128 0.940379i \(-0.389530\pi\)
−0.970781 + 0.239968i \(0.922863\pi\)
\(642\) 0.843669 + 8.02698i 0.0332970 + 0.316800i
\(643\) −6.42300 + 4.66658i −0.253298 + 0.184032i −0.707187 0.707026i \(-0.750036\pi\)
0.453889 + 0.891058i \(0.350036\pi\)
\(644\) 0.174277 1.65813i 0.00686746 0.0653395i
\(645\) 6.22823 + 10.7876i 0.245237 + 0.424762i
\(646\) 14.1805 24.5614i 0.557925 0.966355i
\(647\) 2.00443 + 1.45630i 0.0788023 + 0.0572532i 0.626489 0.779430i \(-0.284491\pi\)
−0.547687 + 0.836684i \(0.684491\pi\)
\(648\) 22.9420 25.4796i 0.901245 1.00093i
\(649\) 9.04192 27.8282i 0.354926 1.09235i
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) 6.95104 21.3931i 0.272015 0.837177i −0.717978 0.696065i \(-0.754932\pi\)
0.989994 0.141112i \(-0.0450677\pi\)
\(654\) −11.9006 + 13.2169i −0.465350 + 0.516823i
\(655\) 15.8196 + 11.4936i 0.618123 + 0.449093i
\(656\) 0.472746 0.818821i 0.0184576 0.0319696i
\(657\) 3.51952 + 6.09598i 0.137309 + 0.237827i
\(658\) −0.582579 + 5.54287i −0.0227113 + 0.216083i
\(659\) 9.67555 7.02970i 0.376906 0.273838i −0.383163 0.923681i \(-0.625165\pi\)
0.760069 + 0.649843i \(0.225165\pi\)
\(660\) 0.607488 + 5.77986i 0.0236464 + 0.224981i
\(661\) 15.9494 + 17.7136i 0.620359 + 0.688978i 0.968656 0.248406i \(-0.0799067\pi\)
−0.348297 + 0.937384i \(0.613240\pi\)
\(662\) −0.862005 + 0.383790i −0.0335028 + 0.0149164i
\(663\) −20.1860 + 4.29066i −0.783957 + 0.166635i
\(664\) 25.1109 + 5.33749i 0.974492 + 0.207135i
\(665\) 32.7534 + 14.5828i 1.27012 + 0.565495i
\(666\) 0.901758 + 2.77533i 0.0349424 + 0.107542i
\(667\) −1.91429 5.89158i −0.0741216 0.228123i
\(668\) −1.73787 0.773748i −0.0672400 0.0299372i
\(669\) −14.9972 3.18775i −0.579824 0.123245i
\(670\) −13.8246 + 2.93851i −0.534091 + 0.113524i
\(671\) 9.35860 4.16672i 0.361285 0.160854i
\(672\) 14.0501 + 15.6042i 0.541994 + 0.601945i
\(673\) 0.365235 + 3.47498i 0.0140788 + 0.133951i 0.999304 0.0373159i \(-0.0118808\pi\)
−0.985225 + 0.171266i \(0.945214\pi\)
\(674\) 2.38679 1.73411i 0.0919359 0.0667953i
\(675\) 0.959619 9.13017i 0.0369358 0.351420i
\(676\) −1.45885 2.52680i −0.0561096 0.0971847i
\(677\) −9.62287 + 16.6673i −0.369837 + 0.640576i −0.989540 0.144260i \(-0.953920\pi\)
0.619703 + 0.784836i \(0.287253\pi\)
\(678\) −31.5370 22.9130i −1.21117 0.879967i
\(679\) −27.7790 + 30.8517i −1.06606 + 1.18398i
\(680\) −5.51260 + 16.9660i −0.211399 + 0.650618i
\(681\) −39.9221 −1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) −1.18522 + 3.64773i −0.0453180 + 0.139475i
\(685\) −10.2161 + 11.3461i −0.390336 + 0.433512i
\(686\) 1.77673 + 1.29087i 0.0678359 + 0.0492857i
\(687\) 6.31529 10.9384i 0.240944 0.417326i
\(688\) −5.44616 9.43303i −0.207633 0.359631i
\(689\) −0.645664 + 6.14308i −0.0245978 + 0.234033i
\(690\) 2.90880 2.11337i 0.110736 0.0804545i
\(691\) −4.01498 38.2000i −0.152737 1.45320i −0.755433 0.655226i \(-0.772573\pi\)
0.602695 0.797971i \(-0.294093\pi\)
\(692\) 4.66026 + 5.17575i 0.177157 + 0.196752i
\(693\) −17.0644 + 7.59755i −0.648222 + 0.288607i
\(694\) 6.81904 1.44943i 0.258847 0.0550197i
\(695\) 23.4321 + 4.98064i 0.888830 + 0.188927i
\(696\) 39.4666 + 17.5717i 1.49598 + 0.666052i
\(697\) −0.393224 1.21022i −0.0148944 0.0458403i
\(698\) 11.0678 + 34.0633i 0.418924 + 1.28932i
\(699\) −33.2259 14.7931i −1.25672 0.559527i
\(700\) 4.68011 + 0.994787i 0.176891 + 0.0375994i
\(701\) 34.6513 7.36537i 1.30876 0.278186i 0.499849 0.866113i \(-0.333389\pi\)
0.808914 + 0.587927i \(0.200056\pi\)
\(702\) 10.4290 4.64328i 0.393616 0.175249i
\(703\) 7.40241 + 8.22121i 0.279187 + 0.310069i
\(704\) −3.49419 33.2450i −0.131692 1.25297i
\(705\) 3.08539 2.24166i 0.116202 0.0844260i
\(706\) −2.48259 + 23.6203i −0.0934335 + 0.888960i
\(707\) −0.758331 1.31347i −0.0285200 0.0493980i
\(708\) −3.88795 + 6.73412i −0.146118 + 0.253084i
\(709\) −20.8801 15.1703i −0.784170 0.569733i 0.122057 0.992523i \(-0.461051\pi\)
−0.906228 + 0.422790i \(0.861051\pi\)
\(710\) 6.49682 7.21545i 0.243821 0.270791i
\(711\) 3.92827 12.0900i 0.147322 0.453409i
\(712\) 15.5821 0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) −4.73414 + 14.5702i −0.177047 + 0.544894i
\(716\) −5.71209 + 6.34392i −0.213471 + 0.237083i
\(717\) 46.8557 + 34.0426i 1.74986 + 1.27135i
\(718\) −6.37296 + 11.0383i −0.237837 + 0.411945i
\(719\) −19.5234 33.8155i −0.728099 1.26110i −0.957686 0.287816i \(-0.907071\pi\)
0.229587 0.973288i \(-0.426262\pi\)
\(720\) −0.591512 + 5.62786i −0.0220443 + 0.209738i
\(721\) 10.0837 7.32625i 0.375537 0.272844i
\(722\) −2.34275 22.2897i −0.0871880 0.829538i
\(723\) 31.5864 + 35.0802i 1.17471 + 1.30465i
\(724\) −5.30726 + 2.36294i −0.197243 + 0.0878181i
\(725\) 17.3891 3.69617i 0.645815 0.137272i
\(726\) 7.87536 + 1.67396i 0.292282 + 0.0621264i
\(727\) 22.8237 + 10.1618i 0.846484 + 0.376879i 0.783693 0.621148i \(-0.213333\pi\)
0.0627904 + 0.998027i \(0.480000\pi\)
\(728\) 9.47144 + 29.1501i 0.351035 + 1.08037i
\(729\) 2.24010 + 6.89433i 0.0829668 + 0.255345i
\(730\) 9.38068 + 4.17655i 0.347195 + 0.154581i
\(731\) −14.3392 3.04788i −0.530353 0.112730i
\(732\) −2.66291 + 0.566020i −0.0984241 + 0.0209207i
\(733\) −15.4837 + 6.89380i −0.571904 + 0.254628i −0.672250 0.740324i \(-0.734672\pi\)
0.100345 + 0.994953i \(0.468005\pi\)
\(734\) 0.112595 + 0.125049i 0.00415594 + 0.00461564i
\(735\) −2.50374 23.8215i −0.0923517 0.878668i
\(736\) 1.95825 1.42275i 0.0721821 0.0524434i
\(737\) 2.91791 27.7620i 0.107482 1.02263i
\(738\) −0.271170 0.469680i −0.00998190 0.0172892i
\(739\) 7.19107 12.4553i 0.264528 0.458175i −0.702912 0.711277i \(-0.748117\pi\)
0.967440 + 0.253101i \(0.0814506\pi\)
\(740\) −1.09279 0.793959i −0.0401718 0.0291865i
\(741\) −22.3113 + 24.7792i −0.819626 + 0.910286i
\(742\) −3.39506 + 10.4489i −0.124637 + 0.383592i
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) −2.80390 + 8.62953i −0.102658 + 0.315950i
\(747\) 7.33369 8.14489i 0.268326 0.298006i
\(748\) −5.53332 4.02019i −0.202318 0.146993i
\(749\) 6.00394 10.3991i 0.219379 0.379976i
\(750\) 15.0384 + 26.0473i 0.549126 + 0.951113i
\(751\) 4.55433 43.3315i 0.166190 1.58119i −0.520257 0.854010i \(-0.674164\pi\)
0.686447 0.727180i \(-0.259169\pi\)
\(752\) −2.69796 + 1.96018i −0.0983844 + 0.0714804i
\(753\) 3.52116 + 33.5016i 0.128318 + 1.22087i
\(754\) 14.7921 + 16.4283i 0.538697 + 0.598284i
\(755\) −0.369700 + 0.164601i −0.0134548 + 0.00599045i
\(756\) −6.30216 + 1.33957i −0.229207 + 0.0487195i
\(757\) 24.6660 + 5.24293i 0.896503 + 0.190558i 0.633046 0.774114i \(-0.281804\pi\)
0.263456 + 0.964671i \(0.415138\pi\)
\(758\) −5.18713 2.30946i −0.188405 0.0838833i
\(759\) 2.19446 + 6.75385i 0.0796538 + 0.245149i
\(760\) 8.90688 + 27.4125i 0.323086 + 0.994358i
\(761\) 2.38977 + 1.06399i 0.0866292 + 0.0385698i 0.449594 0.893233i \(-0.351569\pi\)
−0.362965 + 0.931803i \(0.618235\pi\)
\(762\) 50.5832 + 10.7518i 1.83244 + 0.389497i
\(763\) 25.8816 5.50130i 0.936975 0.199160i
\(764\) −2.23199 + 0.993744i −0.0807504 + 0.0359524i
\(765\) 5.09611 + 5.65981i 0.184250 + 0.204631i
\(766\) −4.15947 39.5747i −0.150288 1.42989i
\(767\) −16.5830 + 12.0483i −0.598777 + 0.435037i
\(768\) −2.35055 + 22.3640i −0.0848182 + 0.806991i
\(769\) −5.67534 9.82998i −0.204658 0.354478i 0.745366 0.666656i \(-0.232275\pi\)
−0.950024 + 0.312178i \(0.898942\pi\)
\(770\) −13.6245 + 23.5984i −0.490994 + 0.850427i
\(771\) 39.2009 + 28.4811i 1.41179 + 1.02572i
\(772\) 6.46055 7.17517i 0.232520 0.258240i
\(773\) 3.52816 10.8586i 0.126899 0.390556i −0.867343 0.497711i \(-0.834174\pi\)
0.994242 + 0.107155i \(0.0341741\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) 4.42446 13.6171i 0.158727 0.488511i
\(778\) 29.0806 32.2973i 1.04259 1.15791i
\(779\) −1.66335 1.20849i −0.0595957 0.0432988i
\(780\) 2.03564 3.52583i 0.0728875 0.126245i
\(781\) 9.58846 + 16.6077i 0.343102 + 0.594270i
\(782\) −0.442298 + 4.20819i −0.0158166 + 0.150484i
\(783\) −19.3671 + 14.0710i −0.692123 + 0.502857i
\(784\) 2.18935 + 20.8302i 0.0781909 + 0.743937i
\(785\) −16.4716 18.2936i −0.587896 0.652925i
\(786\) −29.5494 + 13.1562i −1.05399 + 0.469268i
\(787\) −26.4972 + 5.63216i −0.944525 + 0.200765i −0.654336 0.756204i \(-0.727052\pi\)
−0.290189 + 0.956969i \(0.593718\pi\)
\(788\) −10.2295 2.17435i −0.364411 0.0774579i
\(789\) −19.7034 8.77251i −0.701459 0.312310i
\(790\) −5.73050 17.6367i −0.203882 0.627484i
\(791\) 17.9215 + 55.1566i 0.637214 + 1.96114i
\(792\) −13.7185 6.10788i −0.487467 0.217034i
\(793\) −7.01960 1.49206i −0.249273 0.0529846i
\(794\) 4.86199 1.03345i 0.172545 0.0366757i
\(795\) 6.86795 3.05781i 0.243581 0.108449i
\(796\) 4.88867 + 5.42942i 0.173274 + 0.192441i
\(797\) 5.08592 + 48.3893i 0.180152 + 1.71404i 0.594649 + 0.803985i \(0.297291\pi\)
−0.414496 + 0.910051i \(0.636042\pi\)
\(798\) −47.9805 + 34.8599i −1.69849 + 1.23403i
\(799\) −0.469149 + 4.46366i −0.0165973 + 0.157913i
\(800\) 3.47318 + 6.01573i 0.122796 + 0.212688i
\(801\) 3.32620 5.76115i 0.117526 0.203560i
\(802\) 24.8048 + 18.0217i 0.875887 + 0.636369i
\(803\) −13.5708 + 15.0719i −0.478902 + 0.531874i
\(804\) −2.29240 + 7.05530i −0.0808469 + 0.248821i
\(805\) −5.34915 −0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) 0.376780 1.15961i 0.0132551 0.0407949i
\(809\) 12.5858 13.9779i 0.442492 0.491437i −0.480100 0.877214i \(-0.659400\pi\)
0.922592 + 0.385776i \(0.126066\pi\)
\(810\) −17.2752 12.5512i −0.606988 0.441002i
\(811\) 19.7693 34.2414i 0.694193 1.20238i −0.276259 0.961083i \(-0.589095\pi\)
0.970452 0.241294i \(-0.0775720\pi\)
\(812\) −6.23826 10.8050i −0.218920 0.379180i
\(813\) −1.33452 + 12.6971i −0.0468036 + 0.445307i
\(814\) −6.80214 + 4.94204i −0.238415 + 0.173219i
\(815\) −0.0215160 0.204711i −0.000753673 0.00717072i
\(816\) −14.6962 16.3218i −0.514472 0.571379i
\(817\) −21.6381 + 9.63389i −0.757020 + 0.337047i
\(818\) 4.22707 0.898491i 0.147796 0.0314150i
\(819\) 12.7995 + 2.72061i 0.447250 + 0.0950658i
\(820\) 0.229336 + 0.102107i 0.00800878 + 0.00356574i
\(821\) 4.52299 + 13.9203i 0.157854 + 0.485823i 0.998439 0.0558559i \(-0.0177887\pi\)
−0.840585 + 0.541679i \(0.817789\pi\)
\(822\) −7.80434 24.0193i −0.272208 0.837769i
\(823\) −38.1741 16.9962i −1.33066 0.592450i −0.386611 0.922243i \(-0.626354\pi\)
−0.944053 + 0.329793i \(0.893021\pi\)
\(824\) 9.80132 + 2.08333i 0.341445 + 0.0725764i
\(825\) −19.9341 + 4.23712i −0.694016 + 0.147518i
\(826\) −33.3065 + 14.8290i −1.15888 + 0.515967i
\(827\) 6.29393 + 6.99012i 0.218861 + 0.243070i 0.842570 0.538587i \(-0.181042\pi\)
−0.623709 + 0.781657i \(0.714375\pi\)
\(828\) −0.0598149 0.569101i −0.00207871 0.0197776i
\(829\) 32.6283 23.7058i 1.13323 0.823337i 0.147065 0.989127i \(-0.453017\pi\)
0.986161 + 0.165790i \(0.0530173\pi\)
\(830\) 1.67124 15.9007i 0.0580094 0.551923i
\(831\) −22.8739 39.6188i −0.793487 1.37436i
\(832\) −11.7087 + 20.2801i −0.405927 + 0.703086i
\(833\) 22.8053 + 16.5690i 0.790158 + 0.574083i
\(834\) −26.5154 + 29.4483i −0.918153 + 1.01971i
\(835\) −1.88603 + 5.80460i −0.0652688 + 0.200877i
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) 2.20936 6.79972i 0.0762757 0.234752i −0.905648 0.424031i \(-0.860615\pi\)
0.981923 + 0.189278i \(0.0606149\pi\)
\(840\) 24.9615 27.7225i 0.861252 0.956517i
\(841\) −14.0420 10.2021i −0.484208 0.351798i
\(842\) −17.0048 + 29.4532i −0.586025 + 1.01503i
\(843\) −31.9272 55.2995i −1.09963 1.90462i
\(844\) 0.317469 3.02052i 0.0109277 0.103971i
\(845\) −7.57319 + 5.50224i −0.260526 + 0.189283i
\(846\) 0.199952 + 1.90241i 0.00687448 + 0.0654063i
\(847\) −8.01504 8.90160i −0.275400 0.305863i
\(848\) −6.00555 + 2.67384i −0.206231 + 0.0918202i
\(849\) −43.3230 + 9.20859i −1.48684 + 0.316038i
\(850\) −11.8777 2.52468i −0.407401 0.0865959i
\(851\) −1.50783 0.671327i −0.0516876 0.0230128i
\(852\) −1.57483 4.84683i −0.0539528 0.166050i
\(853\) 0.348160 + 1.07153i 0.0119208 + 0.0366884i 0.956840 0.290615i \(-0.0938600\pi\)
−0.944919 + 0.327304i \(0.893860\pi\)
\(854\) −11.6609 5.19176i −0.399027 0.177658i
\(855\) 12.0365 + 2.55844i 0.411641 + 0.0874969i
\(856\) 9.44251 2.00707i 0.322738 0.0686002i
\(857\) −21.7917 + 9.70231i −0.744392 + 0.331425i −0.743645 0.668575i \(-0.766904\pi\)
−0.000747156 1.00000i \(0.500238\pi\)
\(858\) −16.9570 18.8327i −0.578904 0.642938i
\(859\) 3.39359 + 32.2878i 0.115788 + 1.10165i 0.885944 + 0.463792i \(0.153511\pi\)
−0.770157 + 0.637855i \(0.779822\pi\)
\(860\) 2.33971 1.69990i 0.0797836 0.0579662i
\(861\) −0.278148 + 2.64641i −0.00947927 + 0.0901892i
\(862\) 9.16363 + 15.8719i 0.312114 + 0.540598i
\(863\) −11.9209 + 20.6476i −0.405793 + 0.702853i −0.994413 0.105556i \(-0.966338\pi\)
0.588621 + 0.808409i \(0.299671\pi\)
\(864\) −7.56744 5.49807i −0.257450 0.187048i
\(865\) 14.9517 16.6056i 0.508373 0.564606i
\(866\) −3.52660 + 10.8538i −0.119839 + 0.368826i
\(867\) 5.71523 0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) 8.31433 25.5889i 0.281882 0.867544i
\(871\) −13.0850 + 14.5324i −0.443370 + 0.492412i
\(872\) 17.2092 + 12.5032i 0.582777 + 0.423412i
\(873\) −7.12437 + 12.3398i −0.241123 + 0.417638i
\(874\) 3.41837 + 5.92080i 0.115628 + 0.200274i
\(875\) 4.67730 44.5016i 0.158122 1.50443i
\(876\) 4.36037 3.16799i 0.147323 0.107036i
\(877\) −3.06003 29.1143i −0.103330 0.983119i −0.916213 0.400692i \(-0.868770\pi\)
0.812883 0.582427i \(-0.197897\pi\)
\(878\) 14.6084 + 16.2242i 0.493008 + 0.547541i
\(879\) 3.41021 1.51832i 0.115023 0.0512117i
\(880\) −15.9483 + 3.38991i −0.537616 + 0.114274i
\(881\) 8.83275 + 1.87746i 0.297583 + 0.0632532i 0.354284 0.935138i \(-0.384725\pi\)
−0.0567007 + 0.998391i \(0.518058\pi\)
\(882\) 10.9755 + 4.88659i 0.369563 + 0.164540i
\(883\) −6.61531 20.3598i −0.222623 0.685162i −0.998524 0.0543083i \(-0.982705\pi\)
0.775901 0.630854i \(-0.217295\pi\)
\(884\) 1.48060 + 4.55682i 0.0497979 + 0.153262i
\(885\) 22.7909 + 10.1471i 0.766107 + 0.341093i
\(886\) 22.2371 + 4.72664i 0.747069 + 0.158794i
\(887\) −24.0575 + 5.11359i −0.807773 + 0.171698i −0.593247 0.805021i \(-0.702154\pi\)
−0.214527 + 0.976718i \(0.568821\pi\)
\(888\) 10.5154 4.68175i 0.352873 0.157109i
\(889\) −51.4804 57.1748i −1.72660 1.91758i
\(890\) −1.01439 9.65127i −0.0340024 0.323511i
\(891\) 34.1202 24.7898i 1.14307 0.830489i
\(892\) −0.372091 + 3.54021i −0.0124585 + 0.118535i
\(893\) 3.62590 + 6.28024i 0.121336 + 0.210160i
\(894\) −19.4864 + 33.7514i −0.651723 + 1.12882i
\(895\) 22.1576 + 16.0984i 0.740646 + 0.538111i
\(896\) −14.3280 + 15.9129i −0.478665 + 0.531612i
\(897\) 1.53729 4.73128i 0.0513285 0.157973i
\(898\) −27.9829 −0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) −2.73404 + 8.41450i −0.0910839 + 0.280328i
\(902\) 1.04559 1.16125i 0.0348144 0.0386653i
\(903\) 24.8006 + 18.0187i 0.825312 + 0.599624i
\(904\) −23.3119 + 40.3774i −0.775343 + 1.34293i
\(905\) 9.31946 + 16.1418i 0.309789 + 0.536571i
\(906\) 0.0699737 0.665755i 0.00232472 0.0221182i
\(907\) 15.9913 11.6183i 0.530981 0.385781i −0.289743 0.957104i \(-0.593570\pi\)
0.820725 + 0.571324i \(0.193570\pi\)
\(908\) 0.968853 + 9.21802i 0.0321525 + 0.305911i
\(909\) −0.348313 0.386841i −0.0115528 0.0128307i
\(910\) 17.4385 7.76412i 0.578081 0.257378i
\(911\) −34.8432 + 7.40614i −1.15441 + 0.245376i −0.745057 0.667001i \(-0.767578\pi\)
−0.409349 + 0.912378i \(0.634244\pi\)
\(912\) −34.7111 7.37808i −1.14940 0.244313i
\(913\) 28.8484 + 12.8442i 0.954744 + 0.425079i
\(914\) 6.15383 + 18.9395i 0.203550 + 0.626464i
\(915\) 2.69908 + 8.30691i 0.0892287 + 0.274618i
\(916\) −2.67895 1.19274i −0.0885149 0.0394094i
\(917\) 47.0708 + 10.0052i 1.55442 + 0.330401i
\(918\) 15.9943 3.39970i 0.527891 0.112207i
\(919\) −15.6731 + 6.97811i −0.517007 + 0.230187i −0.648617 0.761115i \(-0.724652\pi\)
0.131609 + 0.991302i \(0.457986\pi\)
\(920\) −2.87748 3.19577i −0.0948677 0.105361i
\(921\) 5.80612 + 55.2415i 0.191318 + 1.82027i
\(922\) 21.4709 15.5995i 0.707105 0.513742i
\(923\) 1.40424 13.3604i 0.0462211 0.439764i
\(924\) 7.15126 + 12.3863i 0.235259 + 0.407481i
\(925\) 2.36831 4.10203i 0.0778694 0.134874i
\(926\) −17.4546 12.6815i −0.573594 0.416741i
\(927\) 2.86250 3.17912i 0.0940167 0.104416i
\(928\) 5.59734 17.2268i 0.183742 0.565499i
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) −2.60939 + 8.03088i −0.0854734 + 0.263060i
\(933\) −5.80521 + 6.44734i −0.190054 + 0.211076i
\(934\) 11.7694 + 8.55098i 0.385107 + 0.279797i
\(935\) −10.9718 + 19.0037i −0.358817 + 0.621489i
\(936\) 5.25986 + 9.11035i 0.171924 + 0.297781i
\(937\) −2.67776 + 25.4771i −0.0874785 + 0.832302i 0.859528 + 0.511088i \(0.170757\pi\)
−0.947007 + 0.321214i \(0.895909\pi\)
\(938\) −28.1394 + 20.4445i −0.918784 + 0.667536i
\(939\) 2.46019 + 23.4072i 0.0802853 + 0.763864i
\(940\) −0.592479 0.658015i −0.0193245 0.0214621i
\(941\) −11.0757 + 4.93121i −0.361057 + 0.160753i −0.579244 0.815154i \(-0.696652\pi\)
0.218187 + 0.975907i \(0.429986\pi\)
\(942\) 39.8300 8.46612i 1.29773 0.275841i
\(943\) 0.300047 + 0.0637769i 0.00977087 + 0.00207686i
\(944\) −19.9290 8.87298i −0.648635 0.288791i
\(945\) 6.38775 + 19.6595i 0.207794 + 0.639523i
\(946\) −5.56284 17.1207i −0.180863 0.556640i
\(947\) 24.8494 + 11.0637i 0.807497 + 0.359521i 0.768606 0.639722i \(-0.220951\pi\)
0.0388914 + 0.999243i \(0.487617\pi\)
\(948\) −9.52085 2.02372i −0.309223 0.0657273i
\(949\) 13.8971 2.95392i 0.451120 0.0958884i
\(950\) −17.9237 + 7.98013i −0.581520 + 0.258910i
\(951\) −35.9344 39.9092i −1.16525 1.29414i
\(952\) 4.58900 + 43.6614i 0.148730 + 1.41507i
\(953\) 20.1386 14.6316i 0.652353 0.473962i −0.211719 0.977331i \(-0.567906\pi\)
0.864072 + 0.503368i \(0.167906\pi\)
\(954\) −0.394158 + 3.75016i −0.0127613 + 0.121416i
\(955\) 3.91933 + 6.78848i 0.126826 + 0.219670i
\(956\) 6.72333 11.6452i 0.217448 0.376631i
\(957\) 42.9924 + 31.2358i 1.38975 + 1.00971i
\(958\) −13.0340 + 14.4758i −0.421111 + 0.467691i
\(959\) −11.6109 + 35.7346i −0.374935 + 1.15393i
\(960\) 28.5013 0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) 1.27356 3.91961i 0.0410399 0.126308i
\(964\) 7.33348 8.14466i 0.236196 0.262322i
\(965\) −25.0609 18.2078i −0.806739 0.586130i
\(966\) 4.42421 7.66295i 0.142347 0.246551i
\(967\) 26.0999 + 45.2064i 0.839316 + 1.45374i 0.890467 + 0.455048i \(0.150378\pi\)
−0.0511507 + 0.998691i \(0.516289\pi\)
\(968\) 1.00657 9.57692i 0.0323525 0.307814i
\(969\) −38.6386 + 28.0726i −1.24125 + 0.901821i
\(970\) 2.17271 + 20.6720i 0.0697616 + 0.663737i
\(971\) −13.3564 14.8338i −0.428627 0.476039i 0.489683 0.871901i \(-0.337113\pi\)
−0.918310 + 0.395862i \(0.870446\pi\)
\(972\) −5.59677 + 2.49184i −0.179516 + 0.0799258i
\(973\) 57.6661 12.2573i 1.84869 0.392951i
\(974\) 15.4171 + 3.27700i 0.493995 + 0.105002i
\(975\) 13.0422 + 5.80674i 0.417683 + 0.185965i
\(976\) −2.36016 7.26382i −0.0755468 0.232509i
\(977\) −18.6185 57.3017i −0.595657 1.83324i −0.551426 0.834224i \(-0.685916\pi\)
−0.0442310 0.999021i \(-0.514084\pi\)
\(978\) 0.311056 + 0.138491i 0.00994647 + 0.00442845i
\(979\) 18.7484 + 3.98509i 0.599200 + 0.127364i
\(980\) −5.43962 + 1.15623i −0.173762 + 0.0369343i
\(981\) 8.29635 3.69377i 0.264882 0.117933i
\(982\) 15.2762 + 16.9659i 0.487483 + 0.541405i
\(983\) −1.20613 11.4755i −0.0384694 0.366012i −0.996774 0.0802625i \(-0.974424\pi\)
0.958304 0.285750i \(-0.0922425\pi\)
\(984\) −1.73068 + 1.25741i −0.0551720 + 0.0400848i
\(985\) −3.50724 + 33.3691i −0.111750 + 1.06323i
\(986\) 15.8321 + 27.4221i 0.504198 + 0.873297i
\(987\) 4.69279 8.12816i 0.149373 0.258722i
\(988\) 6.26299 + 4.55033i 0.199252 + 0.144765i
\(989\) 2.36460 2.62616i 0.0751900 0.0835069i
\(990\) −2.89005 + 8.89465i −0.0918517 + 0.282690i
\(991\) −37.3423 −1.18622 −0.593109 0.805122i \(-0.702100\pi\)
−0.593109 + 0.805122i \(0.702100\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) 7.38383 22.7251i 0.234201 0.720796i
\(995\) 15.6845 17.4194i 0.497233 0.552233i
\(996\) −6.78925 4.93268i −0.215126 0.156298i
\(997\) −10.4012 + 18.0154i −0.329410 + 0.570555i −0.982395 0.186816i \(-0.940183\pi\)
0.652985 + 0.757371i \(0.273516\pi\)
\(998\) 25.1901 + 43.6305i 0.797378 + 1.38110i
\(999\) −0.666709 + 6.34331i −0.0210937 + 0.200694i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.j.448.2 16
31.2 even 5 961.2.c.i.521.5 16
31.3 odd 30 961.2.d.p.374.2 16
31.4 even 5 961.2.g.l.844.2 16
31.5 even 3 961.2.g.l.846.2 16
31.6 odd 6 961.2.d.o.628.3 16
31.7 even 15 961.2.d.n.531.3 16
31.8 even 5 961.2.g.m.338.1 16
31.9 even 15 961.2.g.n.235.1 16
31.10 even 15 961.2.c.i.439.5 16
31.11 odd 30 961.2.g.k.547.2 16
31.12 odd 30 961.2.a.i.1.5 8
31.13 odd 30 961.2.g.s.816.1 16
31.14 even 15 961.2.d.q.388.2 16
31.15 odd 10 961.2.g.t.732.1 16
31.16 even 5 961.2.g.n.732.1 16
31.17 odd 30 961.2.d.p.388.2 16
31.18 even 15 961.2.g.m.816.1 16
31.19 even 15 961.2.a.j.1.5 8
31.20 even 15 inner 961.2.g.j.547.2 16
31.21 odd 30 961.2.c.j.439.5 16
31.22 odd 30 961.2.g.t.235.1 16
31.23 odd 10 961.2.g.s.338.1 16
31.24 odd 30 961.2.d.o.531.3 16
31.25 even 3 961.2.d.n.628.3 16
31.26 odd 6 31.2.g.a.9.2 yes 16
31.27 odd 10 31.2.g.a.7.2 16
31.28 even 15 961.2.d.q.374.2 16
31.29 odd 10 961.2.c.j.521.5 16
31.30 odd 2 961.2.g.k.448.2 16
93.26 even 6 279.2.y.c.226.1 16
93.50 odd 30 8649.2.a.be.1.4 8
93.74 even 30 8649.2.a.bf.1.4 8
93.89 even 10 279.2.y.c.100.1 16
124.27 even 10 496.2.bg.c.193.2 16
124.119 even 6 496.2.bg.c.257.2 16
155.27 even 20 775.2.ck.a.224.2 32
155.57 even 12 775.2.ck.a.474.3 32
155.58 even 20 775.2.ck.a.224.3 32
155.88 even 12 775.2.ck.a.474.2 32
155.89 odd 10 775.2.bl.a.751.1 16
155.119 odd 6 775.2.bl.a.226.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.27 odd 10
31.2.g.a.9.2 yes 16 31.26 odd 6
279.2.y.c.100.1 16 93.89 even 10
279.2.y.c.226.1 16 93.26 even 6
496.2.bg.c.193.2 16 124.27 even 10
496.2.bg.c.257.2 16 124.119 even 6
775.2.bl.a.226.1 16 155.119 odd 6
775.2.bl.a.751.1 16 155.89 odd 10
775.2.ck.a.224.2 32 155.27 even 20
775.2.ck.a.224.3 32 155.58 even 20
775.2.ck.a.474.2 32 155.88 even 12
775.2.ck.a.474.3 32 155.57 even 12
961.2.a.i.1.5 8 31.12 odd 30
961.2.a.j.1.5 8 31.19 even 15
961.2.c.i.439.5 16 31.10 even 15
961.2.c.i.521.5 16 31.2 even 5
961.2.c.j.439.5 16 31.21 odd 30
961.2.c.j.521.5 16 31.29 odd 10
961.2.d.n.531.3 16 31.7 even 15
961.2.d.n.628.3 16 31.25 even 3
961.2.d.o.531.3 16 31.24 odd 30
961.2.d.o.628.3 16 31.6 odd 6
961.2.d.p.374.2 16 31.3 odd 30
961.2.d.p.388.2 16 31.17 odd 30
961.2.d.q.374.2 16 31.28 even 15
961.2.d.q.388.2 16 31.14 even 15
961.2.g.j.448.2 16 1.1 even 1 trivial
961.2.g.j.547.2 16 31.20 even 15 inner
961.2.g.k.448.2 16 31.30 odd 2
961.2.g.k.547.2 16 31.11 odd 30
961.2.g.l.844.2 16 31.4 even 5
961.2.g.l.846.2 16 31.5 even 3
961.2.g.m.338.1 16 31.8 even 5
961.2.g.m.816.1 16 31.18 even 15
961.2.g.n.235.1 16 31.9 even 15
961.2.g.n.732.1 16 31.16 even 5
961.2.g.s.338.1 16 31.23 odd 10
961.2.g.s.816.1 16 31.13 odd 30
961.2.g.t.235.1 16 31.22 odd 30
961.2.g.t.732.1 16 31.15 odd 10
8649.2.a.be.1.4 8 93.50 odd 30
8649.2.a.bf.1.4 8 93.74 even 30