Properties

Label 961.2.g.b.547.1
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,-1,6,6,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.1
Root \(-0.104528 - 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.b.448.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 - 0.587785i) q^{2} +(-0.669131 - 0.743145i) q^{3} +(1.30902 - 0.951057i) q^{4} +(1.30902 + 2.26728i) q^{5} +(-0.309017 + 0.535233i) q^{6} +(-0.313585 - 2.98357i) q^{7} +(-1.80902 - 1.31433i) q^{8} +(0.209057 - 1.98904i) q^{9} +(1.08268 - 1.20243i) q^{10} +(-0.697887 - 0.310719i) q^{11} +(-1.58268 - 0.336408i) q^{12} +(-4.74803 + 1.00922i) q^{13} +(-1.69381 + 0.754131i) q^{14} +(0.809017 - 2.48990i) q^{15} +(0.572949 - 1.76336i) q^{16} +(0.215659 - 0.0960175i) q^{17} +(-1.20906 + 0.256993i) q^{18} +(-4.89074 - 1.03956i) q^{19} +(3.86984 + 1.72296i) q^{20} +(-2.00739 + 2.22943i) q^{21} +(-0.0493516 + 0.469550i) q^{22} +(4.42705 + 3.21644i) q^{23} +(0.233733 + 2.22382i) q^{24} +(-0.927051 + 1.60570i) q^{25} +(1.50000 + 2.59808i) q^{26} +(-4.04508 + 2.93893i) q^{27} +(-3.24803 - 3.60730i) q^{28} +(-2.66312 - 8.19624i) q^{29} -1.61803 q^{30} -5.61803 q^{32} +(0.236068 + 0.726543i) q^{33} +(-0.0976248 - 0.108423i) q^{34} +(6.35410 - 4.61653i) q^{35} +(-1.61803 - 2.80252i) q^{36} +(-0.118034 + 0.204441i) q^{37} +(0.323011 + 3.07324i) q^{38} +(3.92705 + 2.85317i) q^{39} +(0.611920 - 5.82203i) q^{40} +(4.33070 - 4.80973i) q^{41} +(1.69381 + 0.754131i) q^{42} +(4.51712 + 0.960143i) q^{43} +(-1.20906 + 0.256993i) q^{44} +(4.78339 - 2.12970i) q^{45} +(1.04508 - 3.21644i) q^{46} +(-1.04508 + 3.21644i) q^{47} +(-1.69381 + 0.754131i) q^{48} +(-1.95630 + 0.415823i) q^{49} +(1.12086 + 0.238246i) q^{50} +(-0.215659 - 0.0960175i) q^{51} +(-5.25542 + 5.83674i) q^{52} +(1.32837 - 12.6386i) q^{53} +(2.50000 + 1.81636i) q^{54} +(-0.209057 - 1.98904i) q^{55} +(-3.35410 + 5.80948i) q^{56} +(2.50000 + 4.33013i) q^{57} +(-4.30902 + 3.13068i) q^{58} +(6.33810 + 7.03917i) q^{59} +(-1.30902 - 4.02874i) q^{60} -6.94427 q^{61} -6.00000 q^{63} +(-0.0729490 - 0.224514i) q^{64} +(-8.50345 - 9.44404i) q^{65} +(0.381966 - 0.277515i) q^{66} +(2.11803 + 3.66854i) q^{67} +(0.190983 - 0.330792i) q^{68} +(-0.571994 - 5.44216i) q^{69} +(-3.92705 - 2.85317i) q^{70} +(-0.00942533 + 0.0896760i) q^{71} +(-2.99244 + 3.32344i) q^{72} +(-7.82206 - 3.48260i) q^{73} +(0.142710 + 0.0303339i) q^{74} +(1.81359 - 0.385489i) q^{75} +(-7.39074 + 3.29057i) q^{76} +(-0.708204 + 2.17963i) q^{77} +(0.927051 - 2.85317i) q^{78} +(4.74803 - 1.00922i) q^{80} +(-0.978148 - 0.207912i) q^{81} +(-3.65418 - 1.62695i) q^{82} +(-2.73686 + 3.03959i) q^{83} +(-0.507392 + 4.82751i) q^{84} +(0.500000 + 0.363271i) q^{85} +(-0.298335 - 2.83847i) q^{86} +(-4.30902 + 7.46344i) q^{87} +(0.854102 + 1.47935i) q^{88} +(5.16312 - 3.75123i) q^{89} +(-2.16535 - 2.40487i) q^{90} +(4.50000 + 13.8496i) q^{91} +8.85410 q^{92} +2.09017 q^{94} +(-4.04508 - 12.4495i) q^{95} +(3.75920 + 4.17501i) q^{96} +(4.28115 - 3.11044i) q^{97} +(0.618034 + 1.07047i) q^{98} +(-0.763932 + 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 6 q^{14} + 2 q^{15} + 18 q^{16} + 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 0.587785i −0.135045 0.415627i 0.860552 0.509363i \(-0.170119\pi\)
−0.995597 + 0.0937362i \(0.970119\pi\)
\(3\) −0.669131 0.743145i −0.386323 0.429055i 0.518346 0.855171i \(-0.326548\pi\)
−0.904668 + 0.426116i \(0.859881\pi\)
\(4\) 1.30902 0.951057i 0.654508 0.475528i
\(5\) 1.30902 + 2.26728i 0.585410 + 1.01396i 0.994824 + 0.101611i \(0.0323999\pi\)
−0.409414 + 0.912349i \(0.634267\pi\)
\(6\) −0.309017 + 0.535233i −0.126156 + 0.218508i
\(7\) −0.313585 2.98357i −0.118524 1.12768i −0.878504 0.477735i \(-0.841458\pi\)
0.759980 0.649947i \(-0.225209\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) 0.209057 1.98904i 0.0696856 0.663015i
\(10\) 1.08268 1.20243i 0.342372 0.380243i
\(11\) −0.697887 0.310719i −0.210421 0.0936853i 0.298820 0.954310i \(-0.403407\pi\)
−0.509241 + 0.860624i \(0.670074\pi\)
\(12\) −1.58268 0.336408i −0.456879 0.0971127i
\(13\) −4.74803 + 1.00922i −1.31687 + 0.279909i −0.812186 0.583398i \(-0.801723\pi\)
−0.504680 + 0.863307i \(0.668389\pi\)
\(14\) −1.69381 + 0.754131i −0.452689 + 0.201550i
\(15\) 0.809017 2.48990i 0.208887 0.642889i
\(16\) 0.572949 1.76336i 0.143237 0.440839i
\(17\) 0.215659 0.0960175i 0.0523049 0.0232877i −0.380417 0.924815i \(-0.624220\pi\)
0.432722 + 0.901527i \(0.357553\pi\)
\(18\) −1.20906 + 0.256993i −0.284977 + 0.0605738i
\(19\) −4.89074 1.03956i −1.12201 0.238491i −0.390689 0.920523i \(-0.627763\pi\)
−0.731323 + 0.682031i \(0.761097\pi\)
\(20\) 3.86984 + 1.72296i 0.865323 + 0.385266i
\(21\) −2.00739 + 2.22943i −0.438049 + 0.486502i
\(22\) −0.0493516 + 0.469550i −0.0105218 + 0.100108i
\(23\) 4.42705 + 3.21644i 0.923104 + 0.670674i 0.944295 0.329101i \(-0.106746\pi\)
−0.0211907 + 0.999775i \(0.506746\pi\)
\(24\) 0.233733 + 2.22382i 0.0477105 + 0.453935i
\(25\) −0.927051 + 1.60570i −0.185410 + 0.321140i
\(26\) 1.50000 + 2.59808i 0.294174 + 0.509525i
\(27\) −4.04508 + 2.93893i −0.778477 + 0.565597i
\(28\) −3.24803 3.60730i −0.613820 0.681716i
\(29\) −2.66312 8.19624i −0.494529 1.52200i −0.817690 0.575659i \(-0.804746\pi\)
0.323161 0.946344i \(-0.395254\pi\)
\(30\) −1.61803 −0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 0.236068 + 0.726543i 0.0410942 + 0.126475i
\(34\) −0.0976248 0.108423i −0.0167425 0.0185945i
\(35\) 6.35410 4.61653i 1.07404 0.780335i
\(36\) −1.61803 2.80252i −0.269672 0.467086i
\(37\) −0.118034 + 0.204441i −0.0194047 + 0.0336099i −0.875565 0.483101i \(-0.839510\pi\)
0.856160 + 0.516711i \(0.172844\pi\)
\(38\) 0.323011 + 3.07324i 0.0523993 + 0.498546i
\(39\) 3.92705 + 2.85317i 0.628831 + 0.456873i
\(40\) 0.611920 5.82203i 0.0967531 0.920544i
\(41\) 4.33070 4.80973i 0.676342 0.751154i −0.303082 0.952964i \(-0.598016\pi\)
0.979425 + 0.201810i \(0.0646824\pi\)
\(42\) 1.69381 + 0.754131i 0.261360 + 0.116365i
\(43\) 4.51712 + 0.960143i 0.688854 + 0.146420i 0.539023 0.842291i \(-0.318794\pi\)
0.149831 + 0.988712i \(0.452127\pi\)
\(44\) −1.20906 + 0.256993i −0.182272 + 0.0387431i
\(45\) 4.78339 2.12970i 0.713065 0.317477i
\(46\) 1.04508 3.21644i 0.154089 0.474238i
\(47\) −1.04508 + 3.21644i −0.152441 + 0.469166i −0.997893 0.0648863i \(-0.979332\pi\)
0.845451 + 0.534052i \(0.179332\pi\)
\(48\) −1.69381 + 0.754131i −0.244480 + 0.108849i
\(49\) −1.95630 + 0.415823i −0.279471 + 0.0594033i
\(50\) 1.12086 + 0.238246i 0.158513 + 0.0336930i
\(51\) −0.215659 0.0960175i −0.0301983 0.0134451i
\(52\) −5.25542 + 5.83674i −0.728796 + 0.809410i
\(53\) 1.32837 12.6386i 0.182466 1.73604i −0.394166 0.919039i \(-0.628967\pi\)
0.576632 0.817004i \(-0.304367\pi\)
\(54\) 2.50000 + 1.81636i 0.340207 + 0.247175i
\(55\) −0.209057 1.98904i −0.0281892 0.268203i
\(56\) −3.35410 + 5.80948i −0.448211 + 0.776324i
\(57\) 2.50000 + 4.33013i 0.331133 + 0.573539i
\(58\) −4.30902 + 3.13068i −0.565802 + 0.411079i
\(59\) 6.33810 + 7.03917i 0.825150 + 0.916422i 0.997645 0.0685886i \(-0.0218496\pi\)
−0.172495 + 0.985010i \(0.555183\pi\)
\(60\) −1.30902 4.02874i −0.168993 0.520108i
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −0.0729490 0.224514i −0.00911863 0.0280642i
\(65\) −8.50345 9.44404i −1.05472 1.17139i
\(66\) 0.381966 0.277515i 0.0470168 0.0341597i
\(67\) 2.11803 + 3.66854i 0.258759 + 0.448184i 0.965910 0.258879i \(-0.0833531\pi\)
−0.707151 + 0.707063i \(0.750020\pi\)
\(68\) 0.190983 0.330792i 0.0231601 0.0401145i
\(69\) −0.571994 5.44216i −0.0688600 0.655159i
\(70\) −3.92705 2.85317i −0.469372 0.341019i
\(71\) −0.00942533 + 0.0896760i −0.00111858 + 0.0106426i −0.995067 0.0992057i \(-0.968370\pi\)
0.993948 + 0.109848i \(0.0350365\pi\)
\(72\) −2.99244 + 3.32344i −0.352663 + 0.391672i
\(73\) −7.82206 3.48260i −0.915502 0.407608i −0.105759 0.994392i \(-0.533727\pi\)
−0.809744 + 0.586784i \(0.800394\pi\)
\(74\) 0.142710 + 0.0303339i 0.0165897 + 0.00352625i
\(75\) 1.81359 0.385489i 0.209415 0.0445125i
\(76\) −7.39074 + 3.29057i −0.847776 + 0.377454i
\(77\) −0.708204 + 2.17963i −0.0807073 + 0.248392i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(80\) 4.74803 1.00922i 0.530846 0.112835i
\(81\) −0.978148 0.207912i −0.108683 0.0231013i
\(82\) −3.65418 1.62695i −0.403537 0.179666i
\(83\) −2.73686 + 3.03959i −0.300409 + 0.333638i −0.874384 0.485235i \(-0.838734\pi\)
0.573975 + 0.818873i \(0.305401\pi\)
\(84\) −0.507392 + 4.82751i −0.0553610 + 0.526725i
\(85\) 0.500000 + 0.363271i 0.0542326 + 0.0394023i
\(86\) −0.298335 2.83847i −0.0321703 0.306080i
\(87\) −4.30902 + 7.46344i −0.461975 + 0.800164i
\(88\) 0.854102 + 1.47935i 0.0910476 + 0.157699i
\(89\) 5.16312 3.75123i 0.547290 0.397629i −0.279496 0.960147i \(-0.590167\pi\)
0.826785 + 0.562518i \(0.190167\pi\)
\(90\) −2.16535 2.40487i −0.228248 0.253495i
\(91\) 4.50000 + 13.8496i 0.471728 + 1.45183i
\(92\) 8.85410 0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) −4.04508 12.4495i −0.415017 1.27729i
\(96\) 3.75920 + 4.17501i 0.383672 + 0.426110i
\(97\) 4.28115 3.11044i 0.434685 0.315817i −0.348834 0.937184i \(-0.613422\pi\)
0.783520 + 0.621367i \(0.213422\pi\)
\(98\) 0.618034 + 1.07047i 0.0624309 + 0.108133i
\(99\) −0.763932 + 1.32317i −0.0767781 + 0.132983i
\(100\) 0.313585 + 2.98357i 0.0313585 + 0.298357i
\(101\) −3.85410 2.80017i −0.383497 0.278627i 0.379288 0.925279i \(-0.376169\pi\)
−0.762786 + 0.646651i \(0.776169\pi\)
\(102\) −0.0152505 + 0.145099i −0.00151002 + 0.0143669i
\(103\) −0.0976248 + 0.108423i −0.00961926 + 0.0106833i −0.747935 0.663772i \(-0.768955\pi\)
0.738316 + 0.674455i \(0.235621\pi\)
\(104\) 9.91572 + 4.41476i 0.972316 + 0.432903i
\(105\) −7.68247 1.63296i −0.749732 0.159361i
\(106\) −7.68247 + 1.63296i −0.746188 + 0.158607i
\(107\) 0.995920 0.443412i 0.0962792 0.0428663i −0.358032 0.933709i \(-0.616552\pi\)
0.454311 + 0.890843i \(0.349885\pi\)
\(108\) −2.50000 + 7.69421i −0.240563 + 0.740376i
\(109\) −2.60081 + 8.00448i −0.249113 + 0.766690i 0.745820 + 0.666147i \(0.232058\pi\)
−0.994933 + 0.100543i \(0.967942\pi\)
\(110\) −1.12920 + 0.502754i −0.107665 + 0.0479357i
\(111\) 0.230909 0.0490813i 0.0219169 0.00465859i
\(112\) −5.44076 1.15647i −0.514103 0.109276i
\(113\) −1.69381 0.754131i −0.159340 0.0709427i 0.325517 0.945536i \(-0.394462\pi\)
−0.484857 + 0.874593i \(0.661128\pi\)
\(114\) 2.06773 2.29644i 0.193660 0.215082i
\(115\) −1.49750 + 14.2478i −0.139643 + 1.32861i
\(116\) −11.2812 8.19624i −1.04743 0.761002i
\(117\) 1.01478 + 9.65502i 0.0938168 + 0.892607i
\(118\) 2.92705 5.06980i 0.269457 0.466713i
\(119\) −0.354102 0.613323i −0.0324605 0.0562232i
\(120\) −4.73607 + 3.44095i −0.432342 + 0.314115i
\(121\) −6.96994 7.74090i −0.633631 0.703718i
\(122\) 1.32624 + 4.08174i 0.120072 + 0.369543i
\(123\) −6.47214 −0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 1.14590 + 3.52671i 0.102085 + 0.314184i
\(127\) 6.84927 + 7.60688i 0.607774 + 0.675002i 0.965973 0.258644i \(-0.0832756\pi\)
−0.358199 + 0.933645i \(0.616609\pi\)
\(128\) −9.20820 + 6.69015i −0.813898 + 0.591331i
\(129\) −2.30902 3.99933i −0.203298 0.352122i
\(130\) −3.92705 + 6.80185i −0.344425 + 0.596562i
\(131\) −0.00942533 0.0896760i −0.000823495 0.00783503i 0.994102 0.108445i \(-0.0345872\pi\)
−0.994926 + 0.100610i \(0.967921\pi\)
\(132\) 1.00000 + 0.726543i 0.0870388 + 0.0632374i
\(133\) −1.56793 + 14.9178i −0.135957 + 1.29354i
\(134\) 1.75181 1.94558i 0.151333 0.168072i
\(135\) −11.9585 5.32425i −1.02922 0.458239i
\(136\) −0.516329 0.109749i −0.0442748 0.00941091i
\(137\) 6.33070 1.34563i 0.540869 0.114965i 0.0706268 0.997503i \(-0.477500\pi\)
0.470242 + 0.882538i \(0.344167\pi\)
\(138\) −3.08958 + 1.37557i −0.263002 + 0.117096i
\(139\) 1.80902 5.56758i 0.153439 0.472236i −0.844561 0.535460i \(-0.820138\pi\)
0.997999 + 0.0632239i \(0.0201382\pi\)
\(140\) 3.92705 12.0862i 0.331896 1.02147i
\(141\) 3.08958 1.37557i 0.260190 0.115844i
\(142\) 0.0545103 0.0115865i 0.00457440 0.000972319i
\(143\) 3.62717 + 0.770979i 0.303319 + 0.0644725i
\(144\) −3.38761 1.50826i −0.282301 0.125689i
\(145\) 15.0971 16.7671i 1.25375 1.39243i
\(146\) −0.553143 + 5.26281i −0.0457785 + 0.435553i
\(147\) 1.61803 + 1.17557i 0.133453 + 0.0969594i
\(148\) 0.0399263 + 0.379874i 0.00328192 + 0.0312254i
\(149\) 8.51722 14.7523i 0.697758 1.20855i −0.271484 0.962443i \(-0.587514\pi\)
0.969242 0.246109i \(-0.0791522\pi\)
\(150\) −0.572949 0.992377i −0.0467811 0.0810272i
\(151\) 15.7812 11.4657i 1.28425 0.933064i 0.284579 0.958652i \(-0.408146\pi\)
0.999673 + 0.0255888i \(0.00814604\pi\)
\(152\) 7.48111 + 8.30861i 0.606798 + 0.673917i
\(153\) −0.145898 0.449028i −0.0117952 0.0363018i
\(154\) 1.41641 0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 0 0
\(159\) −10.2812 + 7.46969i −0.815348 + 0.592385i
\(160\) −7.35410 12.7377i −0.581393 1.00700i
\(161\) 8.20820 14.2170i 0.646897 1.12046i
\(162\) 0.0646021 + 0.614648i 0.00507562 + 0.0482913i
\(163\) 10.2812 + 7.46969i 0.805282 + 0.585072i 0.912459 0.409168i \(-0.134181\pi\)
−0.107177 + 0.994240i \(0.534181\pi\)
\(164\) 1.09464 10.4148i 0.0854767 0.813257i
\(165\) −1.33826 + 1.48629i −0.104183 + 0.115707i
\(166\) 2.30932 + 1.02817i 0.179238 + 0.0798019i
\(167\) 9.03424 + 1.92029i 0.699090 + 0.148596i 0.543728 0.839261i \(-0.317012\pi\)
0.155362 + 0.987858i \(0.450346\pi\)
\(168\) 6.56161 1.39471i 0.506239 0.107605i
\(169\) 9.64915 4.29608i 0.742242 0.330467i
\(170\) 0.118034 0.363271i 0.00905279 0.0278616i
\(171\) −3.09017 + 9.51057i −0.236311 + 0.727291i
\(172\) 6.82614 3.03919i 0.520488 0.231736i
\(173\) −0.889948 + 0.189164i −0.0676615 + 0.0143819i −0.241618 0.970371i \(-0.577678\pi\)
0.173957 + 0.984753i \(0.444345\pi\)
\(174\) 5.20985 + 1.10739i 0.394957 + 0.0839508i
\(175\) 5.08142 + 2.26239i 0.384119 + 0.171021i
\(176\) −0.947762 + 1.05260i −0.0714402 + 0.0793424i
\(177\) 0.990108 9.42025i 0.0744211 0.708069i
\(178\) −3.19098 2.31838i −0.239174 0.173770i
\(179\) −2.06949 19.6899i −0.154681 1.47169i −0.746372 0.665529i \(-0.768206\pi\)
0.591691 0.806165i \(-0.298461\pi\)
\(180\) 4.23607 7.33708i 0.315738 0.546874i
\(181\) −8.50000 14.7224i −0.631800 1.09431i −0.987184 0.159589i \(-0.948983\pi\)
0.355383 0.934721i \(-0.384350\pi\)
\(182\) 7.28115 5.29007i 0.539715 0.392126i
\(183\) 4.64662 + 5.16060i 0.343488 + 0.381483i
\(184\) −3.78115 11.6372i −0.278750 0.857905i
\(185\) −0.618034 −0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) 1.69098 + 5.20431i 0.123328 + 0.379563i
\(189\) 10.0370 + 11.1472i 0.730081 + 0.810837i
\(190\) −6.54508 + 4.75528i −0.474830 + 0.344984i
\(191\) 8.04508 + 13.9345i 0.582122 + 1.00826i 0.995228 + 0.0975816i \(0.0311107\pi\)
−0.413106 + 0.910683i \(0.635556\pi\)
\(192\) −0.118034 + 0.204441i −0.00851837 + 0.0147542i
\(193\) 0.248983 + 2.36892i 0.0179222 + 0.170518i 0.999822 0.0188844i \(-0.00601146\pi\)
−0.981899 + 0.189403i \(0.939345\pi\)
\(194\) −2.64590 1.92236i −0.189964 0.138017i
\(195\) −1.32837 + 12.6386i −0.0951265 + 0.905068i
\(196\) −2.16535 + 2.40487i −0.154668 + 0.171776i
\(197\) 14.9971 + 6.67715i 1.06850 + 0.475728i 0.864183 0.503177i \(-0.167836\pi\)
0.204318 + 0.978905i \(0.434502\pi\)
\(198\) 0.923637 + 0.196325i 0.0656400 + 0.0139522i
\(199\) 26.1246 5.55295i 1.85192 0.393638i 0.858957 0.512048i \(-0.171113\pi\)
0.992965 + 0.118410i \(0.0377798\pi\)
\(200\) 3.78747 1.68629i 0.267814 0.119239i
\(201\) 1.30902 4.02874i 0.0923309 0.284165i
\(202\) −0.909830 + 2.80017i −0.0640154 + 0.197019i
\(203\) −23.6189 + 10.5158i −1.65772 + 0.738065i
\(204\) −0.373619 + 0.0794152i −0.0261586 + 0.00556018i
\(205\) 16.5740 + 3.52291i 1.15758 + 0.246051i
\(206\) 0.0823743 + 0.0366754i 0.00573929 + 0.00255530i
\(207\) 7.32315 8.13318i 0.508994 0.565295i
\(208\) −0.940756 + 8.95070i −0.0652297 + 0.620619i
\(209\) 3.09017 + 2.24514i 0.213752 + 0.155300i
\(210\) 0.507392 + 4.82751i 0.0350134 + 0.333130i
\(211\) 4.00000 6.92820i 0.275371 0.476957i −0.694857 0.719148i \(-0.744533\pi\)
0.970229 + 0.242190i \(0.0778659\pi\)
\(212\) −10.2812 17.8075i −0.706112 1.22302i
\(213\) 0.0729490 0.0530006i 0.00499838 0.00363154i
\(214\) −0.450835 0.500703i −0.0308184 0.0342273i
\(215\) 3.73607 + 11.4984i 0.254798 + 0.784187i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) 2.64590 + 8.14324i 0.178793 + 0.550269i
\(220\) −2.16535 2.40487i −0.145988 0.162136i
\(221\) −0.927051 + 0.673542i −0.0623602 + 0.0453073i
\(222\) −0.0729490 0.126351i −0.00489602 0.00848015i
\(223\) −0.354102 + 0.613323i −0.0237124 + 0.0410711i −0.877638 0.479324i \(-0.840882\pi\)
0.853926 + 0.520395i \(0.174215\pi\)
\(224\) 1.76173 + 16.7618i 0.117711 + 1.11994i
\(225\) 3.00000 + 2.17963i 0.200000 + 0.145309i
\(226\) −0.119779 + 1.13962i −0.00796758 + 0.0758064i
\(227\) −13.8795 + 15.4148i −0.921217 + 1.02312i 0.0784394 + 0.996919i \(0.475006\pi\)
−0.999657 + 0.0261967i \(0.991660\pi\)
\(228\) 7.39074 + 3.29057i 0.489464 + 0.217923i
\(229\) 7.07794 + 1.50446i 0.467724 + 0.0994177i 0.435744 0.900071i \(-0.356485\pi\)
0.0319799 + 0.999489i \(0.489819\pi\)
\(230\) 8.66062 1.84087i 0.571064 0.121383i
\(231\) 2.09366 0.932157i 0.137753 0.0613315i
\(232\) −5.95492 + 18.3273i −0.390959 + 1.20325i
\(233\) 5.80902 17.8783i 0.380561 1.17125i −0.559088 0.829108i \(-0.688849\pi\)
0.939649 0.342139i \(-0.111151\pi\)
\(234\) 5.48127 2.44042i 0.358322 0.159535i
\(235\) −8.66062 + 1.84087i −0.564956 + 0.120085i
\(236\) 14.9913 + 3.18650i 0.975852 + 0.207424i
\(237\) 0 0
\(238\) −0.292875 + 0.325270i −0.0189842 + 0.0210841i
\(239\) 1.40240 13.3429i 0.0907135 0.863081i −0.850660 0.525716i \(-0.823798\pi\)
0.941374 0.337365i \(-0.109536\pi\)
\(240\) −3.92705 2.85317i −0.253490 0.184171i
\(241\) 0.891405 + 8.48115i 0.0574204 + 0.546319i 0.984983 + 0.172651i \(0.0552333\pi\)
−0.927563 + 0.373668i \(0.878100\pi\)
\(242\) −3.21885 + 5.57521i −0.206915 + 0.358388i
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) −9.09017 + 6.60440i −0.581938 + 0.422803i
\(245\) −3.50361 3.89116i −0.223838 0.248597i
\(246\) 1.23607 + 3.80423i 0.0788088 + 0.242549i
\(247\) 24.2705 1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) −1.57295 4.84104i −0.0994820 0.306174i
\(251\) 0.631841 + 0.701731i 0.0398815 + 0.0442929i 0.762755 0.646687i \(-0.223846\pi\)
−0.722874 + 0.690980i \(0.757179\pi\)
\(252\) −7.85410 + 5.70634i −0.494762 + 0.359466i
\(253\) −2.09017 3.62028i −0.131408 0.227605i
\(254\) 3.16312 5.47868i 0.198472 0.343763i
\(255\) −0.0646021 0.614648i −0.00404554 0.0384908i
\(256\) 5.30902 + 3.85723i 0.331814 + 0.241077i
\(257\) −0.148055 + 1.40865i −0.00923541 + 0.0878691i −0.998169 0.0604919i \(-0.980733\pi\)
0.988933 + 0.148361i \(0.0473997\pi\)
\(258\) −1.90977 + 2.12101i −0.118897 + 0.132048i
\(259\) 0.646976 + 0.288052i 0.0402012 + 0.0178987i
\(260\) −20.1130 4.27514i −1.24735 0.265133i
\(261\) −16.8594 + 3.58358i −1.04357 + 0.221818i
\(262\) −0.0509101 + 0.0226667i −0.00314524 + 0.00140035i
\(263\) −3.33688 + 10.2699i −0.205761 + 0.633267i 0.793920 + 0.608022i \(0.208037\pi\)
−0.999681 + 0.0252452i \(0.991963\pi\)
\(264\) 0.527864 1.62460i 0.0324878 0.0999871i
\(265\) 30.3941 13.5323i 1.86710 0.831285i
\(266\) 9.06793 1.92745i 0.555990 0.118179i
\(267\) −6.24250 1.32689i −0.382035 0.0812041i
\(268\) 6.26153 + 2.78781i 0.382484 + 0.170293i
\(269\) −0.924716 + 1.02700i −0.0563809 + 0.0626173i −0.770675 0.637228i \(-0.780081\pi\)
0.714295 + 0.699845i \(0.246748\pi\)
\(270\) −0.845653 + 8.04585i −0.0514648 + 0.489655i
\(271\) −7.73607 5.62058i −0.469933 0.341426i 0.327482 0.944857i \(-0.393800\pi\)
−0.797415 + 0.603431i \(0.793800\pi\)
\(272\) −0.0457515 0.435296i −0.00277409 0.0263937i
\(273\) 7.28115 12.6113i 0.440675 0.763272i
\(274\) −2.00000 3.46410i −0.120824 0.209274i
\(275\) 1.14590 0.832544i 0.0691003 0.0502043i
\(276\) −5.92455 6.57988i −0.356616 0.396062i
\(277\) 4.11803 + 12.6740i 0.247429 + 0.761507i 0.995228 + 0.0975818i \(0.0311108\pi\)
−0.747799 + 0.663925i \(0.768889\pi\)
\(278\) −3.61803 −0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) 5.88197 + 18.1028i 0.350889 + 1.07992i 0.958355 + 0.285579i \(0.0921859\pi\)
−0.607466 + 0.794345i \(0.707814\pi\)
\(282\) −1.39860 1.55330i −0.0832852 0.0924976i
\(283\) −5.30902 + 3.85723i −0.315588 + 0.229288i −0.734291 0.678835i \(-0.762485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(284\) 0.0729490 + 0.126351i 0.00432873 + 0.00749758i
\(285\) −6.54508 + 11.3364i −0.387697 + 0.671512i
\(286\) −0.239558 2.27924i −0.0141654 0.134774i
\(287\) −15.7082 11.4127i −0.927226 0.673669i
\(288\) −1.17449 + 11.1745i −0.0692074 + 0.658465i
\(289\) −11.3379 + 12.5920i −0.666937 + 0.740709i
\(290\) −12.7387 5.67165i −0.748044 0.333051i
\(291\) −5.17616 1.10023i −0.303432 0.0644964i
\(292\) −13.5514 + 2.88043i −0.793033 + 0.168564i
\(293\) −7.52402 + 3.34991i −0.439558 + 0.195704i −0.614570 0.788862i \(-0.710670\pi\)
0.175012 + 0.984566i \(0.444004\pi\)
\(294\) 0.381966 1.17557i 0.0222767 0.0685607i
\(295\) −7.66312 + 23.5847i −0.446164 + 1.37315i
\(296\) 0.482228 0.214702i 0.0280289 0.0124793i
\(297\) 3.73619 0.794152i 0.216796 0.0460814i
\(298\) −10.2978 2.18887i −0.596536 0.126798i
\(299\) −24.2659 10.8039i −1.40333 0.624804i
\(300\) 2.00739 2.22943i 0.115897 0.128716i
\(301\) 1.44815 13.7782i 0.0834699 0.794163i
\(302\) −9.75329 7.08618i −0.561239 0.407764i
\(303\) 0.497966 + 4.73783i 0.0286074 + 0.272181i
\(304\) −4.63525 + 8.02850i −0.265850 + 0.460466i
\(305\) −9.09017 15.7446i −0.520502 0.901535i
\(306\) −0.236068 + 0.171513i −0.0134951 + 0.00980477i
\(307\) 4.07512 + 4.52588i 0.232579 + 0.258306i 0.848126 0.529795i \(-0.177731\pi\)
−0.615546 + 0.788101i \(0.711065\pi\)
\(308\) 1.14590 + 3.52671i 0.0652936 + 0.200953i
\(309\) 0.145898 0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −3.35410 10.3229i −0.189889 0.584417i
\(313\) 0.827091 + 0.918578i 0.0467499 + 0.0519211i 0.766066 0.642762i \(-0.222211\pi\)
−0.719316 + 0.694683i \(0.755545\pi\)
\(314\) 4.85410 3.52671i 0.273933 0.199024i
\(315\) −7.85410 13.6037i −0.442529 0.766482i
\(316\) 0 0
\(317\) −2.70609 25.7467i −0.151989 1.44608i −0.758847 0.651269i \(-0.774237\pi\)
0.606857 0.794811i \(-0.292430\pi\)
\(318\) 6.35410 + 4.61653i 0.356320 + 0.258882i
\(319\) −0.688173 + 6.54753i −0.0385303 + 0.366591i
\(320\) 0.413545 0.459289i 0.0231179 0.0256750i
\(321\) −0.995920 0.443412i −0.0555868 0.0247488i
\(322\) −9.92419 2.10945i −0.553053 0.117555i
\(323\) −1.15455 + 0.245406i −0.0642407 + 0.0136548i
\(324\) −1.47815 + 0.658114i −0.0821193 + 0.0365619i
\(325\) 2.78115 8.55951i 0.154271 0.474796i
\(326\) 2.42705 7.46969i 0.134422 0.413708i
\(327\) 7.68877 3.42326i 0.425190 0.189307i
\(328\) −14.1559 + 3.00893i −0.781628 + 0.166140i
\(329\) 9.92419 + 2.10945i 0.547138 + 0.116298i
\(330\) 1.12920 + 0.502754i 0.0621607 + 0.0276757i
\(331\) 7.54144 8.37562i 0.414515 0.460366i −0.499340 0.866406i \(-0.666424\pi\)
0.913855 + 0.406040i \(0.133091\pi\)
\(332\) −0.691773 + 6.58178i −0.0379660 + 0.361222i
\(333\) 0.381966 + 0.277515i 0.0209316 + 0.0152077i
\(334\) −0.596670 5.67693i −0.0326483 0.310628i
\(335\) −5.54508 + 9.60437i −0.302960 + 0.524743i
\(336\) 2.78115 + 4.81710i 0.151724 + 0.262794i
\(337\) −15.3541 + 11.1554i −0.836391 + 0.607674i −0.921360 0.388710i \(-0.872921\pi\)
0.0849690 + 0.996384i \(0.472921\pi\)
\(338\) −4.36799 4.85115i −0.237588 0.263868i
\(339\) 0.572949 + 1.76336i 0.0311183 + 0.0957723i
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) −4.63525 14.2658i −0.250280 0.770283i
\(344\) −6.90960 7.67389i −0.372541 0.413748i
\(345\) 11.5902 8.42075i 0.623994 0.453358i
\(346\) 0.281153 + 0.486971i 0.0151149 + 0.0261797i
\(347\) −4.06231 + 7.03612i −0.218076 + 0.377719i −0.954220 0.299107i \(-0.903311\pi\)
0.736144 + 0.676825i \(0.236645\pi\)
\(348\) 1.45757 + 13.8679i 0.0781341 + 0.743397i
\(349\) 13.5172 + 9.82084i 0.723560 + 0.525697i 0.887520 0.460770i \(-0.152427\pi\)
−0.163959 + 0.986467i \(0.552427\pi\)
\(350\) 0.359337 3.41886i 0.0192074 0.182746i
\(351\) 16.2401 18.0365i 0.866835 0.962717i
\(352\) 3.92075 + 1.74563i 0.208977 + 0.0930424i
\(353\) 31.6743 + 6.73259i 1.68586 + 0.358340i 0.948405 0.317062i \(-0.102696\pi\)
0.737450 + 0.675401i \(0.236030\pi\)
\(354\) −5.72618 + 1.21714i −0.304343 + 0.0646901i
\(355\) −0.215659 + 0.0960175i −0.0114460 + 0.00509608i
\(356\) 3.19098 9.82084i 0.169122 0.520503i
\(357\) −0.218847 + 0.673542i −0.0115826 + 0.0356476i
\(358\) −11.1782 + 4.97686i −0.590786 + 0.263035i
\(359\) 24.7728 5.26562i 1.30746 0.277909i 0.499072 0.866561i \(-0.333674\pi\)
0.808387 + 0.588652i \(0.200341\pi\)
\(360\) −11.4524 2.43427i −0.603592 0.128297i
\(361\) 5.48127 + 2.44042i 0.288488 + 0.128443i
\(362\) −7.03027 + 7.80791i −0.369503 + 0.410375i
\(363\) −1.08881 + 10.3593i −0.0571478 + 0.543725i
\(364\) 19.0623 + 13.8496i 0.999136 + 0.725915i
\(365\) −2.34315 22.2936i −0.122646 1.16690i
\(366\) 2.14590 3.71680i 0.112168 0.194280i
\(367\) 18.1353 + 31.4112i 0.946653 + 1.63965i 0.752408 + 0.658697i \(0.228892\pi\)
0.194245 + 0.980953i \(0.437774\pi\)
\(368\) 8.20820 5.96361i 0.427882 0.310875i
\(369\) −8.66141 9.61947i −0.450895 0.500770i
\(370\) 0.118034 + 0.363271i 0.00613629 + 0.0188856i
\(371\) −38.1246 −1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0.0344419 + 0.106001i 0.00178095 + 0.00548119i
\(375\) −5.51101 6.12059i −0.284587 0.316066i
\(376\) 6.11803 4.44501i 0.315514 0.229234i
\(377\) 20.9164 + 36.2283i 1.07725 + 1.86585i
\(378\) 4.63525 8.02850i 0.238412 0.412941i
\(379\) 1.92504 + 18.3155i 0.0988826 + 0.940805i 0.925681 + 0.378306i \(0.123493\pi\)
−0.826798 + 0.562499i \(0.809840\pi\)
\(380\) −17.1353 12.4495i −0.879020 0.638645i
\(381\) 1.06996 10.1800i 0.0548157 0.521537i
\(382\) 6.65402 7.39003i 0.340449 0.378107i
\(383\) −15.3970 6.85518i −0.786749 0.350283i −0.0262778 0.999655i \(-0.508365\pi\)
−0.760472 + 0.649371i \(0.775032\pi\)
\(384\) 11.1332 + 2.36644i 0.568141 + 0.120762i
\(385\) −5.86889 + 1.24747i −0.299106 + 0.0635770i
\(386\) 1.34486 0.598772i 0.0684517 0.0304767i
\(387\) 2.85410 8.78402i 0.145082 0.446517i
\(388\) 2.64590 8.14324i 0.134325 0.413410i
\(389\) −26.5557 + 11.8234i −1.34643 + 0.599469i −0.948158 0.317798i \(-0.897056\pi\)
−0.398271 + 0.917268i \(0.630390\pi\)
\(390\) 7.68247 1.63296i 0.389017 0.0826881i
\(391\) 1.26357 + 0.268580i 0.0639013 + 0.0135826i
\(392\) 4.08550 + 1.81898i 0.206349 + 0.0918724i
\(393\) −0.0603355 + 0.0670093i −0.00304352 + 0.00338017i
\(394\) 1.06054 10.0903i 0.0534290 0.508343i
\(395\) 0 0
\(396\) 0.258409 + 2.45859i 0.0129855 + 0.123549i
\(397\) −8.14590 + 14.1091i −0.408831 + 0.708116i −0.994759 0.102247i \(-0.967397\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(398\) −8.25329 14.2951i −0.413700 0.716549i
\(399\) 12.1353 8.81678i 0.607523 0.441391i
\(400\) 2.30027 + 2.55470i 0.115013 + 0.127735i
\(401\) −9.21885 28.3727i −0.460367 1.41686i −0.864717 0.502260i \(-0.832502\pi\)
0.404349 0.914605i \(-0.367498\pi\)
\(402\) −2.61803 −0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) −0.809017 2.48990i −0.0402004 0.123724i
\(406\) 10.6918 + 11.8745i 0.530627 + 0.589321i
\(407\) 0.145898 0.106001i 0.00723190 0.00525428i
\(408\) 0.263932 + 0.457144i 0.0130666 + 0.0226320i
\(409\) 3.09017 5.35233i 0.152799 0.264656i −0.779456 0.626457i \(-0.784505\pi\)
0.932255 + 0.361801i \(0.117838\pi\)
\(410\) −1.09464 10.4148i −0.0540602 0.514349i
\(411\) −5.23607 3.80423i −0.258276 0.187649i
\(412\) −0.0246758 + 0.234775i −0.00121569 + 0.0115665i
\(413\) 19.0143 21.1175i 0.935632 1.03912i
\(414\) −6.17916 2.75114i −0.303689 0.135211i
\(415\) −10.4742 2.22636i −0.514158 0.109288i
\(416\) 26.6746 5.66986i 1.30783 0.277988i
\(417\) −5.34799 + 2.38108i −0.261892 + 0.116602i
\(418\) 0.729490 2.24514i 0.0356805 0.109813i
\(419\) 1.38197 4.25325i 0.0675135 0.207785i −0.911608 0.411060i \(-0.865159\pi\)
0.979122 + 0.203275i \(0.0651586\pi\)
\(420\) −11.6095 + 5.16889i −0.566487 + 0.252216i
\(421\) −14.4413 + 3.06959i −0.703826 + 0.149603i −0.545903 0.837849i \(-0.683813\pi\)
−0.157923 + 0.987451i \(0.550480\pi\)
\(422\) −4.83623 1.02797i −0.235424 0.0500409i
\(423\) 6.17916 + 2.75114i 0.300441 + 0.133765i
\(424\) −19.0143 + 21.1175i −0.923415 + 1.02556i
\(425\) −0.0457515 + 0.435296i −0.00221927 + 0.0211150i
\(426\) −0.0450850 0.0327561i −0.00218437 0.00158704i
\(427\) 2.17762 + 20.7187i 0.105383 + 1.00265i
\(428\) 0.881966 1.52761i 0.0426314 0.0738398i
\(429\) −1.85410 3.21140i −0.0895169 0.155048i
\(430\) 6.04508 4.39201i 0.291520 0.211802i
\(431\) 19.5627 + 21.7266i 0.942304 + 1.04654i 0.998841 + 0.0481345i \(0.0153276\pi\)
−0.0565365 + 0.998401i \(0.518006\pi\)
\(432\) 2.86475 + 8.81678i 0.137830 + 0.424197i
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) 4.20820 + 12.9515i 0.201536 + 0.620265i
\(437\) −18.3079 20.3329i −0.875784 0.972657i
\(438\) 4.28115 3.11044i 0.204561 0.148623i
\(439\) −20.9164 36.2283i −0.998286 1.72908i −0.549831 0.835276i \(-0.685308\pi\)
−0.448455 0.893805i \(-0.648026\pi\)
\(440\) −2.23607 + 3.87298i −0.106600 + 0.184637i
\(441\) 0.418114 + 3.97809i 0.0199102 + 0.189433i
\(442\) 0.572949 + 0.416272i 0.0272524 + 0.0198000i
\(443\) 4.29869 40.8993i 0.204237 1.94319i −0.110205 0.993909i \(-0.535151\pi\)
0.314442 0.949277i \(-0.398183\pi\)
\(444\) 0.255585 0.283856i 0.0121295 0.0134712i
\(445\) 15.2637 + 6.79584i 0.723569 + 0.322154i
\(446\) 0.428129 + 0.0910017i 0.0202725 + 0.00430906i
\(447\) −16.6622 + 3.54166i −0.788095 + 0.167515i
\(448\) −0.646976 + 0.288052i −0.0305668 + 0.0136092i
\(449\) 7.43769 22.8909i 0.351006 1.08029i −0.607283 0.794486i \(-0.707740\pi\)
0.958289 0.285801i \(-0.0922596\pi\)
\(450\) 0.708204 2.17963i 0.0333851 0.102749i
\(451\) −4.51682 + 2.01102i −0.212689 + 0.0946951i
\(452\) −2.93444 + 0.623735i −0.138025 + 0.0293380i
\(453\) −19.0803 4.05565i −0.896471 0.190551i
\(454\) 11.7113 + 5.21423i 0.549641 + 0.244716i
\(455\) −25.5103 + 28.3321i −1.19594 + 1.32823i
\(456\) 1.16866 11.1191i 0.0547277 0.520699i
\(457\) 12.7361 + 9.25330i 0.595768 + 0.432851i 0.844374 0.535754i \(-0.179972\pi\)
−0.248606 + 0.968605i \(0.579972\pi\)
\(458\) −0.467465 4.44764i −0.0218432 0.207824i
\(459\) −0.590170 + 1.02220i −0.0275468 + 0.0477124i
\(460\) 11.5902 + 20.0748i 0.540394 + 0.935991i
\(461\) −8.69098 + 6.31437i −0.404779 + 0.294089i −0.771485 0.636248i \(-0.780486\pi\)
0.366705 + 0.930337i \(0.380486\pi\)
\(462\) −0.947762 1.05260i −0.0440939 0.0489712i
\(463\) −9.61803 29.6013i −0.446988 1.37569i −0.880289 0.474438i \(-0.842651\pi\)
0.433301 0.901249i \(-0.357349\pi\)
\(464\) −15.9787 −0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −10.1287 31.1729i −0.468699 1.44251i −0.854270 0.519830i \(-0.825995\pi\)
0.385571 0.922678i \(-0.374005\pi\)
\(468\) 10.5108 + 11.6735i 0.485864 + 0.539606i
\(469\) 10.2812 7.46969i 0.474740 0.344918i
\(470\) 2.73607 + 4.73901i 0.126205 + 0.218594i
\(471\) 4.85410 8.40755i 0.223665 0.387400i
\(472\) −2.21395 21.0643i −0.101905 0.969564i
\(473\) −2.85410 2.07363i −0.131232 0.0953454i
\(474\) 0 0
\(475\) 6.20318 6.88933i 0.284622 0.316104i
\(476\) −1.04683 0.466079i −0.0479814 0.0213627i
\(477\) −24.8610 5.28437i −1.13831 0.241955i
\(478\) −8.11060 + 1.72396i −0.370970 + 0.0788522i
\(479\) −8.17100 + 3.63796i −0.373342 + 0.166223i −0.584826 0.811159i \(-0.698837\pi\)
0.211483 + 0.977382i \(0.432171\pi\)
\(480\) −4.54508 + 13.9883i −0.207454 + 0.638477i
\(481\) 0.354102 1.08981i 0.0161457 0.0496912i
\(482\) 4.81485 2.14371i 0.219310 0.0976433i
\(483\) −16.0577 + 3.41316i −0.730649 + 0.155304i
\(484\) −16.4858 3.50416i −0.749355 0.159280i
\(485\) 12.6564 + 5.63497i 0.574695 + 0.255871i
\(486\) 6.61673 7.34862i 0.300141 0.333340i
\(487\) −2.39610 + 22.7974i −0.108578 + 1.03305i 0.795579 + 0.605849i \(0.207167\pi\)
−0.904157 + 0.427200i \(0.859500\pi\)
\(488\) 12.5623 + 9.12705i 0.568669 + 0.413162i
\(489\) −1.32837 12.6386i −0.0600709 0.571537i
\(490\) −1.61803 + 2.80252i −0.0730953 + 0.126605i
\(491\) 13.7984 + 23.8995i 0.622712 + 1.07857i 0.988979 + 0.148059i \(0.0473025\pi\)
−0.366267 + 0.930510i \(0.619364\pi\)
\(492\) −8.47214 + 6.15537i −0.381953 + 0.277505i
\(493\) −1.36131 1.51188i −0.0613102 0.0680919i
\(494\) −4.63525 14.2658i −0.208550 0.641851i
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) −0.781153 2.40414i −0.0350043 0.107732i
\(499\) 2.77415 + 3.08100i 0.124188 + 0.137925i 0.802032 0.597281i \(-0.203752\pi\)
−0.677844 + 0.735206i \(0.737086\pi\)
\(500\) 10.7812 7.83297i 0.482148 0.350301i
\(501\) −4.61803 7.99867i −0.206319 0.357354i
\(502\) 0.291796 0.505406i 0.0130235 0.0225574i
\(503\) −1.37412 13.0739i −0.0612690 0.582936i −0.981487 0.191529i \(-0.938655\pi\)
0.920218 0.391406i \(-0.128011\pi\)
\(504\) 10.8541 + 7.88597i 0.483480 + 0.351269i
\(505\) 1.30369 12.4038i 0.0580136 0.551962i
\(506\) −1.72876 + 1.91998i −0.0768528 + 0.0853537i
\(507\) −9.64915 4.29608i −0.428534 0.190795i
\(508\) 16.2004 + 3.44350i 0.718776 + 0.152780i
\(509\) 1.86810 0.397076i 0.0828019 0.0176001i −0.166324 0.986071i \(-0.553190\pi\)
0.249126 + 0.968471i \(0.419857\pi\)
\(510\) −0.348943 + 0.155360i −0.0154515 + 0.00687944i
\(511\) −7.93769 + 24.4297i −0.351143 + 1.08071i
\(512\) −5.78115 + 17.7926i −0.255493 + 0.786327i
\(513\) 22.8386 10.1684i 1.00835 0.448947i
\(514\) 0.856259 0.182003i 0.0377680 0.00802783i
\(515\) −0.373619 0.0794152i −0.0164636 0.00349945i
\(516\) −6.82614 3.03919i −0.300504 0.133793i
\(517\) 1.72876 1.91998i 0.0760308 0.0844408i
\(518\) 0.0457515 0.435296i 0.00201021 0.0191258i
\(519\) 0.736068 + 0.534785i 0.0323098 + 0.0234744i
\(520\) 2.97032 + 28.2607i 0.130257 + 1.23932i
\(521\) −15.5344 + 26.9064i −0.680576 + 1.17879i 0.294229 + 0.955735i \(0.404937\pi\)
−0.974805 + 0.223058i \(0.928396\pi\)
\(522\) 5.32624 + 9.22531i 0.233123 + 0.403781i
\(523\) −27.6074 + 20.0579i −1.20719 + 0.877073i −0.994972 0.100150i \(-0.968068\pi\)
−0.212215 + 0.977223i \(0.568068\pi\)
\(524\) −0.0976248 0.108423i −0.00426476 0.00473650i
\(525\) −1.71885 5.29007i −0.0750166 0.230877i
\(526\) 6.67376 0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) 2.14590 + 6.60440i 0.0932999 + 0.287148i
\(530\) −13.7589 15.2808i −0.597647 0.663754i
\(531\) 15.3262 11.1352i 0.665102 0.483225i
\(532\) 12.1353 + 21.0189i 0.526130 + 0.911284i
\(533\) −15.7082 + 27.2074i −0.680398 + 1.17848i
\(534\) 0.412289 + 3.92266i 0.0178415 + 0.169750i
\(535\) 2.30902 + 1.67760i 0.0998275 + 0.0725289i
\(536\) 0.990108 9.42025i 0.0427661 0.406893i
\(537\) −13.2477 + 14.7131i −0.571680 + 0.634915i
\(538\) 0.780261 + 0.347395i 0.0336394 + 0.0149772i
\(539\) 1.49448 + 0.317661i 0.0643717 + 0.0136826i
\(540\) −20.7175 + 4.40364i −0.891539 + 0.189503i
\(541\) 20.0980 8.94821i 0.864081 0.384713i 0.0736639 0.997283i \(-0.476531\pi\)
0.790417 + 0.612570i \(0.209864\pi\)
\(542\) −1.82624 + 5.62058i −0.0784436 + 0.241425i
\(543\) −5.25329 + 16.1680i −0.225440 + 0.693834i
\(544\) −1.21158 + 0.539430i −0.0519460 + 0.0231279i
\(545\) −21.5529 + 4.58122i −0.923226 + 0.196238i
\(546\) −8.80333 1.87121i −0.376748 0.0800802i
\(547\) −21.6585 9.64300i −0.926052 0.412305i −0.112404 0.993663i \(-0.535855\pi\)
−0.813648 + 0.581358i \(0.802522\pi\)
\(548\) 7.00723 7.78231i 0.299334 0.332444i
\(549\) −1.45175 + 13.8125i −0.0619591 + 0.589501i
\(550\) −0.708204 0.514540i −0.0301979 0.0219401i
\(551\) 4.50415 + 42.8541i 0.191883 + 1.82565i
\(552\) −6.11803 + 10.5967i −0.260401 + 0.451027i
\(553\) 0 0
\(554\) 6.66312 4.84104i 0.283089 0.205676i
\(555\) 0.413545 + 0.459289i 0.0175540 + 0.0194957i
\(556\) −2.92705 9.00854i −0.124135 0.382047i
\(557\) 35.8885 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) −4.50000 13.8496i −0.190160 0.585251i
\(561\) 0.120671 + 0.134019i 0.00509473 + 0.00565827i
\(562\) 9.51722 6.91467i 0.401460 0.291678i
\(563\) 4.28115 + 7.41517i 0.180429 + 0.312512i 0.942027 0.335538i \(-0.108918\pi\)
−0.761598 + 0.648050i \(0.775585\pi\)
\(564\) 2.73607 4.73901i 0.115209 0.199548i
\(565\) −0.507392 4.82751i −0.0213461 0.203095i
\(566\) 3.28115 + 2.38390i 0.137917 + 0.100203i
\(567\) −0.313585 + 2.98357i −0.0131693 + 0.125298i
\(568\) 0.134914 0.149837i 0.00566087 0.00628704i
\(569\) 14.1854 + 6.31575i 0.594683 + 0.264770i 0.681931 0.731417i \(-0.261140\pi\)
−0.0872476 + 0.996187i \(0.527807\pi\)
\(570\) 7.91338 + 1.68204i 0.331455 + 0.0704529i
\(571\) −6.84703 + 1.45538i −0.286539 + 0.0609058i −0.348939 0.937145i \(-0.613458\pi\)
0.0623997 + 0.998051i \(0.480125\pi\)
\(572\) 5.48127 2.44042i 0.229184 0.102039i
\(573\) 4.97214 15.3027i 0.207714 0.639278i
\(574\) −3.70820 + 11.4127i −0.154777 + 0.476356i
\(575\) −9.26874 + 4.12671i −0.386533 + 0.172096i
\(576\) −0.461819 + 0.0981626i −0.0192424 + 0.00409011i
\(577\) −38.1269 8.10413i −1.58725 0.337379i −0.672086 0.740473i \(-0.734602\pi\)
−0.915159 + 0.403093i \(0.867935\pi\)
\(578\) 9.56677 + 4.25940i 0.397925 + 0.177168i
\(579\) 1.59385 1.77015i 0.0662380 0.0735647i
\(580\) 3.81598 36.3066i 0.158450 1.50755i
\(581\) 9.92705 + 7.21242i 0.411843 + 0.299222i
\(582\) 0.341861 + 3.25259i 0.0141706 + 0.134824i
\(583\) −4.85410 + 8.40755i −0.201036 + 0.348205i
\(584\) 9.57295 + 16.5808i 0.396131 + 0.686120i
\(585\) −20.5623 + 14.9394i −0.850147 + 0.617668i
\(586\) 3.40599 + 3.78273i 0.140700 + 0.156263i
\(587\) 11.1287 + 34.2505i 0.459330 + 1.41367i 0.865976 + 0.500086i \(0.166698\pi\)
−0.406646 + 0.913586i \(0.633302\pi\)
\(588\) 3.23607 0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) −5.07295 15.6129i −0.208673 0.642230i
\(592\) 0.292875 + 0.325270i 0.0120371 + 0.0133685i
\(593\) −4.94427 + 3.59222i −0.203037 + 0.147515i −0.684658 0.728865i \(-0.740048\pi\)
0.481621 + 0.876380i \(0.340048\pi\)
\(594\) −1.18034 2.04441i −0.0484299 0.0838831i
\(595\) 0.927051 1.60570i 0.0380054 0.0658273i
\(596\) −2.88105 27.4113i −0.118012 1.12281i
\(597\) −21.6074 15.6987i −0.884332 0.642505i
\(598\) −1.71598 + 16.3265i −0.0701717 + 0.667639i
\(599\) 19.9390 22.1445i 0.814686 0.904800i −0.182232 0.983256i \(-0.558332\pi\)
0.996918 + 0.0784555i \(0.0249989\pi\)
\(600\) −3.78747 1.68629i −0.154623 0.0688424i
\(601\) −21.5192 4.57406i −0.877788 0.186580i −0.253087 0.967443i \(-0.581446\pi\)
−0.624701 + 0.780864i \(0.714779\pi\)
\(602\) −8.37520 + 1.78020i −0.341348 + 0.0725557i
\(603\) 7.73968 3.44593i 0.315184 0.140329i
\(604\) 9.75329 30.0175i 0.396856 1.22140i
\(605\) 8.42705 25.9358i 0.342608 1.05444i
\(606\) 2.68973 1.19754i 0.109263 0.0486469i
\(607\) 24.8610 5.28437i 1.00908 0.214486i 0.326420 0.945225i \(-0.394158\pi\)
0.682657 + 0.730739i \(0.260824\pi\)
\(608\) 27.4763 + 5.84027i 1.11431 + 0.236854i
\(609\) 23.6189 + 10.5158i 0.957086 + 0.426122i
\(610\) −7.51840 + 8.35003i −0.304411 + 0.338083i
\(611\) 1.71598 16.3265i 0.0694212 0.660499i
\(612\) −0.618034 0.449028i −0.0249825 0.0181509i
\(613\) −2.61904 24.9185i −0.105782 1.00645i −0.910702 0.413064i \(-0.864459\pi\)
0.804920 0.593383i \(-0.202208\pi\)
\(614\) 1.88197 3.25966i 0.0759500 0.131549i
\(615\) −8.47214 14.6742i −0.341629 0.591720i
\(616\) 4.14590 3.01217i 0.167043 0.121364i
\(617\) −9.52579 10.5795i −0.383494 0.425913i 0.520232 0.854025i \(-0.325846\pi\)
−0.903726 + 0.428112i \(0.859179\pi\)
\(618\) −0.0278640 0.0857567i −0.00112086 0.00344964i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −3.14590 9.68208i −0.126139 0.388216i
\(623\) −12.8111 14.2282i −0.513266 0.570040i
\(624\) 7.28115 5.29007i 0.291479 0.211772i
\(625\) 15.4164 + 26.7020i 0.616656 + 1.06808i
\(626\) 0.381966 0.661585i 0.0152664 0.0264422i
\(627\) −0.399263 3.79874i −0.0159450 0.151707i
\(628\) 12.7082 + 9.23305i 0.507113 + 0.368439i
\(629\) −0.00582517 + 0.0554228i −0.000232265 + 0.00220985i
\(630\) −6.49606 + 7.21460i −0.258809 + 0.287437i
\(631\) −7.97479 3.55060i −0.317471 0.141347i 0.241814 0.970323i \(-0.422258\pi\)
−0.559285 + 0.828975i \(0.688924\pi\)
\(632\) 0 0
\(633\) −7.82518 + 1.66329i −0.311023 + 0.0661100i
\(634\) −14.6167 + 6.50779i −0.580504 + 0.258457i
\(635\) −8.28115 + 25.4868i −0.328628 + 1.01141i
\(636\) −6.35410 + 19.5559i −0.251957 + 0.775442i
\(637\) 8.86889 3.94868i 0.351398 0.156452i
\(638\) 3.97997 0.845968i 0.157568 0.0334922i
\(639\) 0.176399 + 0.0374948i 0.00697824 + 0.00148327i
\(640\) −27.2222 12.1201i −1.07605 0.479089i
\(641\) −27.4947 + 30.5359i −1.08597 + 1.20610i −0.108711 + 0.994073i \(0.534672\pi\)
−0.977264 + 0.212024i \(0.931995\pi\)
\(642\) −0.0704273 + 0.670071i −0.00277954 + 0.0264456i
\(643\) −6.59017 4.78804i −0.259891 0.188822i 0.450208 0.892924i \(-0.351350\pi\)
−0.710099 + 0.704102i \(0.751350\pi\)
\(644\) −2.77652 26.4168i −0.109410 1.04097i
\(645\) 6.04508 10.4704i 0.238025 0.412271i
\(646\) 0.364745 + 0.631757i 0.0143507 + 0.0248561i
\(647\) 24.1803 17.5680i 0.950627 0.690671i −0.000327889 1.00000i \(-0.500104\pi\)
0.950955 + 0.309329i \(0.100104\pi\)
\(648\) 1.49622 + 1.66172i 0.0587771 + 0.0652786i
\(649\) −2.23607 6.88191i −0.0877733 0.270139i
\(650\) −5.56231 −0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) 12.2533 + 37.7117i 0.479508 + 1.47577i 0.839780 + 0.542927i \(0.182684\pi\)
−0.360272 + 0.932847i \(0.617316\pi\)
\(654\) −3.48057 3.86556i −0.136101 0.151155i
\(655\) 0.190983 0.138757i 0.00746232 0.00542170i
\(656\) −6.00000 10.3923i −0.234261 0.405751i
\(657\) −8.56231 + 14.8303i −0.334047 + 0.578587i
\(658\) −0.655447 6.23616i −0.0255520 0.243111i
\(659\) −18.3541 13.3350i −0.714974 0.519459i 0.169800 0.985478i \(-0.445688\pi\)
−0.884775 + 0.466019i \(0.845688\pi\)
\(660\) −0.338261 + 3.21834i −0.0131668 + 0.125274i
\(661\) −11.1196 + 12.3496i −0.432504 + 0.480344i −0.919517 0.393051i \(-0.871420\pi\)
0.487013 + 0.873395i \(0.338086\pi\)
\(662\) −6.36335 2.83315i −0.247319 0.110113i
\(663\) 1.12086 + 0.238246i 0.0435305 + 0.00925269i
\(664\) 8.94604 1.90154i 0.347174 0.0737940i
\(665\) −35.8754 + 15.9728i −1.39119 + 0.619397i
\(666\) 0.0901699 0.277515i 0.00349401 0.0107535i
\(667\) 14.5729 44.8509i 0.564267 1.73663i
\(668\) 13.6523 6.07838i 0.528222 0.235180i
\(669\) 0.692728 0.147244i 0.0267824 0.00569278i
\(670\) 6.70432 + 1.42505i 0.259011 + 0.0550544i
\(671\) 4.84631 + 2.15772i 0.187090 + 0.0832978i
\(672\) 11.2776 12.5250i 0.435043 0.483164i
\(673\) 0.461640 4.39221i 0.0177949 0.169307i −0.982015 0.188803i \(-0.939539\pi\)
0.999810 + 0.0194954i \(0.00620597\pi\)
\(674\) 9.48936 + 6.89442i 0.365516 + 0.265563i
\(675\) −0.969032 9.21973i −0.0372981 0.354867i
\(676\) 8.54508 14.8005i 0.328657 0.569251i
\(677\) −14.3262 24.8138i −0.550602 0.953671i −0.998231 0.0594514i \(-0.981065\pi\)
0.447629 0.894219i \(-0.352268\pi\)
\(678\) 0.927051 0.673542i 0.0356032 0.0258672i
\(679\) −10.6227 11.7977i −0.407662 0.452755i
\(680\) −0.427051 1.31433i −0.0163767 0.0504022i
\(681\) 20.7426 0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) 5.00000 + 15.3884i 0.191180 + 0.588391i
\(685\) 11.3379 + 12.5920i 0.433200 + 0.481117i
\(686\) −7.50000 + 5.44907i −0.286351 + 0.208046i
\(687\) −3.61803 6.26662i −0.138037 0.239086i
\(688\) 4.28115 7.41517i 0.163217 0.282701i
\(689\) 6.44804 + 61.3490i 0.245651 + 2.33721i
\(690\) −7.16312 5.20431i −0.272695 0.198125i
\(691\) −0.400638 + 3.81182i −0.0152410 + 0.145008i −0.999496 0.0317461i \(-0.989893\pi\)
0.984255 + 0.176755i \(0.0565599\pi\)
\(692\) −0.985051 + 1.09401i −0.0374460 + 0.0415880i
\(693\) 4.18732 + 1.86431i 0.159063 + 0.0708195i
\(694\) 4.91156 + 1.04398i 0.186440 + 0.0396291i
\(695\) 14.9913 3.18650i 0.568653 0.120871i
\(696\) 17.6045 7.83802i 0.667296 0.297099i
\(697\) 0.472136 1.45309i 0.0178834 0.0550395i
\(698\) 3.19098 9.82084i 0.120780 0.371724i
\(699\) −17.1732 + 7.64599i −0.649549 + 0.289198i
\(700\) 8.80333 1.87121i 0.332735 0.0707249i
\(701\) 29.3781 + 6.24451i 1.10960 + 0.235852i 0.726031 0.687662i \(-0.241363\pi\)
0.383565 + 0.923514i \(0.374696\pi\)
\(702\) −13.7032 6.10105i −0.517193 0.230269i
\(703\) 0.789802 0.877163i 0.0297879 0.0330828i
\(704\) −0.0188507 + 0.179352i −0.000710461 + 0.00675958i
\(705\) 7.16312 + 5.20431i 0.269779 + 0.196006i
\(706\) −2.09194 19.9035i −0.0787314 0.749079i
\(707\) −7.14590 + 12.3771i −0.268749 + 0.465487i
\(708\) −7.66312 13.2729i −0.287998 0.498827i
\(709\) −3.35410 + 2.43690i −0.125966 + 0.0915196i −0.648984 0.760802i \(-0.724806\pi\)
0.523018 + 0.852321i \(0.324806\pi\)
\(710\) 0.0976248 + 0.108423i 0.00366379 + 0.00406906i
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) 3.00000 + 9.23305i 0.112194 + 0.345297i
\(716\) −21.4352 23.8062i −0.801072 0.889681i
\(717\) −10.8541 + 7.88597i −0.405354 + 0.294507i
\(718\) −7.82624 13.5554i −0.292073 0.505885i
\(719\) 20.6910 35.8378i 0.771643 1.33653i −0.165018 0.986290i \(-0.552768\pi\)
0.936662 0.350235i \(-0.113898\pi\)
\(720\) −1.01478 9.65502i −0.0378188 0.359821i
\(721\) 0.354102 + 0.257270i 0.0131874 + 0.00958124i
\(722\) 0.387613 3.68789i 0.0144255 0.137249i
\(723\) 5.70625 6.33744i 0.212218 0.235692i
\(724\) −25.1285 11.1879i −0.933894 0.415796i
\(725\) 15.6295 + 3.32216i 0.580467 + 0.123382i
\(726\) 6.29702 1.33847i 0.233704 0.0496754i
\(727\) −21.7724 + 9.69368i −0.807492 + 0.359519i −0.768604 0.639725i \(-0.779048\pi\)
−0.0388882 + 0.999244i \(0.512382\pi\)
\(728\) 10.0623 30.9686i 0.372934 1.14777i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) −12.6564 + 5.63497i −0.468433 + 0.208560i
\(731\) 1.06635 0.226659i 0.0394403 0.00838329i
\(732\) 10.9905 + 2.33611i 0.406222 + 0.0863451i
\(733\) 25.5284 + 11.3660i 0.942912 + 0.419811i 0.819844 0.572587i \(-0.194060\pi\)
0.123068 + 0.992398i \(0.460727\pi\)
\(734\) 14.9995 16.6586i 0.553642 0.614882i
\(735\) −0.547318 + 5.20738i −0.0201881 + 0.192077i
\(736\) −24.8713 18.0701i −0.916769 0.666072i
\(737\) −0.338261 3.21834i −0.0124600 0.118549i
\(738\) −4.00000 + 6.92820i −0.147242 + 0.255031i
\(739\) −10.8541 18.7999i −0.399275 0.691564i 0.594362 0.804198i \(-0.297405\pi\)
−0.993637 + 0.112634i \(0.964071\pi\)
\(740\) −0.809017 + 0.587785i −0.0297401 + 0.0216074i
\(741\) −16.2401 18.0365i −0.596596 0.662588i
\(742\) 7.28115 + 22.4091i 0.267300 + 0.822663i
\(743\) −3.43769 −0.126117 −0.0630584 0.998010i \(-0.520085\pi\)
−0.0630584 + 0.998010i \(0.520085\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0.0663712 + 0.204270i 0.00243002 + 0.00747884i
\(747\) 5.47372 + 6.07918i 0.200273 + 0.222425i
\(748\) −0.236068 + 0.171513i −0.00863150 + 0.00627115i
\(749\) −1.63525 2.83234i −0.0597509 0.103492i
\(750\) −2.54508 + 4.40822i −0.0929334 + 0.160965i
\(751\) 4.16366 + 39.6146i 0.151934 + 1.44556i 0.759096 + 0.650979i \(0.225641\pi\)
−0.607161 + 0.794578i \(0.707692\pi\)
\(752\) 5.07295 + 3.68571i 0.184991 + 0.134404i
\(753\) 0.0987033 0.939099i 0.00359695 0.0342227i
\(754\) 17.2998 19.2133i 0.630020 0.699709i
\(755\) 46.6537 + 20.7716i 1.69790 + 0.755955i
\(756\) 23.7401 + 5.04612i 0.863421 + 0.183526i
\(757\) −42.1822 + 8.96611i −1.53314 + 0.325879i −0.895713 0.444632i \(-0.853334\pi\)
−0.637426 + 0.770511i \(0.720001\pi\)
\(758\) 10.3979 4.62946i 0.377670 0.168150i
\(759\) −1.29180 + 3.97574i −0.0468892 + 0.144310i
\(760\) −9.04508 + 27.8379i −0.328100 + 1.00979i
\(761\) 3.20342 1.42625i 0.116124 0.0517017i −0.347852 0.937549i \(-0.613089\pi\)
0.463976 + 0.885848i \(0.346422\pi\)
\(762\) −6.18799 + 1.31530i −0.224167 + 0.0476482i
\(763\) 24.6975 + 5.24961i 0.894108 + 0.190049i
\(764\) 23.7836 + 10.5892i 0.860462 + 0.383102i
\(765\) 0.827091 0.918578i 0.0299035 0.0332112i
\(766\) −1.08881 + 10.3593i −0.0393403 + 0.374298i
\(767\) −37.1976 27.0256i −1.34313 0.975838i
\(768\) −0.685948 6.52636i −0.0247520 0.235500i
\(769\) 26.8713 46.5425i 0.969005 1.67837i 0.270557 0.962704i \(-0.412792\pi\)
0.698447 0.715662i \(-0.253875\pi\)
\(770\) 1.85410 + 3.21140i 0.0668172 + 0.115731i
\(771\) 1.14590 0.832544i 0.0412685 0.0299833i
\(772\) 2.57890 + 2.86416i 0.0928166 + 0.103083i
\(773\) −5.89919 18.1558i −0.212179 0.653020i −0.999342 0.0362746i \(-0.988451\pi\)
0.787163 0.616745i \(-0.211549\pi\)
\(774\) −5.70820 −0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.218847 0.673542i −0.00785109 0.0241632i
\(778\) 12.0213 + 13.3510i 0.430985 + 0.478657i
\(779\) −26.1803 + 19.0211i −0.938008 + 0.681503i
\(780\) 10.2812 + 17.8075i 0.368124 + 0.637610i
\(781\) 0.0344419 0.0596550i 0.00123243 0.00213463i
\(782\) −0.0834528 0.794000i −0.00298427 0.0283934i
\(783\) 34.8607 + 25.3278i 1.24582 + 0.905141i
\(784\) −0.387613 + 3.68789i −0.0138433 + 0.131710i
\(785\) −17.0069 + 18.8881i −0.607002 + 0.674144i
\(786\) 0.0509101 + 0.0226667i 0.00181590 + 0.000808493i
\(787\) −30.6080 6.50593i −1.09106 0.231911i −0.372955 0.927849i \(-0.621656\pi\)
−0.718102 + 0.695938i \(0.754989\pi\)
\(788\) 25.9819 5.52261i 0.925565 0.196735i
\(789\) 9.86481 4.39209i 0.351196 0.156363i
\(790\) 0 0
\(791\) −1.71885 + 5.29007i −0.0611152 + 0.188093i
\(792\) 3.12104 1.38958i 0.110901 0.0493765i
\(793\) 32.9716 7.00833i 1.17086 0.248873i
\(794\) 9.84885 + 2.09344i 0.349523 + 0.0742934i
\(795\) −30.3941 13.5323i −1.07797 0.479942i
\(796\) 28.9163 32.1148i 1.02491 1.13828i
\(797\) −0.946581 + 9.00612i −0.0335296 + 0.319013i 0.964883 + 0.262682i \(0.0846070\pi\)
−0.998412 + 0.0563313i \(0.982060\pi\)
\(798\) −7.50000 5.44907i −0.265497 0.192895i
\(799\) 0.0834528 + 0.794000i 0.00295235 + 0.0280897i
\(800\) 5.20820 9.02087i 0.184138 0.318936i
\(801\) −6.38197 11.0539i −0.225496 0.390570i
\(802\) −14.9164 + 10.8374i −0.526717 + 0.382682i
\(803\) 4.37680 + 4.86092i 0.154454 + 0.171538i
\(804\) −2.11803 6.51864i −0.0746973 0.229895i
\(805\) 42.9787 1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) 3.29180 + 10.1311i 0.115805 + 0.356411i
\(809\) 36.6673 + 40.7231i 1.28915 + 1.43175i 0.844046 + 0.536272i \(0.180168\pi\)
0.445107 + 0.895477i \(0.353166\pi\)
\(810\) −1.30902 + 0.951057i −0.0459942 + 0.0334167i
\(811\) −21.3885 37.0460i −0.751053 1.30086i −0.947313 0.320311i \(-0.896213\pi\)
0.196259 0.980552i \(-0.437121\pi\)
\(812\) −20.9164 + 36.2283i −0.734022 + 1.27136i
\(813\) 0.999533 + 9.50992i 0.0350552 + 0.333528i
\(814\) −0.0901699 0.0655123i −0.00316045 0.00229620i
\(815\) −3.47772 + 33.0883i −0.121819 + 1.15903i
\(816\) −0.292875 + 0.325270i −0.0102527 + 0.0113867i
\(817\) −21.0939 9.39162i −0.737983 0.328571i
\(818\) −3.73619 0.794152i −0.130633 0.0277669i
\(819\) 28.4882 6.05535i 0.995457 0.211591i
\(820\) 25.0461 11.1513i 0.874649 0.389419i
\(821\) −10.0344 + 30.8828i −0.350204 + 1.07782i 0.608534 + 0.793528i \(0.291758\pi\)
−0.958738 + 0.284290i \(0.908242\pi\)
\(822\) −1.23607 + 3.80423i −0.0431128 + 0.132688i
\(823\) −5.59511 + 2.49110i −0.195033 + 0.0868344i −0.501929 0.864909i \(-0.667376\pi\)
0.306896 + 0.951743i \(0.400710\pi\)
\(824\) 0.319109 0.0678287i 0.0111167 0.00236292i
\(825\) −1.38546 0.294488i −0.0482354 0.0102527i
\(826\) −16.0440 7.14323i −0.558241 0.248545i
\(827\) 1.78910 1.98699i 0.0622130 0.0690945i −0.711235 0.702954i \(-0.751864\pi\)
0.773448 + 0.633860i \(0.218530\pi\)
\(828\) 1.85101 17.6112i 0.0643271 0.612031i
\(829\) 17.5623 + 12.7598i 0.609964 + 0.443165i 0.849402 0.527747i \(-0.176963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(830\) 0.691773 + 6.58178i 0.0240118 + 0.228457i
\(831\) 6.66312 11.5409i 0.231141 0.400348i
\(832\) 0.572949 + 0.992377i 0.0198634 + 0.0344045i
\(833\) −0.381966 + 0.277515i −0.0132343 + 0.00961531i
\(834\) 2.42094 + 2.68872i 0.0838302 + 0.0931029i
\(835\) 7.47214 + 22.9969i 0.258584 + 0.795839i
\(836\) 6.18034 0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) 3.45492 + 10.6331i 0.119277 + 0.367097i 0.992815 0.119659i \(-0.0381802\pi\)
−0.873538 + 0.486756i \(0.838180\pi\)
\(840\) 11.7515 + 13.0513i 0.405464 + 0.450314i
\(841\) −36.6246 + 26.6093i −1.26292 + 0.917563i
\(842\) 4.56231 + 7.90215i 0.157227 + 0.272326i
\(843\) 9.51722 16.4843i 0.327791 0.567750i
\(844\) −1.35304 12.8734i −0.0465737 0.443119i
\(845\) 22.3713 + 16.2537i 0.769597 + 0.559145i
\(846\) 0.436965 4.15744i 0.0150231 0.142936i
\(847\) −20.9098 + 23.2227i −0.718470 + 0.797941i
\(848\) −21.5252 9.58365i −0.739180 0.329104i
\(849\) 6.41890 + 1.36438i 0.220296 + 0.0468254i
\(850\) 0.264599 0.0562422i 0.00907566 0.00192909i
\(851\) −1.18011 + 0.525421i −0.0404538 + 0.0180112i
\(852\) 0.0450850 0.138757i 0.00154459 0.00475375i
\(853\) 1.23607 3.80423i 0.0423222 0.130254i −0.927663 0.373419i \(-0.878185\pi\)
0.969985 + 0.243164i \(0.0781855\pi\)
\(854\) 11.7623 5.23689i 0.402496 0.179203i
\(855\) −25.6082 + 5.44320i −0.875783 + 0.186153i
\(856\) −2.38442 0.506825i −0.0814980 0.0173229i
\(857\) −7.47311 3.32724i −0.255277 0.113656i 0.275109 0.961413i \(-0.411286\pi\)
−0.530385 + 0.847757i \(0.677953\pi\)
\(858\) −1.53351 + 1.70314i −0.0523532 + 0.0581441i
\(859\) −4.52522 + 43.0546i −0.154399 + 1.46901i 0.593308 + 0.804976i \(0.297822\pi\)
−0.747706 + 0.664030i \(0.768845\pi\)
\(860\) 15.8262 + 11.4984i 0.539670 + 0.392093i
\(861\) 2.02957 + 19.3100i 0.0691675 + 0.658084i
\(862\) 9.03444 15.6481i 0.307714 0.532977i
\(863\) −1.24671 2.15937i −0.0424385 0.0735057i 0.844026 0.536302i \(-0.180179\pi\)
−0.886464 + 0.462797i \(0.846846\pi\)
\(864\) 22.7254 16.5110i 0.773135 0.561715i
\(865\) −1.59385 1.77015i −0.0541924 0.0601868i
\(866\) −0.111456 0.343027i −0.00378744 0.0116565i
\(867\) 16.9443 0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 4.30902 + 13.2618i 0.146089 + 0.449617i
\(871\) −13.7589 15.2808i −0.466201 0.517769i
\(872\) 15.2254 11.0619i 0.515598 0.374604i
\(873\) −5.29180 9.16566i −0.179100 0.310211i
\(874\) −8.45492 + 14.6443i −0.285992 + 0.495352i
\(875\) −2.58271 24.5728i −0.0873116 0.830714i
\(876\) 11.2082 + 8.14324i 0.378690 + 0.275134i
\(877\) −1.70296 + 16.2025i −0.0575048 + 0.547121i 0.927406 + 0.374057i \(0.122034\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(878\) −17.2998 + 19.2133i −0.583839 + 0.648419i
\(879\) 7.52402 + 3.34991i 0.253779 + 0.112990i
\(880\) −3.62717 0.770979i −0.122272 0.0259897i
\(881\) 15.0250 3.19366i 0.506206 0.107597i 0.0522720 0.998633i \(-0.483354\pi\)
0.453933 + 0.891036i \(0.350020\pi\)
\(882\) 2.25841 1.00551i 0.0760446 0.0338572i
\(883\) −0.309017 + 0.951057i −0.0103992 + 0.0320056i −0.956121 0.292970i \(-0.905356\pi\)
0.945722 + 0.324976i \(0.105356\pi\)
\(884\) −0.572949 + 1.76336i −0.0192704 + 0.0593081i
\(885\) 22.6544 10.0864i 0.761521 0.339051i
\(886\) −24.8610 + 5.28437i −0.835222 + 0.177532i
\(887\) −38.2488 8.13004i −1.28427 0.272980i −0.485298 0.874349i \(-0.661289\pi\)
−0.798972 + 0.601369i \(0.794622\pi\)
\(888\) −0.482228 0.214702i −0.0161825 0.00720492i
\(889\) 20.5478 22.8206i 0.689151 0.765380i
\(890\) 1.07939 10.2697i 0.0361811 0.344240i
\(891\) 0.618034 + 0.449028i 0.0207049 + 0.0150430i
\(892\) 0.119779 + 1.13962i 0.00401050 + 0.0381573i
\(893\) 8.45492 14.6443i 0.282933 0.490054i
\(894\) 5.26393 + 9.11740i 0.176052 + 0.304931i
\(895\) 41.9336 30.4666i 1.40169 1.01838i
\(896\) 22.8481 + 25.3753i 0.763300 + 0.847731i
\(897\) 8.20820 + 25.2623i 0.274064 + 0.843482i
\(898\) −14.8754 −0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) 2.04468 + 2.27085i 0.0680804 + 0.0756110i
\(903\) −11.2082 + 8.14324i −0.372986 + 0.270990i
\(904\) 2.07295 + 3.59045i 0.0689453 + 0.119417i
\(905\) 22.2533 38.5438i 0.739724 1.28124i
\(906\) 1.26017 + 11.9897i 0.0418662 + 0.398331i
\(907\) −42.8156 31.1074i −1.42167 1.03290i −0.991493 0.130157i \(-0.958452\pi\)
−0.430175 0.902745i \(-0.641548\pi\)
\(908\) −3.50822 + 33.3784i −0.116424 + 1.10770i
\(909\) −6.37539 + 7.08058i −0.211458 + 0.234848i
\(910\) 21.5252 + 9.58365i 0.713555 + 0.317695i
\(911\) −8.00158 1.70079i −0.265104 0.0563496i 0.0734417 0.997300i \(-0.476602\pi\)
−0.338546 + 0.940950i \(0.609935\pi\)
\(912\) 9.06793 1.92745i 0.300269 0.0638242i
\(913\) 2.85447 1.27089i 0.0944693 0.0420605i
\(914\) 3.00658 9.25330i 0.0994488 0.306072i
\(915\) −5.61803 + 17.2905i −0.185726 + 0.571607i
\(916\) 10.6960 4.76216i 0.353405 0.157346i
\(917\) −0.264599 + 0.0562422i −0.00873781 + 0.00185728i
\(918\) 0.713549 + 0.151670i 0.0235506 + 0.00500584i
\(919\) 9.02162 + 4.01668i 0.297596 + 0.132498i 0.550103 0.835097i \(-0.314588\pi\)
−0.252507 + 0.967595i \(0.581255\pi\)
\(920\) 21.4352 23.8062i 0.706698 0.784868i
\(921\) 0.636596 6.05681i 0.0209766 0.199579i
\(922\) 5.37132 + 3.90249i 0.176895 + 0.128522i
\(923\) −0.0457515 0.435296i −0.00150593 0.0143280i
\(924\) 1.85410 3.21140i 0.0609955 0.105647i
\(925\) −0.218847 0.379054i −0.00719565 0.0124632i
\(926\) −15.5623 + 11.3067i −0.511409 + 0.371560i
\(927\) 0.195250 + 0.216847i 0.00641284 + 0.00712218i
\(928\) 14.9615 + 46.0467i 0.491135 + 1.51156i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −9.39919 28.9277i −0.307881 0.947559i
\(933\) −11.0220 12.2412i −0.360844 0.400758i
\(934\) −16.3885 + 11.9070i −0.536250 + 0.389608i
\(935\) −0.236068 0.408882i −0.00772025 0.0133719i
\(936\) 10.8541 18.7999i 0.354777 0.614493i
\(937\) −4.23187 40.2635i −0.138249 1.31535i −0.815138 0.579267i \(-0.803339\pi\)
0.676889 0.736085i \(-0.263328\pi\)
\(938\) −6.35410 4.61653i −0.207469 0.150735i
\(939\) 0.129204 1.22930i 0.00421642 0.0401166i
\(940\) −9.58612 + 10.6465i −0.312665 + 0.347250i
\(941\) 26.1124 + 11.6260i 0.851240 + 0.378997i 0.785516 0.618841i \(-0.212398\pi\)
0.0657242 + 0.997838i \(0.479064\pi\)
\(942\) −5.86889 1.24747i −0.191219 0.0406448i
\(943\) 34.6425 7.36349i 1.12811 0.239788i
\(944\) 16.0440 7.14323i 0.522187 0.232492i
\(945\) −12.1353 + 37.3485i −0.394760 + 1.21495i
\(946\) −0.673762 + 2.07363i −0.0219059 + 0.0674194i
\(947\) 20.1609 8.97622i 0.655142 0.291688i −0.0521186 0.998641i \(-0.516597\pi\)
0.707261 + 0.706953i \(0.249931\pi\)
\(948\) 0 0
\(949\) 40.6541 + 8.64129i 1.31969 + 0.280508i
\(950\) −5.23415 2.33039i −0.169818 0.0756080i
\(951\) −17.3228 + 19.2389i −0.561731 + 0.623865i
\(952\) −0.165530 + 1.57492i −0.00536487 + 0.0510434i
\(953\) −34.1525 24.8132i −1.10631 0.803779i −0.124229 0.992254i \(-0.539646\pi\)
−0.982078 + 0.188474i \(0.939646\pi\)
\(954\) 1.64195 + 15.6222i 0.0531602 + 0.505786i
\(955\) −21.0623 + 36.4810i −0.681560 + 1.18050i
\(956\) −10.8541 18.7999i −0.351047 0.608031i
\(957\) 5.32624 3.86974i 0.172173 0.125091i
\(958\) 3.69886 + 4.10800i 0.119505 + 0.132724i
\(959\) −6.00000 18.4661i −0.193750 0.596302i
\(960\) −0.618034 −0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) −0.673762 2.07363i −0.0217117 0.0668217i
\(964\) 9.23291 + 10.2542i 0.297372 + 0.330265i
\(965\) −5.04508 + 3.66547i −0.162407 + 0.117996i
\(966\) 5.07295 + 8.78661i 0.163219 + 0.282704i
\(967\) −21.8262 + 37.8042i −0.701884 + 1.21570i 0.265920 + 0.963995i \(0.414324\pi\)
−0.967804 + 0.251704i \(0.919009\pi\)
\(968\) 2.43466 + 23.1642i 0.0782528 + 0.744526i
\(969\) 0.954915 + 0.693786i 0.0306763 + 0.0222876i
\(970\) 0.895005 8.51540i 0.0287369 0.273413i
\(971\) −13.7589 + 15.2808i −0.441543 + 0.490383i −0.922302 0.386469i \(-0.873694\pi\)
0.480759 + 0.876853i \(0.340361\pi\)
\(972\) 23.6504 + 10.5298i 0.758586 + 0.337744i
\(973\) −17.1785 3.65141i −0.550718 0.117059i
\(974\) 13.8576 2.94552i 0.444026 0.0943807i
\(975\) −8.22191 + 3.66063i −0.263312 + 0.117234i
\(976\) −3.97871 + 12.2452i −0.127356 + 0.391960i
\(977\) −1.87539 + 5.77185i −0.0599990 + 0.184658i −0.976564 0.215228i \(-0.930950\pi\)
0.916565 + 0.399886i \(0.130950\pi\)
\(978\) −7.17508 + 3.19455i −0.229434 + 0.102150i
\(979\) −4.76885 + 1.01365i −0.152413 + 0.0323964i
\(980\) −8.28700 1.76146i −0.264718 0.0562677i
\(981\) 15.3775 + 6.84652i 0.490967 + 0.218593i
\(982\) 11.4125 12.6749i 0.364188 0.404472i
\(983\) −2.19870 + 20.9192i −0.0701276 + 0.667219i 0.901835 + 0.432082i \(0.142221\pi\)
−0.971962 + 0.235138i \(0.924446\pi\)
\(984\) 11.7082 + 8.50651i 0.373244 + 0.271178i
\(985\) 4.49250 + 42.7433i 0.143143 + 1.36191i
\(986\) −0.628677 + 1.08890i −0.0200212 + 0.0346777i
\(987\) −5.07295 8.78661i −0.161474 0.279681i
\(988\) 31.7705 23.0826i 1.01075 0.734356i
\(989\) 16.9093 + 18.7796i 0.537684 + 0.597158i
\(990\) 0.763932 + 2.35114i 0.0242794 + 0.0747242i
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) −0.0516628 0.159002i −0.00163864 0.00504323i
\(995\) 46.7876 + 51.9629i 1.48327 + 1.64733i
\(996\) 5.35410 3.88998i 0.169651 0.123259i
\(997\) 13.6246 + 23.5985i 0.431496 + 0.747373i 0.997002 0.0773712i \(-0.0246526\pi\)
−0.565507 + 0.824744i \(0.691319\pi\)
\(998\) 1.28115 2.21902i 0.0405542 0.0702419i
\(999\) −0.123379 1.17387i −0.00390354 0.0371397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.b.547.1 8
31.2 even 5 961.2.g.f.235.1 8
31.3 odd 30 961.2.c.d.521.1 4
31.4 even 5 961.2.g.f.816.1 8
31.5 even 3 31.2.d.a.4.1 4
31.6 odd 6 961.2.g.c.844.1 8
31.7 even 15 961.2.g.f.732.1 8
31.8 even 5 inner 961.2.g.b.846.1 8
31.9 even 15 31.2.d.a.8.1 yes 4
31.10 even 15 961.2.d.f.388.1 4
31.11 odd 30 961.2.d.e.374.1 4
31.12 odd 30 961.2.g.g.338.1 8
31.13 odd 30 961.2.a.e.1.1 2
31.14 even 15 inner 961.2.g.b.448.1 8
31.15 odd 10 961.2.c.d.439.1 4
31.16 even 5 961.2.c.f.439.1 4
31.17 odd 30 961.2.g.c.448.1 8
31.18 even 15 961.2.a.d.1.1 2
31.19 even 15 961.2.g.f.338.1 8
31.20 even 15 961.2.d.f.374.1 4
31.21 odd 30 961.2.d.e.388.1 4
31.22 odd 30 961.2.d.b.628.1 4
31.23 odd 10 961.2.g.c.846.1 8
31.24 odd 30 961.2.g.g.732.1 8
31.25 even 3 inner 961.2.g.b.844.1 8
31.26 odd 6 961.2.d.b.531.1 4
31.27 odd 10 961.2.g.g.816.1 8
31.28 even 15 961.2.c.f.521.1 4
31.29 odd 10 961.2.g.g.235.1 8
31.30 odd 2 961.2.g.c.547.1 8
93.5 odd 6 279.2.i.a.190.1 4
93.44 even 30 8649.2.a.f.1.2 2
93.71 odd 30 279.2.i.a.163.1 4
93.80 odd 30 8649.2.a.g.1.2 2
124.67 odd 6 496.2.n.b.97.1 4
124.71 odd 30 496.2.n.b.225.1 4
155.9 even 30 775.2.k.c.101.1 4
155.67 odd 12 775.2.bf.a.624.2 8
155.98 odd 12 775.2.bf.a.624.1 8
155.102 odd 60 775.2.bf.a.349.1 8
155.129 even 6 775.2.k.c.376.1 4
155.133 odd 60 775.2.bf.a.349.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.5 even 3
31.2.d.a.8.1 yes 4 31.9 even 15
279.2.i.a.163.1 4 93.71 odd 30
279.2.i.a.190.1 4 93.5 odd 6
496.2.n.b.97.1 4 124.67 odd 6
496.2.n.b.225.1 4 124.71 odd 30
775.2.k.c.101.1 4 155.9 even 30
775.2.k.c.376.1 4 155.129 even 6
775.2.bf.a.349.1 8 155.102 odd 60
775.2.bf.a.349.2 8 155.133 odd 60
775.2.bf.a.624.1 8 155.98 odd 12
775.2.bf.a.624.2 8 155.67 odd 12
961.2.a.d.1.1 2 31.18 even 15
961.2.a.e.1.1 2 31.13 odd 30
961.2.c.d.439.1 4 31.15 odd 10
961.2.c.d.521.1 4 31.3 odd 30
961.2.c.f.439.1 4 31.16 even 5
961.2.c.f.521.1 4 31.28 even 15
961.2.d.b.531.1 4 31.26 odd 6
961.2.d.b.628.1 4 31.22 odd 30
961.2.d.e.374.1 4 31.11 odd 30
961.2.d.e.388.1 4 31.21 odd 30
961.2.d.f.374.1 4 31.20 even 15
961.2.d.f.388.1 4 31.10 even 15
961.2.g.b.448.1 8 31.14 even 15 inner
961.2.g.b.547.1 8 1.1 even 1 trivial
961.2.g.b.844.1 8 31.25 even 3 inner
961.2.g.b.846.1 8 31.8 even 5 inner
961.2.g.c.448.1 8 31.17 odd 30
961.2.g.c.547.1 8 31.30 odd 2
961.2.g.c.844.1 8 31.6 odd 6
961.2.g.c.846.1 8 31.23 odd 10
961.2.g.f.235.1 8 31.2 even 5
961.2.g.f.338.1 8 31.19 even 15
961.2.g.f.732.1 8 31.7 even 15
961.2.g.f.816.1 8 31.4 even 5
961.2.g.g.235.1 8 31.29 odd 10
961.2.g.g.338.1 8 31.12 odd 30
961.2.g.g.732.1 8 31.24 odd 30
961.2.g.g.816.1 8 31.27 odd 10
8649.2.a.f.1.2 2 93.44 even 30
8649.2.a.g.1.2 2 93.80 odd 30