Properties

Label 961.2.d.n.628.3
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-9,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.3
Root \(-0.176392i\) of defining polynomial
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.n.531.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.380762 - 1.17187i) q^{2} +(-0.641202 - 1.97342i) q^{3} +(0.389745 + 0.283166i) q^{4} -1.54562 q^{5} -2.55673 q^{6} +(3.07730 + 2.23579i) q^{7} +(2.47393 - 1.79742i) q^{8} +(-1.05619 + 0.767366i) q^{9} +(-0.588515 + 1.81126i) q^{10} +(-3.04314 - 2.21097i) q^{11} +(0.308900 - 0.950697i) q^{12} +(0.814279 + 2.50609i) q^{13} +(3.79177 - 2.75488i) q^{14} +(0.991057 + 3.05016i) q^{15} +(-0.866611 - 2.66715i) q^{16} +(3.05350 - 2.21850i) q^{17} +(0.497093 + 1.52989i) q^{18} +(1.88448 - 5.79984i) q^{19} +(-0.602399 - 0.437668i) q^{20} +(2.43898 - 7.50641i) q^{21} +(-3.74967 + 2.72429i) q^{22} +(0.736082 - 0.534795i) q^{23} +(-5.13334 - 3.72959i) q^{24} -2.61105 q^{25} +3.24685 q^{26} +(-2.84451 - 2.06665i) q^{27} +(0.566263 + 1.74278i) q^{28} +(2.10397 - 6.47535i) q^{29} +3.95173 q^{30} +2.66037 q^{32} +(-2.41190 + 7.42306i) q^{33} +(-1.43713 - 4.42302i) q^{34} +(-4.75635 - 3.45569i) q^{35} -0.628936 q^{36} +1.81406 q^{37} +(-6.07909 - 4.41672i) q^{38} +(4.42345 - 3.21383i) q^{39} +(-3.82376 + 2.77813i) q^{40} +(0.104183 - 0.320644i) q^{41} +(-7.86783 - 5.71631i) q^{42} +(-1.20022 + 3.69390i) q^{43} +(-0.559976 - 1.72343i) q^{44} +(1.63247 - 1.18606i) q^{45} +(-0.346435 - 1.06622i) q^{46} +(-0.367467 - 1.13095i) q^{47} +(-4.70774 + 3.42037i) q^{48} +(2.30792 + 7.10304i) q^{49} +(-0.994189 + 3.05980i) q^{50} +(-6.33595 - 4.60333i) q^{51} +(-0.392280 + 1.20731i) q^{52} +(-1.89644 + 1.37784i) q^{53} +(-3.50492 + 2.54647i) q^{54} +(4.70354 + 3.41732i) q^{55} +11.6317 q^{56} -12.6538 q^{57} +(-6.78713 - 4.93114i) q^{58} +(2.40379 + 7.39811i) q^{59} +(-0.477443 + 1.46942i) q^{60} +2.72343 q^{61} -4.96588 q^{63} +(2.74619 - 8.45191i) q^{64} +(-1.25857 - 3.87348i) q^{65} +(7.78047 + 5.65284i) q^{66} -7.42118 q^{67} +1.81829 q^{68} +(-1.52735 - 1.10969i) q^{69} +(-5.86065 + 4.25801i) q^{70} +(4.12451 - 2.99664i) q^{71} +(-1.23366 + 3.79682i) q^{72} +(4.36201 + 3.16919i) q^{73} +(0.690727 - 2.12584i) q^{74} +(1.67421 + 5.15269i) q^{75} +(2.37679 - 1.72684i) q^{76} +(-4.42139 - 13.6076i) q^{77} +(-2.08189 - 6.40740i) q^{78} +(-7.87758 + 5.72340i) q^{79} +(1.33945 + 4.12241i) q^{80} +(-3.46475 + 10.6634i) q^{81} +(-0.336082 - 0.244178i) q^{82} +(2.59424 - 7.98426i) q^{83} +(3.07614 - 2.23495i) q^{84} +(-4.71957 + 3.42897i) q^{85} +(3.87175 + 2.81299i) q^{86} -14.1277 q^{87} -11.5025 q^{88} +(4.12243 + 2.99512i) q^{89} +(-0.768318 - 2.36464i) q^{90} +(-3.09732 + 9.53258i) q^{91} +0.438320 q^{92} -1.46523 q^{94} +(-2.91270 + 8.96437i) q^{95} +(-1.70584 - 5.25003i) q^{96} +(-8.82979 - 6.41522i) q^{97} +9.20257 q^{98} +4.91075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 9 q^{3} - 14 q^{4} + 6 q^{5} + 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} - 14 q^{11} - 5 q^{12} + q^{13} + 27 q^{14} - 14 q^{15} - 2 q^{16} + 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.380762 1.17187i 0.269240 0.828634i −0.721447 0.692470i \(-0.756523\pi\)
0.990686 0.136164i \(-0.0434774\pi\)
\(3\) −0.641202 1.97342i −0.370198 1.13935i −0.946661 0.322230i \(-0.895567\pi\)
0.576463 0.817123i \(-0.304433\pi\)
\(4\) 0.389745 + 0.283166i 0.194873 + 0.141583i
\(5\) −1.54562 −0.691223 −0.345612 0.938378i \(-0.612329\pi\)
−0.345612 + 0.938378i \(0.612329\pi\)
\(6\) −2.55673 −1.04378
\(7\) 3.07730 + 2.23579i 1.16311 + 0.845050i 0.990168 0.139881i \(-0.0446721\pi\)
0.172944 + 0.984932i \(0.444672\pi\)
\(8\) 2.47393 1.79742i 0.874666 0.635482i
\(9\) −1.05619 + 0.767366i −0.352063 + 0.255789i
\(10\) −0.588515 + 1.81126i −0.186105 + 0.572771i
\(11\) −3.04314 2.21097i −0.917540 0.666632i 0.0253702 0.999678i \(-0.491924\pi\)
−0.942911 + 0.333046i \(0.891924\pi\)
\(12\) 0.308900 0.950697i 0.0891718 0.274443i
\(13\) 0.814279 + 2.50609i 0.225840 + 0.695065i 0.998205 + 0.0598862i \(0.0190738\pi\)
−0.772365 + 0.635179i \(0.780926\pi\)
\(14\) 3.79177 2.75488i 1.01339 0.736273i
\(15\) 0.991057 + 3.05016i 0.255890 + 0.787548i
\(16\) −0.866611 2.66715i −0.216653 0.666789i
\(17\) 3.05350 2.21850i 0.740584 0.538066i −0.152310 0.988333i \(-0.548671\pi\)
0.892894 + 0.450267i \(0.148671\pi\)
\(18\) 0.497093 + 1.52989i 0.117166 + 0.360599i
\(19\) 1.88448 5.79984i 0.432330 1.33057i −0.463468 0.886114i \(-0.653395\pi\)
0.895798 0.444461i \(-0.146605\pi\)
\(20\) −0.602399 0.437668i −0.134701 0.0978657i
\(21\) 2.43898 7.50641i 0.532229 1.63803i
\(22\) −3.74967 + 2.72429i −0.799432 + 0.580821i
\(23\) 0.736082 0.534795i 0.153484 0.111512i −0.508393 0.861125i \(-0.669760\pi\)
0.661877 + 0.749613i \(0.269760\pi\)
\(24\) −5.13334 3.72959i −1.04784 0.761300i
\(25\) −2.61105 −0.522210
\(26\) 3.24685 0.636760
\(27\) −2.84451 2.06665i −0.547425 0.397728i
\(28\) 0.566263 + 1.74278i 0.107014 + 0.329354i
\(29\) 2.10397 6.47535i 0.390697 1.20244i −0.541565 0.840659i \(-0.682168\pi\)
0.932262 0.361784i \(-0.117832\pi\)
\(30\) 3.95173 0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) −2.41190 + 7.42306i −0.419858 + 1.29219i
\(34\) −1.43713 4.42302i −0.246465 0.758541i
\(35\) −4.75635 3.45569i −0.803970 0.584119i
\(36\) −0.628936 −0.104823
\(37\) 1.81406 0.298230 0.149115 0.988820i \(-0.452357\pi\)
0.149115 + 0.988820i \(0.452357\pi\)
\(38\) −6.07909 4.41672i −0.986159 0.716487i
\(39\) 4.42345 3.21383i 0.708320 0.514624i
\(40\) −3.82376 + 2.77813i −0.604590 + 0.439260i
\(41\) 0.104183 0.320644i 0.0162707 0.0500761i −0.942592 0.333948i \(-0.891619\pi\)
0.958862 + 0.283872i \(0.0916190\pi\)
\(42\) −7.86783 5.71631i −1.21403 0.882046i
\(43\) −1.20022 + 3.69390i −0.183032 + 0.563314i −0.999909 0.0134976i \(-0.995703\pi\)
0.816877 + 0.576812i \(0.195703\pi\)
\(44\) −0.559976 1.72343i −0.0844195 0.259817i
\(45\) 1.63247 1.18606i 0.243354 0.176807i
\(46\) −0.346435 1.06622i −0.0510791 0.157205i
\(47\) −0.367467 1.13095i −0.0536005 0.164965i 0.920673 0.390335i \(-0.127641\pi\)
−0.974273 + 0.225370i \(0.927641\pi\)
\(48\) −4.70774 + 3.42037i −0.679504 + 0.493688i
\(49\) 2.30792 + 7.10304i 0.329702 + 1.01472i
\(50\) −0.994189 + 3.05980i −0.140600 + 0.432721i
\(51\) −6.33595 4.60333i −0.887210 0.644596i
\(52\) −0.392280 + 1.20731i −0.0543995 + 0.167424i
\(53\) −1.89644 + 1.37784i −0.260496 + 0.189261i −0.710366 0.703833i \(-0.751470\pi\)
0.449870 + 0.893094i \(0.351470\pi\)
\(54\) −3.50492 + 2.54647i −0.476959 + 0.346531i
\(55\) 4.70354 + 3.41732i 0.634225 + 0.460792i
\(56\) 11.6317 1.55435
\(57\) −12.6538 −1.67604
\(58\) −6.78713 4.93114i −0.891194 0.647490i
\(59\) 2.40379 + 7.39811i 0.312947 + 0.963152i 0.976591 + 0.215103i \(0.0690089\pi\)
−0.663644 + 0.748048i \(0.730991\pi\)
\(60\) −0.477443 + 1.46942i −0.0616377 + 0.189701i
\(61\) 2.72343 0.348700 0.174350 0.984684i \(-0.444218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) 2.74619 8.45191i 0.343274 1.05649i
\(65\) −1.25857 3.87348i −0.156106 0.480446i
\(66\) 7.78047 + 5.65284i 0.957709 + 0.695817i
\(67\) −7.42118 −0.906642 −0.453321 0.891347i \(-0.649761\pi\)
−0.453321 + 0.891347i \(0.649761\pi\)
\(68\) 1.81829 0.220501
\(69\) −1.52735 1.10969i −0.183871 0.133590i
\(70\) −5.86065 + 4.25801i −0.700481 + 0.508929i
\(71\) 4.12451 2.99664i 0.489490 0.355635i −0.315498 0.948926i \(-0.602172\pi\)
0.804988 + 0.593291i \(0.202172\pi\)
\(72\) −1.23366 + 3.79682i −0.145388 + 0.447459i
\(73\) 4.36201 + 3.16919i 0.510535 + 0.370925i 0.813026 0.582227i \(-0.197818\pi\)
−0.302492 + 0.953152i \(0.597818\pi\)
\(74\) 0.690727 2.12584i 0.0802954 0.247124i
\(75\) 1.67421 + 5.15269i 0.193321 + 0.594982i
\(76\) 2.37679 1.72684i 0.272636 0.198082i
\(77\) −4.42139 13.6076i −0.503865 1.55074i
\(78\) −2.08189 6.40740i −0.235728 0.725495i
\(79\) −7.87758 + 5.72340i −0.886297 + 0.643933i −0.934910 0.354885i \(-0.884520\pi\)
0.0486128 + 0.998818i \(0.484520\pi\)
\(80\) 1.33945 + 4.12241i 0.149755 + 0.460900i
\(81\) −3.46475 + 10.6634i −0.384973 + 1.18482i
\(82\) −0.336082 0.244178i −0.0371141 0.0269649i
\(83\) 2.59424 7.98426i 0.284755 0.876386i −0.701717 0.712456i \(-0.747583\pi\)
0.986472 0.163930i \(-0.0524172\pi\)
\(84\) 3.07614 2.23495i 0.335635 0.243853i
\(85\) −4.71957 + 3.42897i −0.511909 + 0.371924i
\(86\) 3.87175 + 2.81299i 0.417502 + 0.303333i
\(87\) −14.1277 −1.51464
\(88\) −11.5025 −1.22617
\(89\) 4.12243 + 2.99512i 0.436976 + 0.317482i 0.784432 0.620214i \(-0.212954\pi\)
−0.347456 + 0.937696i \(0.612954\pi\)
\(90\) −0.768318 2.36464i −0.0809878 0.249255i
\(91\) −3.09732 + 9.53258i −0.324688 + 0.999285i
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) −2.91270 + 8.96437i −0.298837 + 0.919725i
\(96\) −1.70584 5.25003i −0.174101 0.535829i
\(97\) −8.82979 6.41522i −0.896530 0.651367i 0.0410427 0.999157i \(-0.486932\pi\)
−0.937572 + 0.347791i \(0.886932\pi\)
\(98\) 9.20257 0.929600
\(99\) 4.91075 0.493549
\(100\) −1.01764 0.739362i −0.101764 0.0739362i
\(101\) 0.322577 0.234366i 0.0320976 0.0233203i −0.571621 0.820518i \(-0.693685\pi\)
0.603718 + 0.797198i \(0.293685\pi\)
\(102\) −7.80698 + 5.67210i −0.773006 + 0.561622i
\(103\) 1.01259 3.11642i 0.0997732 0.307070i −0.888695 0.458499i \(-0.848387\pi\)
0.988468 + 0.151428i \(0.0483873\pi\)
\(104\) 6.51896 + 4.73630i 0.639237 + 0.464433i
\(105\) −3.76974 + 11.6021i −0.367889 + 1.13225i
\(106\) 0.892554 + 2.74700i 0.0866925 + 0.266812i
\(107\) −2.55394 + 1.85555i −0.246899 + 0.179383i −0.704351 0.709852i \(-0.748762\pi\)
0.457452 + 0.889234i \(0.348762\pi\)
\(108\) −0.523425 1.61094i −0.0503666 0.155013i
\(109\) 2.14959 + 6.61576i 0.205893 + 0.633675i 0.999676 + 0.0254724i \(0.00810899\pi\)
−0.793782 + 0.608202i \(0.791891\pi\)
\(110\) 5.79557 4.21073i 0.552586 0.401477i
\(111\) −1.16318 3.57991i −0.110404 0.339790i
\(112\) 3.29638 10.1452i 0.311479 0.958632i
\(113\) 12.3349 + 8.96184i 1.16037 + 0.843059i 0.989825 0.142291i \(-0.0454469\pi\)
0.170546 + 0.985350i \(0.445447\pi\)
\(114\) −4.81811 + 14.8286i −0.451257 + 1.38883i
\(115\) −1.13770 + 0.826591i −0.106092 + 0.0770800i
\(116\) 2.65362 1.92796i 0.246382 0.179007i
\(117\) −2.78312 2.02206i −0.257300 0.186939i
\(118\) 9.58486 0.882358
\(119\) 14.3567 1.31607
\(120\) 7.93421 + 5.76454i 0.724291 + 0.526228i
\(121\) 0.973115 + 2.99494i 0.0884650 + 0.272267i
\(122\) 1.03698 3.19150i 0.0938838 0.288945i
\(123\) −0.699567 −0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) −1.89082 + 5.81935i −0.168448 + 0.518429i
\(127\) 6.25029 + 19.2364i 0.554624 + 1.70696i 0.696935 + 0.717134i \(0.254547\pi\)
−0.142311 + 0.989822i \(0.545453\pi\)
\(128\) −4.55428 3.30888i −0.402545 0.292466i
\(129\) 8.05919 0.709572
\(130\) −5.01841 −0.440143
\(131\) −10.2351 7.43624i −0.894245 0.649707i 0.0427363 0.999086i \(-0.486392\pi\)
−0.936981 + 0.349379i \(0.886392\pi\)
\(132\) −3.04199 + 2.21013i −0.264771 + 0.192367i
\(133\) 18.7664 13.6346i 1.62725 1.18227i
\(134\) −2.82570 + 8.69663i −0.244104 + 0.751274i
\(135\) 4.39653 + 3.19427i 0.378393 + 0.274919i
\(136\) 3.56659 10.9768i 0.305832 0.941256i
\(137\) 3.05247 + 9.39455i 0.260790 + 0.802630i 0.992633 + 0.121157i \(0.0386605\pi\)
−0.731843 + 0.681473i \(0.761340\pi\)
\(138\) −1.88196 + 1.36732i −0.160203 + 0.116394i
\(139\) 4.78945 + 14.7404i 0.406236 + 1.25026i 0.919859 + 0.392249i \(0.128303\pi\)
−0.513623 + 0.858016i \(0.671697\pi\)
\(140\) −0.875229 2.69368i −0.0739704 0.227657i
\(141\) −1.99621 + 1.45033i −0.168111 + 0.122140i
\(142\) −1.94119 5.97438i −0.162901 0.501359i
\(143\) 3.06293 9.42673i 0.256135 0.788303i
\(144\) 2.96199 + 2.15201i 0.246832 + 0.179334i
\(145\) −3.25194 + 10.0085i −0.270059 + 0.831157i
\(146\) 5.37475 3.90499i 0.444818 0.323179i
\(147\) 12.5374 9.10897i 1.03407 0.751295i
\(148\) 0.707023 + 0.513682i 0.0581169 + 0.0422244i
\(149\) −15.2432 −1.24878 −0.624388 0.781115i \(-0.714651\pi\)
−0.624388 + 0.781115i \(0.714651\pi\)
\(150\) 6.67574 0.545072
\(151\) −0.211823 0.153899i −0.0172379 0.0125241i 0.579133 0.815233i \(-0.303391\pi\)
−0.596371 + 0.802709i \(0.703391\pi\)
\(152\) −5.76265 17.7356i −0.467412 1.43855i
\(153\) −1.52267 + 4.68631i −0.123101 + 0.378866i
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) 4.92157 15.1470i 0.392784 1.20886i −0.537890 0.843015i \(-0.680778\pi\)
0.930674 0.365850i \(-0.119222\pi\)
\(158\) 3.70757 + 11.4107i 0.294958 + 0.907788i
\(159\) 3.93506 + 2.85899i 0.312071 + 0.226733i
\(160\) −4.11193 −0.325077
\(161\) 3.46084 0.272752
\(162\) 11.1768 + 8.12045i 0.878135 + 0.638003i
\(163\) 0.107741 0.0782785i 0.00843894 0.00613125i −0.583558 0.812072i \(-0.698340\pi\)
0.591997 + 0.805940i \(0.298340\pi\)
\(164\) 0.131401 0.0954681i 0.0102607 0.00745480i
\(165\) 3.72789 11.4733i 0.290215 0.893191i
\(166\) −8.36869 6.08021i −0.649536 0.471916i
\(167\) 1.22024 3.75551i 0.0944250 0.290610i −0.892678 0.450694i \(-0.851176\pi\)
0.987103 + 0.160084i \(0.0511765\pi\)
\(168\) −7.45826 22.9542i −0.575418 1.77095i
\(169\) 4.89976 3.55989i 0.376905 0.273837i
\(170\) 2.22125 + 6.83632i 0.170362 + 0.524322i
\(171\) 2.46023 + 7.57181i 0.188139 + 0.579031i
\(172\) −1.51377 + 1.09982i −0.115424 + 0.0838603i
\(173\) −4.46744 13.7494i −0.339653 1.04535i −0.964384 0.264505i \(-0.914791\pi\)
0.624731 0.780840i \(-0.285209\pi\)
\(174\) −5.37928 + 16.5557i −0.407802 + 1.25509i
\(175\) −8.03500 5.83777i −0.607389 0.441294i
\(176\) −3.25978 + 10.0326i −0.245715 + 0.756233i
\(177\) 13.0582 9.48737i 0.981518 0.713114i
\(178\) 5.07954 3.69050i 0.380727 0.276615i
\(179\) −14.3357 10.4155i −1.07150 0.778490i −0.0953185 0.995447i \(-0.530387\pi\)
−0.976181 + 0.216957i \(0.930387\pi\)
\(180\) 0.972098 0.0724559
\(181\) 12.0592 0.896350 0.448175 0.893946i \(-0.352074\pi\)
0.448175 + 0.893946i \(0.352074\pi\)
\(182\) 9.99155 + 7.25929i 0.740623 + 0.538094i
\(183\) −1.74627 5.37447i −0.129088 0.397292i
\(184\) 0.859766 2.64609i 0.0633828 0.195072i
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) 0.177028 0.544835i 0.0129111 0.0397362i
\(189\) −4.13280 12.7195i −0.300617 0.925204i
\(190\) 9.39599 + 6.82658i 0.681656 + 0.495252i
\(191\) 5.07152 0.366962 0.183481 0.983023i \(-0.441263\pi\)
0.183481 + 0.983023i \(0.441263\pi\)
\(192\) −18.4400 −1.33079
\(193\) 16.2141 + 11.7802i 1.16712 + 0.847960i 0.990661 0.136348i \(-0.0435366\pi\)
0.176456 + 0.984308i \(0.443537\pi\)
\(194\) −10.8798 + 7.90466i −0.781126 + 0.567521i
\(195\) −6.83699 + 4.96736i −0.489607 + 0.355720i
\(196\) −1.11184 + 3.42190i −0.0794173 + 0.244421i
\(197\) 17.5624 + 12.7599i 1.25127 + 0.909102i 0.998295 0.0583705i \(-0.0185905\pi\)
0.252976 + 0.967472i \(0.418590\pi\)
\(198\) 1.86983 5.75473i 0.132883 0.408971i
\(199\) −4.68640 14.4233i −0.332210 1.02244i −0.968080 0.250641i \(-0.919359\pi\)
0.635870 0.771796i \(-0.280641\pi\)
\(200\) −6.45956 + 4.69314i −0.456760 + 0.331855i
\(201\) 4.75848 + 14.6451i 0.335637 + 1.03299i
\(202\) −0.151820 0.467255i −0.0106820 0.0328759i
\(203\) 20.9521 15.2226i 1.47055 1.06842i
\(204\) −1.16589 3.58825i −0.0816289 0.251228i
\(205\) −0.161028 + 0.495594i −0.0112467 + 0.0346138i
\(206\) −3.26647 2.37323i −0.227586 0.165351i
\(207\) −0.367058 + 1.12969i −0.0255123 + 0.0785187i
\(208\) 5.97848 4.34362i 0.414533 0.301176i
\(209\) −18.5580 + 13.4832i −1.28368 + 0.932651i
\(210\) 12.1607 + 8.83526i 0.839167 + 0.609691i
\(211\) 6.30441 0.434013 0.217007 0.976170i \(-0.430371\pi\)
0.217007 + 0.976170i \(0.430371\pi\)
\(212\) −1.12929 −0.0775597
\(213\) −8.55826 6.21794i −0.586403 0.426046i
\(214\) 1.20201 + 3.69940i 0.0821676 + 0.252886i
\(215\) 1.85509 5.70937i 0.126516 0.389376i
\(216\) −10.7517 −0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) 3.45720 10.6402i 0.233616 0.718996i
\(220\) 0.865512 + 2.66377i 0.0583528 + 0.179591i
\(221\) 8.04618 + 5.84589i 0.541245 + 0.393237i
\(222\) −4.63806 −0.311287
\(223\) −7.38911 −0.494811 −0.247406 0.968912i \(-0.579578\pi\)
−0.247406 + 0.968912i \(0.579578\pi\)
\(224\) 8.18678 + 5.94804i 0.547002 + 0.397420i
\(225\) 2.75776 2.00363i 0.183851 0.133575i
\(226\) 15.1987 11.0425i 1.01100 0.734538i
\(227\) 5.94542 18.2981i 0.394611 1.21449i −0.534652 0.845072i \(-0.679557\pi\)
0.929264 0.369417i \(-0.120443\pi\)
\(228\) −4.93178 3.58315i −0.326615 0.237300i
\(229\) 1.88102 5.78918i 0.124301 0.382560i −0.869472 0.493982i \(-0.835541\pi\)
0.993773 + 0.111423i \(0.0355407\pi\)
\(230\) 0.535458 + 1.64797i 0.0353071 + 0.108664i
\(231\) −24.0186 + 17.4505i −1.58031 + 1.14816i
\(232\) −6.43383 19.8013i −0.422401 1.30002i
\(233\) 5.41646 + 16.6702i 0.354844 + 1.09210i 0.956100 + 0.293042i \(0.0946675\pi\)
−0.601255 + 0.799057i \(0.705333\pi\)
\(234\) −3.42929 + 2.49152i −0.224179 + 0.162876i
\(235\) 0.567965 + 1.74802i 0.0370499 + 0.114028i
\(236\) −1.15803 + 3.56405i −0.0753813 + 0.232000i
\(237\) 16.3458 + 11.8759i 1.06177 + 0.771423i
\(238\) 5.46648 16.8241i 0.354339 1.09054i
\(239\) −22.5813 + 16.4063i −1.46066 + 1.06123i −0.477475 + 0.878646i \(0.658448\pi\)
−0.983189 + 0.182589i \(0.941552\pi\)
\(240\) 7.27639 5.28660i 0.469689 0.341249i
\(241\) 18.4049 + 13.3720i 1.18557 + 0.861364i 0.992789 0.119879i \(-0.0382507\pi\)
0.192777 + 0.981243i \(0.438251\pi\)
\(242\) 3.88019 0.249428
\(243\) 12.7170 0.815794
\(244\) 1.06144 + 0.771185i 0.0679520 + 0.0493701i
\(245\) −3.56717 10.9786i −0.227898 0.701398i
\(246\) −0.266369 + 0.819798i −0.0169830 + 0.0522684i
\(247\) 16.0694 1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) 4.47921 13.7856i 0.283290 0.871878i
\(251\) 5.01674 + 15.4399i 0.316654 + 0.974559i 0.975068 + 0.221904i \(0.0712273\pi\)
−0.658415 + 0.752655i \(0.728773\pi\)
\(252\) −1.93543 1.40617i −0.121921 0.0885805i
\(253\) −3.42241 −0.215165
\(254\) 24.9224 1.56377
\(255\) 9.79298 + 7.11502i 0.613260 + 0.445560i
\(256\) 8.76759 6.37002i 0.547974 0.398126i
\(257\) −18.8922 + 13.7260i −1.17847 + 0.856206i −0.991998 0.126255i \(-0.959704\pi\)
−0.186468 + 0.982461i \(0.559704\pi\)
\(258\) 3.06864 9.44429i 0.191045 0.587976i
\(259\) 5.58243 + 4.05587i 0.346875 + 0.252020i
\(260\) 0.606317 1.86605i 0.0376022 0.115728i
\(261\) 2.74678 + 8.45371i 0.170021 + 0.523271i
\(262\) −12.6114 + 9.16272i −0.779135 + 0.566075i
\(263\) 3.21203 + 9.88562i 0.198062 + 0.609574i 0.999927 + 0.0120680i \(0.00384144\pi\)
−0.801865 + 0.597506i \(0.796159\pi\)
\(264\) 7.37545 + 22.6993i 0.453928 + 1.39705i
\(265\) 2.93118 2.12962i 0.180061 0.130822i
\(266\) −8.83235 27.1832i −0.541546 1.66671i
\(267\) 3.26731 10.0557i 0.199956 0.615402i
\(268\) −2.89237 2.10143i −0.176680 0.128365i
\(269\) 1.36525 4.20181i 0.0832408 0.256189i −0.900770 0.434296i \(-0.856997\pi\)
0.984011 + 0.178107i \(0.0569973\pi\)
\(270\) 5.41729 3.93589i 0.329686 0.239531i
\(271\) 4.97777 3.61656i 0.302378 0.219691i −0.426241 0.904610i \(-0.640162\pi\)
0.728619 + 0.684919i \(0.240162\pi\)
\(272\) −8.56329 6.22159i −0.519225 0.377239i
\(273\) 20.7978 1.25874
\(274\) 12.1714 0.735302
\(275\) 7.94578 + 5.77295i 0.479149 + 0.348122i
\(276\) −0.281052 0.864989i −0.0169173 0.0520662i
\(277\) −6.81302 + 20.9683i −0.409355 + 1.25987i 0.507849 + 0.861446i \(0.330441\pi\)
−0.917204 + 0.398419i \(0.869559\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) −9.50955 + 29.2674i −0.567292 + 1.74595i 0.0937474 + 0.995596i \(0.470115\pi\)
−0.661040 + 0.750351i \(0.729885\pi\)
\(282\) 0.939512 + 2.89152i 0.0559471 + 0.172188i
\(283\) 17.2687 + 12.5464i 1.02652 + 0.745807i 0.967608 0.252456i \(-0.0812383\pi\)
0.0589075 + 0.998263i \(0.481238\pi\)
\(284\) 2.45606 0.145740
\(285\) 19.5581 1.15852
\(286\) −9.88062 7.17869i −0.584253 0.424485i
\(287\) 1.03750 0.753786i 0.0612415 0.0444946i
\(288\) −2.80985 + 2.04148i −0.165572 + 0.120295i
\(289\) −0.851145 + 2.61955i −0.0500673 + 0.154091i
\(290\) 10.4903 + 7.62168i 0.616014 + 0.447561i
\(291\) −6.99823 + 21.5383i −0.410243 + 1.26260i
\(292\) 0.802666 + 2.47035i 0.0469725 + 0.144566i
\(293\) 1.45544 1.05744i 0.0850279 0.0617764i −0.544459 0.838787i \(-0.683265\pi\)
0.629487 + 0.777011i \(0.283265\pi\)
\(294\) −5.90071 18.1605i −0.344136 1.05914i
\(295\) −3.71535 11.4347i −0.216316 0.665753i
\(296\) 4.48787 3.26063i 0.260852 0.189520i
\(297\) 4.08691 + 12.5782i 0.237147 + 0.729863i
\(298\) −5.80405 + 17.8630i −0.336220 + 1.03478i
\(299\) 1.93962 + 1.40922i 0.112171 + 0.0814972i
\(300\) −0.806554 + 2.48232i −0.0465664 + 0.143317i
\(301\) −11.9522 + 8.68381i −0.688916 + 0.500526i
\(302\) −0.261003 + 0.189630i −0.0150190 + 0.0109120i
\(303\) −0.669339 0.486303i −0.0384525 0.0279374i
\(304\) −17.1022 −0.980878
\(305\) −4.20940 −0.241030
\(306\) 4.91195 + 3.56874i 0.280797 + 0.204011i
\(307\) 8.27220 + 25.4592i 0.472119 + 1.45303i 0.849803 + 0.527100i \(0.176721\pi\)
−0.377684 + 0.925935i \(0.623279\pi\)
\(308\) 2.13001 6.55551i 0.121369 0.373535i
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 5.16673 15.9016i 0.292509 0.900249i
\(313\) 3.50513 + 10.7877i 0.198121 + 0.609755i 0.999926 + 0.0121688i \(0.00387354\pi\)
−0.801804 + 0.597586i \(0.796126\pi\)
\(314\) −15.8763 11.5348i −0.895953 0.650948i
\(315\) 7.67538 0.432459
\(316\) −4.69092 −0.263885
\(317\) −20.9384 15.2127i −1.17602 0.854429i −0.184303 0.982869i \(-0.559003\pi\)
−0.991717 + 0.128441i \(0.959003\pi\)
\(318\) 4.84867 3.52277i 0.271900 0.197547i
\(319\) −20.7195 + 15.0536i −1.16007 + 0.842839i
\(320\) −4.24458 + 13.0635i −0.237279 + 0.730270i
\(321\) 5.29937 + 3.85021i 0.295782 + 0.214898i
\(322\) 1.31776 4.05564i 0.0734357 0.226012i
\(323\) −7.11268 21.8906i −0.395760 1.21802i
\(324\) −4.36989 + 3.17491i −0.242772 + 0.176384i
\(325\) −2.12612 6.54354i −0.117936 0.362970i
\(326\) −0.0507081 0.156064i −0.00280846 0.00864356i
\(327\) 11.6773 8.48408i 0.645758 0.469171i
\(328\) −0.318587 0.980511i −0.0175910 0.0541396i
\(329\) 1.39775 4.30185i 0.0770607 0.237168i
\(330\) −12.0257 8.73716i −0.661991 0.480965i
\(331\) −0.236641 + 0.728307i −0.0130070 + 0.0400314i −0.957349 0.288933i \(-0.906700\pi\)
0.944342 + 0.328964i \(0.106700\pi\)
\(332\) 3.27197 2.37722i 0.179573 0.130467i
\(333\) −1.91599 + 1.39205i −0.104996 + 0.0762839i
\(334\) −3.93633 2.85991i −0.215387 0.156488i
\(335\) 11.4703 0.626692
\(336\) −22.1344 −1.20753
\(337\) 1.93706 + 1.40736i 0.105519 + 0.0766637i 0.639293 0.768963i \(-0.279227\pi\)
−0.533775 + 0.845627i \(0.679227\pi\)
\(338\) −2.30606 7.09733i −0.125433 0.386044i
\(339\) 9.77628 30.0883i 0.530974 1.63417i
\(340\) −2.81040 −0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) −0.550776 + 1.69511i −0.0297391 + 0.0915276i
\(344\) 3.67021 + 11.2957i 0.197884 + 0.609026i
\(345\) 2.36071 + 1.71516i 0.127096 + 0.0923408i
\(346\) −17.8134 −0.957656
\(347\) −5.65780 −0.303727 −0.151863 0.988402i \(-0.548527\pi\)
−0.151863 + 0.988402i \(0.548527\pi\)
\(348\) −5.50619 4.00048i −0.295163 0.214448i
\(349\) −23.5162 + 17.0855i −1.25879 + 0.914566i −0.998698 0.0510167i \(-0.983754\pi\)
−0.260095 + 0.965583i \(0.583754\pi\)
\(350\) −9.90050 + 7.19314i −0.529204 + 0.384489i
\(351\) 2.86301 8.81143i 0.152816 0.470320i
\(352\) −8.09588 5.88200i −0.431512 0.313512i
\(353\) 5.95637 18.3318i 0.317025 0.975704i −0.657887 0.753116i \(-0.728550\pi\)
0.974913 0.222587i \(-0.0714503\pi\)
\(354\) −6.14584 18.9149i −0.326648 1.00532i
\(355\) −6.37494 + 4.63167i −0.338347 + 0.245823i
\(356\) 0.758579 + 2.33467i 0.0402046 + 0.123737i
\(357\) −9.20553 28.3317i −0.487209 1.49947i
\(358\) −17.6640 + 12.8337i −0.933573 + 0.678281i
\(359\) 3.19656 + 9.83799i 0.168708 + 0.519229i 0.999290 0.0376663i \(-0.0119924\pi\)
−0.830583 + 0.556895i \(0.811992\pi\)
\(360\) 1.90677 5.86845i 0.100496 0.309294i
\(361\) −14.7156 10.6915i −0.774503 0.562710i
\(362\) 4.59167 14.1317i 0.241333 0.742746i
\(363\) 5.28630 3.84072i 0.277459 0.201586i
\(364\) −3.90647 + 2.83822i −0.204755 + 0.148763i
\(365\) −6.74203 4.89837i −0.352894 0.256392i
\(366\) −6.96307 −0.363966
\(367\) 0.136564 0.00712857 0.00356428 0.999994i \(-0.498865\pi\)
0.00356428 + 0.999994i \(0.498865\pi\)
\(368\) −2.06428 1.49978i −0.107608 0.0781817i
\(369\) 0.136014 + 0.418607i 0.00708058 + 0.0217918i
\(370\) −1.06760 + 3.28574i −0.0555020 + 0.170818i
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) −5.40578 + 16.6373i −0.279526 + 0.860294i
\(375\) −7.54299 23.2149i −0.389518 1.19881i
\(376\) −2.94187 2.13739i −0.151715 0.110228i
\(377\) 17.9411 0.924012
\(378\) −16.4791 −0.847593
\(379\) 3.72806 + 2.70859i 0.191498 + 0.139131i 0.679403 0.733765i \(-0.262239\pi\)
−0.487905 + 0.872897i \(0.662239\pi\)
\(380\) −3.67362 + 2.66904i −0.188453 + 0.136919i
\(381\) 33.9538 24.6689i 1.73951 1.26383i
\(382\) 1.93104 5.94314i 0.0988008 0.304077i
\(383\) −26.1270 18.9824i −1.33503 0.969955i −0.999611 0.0278856i \(-0.991123\pi\)
−0.335418 0.942070i \(-0.608877\pi\)
\(384\) −3.60959 + 11.1092i −0.184201 + 0.566912i
\(385\) 6.83381 + 21.0323i 0.348283 + 1.07190i
\(386\) 19.9786 14.5153i 1.01688 0.738809i
\(387\) −1.56691 4.82246i −0.0796506 0.245139i
\(388\) −1.62479 5.00060i −0.0824864 0.253867i
\(389\) −28.5351 + 20.7319i −1.44678 + 1.05115i −0.460216 + 0.887807i \(0.652228\pi\)
−0.986569 + 0.163344i \(0.947772\pi\)
\(390\) 3.21782 + 9.90342i 0.162940 + 0.501479i
\(391\) 1.06119 3.26600i 0.0536665 0.165169i
\(392\) 18.4767 + 13.4241i 0.933216 + 0.678021i
\(393\) −8.11203 + 24.9663i −0.409198 + 1.25938i
\(394\) 21.6399 15.7223i 1.09020 0.792080i
\(395\) 12.1758 8.84621i 0.612629 0.445101i
\(396\) 1.91394 + 1.39056i 0.0961791 + 0.0698782i
\(397\) −4.03402 −0.202462 −0.101231 0.994863i \(-0.532278\pi\)
−0.101231 + 0.994863i \(0.532278\pi\)
\(398\) −18.6865 −0.936671
\(399\) −38.9398 28.2914i −1.94943 1.41634i
\(400\) 2.26277 + 6.96408i 0.113138 + 0.348204i
\(401\) −7.68933 + 23.6653i −0.383987 + 1.18179i 0.553225 + 0.833032i \(0.313397\pi\)
−0.937212 + 0.348759i \(0.886603\pi\)
\(402\) 18.9739 0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) 5.35520 16.4816i 0.266102 0.818978i
\(406\) −9.86107 30.3492i −0.489397 1.50621i
\(407\) −5.52044 4.01084i −0.273638 0.198810i
\(408\) −23.9488 −1.18564
\(409\) −3.50722 −0.173421 −0.0867105 0.996234i \(-0.527636\pi\)
−0.0867105 + 0.996234i \(0.527636\pi\)
\(410\) 0.519456 + 0.377407i 0.0256541 + 0.0186388i
\(411\) 16.5821 12.0476i 0.817936 0.594265i
\(412\) 1.27712 0.927881i 0.0629191 0.0457134i
\(413\) −9.14344 + 28.1406i −0.449919 + 1.38471i
\(414\) 1.18408 + 0.860285i 0.0581944 + 0.0422807i
\(415\) −4.00972 + 12.3407i −0.196829 + 0.605779i
\(416\) 2.16629 + 6.66714i 0.106211 + 0.326884i
\(417\) 26.0180 18.9032i 1.27411 0.925692i
\(418\) 8.73429 + 26.8814i 0.427208 + 1.31481i
\(419\) 1.27325 + 3.91865i 0.0622022 + 0.191439i 0.977328 0.211729i \(-0.0679093\pi\)
−0.915126 + 0.403167i \(0.867909\pi\)
\(420\) −4.75456 + 3.45439i −0.231999 + 0.168557i
\(421\) 8.52930 + 26.2505i 0.415693 + 1.27937i 0.911630 + 0.411012i \(0.134825\pi\)
−0.495937 + 0.868358i \(0.665175\pi\)
\(422\) 2.40048 7.38792i 0.116854 0.359638i
\(423\) 1.25596 + 0.912511i 0.0610670 + 0.0443678i
\(424\) −2.21510 + 6.81737i −0.107575 + 0.331081i
\(425\) −7.97286 + 5.79262i −0.386740 + 0.280983i
\(426\) −10.5453 + 7.66158i −0.510919 + 0.371205i
\(427\) 8.38083 + 6.08903i 0.405577 + 0.294669i
\(428\) −1.52082 −0.0735114
\(429\) −20.5668 −0.992977
\(430\) −5.98427 4.34783i −0.288587 0.209671i
\(431\) −4.59630 14.1460i −0.221396 0.681387i −0.998637 0.0521843i \(-0.983382\pi\)
0.777242 0.629202i \(-0.216618\pi\)
\(432\) −3.04701 + 9.37772i −0.146599 + 0.451186i
\(433\) −9.26195 −0.445101 −0.222550 0.974921i \(-0.571438\pi\)
−0.222550 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) −1.03557 + 3.18715i −0.0495947 + 0.152637i
\(437\) −1.71459 5.27697i −0.0820200 0.252432i
\(438\) −11.1525 8.10275i −0.532886 0.387164i
\(439\) 17.7182 0.845643 0.422821 0.906213i \(-0.361040\pi\)
0.422821 + 0.906213i \(0.361040\pi\)
\(440\) 17.7786 0.847561
\(441\) −7.88822 5.73113i −0.375630 0.272911i
\(442\) 9.91428 7.20314i 0.471574 0.342619i
\(443\) 14.9266 10.8448i 0.709182 0.515251i −0.173728 0.984794i \(-0.555581\pi\)
0.882910 + 0.469543i \(0.155581\pi\)
\(444\) 0.560365 1.72463i 0.0265937 0.0818471i
\(445\) −6.37171 4.62932i −0.302048 0.219451i
\(446\) −2.81349 + 8.65904i −0.133223 + 0.410017i
\(447\) 9.77401 + 30.0813i 0.462295 + 1.42280i
\(448\) 27.3476 19.8692i 1.29205 0.938731i
\(449\) −7.01784 21.5987i −0.331192 1.01931i −0.968567 0.248752i \(-0.919980\pi\)
0.637375 0.770554i \(-0.280020\pi\)
\(450\) −1.29793 3.99463i −0.0611852 0.188309i
\(451\) −1.02598 + 0.745416i −0.0483114 + 0.0351003i
\(452\) 2.26978 + 6.98566i 0.106761 + 0.328578i
\(453\) −0.167885 + 0.516696i −0.00788791 + 0.0242765i
\(454\) −19.1791 13.9345i −0.900122 0.653977i
\(455\) 4.78729 14.7338i 0.224432 0.690730i
\(456\) −31.3047 + 22.7442i −1.46598 + 1.06510i
\(457\) −13.0752 + 9.49970i −0.611633 + 0.444377i −0.849989 0.526800i \(-0.823392\pi\)
0.238356 + 0.971178i \(0.423392\pi\)
\(458\) −6.06792 4.40860i −0.283535 0.206000i
\(459\) −13.2706 −0.619418
\(460\) −0.677478 −0.0315876
\(461\) 17.4252 + 12.6602i 0.811573 + 0.589642i 0.914286 0.405069i \(-0.132752\pi\)
−0.102713 + 0.994711i \(0.532752\pi\)
\(462\) 11.3043 + 34.7910i 0.525923 + 1.61863i
\(463\) 5.41083 16.6528i 0.251462 0.773922i −0.743044 0.669243i \(-0.766619\pi\)
0.994506 0.104679i \(-0.0333815\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) −3.64845 + 11.2288i −0.168830 + 0.519605i −0.999298 0.0374608i \(-0.988073\pi\)
0.830468 + 0.557066i \(0.188073\pi\)
\(468\) −0.512130 1.57617i −0.0236732 0.0728587i
\(469\) −22.8372 16.5922i −1.05453 0.766158i
\(470\) 2.26470 0.104463
\(471\) −33.0472 −1.52273
\(472\) 19.2443 + 13.9818i 0.885790 + 0.643564i
\(473\) 11.8195 8.58739i 0.543463 0.394849i
\(474\) 20.1408 14.6332i 0.925098 0.672123i
\(475\) −4.92048 + 15.1437i −0.225767 + 0.694840i
\(476\) 5.59544 + 4.06533i 0.256467 + 0.186334i
\(477\) 0.945686 2.91052i 0.0433000 0.133264i
\(478\) 10.6278 + 32.7092i 0.486107 + 1.49608i
\(479\) 12.7895 9.29213i 0.584368 0.424568i −0.255928 0.966696i \(-0.582381\pi\)
0.840296 + 0.542127i \(0.182381\pi\)
\(480\) 2.63658 + 8.11456i 0.120343 + 0.370377i
\(481\) 1.47715 + 4.54621i 0.0673525 + 0.207290i
\(482\) 22.6780 16.4766i 1.03296 0.750487i
\(483\) −2.21910 6.82968i −0.100972 0.310761i
\(484\) −0.468800 + 1.44282i −0.0213091 + 0.0655826i
\(485\) 13.6475 + 9.91551i 0.619702 + 0.450240i
\(486\) 4.84214 14.9026i 0.219644 0.675995i
\(487\) 10.3487 7.51874i 0.468942 0.340707i −0.328087 0.944648i \(-0.606404\pi\)
0.797029 + 0.603941i \(0.206404\pi\)
\(488\) 6.73758 4.89514i 0.304996 0.221593i
\(489\) −0.223560 0.162426i −0.0101097 0.00734515i
\(490\) −14.2237 −0.642561
\(491\) 18.5282 0.836166 0.418083 0.908409i \(-0.362702\pi\)
0.418083 + 0.908409i \(0.362702\pi\)
\(492\) −0.272653 0.198094i −0.0122921 0.00893076i
\(493\) −7.94110 24.4402i −0.357649 1.10073i
\(494\) 6.11864 18.8312i 0.275290 0.847257i
\(495\) −7.59016 −0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) −6.63277 + 20.4136i −0.297221 + 0.914754i
\(499\) −12.6349 38.8861i −0.565614 1.74078i −0.666121 0.745844i \(-0.732046\pi\)
0.100507 0.994936i \(-0.467954\pi\)
\(500\) 4.58489 + 3.33112i 0.205042 + 0.148972i
\(501\) −8.19362 −0.366064
\(502\) 20.0037 0.892809
\(503\) −16.2427 11.8010i −0.724227 0.526182i 0.163505 0.986543i \(-0.447720\pi\)
−0.887732 + 0.460361i \(0.847720\pi\)
\(504\) −12.2852 + 8.92575i −0.547228 + 0.397585i
\(505\) −0.498582 + 0.362241i −0.0221866 + 0.0161195i
\(506\) −1.30312 + 4.01061i −0.0579310 + 0.178293i
\(507\) −10.1669 7.38668i −0.451527 0.328054i
\(508\) −3.01109 + 9.26718i −0.133595 + 0.411164i
\(509\) 9.86111 + 30.3494i 0.437086 + 1.34521i 0.890934 + 0.454133i \(0.150051\pi\)
−0.453848 + 0.891079i \(0.649949\pi\)
\(510\) 12.0666 8.76693i 0.534320 0.388206i
\(511\) 6.33760 + 19.5051i 0.280359 + 0.862855i
\(512\) −7.60561 23.4076i −0.336123 1.03448i
\(513\) −17.3467 + 12.6031i −0.765875 + 0.556441i
\(514\) 8.89160 + 27.3655i 0.392192 + 1.20704i
\(515\) −1.56508 + 4.81682i −0.0689656 + 0.212254i
\(516\) 3.14103 + 2.28209i 0.138276 + 0.100464i
\(517\) −1.38223 + 4.25408i −0.0607906 + 0.187094i
\(518\) 6.87851 4.99753i 0.302224 0.219579i
\(519\) −24.2687 + 17.6323i −1.06528 + 0.773970i
\(520\) −10.0759 7.32054i −0.441855 0.321027i
\(521\) 2.10756 0.0923339 0.0461670 0.998934i \(-0.485299\pi\)
0.0461670 + 0.998934i \(0.485299\pi\)
\(522\) 10.9525 0.479377
\(523\) 3.97047 + 2.88471i 0.173616 + 0.126140i 0.671200 0.741276i \(-0.265779\pi\)
−0.497584 + 0.867416i \(0.665779\pi\)
\(524\) −1.88339 5.79648i −0.0822762 0.253220i
\(525\) −6.36830 + 19.5996i −0.277935 + 0.855397i
\(526\) 12.8076 0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) −6.85158 + 21.0870i −0.297895 + 0.916826i
\(530\) −1.37955 4.24583i −0.0599239 0.184427i
\(531\) −8.21591 5.96921i −0.356540 0.259042i
\(532\) 11.1750 0.484496
\(533\) 0.888398 0.0384808
\(534\) −10.5399 7.65770i −0.456107 0.331381i
\(535\) 3.94743 2.86798i 0.170662 0.123993i
\(536\) −18.3595 + 13.3389i −0.793009 + 0.576155i
\(537\) −11.3620 + 34.9687i −0.490308 + 1.50901i
\(538\) −4.40412 3.19978i −0.189875 0.137952i
\(539\) 8.68129 26.7182i 0.373929 1.15084i
\(540\) 0.809018 + 2.48990i 0.0348146 + 0.107148i
\(541\) 10.0618 7.31030i 0.432589 0.314294i −0.350094 0.936714i \(-0.613850\pi\)
0.782683 + 0.622420i \(0.213850\pi\)
\(542\) −2.34278 7.21033i −0.100631 0.309710i
\(543\) −7.73236 23.7978i −0.331827 1.02126i
\(544\) 8.12346 5.90204i 0.348290 0.253048i
\(545\) −3.32245 10.2255i −0.142318 0.438011i
\(546\) 7.91900 24.3722i 0.338902 1.04303i
\(547\) 11.2979 + 8.20843i 0.483065 + 0.350967i 0.802511 0.596637i \(-0.203497\pi\)
−0.319446 + 0.947604i \(0.603497\pi\)
\(548\) −1.47053 + 4.52584i −0.0628181 + 0.193334i
\(549\) −2.87646 + 2.08987i −0.122764 + 0.0891934i
\(550\) 9.79058 7.11327i 0.417472 0.303311i
\(551\) −33.5911 24.4054i −1.43103 1.03970i
\(552\) −5.77312 −0.245721
\(553\) −37.0381 −1.57502
\(554\) 21.9779 + 15.9679i 0.933752 + 0.678411i
\(555\) 1.79784 + 5.53318i 0.0763141 + 0.234871i
\(556\) −2.30732 + 7.10121i −0.0978523 + 0.301159i
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) −5.09496 + 15.6807i −0.215301 + 0.662629i
\(561\) 9.10332 + 28.0172i 0.384343 + 1.18289i
\(562\) 30.6766 + 22.2878i 1.29401 + 0.940156i
\(563\) −30.0267 −1.26548 −0.632738 0.774366i \(-0.718069\pi\)
−0.632738 + 0.774366i \(0.718069\pi\)
\(564\) −1.18870 −0.0500532
\(565\) −19.0651 13.8516i −0.802075 0.582742i
\(566\) 21.2780 15.4594i 0.894380 0.649805i
\(567\) −34.5033 + 25.0681i −1.44900 + 1.05276i
\(568\) 4.81756 14.8269i 0.202140 0.622124i
\(569\) −32.6611 23.7297i −1.36922 0.994799i −0.997797 0.0663367i \(-0.978869\pi\)
−0.371426 0.928462i \(-0.621131\pi\)
\(570\) 7.44698 22.9194i 0.311919 0.959989i
\(571\) −13.1646 40.5165i −0.550921 1.69556i −0.706478 0.707735i \(-0.749717\pi\)
0.155557 0.987827i \(-0.450283\pi\)
\(572\) 3.86310 2.80670i 0.161524 0.117354i
\(573\) −3.25187 10.0082i −0.135849 0.418100i
\(574\) −0.488296 1.50282i −0.0203811 0.0627265i
\(575\) −1.92195 + 1.39638i −0.0801507 + 0.0582329i
\(576\) 3.58521 + 11.0341i 0.149384 + 0.459756i
\(577\) −2.02028 + 6.21779i −0.0841054 + 0.258850i −0.984262 0.176717i \(-0.943452\pi\)
0.900156 + 0.435567i \(0.143452\pi\)
\(578\) 2.74568 + 1.99485i 0.114205 + 0.0829750i
\(579\) 12.8508 39.5507i 0.534062 1.64367i
\(580\) −4.10149 + 2.97991i −0.170305 + 0.123734i
\(581\) 25.8344 18.7698i 1.07179 0.778703i
\(582\) 22.5754 + 16.4020i 0.935779 + 0.679883i
\(583\) 8.81749 0.365183
\(584\) 16.4877 0.682264
\(585\) 4.30166 + 3.12534i 0.177852 + 0.129217i
\(586\) −0.685001 2.10822i −0.0282971 0.0870897i
\(587\) 6.60607 20.3314i 0.272662 0.839167i −0.717167 0.696902i \(-0.754561\pi\)
0.989829 0.142265i \(-0.0454386\pi\)
\(588\) 7.46576 0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) 13.9195 42.8397i 0.572570 1.76219i
\(592\) −1.57209 4.83839i −0.0646124 0.198857i
\(593\) −21.0268 15.2769i −0.863468 0.627347i 0.0653579 0.997862i \(-0.479181\pi\)
−0.928826 + 0.370515i \(0.879181\pi\)
\(594\) 16.2961 0.668638
\(595\) −22.1900 −0.909701
\(596\) −5.94098 4.31638i −0.243352 0.176806i
\(597\) −25.4582 + 18.4965i −1.04193 + 0.757010i
\(598\) 2.38995 1.73640i 0.0977323 0.0710066i
\(599\) −2.83923 + 8.73827i −0.116008 + 0.357036i −0.992156 0.125006i \(-0.960105\pi\)
0.876148 + 0.482042i \(0.160105\pi\)
\(600\) 13.4034 + 9.73815i 0.547192 + 0.397558i
\(601\) −10.2961 + 31.6883i −0.419989 + 1.29259i 0.487723 + 0.872998i \(0.337828\pi\)
−0.907712 + 0.419594i \(0.862172\pi\)
\(602\) 5.62530 + 17.3129i 0.229270 + 0.705620i
\(603\) 7.83816 5.69476i 0.319195 0.231908i
\(604\) −0.0389782 0.119962i −0.00158600 0.00488120i
\(605\) −1.50407 4.62905i −0.0611491 0.188197i
\(606\) −0.824741 + 0.599210i −0.0335028 + 0.0243412i
\(607\) −15.0494 46.3172i −0.610835 1.87996i −0.450157 0.892949i \(-0.648632\pi\)
−0.160678 0.987007i \(-0.551368\pi\)
\(608\) 5.01342 15.4297i 0.203321 0.625758i
\(609\) −43.4751 31.5865i −1.76170 1.27995i
\(610\) −1.60278 + 4.93285i −0.0648947 + 0.199725i
\(611\) 2.53504 1.84181i 0.102557 0.0745118i
\(612\) −1.92046 + 1.39530i −0.0776300 + 0.0564015i
\(613\) 16.9198 + 12.2929i 0.683384 + 0.496507i 0.874479 0.485064i \(-0.161204\pi\)
−0.191095 + 0.981572i \(0.561204\pi\)
\(614\) 32.9845 1.33115
\(615\) 1.08127 0.0436009
\(616\) −35.3968 25.7173i −1.42618 1.03618i
\(617\) 14.0244 + 43.1627i 0.564602 + 1.73767i 0.669132 + 0.743144i \(0.266666\pi\)
−0.104530 + 0.994522i \(0.533334\pi\)
\(618\) −2.58891 + 7.96784i −0.104141 + 0.320514i
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) 1.59202 4.89973i 0.0638341 0.196461i
\(623\) 5.98950 + 18.4338i 0.239964 + 0.738534i
\(624\) −12.4052 9.01290i −0.496605 0.360805i
\(625\) −5.12716 −0.205086
\(626\) 13.9763 0.558606
\(627\) 38.5074 + 27.9773i 1.53784 + 1.11730i
\(628\) 6.20729 4.50986i 0.247698 0.179963i
\(629\) 5.53925 4.02450i 0.220864 0.160467i
\(630\) 2.92249 8.99451i 0.116435 0.358350i
\(631\) −8.63785 6.27576i −0.343867 0.249834i 0.402424 0.915453i \(-0.368168\pi\)
−0.746292 + 0.665619i \(0.768168\pi\)
\(632\) −9.20126 + 28.3186i −0.366006 + 1.12645i
\(633\) −4.04240 12.4412i −0.160671 0.494495i
\(634\) −25.7998 + 18.7446i −1.02464 + 0.744444i
\(635\) −9.66059 29.7322i −0.383369 1.17989i
\(636\) 0.724101 + 2.22855i 0.0287125 + 0.0883679i
\(637\) −15.9216 + 11.5677i −0.630836 + 0.458330i
\(638\) 9.75158 + 30.0123i 0.386069 + 1.18820i
\(639\) −2.05675 + 6.33002i −0.0813637 + 0.250412i
\(640\) 7.03920 + 5.11428i 0.278249 + 0.202160i
\(641\) −7.37379 + 22.6942i −0.291247 + 0.896367i 0.693209 + 0.720737i \(0.256196\pi\)
−0.984456 + 0.175630i \(0.943804\pi\)
\(642\) 6.52973 4.74413i 0.257708 0.187236i
\(643\) −6.42300 + 4.66658i −0.253298 + 0.184032i −0.707187 0.707026i \(-0.750036\pi\)
0.453889 + 0.891058i \(0.350036\pi\)
\(644\) 1.34885 + 0.979993i 0.0531519 + 0.0386171i
\(645\) −12.4565 −0.490473
\(646\) −28.3610 −1.11585
\(647\) 2.00443 + 1.45630i 0.0788023 + 0.0572532i 0.626489 0.779430i \(-0.284491\pi\)
−0.547687 + 0.836684i \(0.684491\pi\)
\(648\) 10.5950 + 32.6081i 0.416212 + 1.28097i
\(649\) 9.04192 27.8282i 0.354926 1.09235i
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) 6.95104 21.3931i 0.272015 0.837177i −0.717978 0.696065i \(-0.754932\pi\)
0.989994 0.141112i \(-0.0450677\pi\)
\(654\) −5.49591 16.9147i −0.214907 0.661416i
\(655\) 15.8196 + 11.4936i 0.618123 + 0.449093i
\(656\) −0.945493 −0.0369153
\(657\) −7.03903 −0.274619
\(658\) −4.50897 3.27596i −0.175778 0.127710i
\(659\) 9.67555 7.02970i 0.376906 0.273838i −0.383163 0.923681i \(-0.625165\pi\)
0.760069 + 0.649843i \(0.225165\pi\)
\(660\) 4.70177 3.41603i 0.183016 0.132969i
\(661\) 7.36572 22.6694i 0.286493 0.881736i −0.699454 0.714678i \(-0.746573\pi\)
0.985947 0.167058i \(-0.0534267\pi\)
\(662\) 0.763374 + 0.554624i 0.0296694 + 0.0215561i
\(663\) 6.37716 19.6269i 0.247668 0.762245i
\(664\) −7.93305 24.4154i −0.307862 0.947502i
\(665\) −29.0057 + 21.0739i −1.12479 + 0.817211i
\(666\) 0.901758 + 2.77533i 0.0349424 + 0.107542i
\(667\) −1.91429 5.89158i −0.0741216 0.228123i
\(668\) 1.53902 1.11816i 0.0595464 0.0432630i
\(669\) 4.73791 + 14.5818i 0.183178 + 0.563765i
\(670\) 4.36747 13.4417i 0.168730 0.519298i
\(671\) −8.28778 6.02142i −0.319946 0.232455i
\(672\) 6.48859 19.9698i 0.250303 0.770353i
\(673\) 2.82680 2.05379i 0.108965 0.0791679i −0.531968 0.846764i \(-0.678547\pi\)
0.640933 + 0.767596i \(0.278547\pi\)
\(674\) 2.38679 1.73411i 0.0919359 0.0667953i
\(675\) 7.42715 + 5.39614i 0.285871 + 0.207698i
\(676\) 2.91770 0.112219
\(677\) 19.2457 0.739674 0.369837 0.929097i \(-0.379414\pi\)
0.369837 + 0.929097i \(0.379414\pi\)
\(678\) −31.5370 22.9130i −1.21117 0.879967i
\(679\) −12.8289 39.4832i −0.492326 1.51523i
\(680\) −5.51260 + 16.9660i −0.211399 + 0.650618i
\(681\) −39.9221 −1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) −1.18522 + 3.64773i −0.0453180 + 0.139475i
\(685\) −4.71797 14.5204i −0.180264 0.554797i
\(686\) 1.77673 + 1.29087i 0.0678359 + 0.0492857i
\(687\) −12.6306 −0.481887
\(688\) 10.8923 0.415266
\(689\) −4.99723 3.63070i −0.190379 0.138319i
\(690\) 2.90880 2.11337i 0.110736 0.0804545i
\(691\) −31.0747 + 22.5771i −1.18214 + 0.858873i −0.992411 0.122964i \(-0.960760\pi\)
−0.189726 + 0.981837i \(0.560760\pi\)
\(692\) 2.15220 6.62378i 0.0818142 0.251798i
\(693\) 15.1119 + 10.9794i 0.574052 + 0.417073i
\(694\) −2.15428 + 6.63018i −0.0817752 + 0.251678i
\(695\) −7.40268 22.7831i −0.280800 0.864212i
\(696\) −34.9508 + 25.3933i −1.32481 + 0.962529i
\(697\) −0.393224 1.21022i −0.0148944 0.0458403i
\(698\) 11.0678 + 34.0633i 0.418924 + 1.28932i
\(699\) 29.4242 21.3779i 1.11292 0.808586i
\(700\) −1.47854 4.55048i −0.0558836 0.171992i
\(701\) −10.9471 + 33.6916i −0.413465 + 1.27251i 0.500151 + 0.865938i \(0.333278\pi\)
−0.913617 + 0.406577i \(0.866722\pi\)
\(702\) −9.23569 6.71012i −0.348579 0.253257i
\(703\) 3.41857 10.5213i 0.128934 0.396818i
\(704\) −27.0439 + 19.6486i −1.01926 + 0.740533i
\(705\) 3.08539 2.24166i 0.116202 0.0844260i
\(706\) −19.2145 13.9601i −0.723145 0.525396i
\(707\) 1.51666 0.0570399
\(708\) 7.77589 0.292236
\(709\) −20.8801 15.1703i −0.784170 0.569733i 0.122057 0.992523i \(-0.461051\pi\)
−0.906228 + 0.422790i \(0.861051\pi\)
\(710\) 3.00035 + 9.23414i 0.112601 + 0.346551i
\(711\) 3.92827 12.0900i 0.147322 0.453409i
\(712\) 15.5821 0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) −4.73414 + 14.5702i −0.177047 + 0.544894i
\(716\) −2.63795 8.11877i −0.0985848 0.303413i
\(717\) 46.8557 + 34.0426i 1.74986 + 1.27135i
\(718\) 12.7459 0.475674
\(719\) 39.0467 1.45620 0.728099 0.685472i \(-0.240404\pi\)
0.728099 + 0.685472i \(0.240404\pi\)
\(720\) −4.57811 3.32619i −0.170616 0.123960i
\(721\) 10.0837 7.32625i 0.375537 0.272844i
\(722\) −18.1321 + 13.1738i −0.674807 + 0.490276i
\(723\) 14.5872 44.8947i 0.542503 1.66965i
\(724\) 4.70000 + 3.41475i 0.174674 + 0.126908i
\(725\) −5.49357 + 16.9075i −0.204026 + 0.627928i
\(726\) −2.48799 7.65724i −0.0923379 0.284187i
\(727\) −20.2122 + 14.6850i −0.749629 + 0.544637i −0.895712 0.444635i \(-0.853333\pi\)
0.146083 + 0.989272i \(0.453333\pi\)
\(728\) 9.47144 + 29.1501i 0.351035 + 1.08037i
\(729\) 2.24010 + 6.89433i 0.0829668 + 0.255345i
\(730\) −8.30734 + 6.03563i −0.307468 + 0.223389i
\(731\) 4.53004 + 13.9420i 0.167550 + 0.515665i
\(732\) 0.841269 2.58916i 0.0310942 0.0956981i
\(733\) 13.7121 + 9.96240i 0.506467 + 0.367970i 0.811482 0.584378i \(-0.198661\pi\)
−0.305015 + 0.952348i \(0.598661\pi\)
\(734\) 0.0519983 0.160034i 0.00191929 0.00590697i
\(735\) −19.3781 + 14.0790i −0.714773 + 0.519313i
\(736\) 1.95825 1.42275i 0.0721821 0.0524434i
\(737\) 22.5837 + 16.4080i 0.831880 + 0.604396i
\(738\) 0.542340 0.0199638
\(739\) −14.3821 −0.529055 −0.264528 0.964378i \(-0.585216\pi\)
−0.264528 + 0.964378i \(0.585216\pi\)
\(740\) −1.09279 0.793959i −0.0401718 0.0291865i
\(741\) −10.3038 31.7117i −0.378518 1.16496i
\(742\) −3.39506 + 10.4489i −0.124637 + 0.383592i
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) −2.80390 + 8.62953i −0.102658 + 0.315950i
\(747\) 3.38684 + 10.4236i 0.123918 + 0.381380i
\(748\) −5.53332 4.02019i −0.202318 0.146993i
\(749\) −12.0079 −0.438758
\(750\) −30.0768 −1.09825
\(751\) 35.2490 + 25.6099i 1.28626 + 0.934519i 0.999723 0.0235512i \(-0.00749727\pi\)
0.286533 + 0.958070i \(0.407497\pi\)
\(752\) −2.69796 + 1.96018i −0.0983844 + 0.0714804i
\(753\) 27.2527 19.8002i 0.993143 0.721561i
\(754\) 6.83128 21.0245i 0.248781 0.765668i
\(755\) 0.327399 + 0.237869i 0.0119153 + 0.00865695i
\(756\) 1.99098 6.12762i 0.0724114 0.222859i
\(757\) −7.79251 23.9829i −0.283224 0.871673i −0.986925 0.161177i \(-0.948471\pi\)
0.703702 0.710495i \(-0.251529\pi\)
\(758\) 4.59361 3.33745i 0.166847 0.121222i
\(759\) 2.19446 + 6.75385i 0.0796538 + 0.245149i
\(760\) 8.90688 + 27.4125i 0.323086 + 0.994358i
\(761\) −2.11633 + 1.53761i −0.0767170 + 0.0557382i −0.625483 0.780238i \(-0.715098\pi\)
0.548766 + 0.835976i \(0.315098\pi\)
\(762\) −15.9803 49.1823i −0.578905 1.78169i
\(763\) −8.17652 + 25.1647i −0.296010 + 0.911025i
\(764\) 1.97660 + 1.43608i 0.0715109 + 0.0519557i
\(765\) 2.35348 7.24326i 0.0850902 0.261881i
\(766\) −32.1930 + 23.3896i −1.16318 + 0.845100i
\(767\) −16.5830 + 12.0483i −0.598777 + 0.435037i
\(768\) −18.1925 13.2176i −0.656466 0.476950i
\(769\) 11.3507 0.409316 0.204658 0.978834i \(-0.434392\pi\)
0.204658 + 0.978834i \(0.434392\pi\)
\(770\) 27.2491 0.981988
\(771\) 39.2009 + 28.4811i 1.41179 + 1.02572i
\(772\) 2.98360 + 9.18259i 0.107382 + 0.330488i
\(773\) 3.52816 10.8586i 0.126899 0.390556i −0.867343 0.497711i \(-0.834174\pi\)
0.994242 + 0.107155i \(0.0341741\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) 4.42446 13.6171i 0.158727 0.488511i
\(778\) 13.4300 + 41.3332i 0.481488 + 1.48187i
\(779\) −1.66335 1.20849i −0.0595957 0.0432988i
\(780\) −4.07128 −0.145775
\(781\) −19.1769 −0.686204
\(782\) −3.42325 2.48714i −0.122415 0.0889398i
\(783\) −19.3671 + 14.0710i −0.692123 + 0.502857i
\(784\) 16.9448 12.3111i 0.605173 0.439684i
\(785\) −7.60689 + 23.4116i −0.271502 + 0.835596i
\(786\) 26.1684 + 19.0124i 0.933394 + 0.678151i
\(787\) 8.37103 25.7634i 0.298395 0.918365i −0.683665 0.729796i \(-0.739615\pi\)
0.982060 0.188569i \(-0.0603849\pi\)
\(788\) 3.23171 + 9.94618i 0.115125 + 0.354318i
\(789\) 17.4489 12.6774i 0.621197 0.451326i
\(790\) −5.73050 17.6367i −0.203882 0.627484i
\(791\) 17.9215 + 55.1566i 0.637214 + 1.96114i
\(792\) 12.1488 8.82665i 0.431690 0.313641i
\(793\) 2.21764 + 6.82518i 0.0787505 + 0.242369i
\(794\) −1.53600 + 4.72733i −0.0545106 + 0.167767i
\(795\) −6.08212 4.41892i −0.215710 0.156723i
\(796\) 2.25768 6.94843i 0.0800214 0.246280i
\(797\) 39.3634 28.5992i 1.39432 1.01303i 0.398947 0.916974i \(-0.369376\pi\)
0.995375 0.0960610i \(-0.0306244\pi\)
\(798\) −47.9805 + 34.8599i −1.69849 + 1.23403i
\(799\) −3.63107 2.63812i −0.128458 0.0933301i
\(800\) −6.94637 −0.245591
\(801\) −6.65241 −0.235051
\(802\) 24.8048 + 18.0217i 0.875887 + 0.636369i
\(803\) −6.26723 19.2885i −0.221166 0.680678i
\(804\) −2.29240 + 7.05530i −0.0808469 + 0.248821i
\(805\) −5.34915 −0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) 0.376780 1.15961i 0.0132551 0.0407949i
\(809\) 5.81234 + 17.8885i 0.204351 + 0.628928i 0.999739 + 0.0228278i \(0.00726693\pi\)
−0.795388 + 0.606100i \(0.792733\pi\)
\(810\) −17.2752 12.5512i −0.606988 0.441002i
\(811\) −39.5385 −1.38839 −0.694193 0.719789i \(-0.744239\pi\)
−0.694193 + 0.719789i \(0.744239\pi\)
\(812\) 12.4765 0.437840
\(813\) −10.3287 7.50428i −0.362245 0.263186i
\(814\) −6.80214 + 4.94204i −0.238415 + 0.173219i
\(815\) −0.166527 + 0.120989i −0.00583319 + 0.00423806i
\(816\) −6.78700 + 20.8882i −0.237593 + 0.731235i
\(817\) 19.1622 + 13.9222i 0.670402 + 0.487075i
\(818\) −1.33542 + 4.10999i −0.0466918 + 0.143703i
\(819\) −4.04362 12.4450i −0.141295 0.434862i
\(820\) −0.203096 + 0.147558i −0.00709241 + 0.00515293i
\(821\) 4.52299 + 13.9203i 0.157854 + 0.485823i 0.998439 0.0558559i \(-0.0177887\pi\)
−0.840585 + 0.541679i \(0.817789\pi\)
\(822\) −7.80434 24.0193i −0.272208 0.837769i
\(823\) 33.8062 24.5616i 1.17841 0.856164i 0.186417 0.982471i \(-0.440312\pi\)
0.991991 + 0.126307i \(0.0403124\pi\)
\(824\) −3.09644 9.52986i −0.107870 0.331988i
\(825\) 6.29759 19.3820i 0.219254 0.674794i
\(826\) 29.4955 + 21.4298i 1.02628 + 0.745637i
\(827\) 2.90665 8.94576i 0.101074 0.311075i −0.887715 0.460394i \(-0.847708\pi\)
0.988789 + 0.149319i \(0.0477082\pi\)
\(828\) −0.462949 + 0.336352i −0.0160886 + 0.0116890i
\(829\) 32.6283 23.7058i 1.13323 0.823337i 0.147065 0.989127i \(-0.453017\pi\)
0.986161 + 0.165790i \(0.0530173\pi\)
\(830\) 12.9348 + 9.39771i 0.448975 + 0.326199i
\(831\) 45.7478 1.58697
\(832\) 23.4174 0.811854
\(833\) 22.8053 + 16.5690i 0.790158 + 0.574083i
\(834\) −12.2453 37.6872i −0.424020 1.30500i
\(835\) −1.88603 + 5.80460i −0.0652688 + 0.200877i
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) 2.20936 6.79972i 0.0762757 0.234752i −0.905648 0.424031i \(-0.860615\pi\)
0.981923 + 0.189278i \(0.0606149\pi\)
\(840\) 11.5277 + 35.4785i 0.397742 + 1.22412i
\(841\) −14.0420 10.2021i −0.484208 0.351798i
\(842\) 34.0097 1.17205
\(843\) 63.8544 2.19926
\(844\) 2.45711 + 1.78520i 0.0845773 + 0.0614490i
\(845\) −7.57319 + 5.50224i −0.260526 + 0.189283i
\(846\) 1.54756 1.12437i 0.0532063 0.0386566i
\(847\) −3.70149 + 11.3920i −0.127185 + 0.391435i
\(848\) 5.31839 + 3.86404i 0.182634 + 0.132692i
\(849\) 13.6866 42.1231i 0.469724 1.44566i
\(850\) 3.75241 + 11.5487i 0.128707 + 0.396118i
\(851\) 1.33530 0.970152i 0.0457735 0.0332564i
\(852\) −1.57483 4.84683i −0.0539528 0.166050i
\(853\) 0.348160 + 1.07153i 0.0119208 + 0.0366884i 0.956840 0.290615i \(-0.0938600\pi\)
−0.944919 + 0.327304i \(0.893860\pi\)
\(854\) 10.3266 7.50274i 0.353370 0.256738i
\(855\) −3.80259 11.7032i −0.130046 0.400240i
\(856\) −2.98308 + 9.18099i −0.101960 + 0.313800i
\(857\) 19.2983 + 14.0210i 0.659218 + 0.478950i 0.866399 0.499353i \(-0.166429\pi\)
−0.207181 + 0.978303i \(0.566429\pi\)
\(858\) −7.83108 + 24.1016i −0.267349 + 0.822814i
\(859\) 26.2653 19.0829i 0.896160 0.651098i −0.0413167 0.999146i \(-0.513155\pi\)
0.937477 + 0.348048i \(0.113155\pi\)
\(860\) 2.33971 1.69990i 0.0797836 0.0579662i
\(861\) −2.15278 1.56409i −0.0733665 0.0533039i
\(862\) −18.3273 −0.624229
\(863\) 23.8418 0.811585 0.405793 0.913965i \(-0.366996\pi\)
0.405793 + 0.913965i \(0.366996\pi\)
\(864\) −7.56744 5.49807i −0.257450 0.187048i
\(865\) 6.90498 + 21.2513i 0.234776 + 0.722567i
\(866\) −3.52660 + 10.8538i −0.119839 + 0.368826i
\(867\) 5.71523 0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) 8.31433 25.5889i 0.281882 0.867544i
\(871\) −6.04291 18.5982i −0.204756 0.630175i
\(872\) 17.2092 + 12.5032i 0.582777 + 0.423412i
\(873\) 14.2487 0.482247
\(874\) −6.83675 −0.231256
\(875\) 36.2008 + 26.3014i 1.22381 + 0.889151i
\(876\) 4.36037 3.16799i 0.147323 0.107036i
\(877\) −23.6837 + 17.2072i −0.799741 + 0.581046i −0.910838 0.412764i \(-0.864564\pi\)
0.111097 + 0.993810i \(0.464564\pi\)
\(878\) 6.74641 20.7633i 0.227680 0.700728i
\(879\) −3.02001 2.19416i −0.101862 0.0740073i
\(880\) 5.03839 15.5066i 0.169844 0.522726i
\(881\) −2.79045 8.58811i −0.0940126 0.289341i 0.892983 0.450091i \(-0.148609\pi\)
−0.986995 + 0.160750i \(0.948609\pi\)
\(882\) −9.71965 + 7.06174i −0.327278 + 0.237781i
\(883\) −6.61531 20.3598i −0.222623 0.685162i −0.998524 0.0543083i \(-0.982705\pi\)
0.775901 0.630854i \(-0.217295\pi\)
\(884\) 1.48060 + 4.55682i 0.0497979 + 0.153262i
\(885\) −20.1831 + 14.6639i −0.678448 + 0.492921i
\(886\) −7.02515 21.6212i −0.236015 0.726378i
\(887\) 7.60028 23.3912i 0.255192 0.785401i −0.738599 0.674145i \(-0.764512\pi\)
0.993792 0.111257i \(-0.0354875\pi\)
\(888\) −9.31221 6.76572i −0.312497 0.227043i
\(889\) −23.7746 + 73.1707i −0.797374 + 2.45407i
\(890\) −7.85105 + 5.70412i −0.263168 + 0.191203i
\(891\) 34.1202 24.7898i 1.14307 0.830489i
\(892\) −2.87987 2.09235i −0.0964251 0.0700570i
\(893\) −7.25179 −0.242672
\(894\) 38.9728 1.30345
\(895\) 22.1576 + 16.0984i 0.740646 + 0.538111i
\(896\) −6.61694 20.3649i −0.221057 0.680342i
\(897\) 1.53729 4.73128i 0.0513285 0.157973i
\(898\) −27.9829 −0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) −2.73404 + 8.41450i −0.0910839 + 0.280328i
\(902\) 0.482874 + 1.48613i 0.0160779 + 0.0494828i
\(903\) 24.8006 + 18.0187i 0.825312 + 0.599624i
\(904\) 46.6238 1.55069
\(905\) −18.6389 −0.619578
\(906\) 0.541574 + 0.393477i 0.0179926 + 0.0130724i
\(907\) 15.9913 11.6183i 0.530981 0.385781i −0.289743 0.957104i \(-0.593570\pi\)
0.820725 + 0.571324i \(0.193570\pi\)
\(908\) 7.49861 5.44806i 0.248850 0.180800i
\(909\) −0.160858 + 0.495069i −0.00533531 + 0.0164204i
\(910\) −15.4432 11.2201i −0.511936 0.371943i
\(911\) 11.0077 33.8781i 0.364701 1.12243i −0.585468 0.810696i \(-0.699089\pi\)
0.950168 0.311737i \(-0.100911\pi\)
\(912\) 10.9660 + 33.7498i 0.363119 + 1.11757i
\(913\) −25.5476 + 18.5614i −0.845501 + 0.614293i
\(914\) 6.15383 + 18.9395i 0.203550 + 0.626464i
\(915\) 2.69908 + 8.30691i 0.0892287 + 0.274618i
\(916\) 2.37242 1.72366i 0.0783870 0.0569515i
\(917\) −14.8706 45.7671i −0.491072 1.51136i
\(918\) −5.05294 + 15.5513i −0.166772 + 0.513271i
\(919\) 13.8798 + 10.0842i 0.457851 + 0.332648i 0.792688 0.609628i \(-0.208681\pi\)
−0.334837 + 0.942276i \(0.608681\pi\)
\(920\) −1.32887 + 4.08986i −0.0438117 + 0.134839i
\(921\) 44.9375 32.6490i 1.48074 1.07582i
\(922\) 21.4709 15.5995i 0.707105 0.513742i
\(923\) 10.8684 + 7.89632i 0.357736 + 0.259911i
\(924\) −14.3025 −0.470519
\(925\) −4.73661 −0.155739
\(926\) −17.4546 12.6815i −0.573594 0.416741i
\(927\) 1.32195 + 4.06856i 0.0434187 + 0.133629i
\(928\) 5.59734 17.2268i 0.183742 0.565499i
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) −2.60939 + 8.03088i −0.0854734 + 0.263060i
\(933\) −2.68095 8.25113i −0.0877705 0.270130i
\(934\) 11.7694 + 8.55098i 0.385107 + 0.279797i
\(935\) 21.9436 0.717633
\(936\) −10.5197 −0.343848
\(937\) −20.7250 15.0576i −0.677056 0.491910i 0.195324 0.980739i \(-0.437424\pi\)
−0.872380 + 0.488829i \(0.837424\pi\)
\(938\) −28.1394 + 20.4445i −0.918784 + 0.667536i
\(939\) 19.0411 13.8342i 0.621383 0.451461i
\(940\) −0.273618 + 0.842110i −0.00892443 + 0.0274666i
\(941\) 9.80839 + 7.12621i 0.319744 + 0.232308i 0.736066 0.676909i \(-0.236681\pi\)
−0.416322 + 0.909217i \(0.636681\pi\)
\(942\) −12.5831 + 38.7268i −0.409980 + 1.26179i
\(943\) −0.0947910 0.291737i −0.00308682 0.00950025i
\(944\) 17.6487 12.8226i 0.574418 0.417339i
\(945\) 6.38775 + 19.6595i 0.207794 + 0.639523i
\(946\) −5.56284 17.1207i −0.180863 0.556640i
\(947\) −22.0061 + 15.9884i −0.715103 + 0.519553i −0.884816 0.465941i \(-0.845716\pi\)
0.169713 + 0.985494i \(0.445716\pi\)
\(948\) 3.00783 + 9.25715i 0.0976898 + 0.300658i
\(949\) −4.39039 + 13.5122i −0.142518 + 0.438625i
\(950\) 15.8728 + 11.5323i 0.514982 + 0.374157i
\(951\) −16.5952 + 51.0747i −0.538136 + 1.65621i
\(952\) 35.5174 25.8049i 1.15113 0.836342i
\(953\) 20.1386 14.6316i 0.652353 0.473962i −0.211719 0.977331i \(-0.567906\pi\)
0.864072 + 0.503368i \(0.167906\pi\)
\(954\) −3.05066 2.21643i −0.0987687 0.0717597i
\(955\) −7.83866 −0.253653
\(956\) −13.4467 −0.434896
\(957\) 42.9924 + 31.2358i 1.38975 + 1.00971i
\(958\) −6.01936 18.5257i −0.194477 0.598538i
\(959\) −11.6109 + 35.7346i −0.374935 + 1.15393i
\(960\) 28.5013 0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) 1.27356 3.91961i 0.0410399 0.126308i
\(964\) 3.38674 + 10.4233i 0.109080 + 0.335712i
\(965\) −25.0609 18.2078i −0.806739 0.586130i
\(966\) −8.84842 −0.284693
\(967\) −52.1998 −1.67863 −0.839316 0.543643i \(-0.817044\pi\)
−0.839316 + 0.543643i \(0.817044\pi\)
\(968\) 7.79057 + 5.66018i 0.250398 + 0.181925i
\(969\) −38.6386 + 28.0726i −1.24125 + 0.901821i
\(970\) 16.8161 12.2176i 0.539933 0.392284i
\(971\) −6.16824 + 18.9839i −0.197948 + 0.609222i 0.801981 + 0.597349i \(0.203779\pi\)
−0.999930 + 0.0118727i \(0.996221\pi\)
\(972\) 4.95638 + 3.60102i 0.158976 + 0.115503i
\(973\) −18.2179 + 56.0689i −0.584039 + 1.79749i
\(974\) −4.87057 14.9901i −0.156063 0.480313i
\(975\) −11.5499 + 8.39147i −0.369892 + 0.268742i
\(976\) −2.36016 7.26382i −0.0755468 0.232509i
\(977\) −18.6185 57.3017i −0.595657 1.83324i −0.551426 0.834224i \(-0.685916\pi\)
−0.0442310 0.999021i \(-0.514084\pi\)
\(978\) −0.275465 + 0.200137i −0.00880839 + 0.00639967i
\(979\) −5.92300 18.2291i −0.189300 0.582605i
\(980\) 1.71849 5.28897i 0.0548951 0.168950i
\(981\) −7.34707 5.33796i −0.234574 0.170428i
\(982\) 7.05483 21.7125i 0.225129 0.692875i
\(983\) −9.33502 + 6.78229i −0.297741 + 0.216322i −0.726619 0.687041i \(-0.758909\pi\)
0.428877 + 0.903363i \(0.358909\pi\)
\(984\) −1.73068 + 1.25741i −0.0551720 + 0.0400848i
\(985\) −27.1449 19.7219i −0.864908 0.628393i
\(986\) −31.6643 −1.00840
\(987\) −9.38559 −0.298746
\(988\) 6.26299 + 4.55033i 0.199252 + 0.144765i
\(989\) 1.09202 + 3.36088i 0.0347241 + 0.106870i
\(990\) −2.89005 + 8.89465i −0.0918517 + 0.282690i
\(991\) −37.3423 −1.18622 −0.593109 0.805122i \(-0.702100\pi\)
−0.593109 + 0.805122i \(0.702100\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) 7.38383 22.7251i 0.234201 0.720796i
\(995\) 7.24341 + 22.2929i 0.229631 + 0.706733i
\(996\) −6.78925 4.93268i −0.215126 0.156298i
\(997\) 20.8024 0.658820 0.329410 0.944187i \(-0.393150\pi\)
0.329410 + 0.944187i \(0.393150\pi\)
\(998\) −50.3801 −1.59476
\(999\) −5.16012 3.74904i −0.163259 0.118614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.n.628.3 16
31.2 even 5 961.2.a.j.1.5 8
31.3 odd 30 961.2.g.s.816.1 16
31.4 even 5 inner 961.2.d.n.531.3 16
31.5 even 3 961.2.g.j.448.2 16
31.6 odd 6 31.2.g.a.9.2 yes 16
31.7 even 15 961.2.g.j.547.2 16
31.8 even 5 961.2.d.q.388.2 16
31.9 even 15 961.2.g.m.338.1 16
31.10 even 15 961.2.c.i.521.5 16
31.11 odd 30 31.2.g.a.7.2 16
31.12 odd 30 961.2.c.j.439.5 16
31.13 odd 30 961.2.g.t.732.1 16
31.14 even 15 961.2.g.n.235.1 16
31.15 odd 10 961.2.d.p.374.2 16
31.16 even 5 961.2.d.q.374.2 16
31.17 odd 30 961.2.g.t.235.1 16
31.18 even 15 961.2.g.n.732.1 16
31.19 even 15 961.2.c.i.439.5 16
31.20 even 15 961.2.g.l.844.2 16
31.21 odd 30 961.2.c.j.521.5 16
31.22 odd 30 961.2.g.s.338.1 16
31.23 odd 10 961.2.d.p.388.2 16
31.24 odd 30 961.2.g.k.547.2 16
31.25 even 3 961.2.g.l.846.2 16
31.26 odd 6 961.2.g.k.448.2 16
31.27 odd 10 961.2.d.o.531.3 16
31.28 even 15 961.2.g.m.816.1 16
31.29 odd 10 961.2.a.i.1.5 8
31.30 odd 2 961.2.d.o.628.3 16
93.2 odd 10 8649.2.a.be.1.4 8
93.11 even 30 279.2.y.c.100.1 16
93.29 even 10 8649.2.a.bf.1.4 8
93.68 even 6 279.2.y.c.226.1 16
124.11 even 30 496.2.bg.c.193.2 16
124.99 even 6 496.2.bg.c.257.2 16
155.37 even 12 775.2.ck.a.474.3 32
155.42 even 60 775.2.ck.a.224.2 32
155.68 even 12 775.2.ck.a.474.2 32
155.73 even 60 775.2.ck.a.224.3 32
155.99 odd 6 775.2.bl.a.226.1 16
155.104 odd 30 775.2.bl.a.751.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.11 odd 30
31.2.g.a.9.2 yes 16 31.6 odd 6
279.2.y.c.100.1 16 93.11 even 30
279.2.y.c.226.1 16 93.68 even 6
496.2.bg.c.193.2 16 124.11 even 30
496.2.bg.c.257.2 16 124.99 even 6
775.2.bl.a.226.1 16 155.99 odd 6
775.2.bl.a.751.1 16 155.104 odd 30
775.2.ck.a.224.2 32 155.42 even 60
775.2.ck.a.224.3 32 155.73 even 60
775.2.ck.a.474.2 32 155.68 even 12
775.2.ck.a.474.3 32 155.37 even 12
961.2.a.i.1.5 8 31.29 odd 10
961.2.a.j.1.5 8 31.2 even 5
961.2.c.i.439.5 16 31.19 even 15
961.2.c.i.521.5 16 31.10 even 15
961.2.c.j.439.5 16 31.12 odd 30
961.2.c.j.521.5 16 31.21 odd 30
961.2.d.n.531.3 16 31.4 even 5 inner
961.2.d.n.628.3 16 1.1 even 1 trivial
961.2.d.o.531.3 16 31.27 odd 10
961.2.d.o.628.3 16 31.30 odd 2
961.2.d.p.374.2 16 31.15 odd 10
961.2.d.p.388.2 16 31.23 odd 10
961.2.d.q.374.2 16 31.16 even 5
961.2.d.q.388.2 16 31.8 even 5
961.2.g.j.448.2 16 31.5 even 3
961.2.g.j.547.2 16 31.7 even 15
961.2.g.k.448.2 16 31.26 odd 6
961.2.g.k.547.2 16 31.24 odd 30
961.2.g.l.844.2 16 31.20 even 15
961.2.g.l.846.2 16 31.25 even 3
961.2.g.m.338.1 16 31.9 even 15
961.2.g.m.816.1 16 31.28 even 15
961.2.g.n.235.1 16 31.14 even 15
961.2.g.n.732.1 16 31.18 even 15
961.2.g.s.338.1 16 31.22 odd 30
961.2.g.s.816.1 16 31.3 odd 30
961.2.g.t.235.1 16 31.17 odd 30
961.2.g.t.732.1 16 31.13 odd 30
8649.2.a.be.1.4 8 93.2 odd 10
8649.2.a.bf.1.4 8 93.29 even 10