Properties

Label 961.2.d.j.531.2
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.2
Root \(-1.14412 - 0.831254i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.j.628.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 2.48990i) q^{2} +(0.270091 - 0.831254i) q^{3} +(-3.92705 + 2.85317i) q^{4} +2.23607 q^{5} +2.28825 q^{6} +(0.809017 - 0.587785i) q^{7} +(-6.04508 - 4.39201i) q^{8} +(1.80902 + 1.31433i) q^{9} +(1.80902 + 5.56758i) q^{10} +(3.43237 - 2.49376i) q^{11} +(1.31105 + 4.03499i) q^{12} +(0.810272 - 2.49376i) q^{13} +(2.11803 + 1.53884i) q^{14} +(0.603941 - 1.85874i) q^{15} +(3.04508 - 9.37181i) q^{16} +(2.99535 + 2.17625i) q^{17} +(-1.80902 + 5.56758i) q^{18} +(0.309017 + 0.951057i) q^{19} +(-8.78115 + 6.37988i) q^{20} +(-0.270091 - 0.831254i) q^{21} +(8.98606 + 6.52875i) q^{22} +(-2.12132 - 1.54123i) q^{23} +(-5.28360 + 3.83876i) q^{24} +6.86474 q^{26} +(3.70246 - 2.68999i) q^{27} +(-1.50000 + 4.61653i) q^{28} +(0.166925 + 0.513743i) q^{29} +5.11667 q^{30} +10.8541 q^{32} +(-1.14590 - 3.52671i) q^{33} +(-2.99535 + 9.21875i) q^{34} +(1.80902 - 1.31433i) q^{35} -10.8541 q^{36} -4.24264 q^{37} +(-2.11803 + 1.53884i) q^{38} +(-1.85410 - 1.34708i) q^{39} +(-13.5172 - 9.82084i) q^{40} +(-0.454915 - 1.40008i) q^{41} +(1.85123 - 1.34500i) q^{42} +(2.99535 + 9.21875i) q^{43} +(-6.36396 + 19.5863i) q^{44} +(4.04508 + 2.93893i) q^{45} +(2.12132 - 6.52875i) q^{46} +(-3.00000 + 9.23305i) q^{47} +(-6.96790 - 5.06248i) q^{48} +(-1.85410 + 5.70634i) q^{49} +(2.61803 - 1.90211i) q^{51} +(3.93314 + 12.1050i) q^{52} +(-11.1074 - 8.06998i) q^{53} +(9.69316 + 7.04250i) q^{54} +(7.67501 - 5.57622i) q^{55} -7.47214 q^{56} +0.874032 q^{57} +(-1.14412 + 0.831254i) q^{58} +(3.69098 - 11.3597i) q^{59} +(2.93159 + 9.02251i) q^{60} -13.9358 q^{61} +2.23607 q^{63} +(2.69098 + 8.28199i) q^{64} +(1.81182 - 5.57622i) q^{65} +(7.85410 - 5.70634i) q^{66} +6.00000 q^{67} -17.9721 q^{68} +(-1.85410 + 1.34708i) q^{69} +(4.73607 + 3.44095i) q^{70} +(1.19098 + 0.865300i) q^{71} +(-5.16312 - 15.8904i) q^{72} +(3.43237 - 2.49376i) q^{73} +(-3.43237 - 10.5637i) q^{74} +(-3.92705 - 2.85317i) q^{76} +(1.31105 - 4.03499i) q^{77} +(1.85410 - 5.70634i) q^{78} +(-1.31105 - 0.952532i) q^{79} +(6.80902 - 20.9560i) q^{80} +(0.836881 + 2.57565i) q^{81} +(3.11803 - 2.26538i) q^{82} +(0.977198 + 3.00750i) q^{83} +(3.43237 + 2.49376i) q^{84} +(6.69781 + 4.86624i) q^{85} +(-20.5305 + 14.9162i) q^{86} +0.472136 q^{87} -31.7016 q^{88} +(-12.4184 + 9.02251i) q^{89} +(-4.04508 + 12.4495i) q^{90} +(-0.810272 - 2.49376i) q^{91} +12.7279 q^{92} -25.4164 q^{94} +(0.690983 + 2.12663i) q^{95} +(2.93159 - 9.02251i) q^{96} +(5.66312 - 4.11450i) q^{97} -15.7082 q^{98} +9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 18 q^{4} + 2 q^{7} - 26 q^{8} + 10 q^{9} + 10 q^{10} + 8 q^{14} + 2 q^{16} - 10 q^{18} - 2 q^{19} - 30 q^{20} - 12 q^{28} + 60 q^{32} - 36 q^{33} + 10 q^{35} - 60 q^{36} - 8 q^{38} + 12 q^{39}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 2.48990i 0.572061 + 1.76062i 0.645974 + 0.763359i \(0.276451\pi\)
−0.0739128 + 0.997265i \(0.523549\pi\)
\(3\) 0.270091 0.831254i 0.155937 0.479925i −0.842318 0.538981i \(-0.818809\pi\)
0.998255 + 0.0590568i \(0.0188093\pi\)
\(4\) −3.92705 + 2.85317i −1.96353 + 1.42658i
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 2.28825 0.934172
\(7\) 0.809017 0.587785i 0.305780 0.222162i −0.424304 0.905520i \(-0.639481\pi\)
0.730084 + 0.683358i \(0.239481\pi\)
\(8\) −6.04508 4.39201i −2.13726 1.55281i
\(9\) 1.80902 + 1.31433i 0.603006 + 0.438109i
\(10\) 1.80902 + 5.56758i 0.572061 + 1.76062i
\(11\) 3.43237 2.49376i 1.03490 0.751897i 0.0656149 0.997845i \(-0.479099\pi\)
0.969283 + 0.245948i \(0.0790991\pi\)
\(12\) 1.31105 + 4.03499i 0.378467 + 1.16480i
\(13\) 0.810272 2.49376i 0.224729 0.691645i −0.773590 0.633687i \(-0.781541\pi\)
0.998319 0.0579585i \(-0.0184591\pi\)
\(14\) 2.11803 + 1.53884i 0.566068 + 0.411273i
\(15\) 0.603941 1.85874i 0.155937 0.479925i
\(16\) 3.04508 9.37181i 0.761271 2.34295i
\(17\) 2.99535 + 2.17625i 0.726480 + 0.527818i 0.888448 0.458978i \(-0.151784\pi\)
−0.161968 + 0.986796i \(0.551784\pi\)
\(18\) −1.80902 + 5.56758i −0.426389 + 1.31229i
\(19\) 0.309017 + 0.951057i 0.0708934 + 0.218187i 0.980226 0.197884i \(-0.0634068\pi\)
−0.909332 + 0.416071i \(0.863407\pi\)
\(20\) −8.78115 + 6.37988i −1.96353 + 1.42658i
\(21\) −0.270091 0.831254i −0.0589386 0.181394i
\(22\) 8.98606 + 6.52875i 1.91583 + 1.39193i
\(23\) −2.12132 1.54123i −0.442326 0.321369i 0.344233 0.938884i \(-0.388139\pi\)
−0.786558 + 0.617516i \(0.788139\pi\)
\(24\) −5.28360 + 3.83876i −1.07851 + 0.783583i
\(25\) 0 0
\(26\) 6.86474 1.34629
\(27\) 3.70246 2.68999i 0.712539 0.517690i
\(28\) −1.50000 + 4.61653i −0.283473 + 0.872441i
\(29\) 0.166925 + 0.513743i 0.0309972 + 0.0953997i 0.965358 0.260928i \(-0.0840286\pi\)
−0.934361 + 0.356328i \(0.884029\pi\)
\(30\) 5.11667 0.934172
\(31\) 0 0
\(32\) 10.8541 1.91875
\(33\) −1.14590 3.52671i −0.199475 0.613922i
\(34\) −2.99535 + 9.21875i −0.513699 + 1.58100i
\(35\) 1.80902 1.31433i 0.305780 0.222162i
\(36\) −10.8541 −1.80902
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) −2.11803 + 1.53884i −0.343590 + 0.249633i
\(39\) −1.85410 1.34708i −0.296894 0.215706i
\(40\) −13.5172 9.82084i −2.13726 1.55281i
\(41\) −0.454915 1.40008i −0.0710458 0.218656i 0.909229 0.416297i \(-0.136672\pi\)
−0.980275 + 0.197640i \(0.936672\pi\)
\(42\) 1.85123 1.34500i 0.285651 0.207538i
\(43\) 2.99535 + 9.21875i 0.456787 + 1.40585i 0.869024 + 0.494769i \(0.164747\pi\)
−0.412237 + 0.911076i \(0.635253\pi\)
\(44\) −6.36396 + 19.5863i −0.959403 + 2.95274i
\(45\) 4.04508 + 2.93893i 0.603006 + 0.438109i
\(46\) 2.12132 6.52875i 0.312772 0.962612i
\(47\) −3.00000 + 9.23305i −0.437595 + 1.34678i 0.452809 + 0.891608i \(0.350422\pi\)
−0.890404 + 0.455171i \(0.849578\pi\)
\(48\) −6.96790 5.06248i −1.00573 0.730706i
\(49\) −1.85410 + 5.70634i −0.264872 + 0.815191i
\(50\) 0 0
\(51\) 2.61803 1.90211i 0.366598 0.266349i
\(52\) 3.93314 + 12.1050i 0.545429 + 1.67866i
\(53\) −11.1074 8.06998i −1.52572 1.10850i −0.958562 0.284886i \(-0.908044\pi\)
−0.567154 0.823612i \(-0.691956\pi\)
\(54\) 9.69316 + 7.04250i 1.31907 + 0.958362i
\(55\) 7.67501 5.57622i 1.03490 0.751897i
\(56\) −7.47214 −0.998506
\(57\) 0.874032 0.115768
\(58\) −1.14412 + 0.831254i −0.150231 + 0.109149i
\(59\) 3.69098 11.3597i 0.480525 1.47890i −0.357834 0.933785i \(-0.616485\pi\)
0.838359 0.545119i \(-0.183515\pi\)
\(60\) 2.93159 + 9.02251i 0.378467 + 1.16480i
\(61\) −13.9358 −1.78430 −0.892148 0.451742i \(-0.850803\pi\)
−0.892148 + 0.451742i \(0.850803\pi\)
\(62\) 0 0
\(63\) 2.23607 0.281718
\(64\) 2.69098 + 8.28199i 0.336373 + 1.03525i
\(65\) 1.81182 5.57622i 0.224729 0.691645i
\(66\) 7.85410 5.70634i 0.966773 0.702402i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) −17.9721 −2.17944
\(69\) −1.85410 + 1.34708i −0.223208 + 0.162170i
\(70\) 4.73607 + 3.44095i 0.566068 + 0.411273i
\(71\) 1.19098 + 0.865300i 0.141344 + 0.102692i 0.656210 0.754578i \(-0.272158\pi\)
−0.514866 + 0.857270i \(0.672158\pi\)
\(72\) −5.16312 15.8904i −0.608479 1.87271i
\(73\) 3.43237 2.49376i 0.401728 0.291873i −0.368516 0.929621i \(-0.620134\pi\)
0.770245 + 0.637749i \(0.220134\pi\)
\(74\) −3.43237 10.5637i −0.399005 1.22801i
\(75\) 0 0
\(76\) −3.92705 2.85317i −0.450464 0.327281i
\(77\) 1.31105 4.03499i 0.149408 0.459830i
\(78\) 1.85410 5.70634i 0.209936 0.646116i
\(79\) −1.31105 0.952532i −0.147504 0.107168i 0.511586 0.859232i \(-0.329058\pi\)
−0.659090 + 0.752064i \(0.729058\pi\)
\(80\) 6.80902 20.9560i 0.761271 2.34295i
\(81\) 0.836881 + 2.57565i 0.0929868 + 0.286184i
\(82\) 3.11803 2.26538i 0.344329 0.250170i
\(83\) 0.977198 + 3.00750i 0.107261 + 0.330117i 0.990255 0.139269i \(-0.0444754\pi\)
−0.882993 + 0.469386i \(0.844475\pi\)
\(84\) 3.43237 + 2.49376i 0.374502 + 0.272092i
\(85\) 6.69781 + 4.86624i 0.726480 + 0.527818i
\(86\) −20.5305 + 14.9162i −2.21386 + 1.60846i
\(87\) 0.472136 0.0506183
\(88\) −31.7016 −3.37940
\(89\) −12.4184 + 9.02251i −1.31635 + 0.956385i −0.316381 + 0.948632i \(0.602468\pi\)
−0.999970 + 0.00775224i \(0.997532\pi\)
\(90\) −4.04508 + 12.4495i −0.426389 + 1.31229i
\(91\) −0.810272 2.49376i −0.0849396 0.261417i
\(92\) 12.7279 1.32698
\(93\) 0 0
\(94\) −25.4164 −2.62150
\(95\) 0.690983 + 2.12663i 0.0708934 + 0.218187i
\(96\) 2.93159 9.02251i 0.299204 0.920857i
\(97\) 5.66312 4.11450i 0.575003 0.417764i −0.261916 0.965091i \(-0.584354\pi\)
0.836919 + 0.547327i \(0.184354\pi\)
\(98\) −15.7082 −1.58677
\(99\) 9.48683 0.953463
\(100\) 0 0
\(101\) −1.80902 1.31433i −0.180004 0.130781i 0.494135 0.869385i \(-0.335485\pi\)
−0.674139 + 0.738605i \(0.735485\pi\)
\(102\) 6.85410 + 4.97980i 0.678657 + 0.493073i
\(103\) 3.30902 + 10.1841i 0.326047 + 1.00347i 0.970966 + 0.239219i \(0.0768913\pi\)
−0.644919 + 0.764251i \(0.723109\pi\)
\(104\) −15.8508 + 11.5163i −1.55430 + 1.12926i
\(105\) −0.603941 1.85874i −0.0589386 0.181394i
\(106\) 11.1074 34.1850i 1.07884 3.32034i
\(107\) −1.19098 0.865300i −0.115137 0.0836517i 0.528727 0.848792i \(-0.322670\pi\)
−0.643864 + 0.765140i \(0.722670\pi\)
\(108\) −6.86474 + 21.1275i −0.660560 + 2.03299i
\(109\) −0.399187 + 1.22857i −0.0382352 + 0.117676i −0.968352 0.249587i \(-0.919705\pi\)
0.930117 + 0.367263i \(0.119705\pi\)
\(110\) 20.0934 + 14.5987i 1.91583 + 1.39193i
\(111\) −1.14590 + 3.52671i −0.108764 + 0.334741i
\(112\) −3.04508 9.37181i −0.287733 0.885553i
\(113\) 7.89919 5.73910i 0.743093 0.539889i −0.150585 0.988597i \(-0.548116\pi\)
0.893678 + 0.448708i \(0.148116\pi\)
\(114\) 0.707107 + 2.17625i 0.0662266 + 0.203825i
\(115\) −4.74342 3.44629i −0.442326 0.321369i
\(116\) −2.12132 1.54123i −0.196960 0.143100i
\(117\) 4.74342 3.44629i 0.438529 0.318610i
\(118\) 31.2705 2.87868
\(119\) 3.70246 0.339404
\(120\) −11.8145 + 8.58373i −1.07851 + 0.783583i
\(121\) 2.16312 6.65740i 0.196647 0.605218i
\(122\) −11.2743 34.6987i −1.02073 3.14148i
\(123\) −1.28669 −0.116017
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 1.80902 + 5.56758i 0.161160 + 0.496000i
\(127\) 2.93159 9.02251i 0.260137 0.800619i −0.732637 0.680619i \(-0.761711\pi\)
0.992774 0.119999i \(-0.0382892\pi\)
\(128\) −0.881966 + 0.640786i −0.0779555 + 0.0566380i
\(129\) 8.47214 0.745930
\(130\) 15.3500 1.34629
\(131\) −6.00000 + 4.35926i −0.524222 + 0.380870i −0.818192 0.574945i \(-0.805024\pi\)
0.293970 + 0.955815i \(0.405024\pi\)
\(132\) 14.5623 + 10.5801i 1.26749 + 0.920883i
\(133\) 0.809017 + 0.587785i 0.0701507 + 0.0509674i
\(134\) 4.85410 + 14.9394i 0.419331 + 1.29057i
\(135\) 8.27895 6.01501i 0.712539 0.517690i
\(136\) −8.54904 26.3112i −0.733074 2.25617i
\(137\) 0.810272 2.49376i 0.0692262 0.213056i −0.910458 0.413601i \(-0.864271\pi\)
0.979685 + 0.200544i \(0.0642710\pi\)
\(138\) −4.85410 3.52671i −0.413209 0.300214i
\(139\) 5.55369 17.0925i 0.471058 1.44977i −0.380144 0.924927i \(-0.624125\pi\)
0.851201 0.524839i \(-0.175875\pi\)
\(140\) −3.35410 + 10.3229i −0.283473 + 0.872441i
\(141\) 6.86474 + 4.98752i 0.578115 + 0.420025i
\(142\) −1.19098 + 3.66547i −0.0999451 + 0.307599i
\(143\) −3.43769 10.5801i −0.287474 0.884755i
\(144\) 17.8262 12.9515i 1.48552 1.07929i
\(145\) 0.373256 + 1.14876i 0.0309972 + 0.0953997i
\(146\) 8.98606 + 6.52875i 0.743691 + 0.540323i
\(147\) 4.24264 + 3.08246i 0.349927 + 0.254237i
\(148\) 16.6611 12.1050i 1.36953 0.995023i
\(149\) −13.4164 −1.09911 −0.549557 0.835456i \(-0.685204\pi\)
−0.549557 + 0.835456i \(0.685204\pi\)
\(150\) 0 0
\(151\) 10.1302 7.36001i 0.824382 0.598949i −0.0935821 0.995612i \(-0.529832\pi\)
0.917964 + 0.396663i \(0.129832\pi\)
\(152\) 2.30902 7.10642i 0.187286 0.576407i
\(153\) 2.55834 + 7.87375i 0.206829 + 0.636555i
\(154\) 11.1074 0.895058
\(155\) 0 0
\(156\) 11.1246 0.890682
\(157\) 2.69098 + 8.28199i 0.214764 + 0.660975i 0.999170 + 0.0407279i \(0.0129677\pi\)
−0.784406 + 0.620247i \(0.787032\pi\)
\(158\) 1.31105 4.03499i 0.104301 0.321007i
\(159\) −9.70820 + 7.05342i −0.769911 + 0.559373i
\(160\) 24.2705 1.91875
\(161\) −2.62210 −0.206650
\(162\) −5.73607 + 4.16750i −0.450668 + 0.327430i
\(163\) −11.6631 8.47375i −0.913526 0.663715i 0.0283782 0.999597i \(-0.490966\pi\)
−0.941904 + 0.335882i \(0.890966\pi\)
\(164\) 5.78115 + 4.20025i 0.451432 + 0.327985i
\(165\) −2.56231 7.88597i −0.199475 0.613922i
\(166\) −6.69781 + 4.86624i −0.519851 + 0.377694i
\(167\) 0.333851 + 1.02749i 0.0258341 + 0.0795093i 0.963142 0.268992i \(-0.0866906\pi\)
−0.937308 + 0.348502i \(0.886691\pi\)
\(168\) −2.01815 + 6.21124i −0.155704 + 0.479208i
\(169\) 4.95492 + 3.59996i 0.381147 + 0.276920i
\(170\) −6.69781 + 20.6137i −0.513699 + 1.58100i
\(171\) −0.690983 + 2.12663i −0.0528408 + 0.162627i
\(172\) −38.0655 27.6562i −2.90247 2.10877i
\(173\) 5.56231 17.1190i 0.422894 1.30153i −0.482102 0.876115i \(-0.660127\pi\)
0.904996 0.425420i \(-0.139873\pi\)
\(174\) 0.381966 + 1.17557i 0.0289568 + 0.0891198i
\(175\) 0 0
\(176\) −12.9192 39.7612i −0.973821 2.99711i
\(177\) −8.44588 6.13629i −0.634831 0.461232i
\(178\) −32.5119 23.6212i −2.43687 1.77049i
\(179\) 10.7341 7.79880i 0.802306 0.582909i −0.109284 0.994011i \(-0.534856\pi\)
0.911590 + 0.411101i \(0.134856\pi\)
\(180\) −24.2705 −1.80902
\(181\) −8.69161 −0.646042 −0.323021 0.946392i \(-0.604699\pi\)
−0.323021 + 0.946392i \(0.604699\pi\)
\(182\) 5.55369 4.03499i 0.411667 0.299093i
\(183\) −3.76393 + 11.5842i −0.278238 + 0.856328i
\(184\) 6.05446 + 18.6337i 0.446341 + 1.37370i
\(185\) −9.48683 −0.697486
\(186\) 0 0
\(187\) 15.7082 1.14870
\(188\) −14.5623 44.8182i −1.06207 3.26870i
\(189\) 1.41421 4.35250i 0.102869 0.316598i
\(190\) −4.73607 + 3.44095i −0.343590 + 0.249633i
\(191\) 9.76393 0.706493 0.353247 0.935530i \(-0.385078\pi\)
0.353247 + 0.935530i \(0.385078\pi\)
\(192\) 7.61125 0.549295
\(193\) 16.7533 12.1720i 1.20593 0.876158i 0.211073 0.977470i \(-0.432304\pi\)
0.994855 + 0.101312i \(0.0323041\pi\)
\(194\) 14.8262 + 10.7719i 1.06446 + 0.773377i
\(195\) −4.14590 3.01217i −0.296894 0.215706i
\(196\) −9.00000 27.6992i −0.642857 1.97851i
\(197\) −0.874032 + 0.635021i −0.0622722 + 0.0452434i −0.618486 0.785796i \(-0.712254\pi\)
0.556214 + 0.831039i \(0.312254\pi\)
\(198\) 7.67501 + 23.6212i 0.545439 + 1.67869i
\(199\) −7.17423 + 22.0800i −0.508568 + 1.56521i 0.286121 + 0.958194i \(0.407634\pi\)
−0.794688 + 0.607017i \(0.792366\pi\)
\(200\) 0 0
\(201\) 1.62054 4.98752i 0.114304 0.351793i
\(202\) 1.80902 5.56758i 0.127282 0.391734i
\(203\) 0.437016 + 0.317511i 0.0306725 + 0.0222849i
\(204\) −4.85410 + 14.9394i −0.339855 + 1.04597i
\(205\) −1.01722 3.13068i −0.0710458 0.218656i
\(206\) −22.6803 + 16.4782i −1.58021 + 1.14809i
\(207\) −1.81182 5.57622i −0.125930 0.387574i
\(208\) −20.9037 15.1874i −1.44941 1.05306i
\(209\) 3.43237 + 2.49376i 0.237422 + 0.172497i
\(210\) 4.13948 3.00750i 0.285651 0.207538i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 66.6443 4.57715
\(213\) 1.04096 0.756300i 0.0713252 0.0518208i
\(214\) 1.19098 3.66547i 0.0814139 0.250566i
\(215\) 6.69781 + 20.6137i 0.456787 + 1.40585i
\(216\) −34.1962 −2.32675
\(217\) 0 0
\(218\) −3.38197 −0.229056
\(219\) −1.14590 3.52671i −0.0774326 0.238313i
\(220\) −14.2302 + 43.7962i −0.959403 + 2.95274i
\(221\) 7.85410 5.70634i 0.528324 0.383850i
\(222\) −9.70820 −0.651572
\(223\) −16.1452 −1.08117 −0.540583 0.841291i \(-0.681796\pi\)
−0.540583 + 0.841291i \(0.681796\pi\)
\(224\) 8.78115 6.37988i 0.586715 0.426274i
\(225\) 0 0
\(226\) 20.6803 + 15.0251i 1.37564 + 0.999458i
\(227\) 0.708204 + 2.17963i 0.0470051 + 0.144667i 0.971804 0.235788i \(-0.0757672\pi\)
−0.924799 + 0.380455i \(0.875767\pi\)
\(228\) −3.43237 + 2.49376i −0.227314 + 0.165153i
\(229\) −1.31105 4.03499i −0.0866365 0.266640i 0.898347 0.439286i \(-0.144768\pi\)
−0.984984 + 0.172646i \(0.944768\pi\)
\(230\) 4.74342 14.5987i 0.312772 0.962612i
\(231\) −3.00000 2.17963i −0.197386 0.143409i
\(232\) 1.24729 3.83876i 0.0818885 0.252027i
\(233\) −4.16312 + 12.8128i −0.272735 + 0.839392i 0.717075 + 0.696996i \(0.245481\pi\)
−0.989810 + 0.142396i \(0.954519\pi\)
\(234\) 12.4184 + 9.02251i 0.811818 + 0.589820i
\(235\) −6.70820 + 20.6457i −0.437595 + 1.34678i
\(236\) 17.9164 + 55.1410i 1.16626 + 3.58938i
\(237\) −1.14590 + 0.832544i −0.0744341 + 0.0540795i
\(238\) 2.99535 + 9.21875i 0.194160 + 0.597563i
\(239\) 9.79633 + 7.11745i 0.633672 + 0.460390i 0.857670 0.514200i \(-0.171911\pi\)
−0.223998 + 0.974589i \(0.571911\pi\)
\(240\) −15.5807 11.3200i −1.00573 0.730706i
\(241\) −18.7824 + 13.6462i −1.20988 + 0.879029i −0.995220 0.0976596i \(-0.968864\pi\)
−0.214660 + 0.976689i \(0.568864\pi\)
\(242\) 18.3262 1.17806
\(243\) 16.0965 1.03259
\(244\) 54.7266 39.7612i 3.50351 2.54545i
\(245\) −4.14590 + 12.7598i −0.264872 + 0.815191i
\(246\) −1.04096 3.20374i −0.0663690 0.204263i
\(247\) 2.62210 0.166840
\(248\) 0 0
\(249\) 2.76393 0.175157
\(250\) −9.04508 27.8379i −0.572061 1.76062i
\(251\) −3.40801 + 10.4888i −0.215112 + 0.662047i 0.784034 + 0.620718i \(0.213159\pi\)
−0.999146 + 0.0413282i \(0.986841\pi\)
\(252\) −8.78115 + 6.37988i −0.553161 + 0.401895i
\(253\) −11.1246 −0.699398
\(254\) 24.8369 1.55840
\(255\) 5.85410 4.25325i 0.366598 0.266349i
\(256\) 11.7812 + 8.55951i 0.736322 + 0.534969i
\(257\) −4.89919 3.55947i −0.305603 0.222033i 0.424405 0.905473i \(-0.360483\pi\)
−0.730007 + 0.683439i \(0.760483\pi\)
\(258\) 6.85410 + 21.0948i 0.426718 + 1.31330i
\(259\) −3.43237 + 2.49376i −0.213277 + 0.154955i
\(260\) 8.79478 + 27.0675i 0.545429 + 1.67866i
\(261\) −0.373256 + 1.14876i −0.0231040 + 0.0711067i
\(262\) −15.7082 11.4127i −0.970456 0.705078i
\(263\) −5.72061 + 17.6062i −0.352748 + 1.08565i 0.604555 + 0.796563i \(0.293351\pi\)
−0.957304 + 0.289084i \(0.906649\pi\)
\(264\) −8.56231 + 26.3521i −0.526973 + 1.62186i
\(265\) −24.8369 18.0450i −1.52572 1.10850i
\(266\) −0.809017 + 2.48990i −0.0496040 + 0.152665i
\(267\) 4.14590 + 12.7598i 0.253725 + 0.780885i
\(268\) −23.5623 + 17.1190i −1.43930 + 1.04571i
\(269\) −0.667701 2.05497i −0.0407105 0.125294i 0.928636 0.370993i \(-0.120983\pi\)
−0.969346 + 0.245699i \(0.920983\pi\)
\(270\) 21.6746 + 15.7475i 1.31907 + 0.958362i
\(271\) −15.0405 10.9276i −0.913647 0.663803i 0.0282879 0.999600i \(-0.490994\pi\)
−0.941934 + 0.335797i \(0.890994\pi\)
\(272\) 29.5165 21.4450i 1.78970 1.30029i
\(273\) −2.29180 −0.138706
\(274\) 6.86474 0.414714
\(275\) 0 0
\(276\) 3.43769 10.5801i 0.206925 0.636849i
\(277\) −3.12287 9.61121i −0.187635 0.577482i 0.812349 0.583172i \(-0.198189\pi\)
−0.999984 + 0.00569038i \(0.998189\pi\)
\(278\) 47.0516 2.82197
\(279\) 0 0
\(280\) −16.7082 −0.998506
\(281\) 4.12868 + 12.7068i 0.246296 + 0.758022i 0.995421 + 0.0955924i \(0.0304745\pi\)
−0.749124 + 0.662429i \(0.769525\pi\)
\(282\) −6.86474 + 21.1275i −0.408789 + 1.25812i
\(283\) −19.4164 + 14.1068i −1.15419 + 0.838565i −0.989032 0.147703i \(-0.952812\pi\)
−0.165154 + 0.986268i \(0.552812\pi\)
\(284\) −7.14590 −0.424031
\(285\) 1.95440 0.115768
\(286\) 23.5623 17.1190i 1.39327 1.01227i
\(287\) −1.19098 0.865300i −0.0703015 0.0510770i
\(288\) 19.6353 + 14.2658i 1.15702 + 0.840623i
\(289\) −1.01722 3.13068i −0.0598365 0.184158i
\(290\) −2.55834 + 1.85874i −0.150231 + 0.109149i
\(291\) −1.89064 5.81878i −0.110831 0.341103i
\(292\) −6.36396 + 19.5863i −0.372423 + 1.14620i
\(293\) 1.85410 + 1.34708i 0.108318 + 0.0786975i 0.640626 0.767853i \(-0.278675\pi\)
−0.532308 + 0.846551i \(0.678675\pi\)
\(294\) −4.24264 + 13.0575i −0.247436 + 0.761529i
\(295\) 8.25329 25.4010i 0.480525 1.47890i
\(296\) 25.6471 + 18.6337i 1.49071 + 1.08306i
\(297\) 6.00000 18.4661i 0.348155 1.07151i
\(298\) −10.8541 33.4055i −0.628761 1.93513i
\(299\) −5.56231 + 4.04125i −0.321676 + 0.233712i
\(300\) 0 0
\(301\) 7.84193 + 5.69750i 0.452002 + 0.328398i
\(302\) 26.5212 + 19.2687i 1.52612 + 1.10879i
\(303\) −1.58114 + 1.14876i −0.0908341 + 0.0659948i
\(304\) 9.85410 0.565172
\(305\) −31.1614 −1.78430
\(306\) −17.5351 + 12.7400i −1.00241 + 0.728297i
\(307\) 7.45492 22.9439i 0.425474 1.30948i −0.477065 0.878868i \(-0.658299\pi\)
0.902539 0.430608i \(-0.141701\pi\)
\(308\) 6.36396 + 19.5863i 0.362620 + 1.11603i
\(309\) 9.35931 0.532433
\(310\) 0 0
\(311\) 25.4721 1.44439 0.722196 0.691688i \(-0.243133\pi\)
0.722196 + 0.691688i \(0.243133\pi\)
\(312\) 5.29180 + 16.2865i 0.299589 + 0.922040i
\(313\) 3.55989 10.9562i 0.201217 0.619282i −0.798631 0.601821i \(-0.794442\pi\)
0.999848 0.0174602i \(-0.00555805\pi\)
\(314\) −18.4443 + 13.4005i −1.04087 + 0.756237i
\(315\) 5.00000 0.281718
\(316\) 7.86629 0.442513
\(317\) −21.2254 + 15.4212i −1.19214 + 0.866139i −0.993489 0.113931i \(-0.963656\pi\)
−0.198650 + 0.980071i \(0.563656\pi\)
\(318\) −25.4164 18.4661i −1.42528 1.03553i
\(319\) 1.85410 + 1.34708i 0.103810 + 0.0754222i
\(320\) 6.01722 + 18.5191i 0.336373 + 1.03525i
\(321\) −1.04096 + 0.756300i −0.0581006 + 0.0422125i
\(322\) −2.12132 6.52875i −0.118217 0.363833i
\(323\) −1.14412 + 3.52125i −0.0636607 + 0.195927i
\(324\) −10.6353 7.72696i −0.590847 0.429276i
\(325\) 0 0
\(326\) 11.6631 35.8954i 0.645960 1.98806i
\(327\) 0.913438 + 0.663651i 0.0505132 + 0.0367000i
\(328\) −3.39919 + 10.4616i −0.187689 + 0.577646i
\(329\) 3.00000 + 9.23305i 0.165395 + 0.509035i
\(330\) 17.5623 12.7598i 0.966773 0.702402i
\(331\) −9.66881 29.7575i −0.531446 1.63562i −0.751206 0.660068i \(-0.770527\pi\)
0.219760 0.975554i \(-0.429473\pi\)
\(332\) −12.4184 9.02251i −0.681550 0.495175i
\(333\) −7.67501 5.57622i −0.420588 0.305575i
\(334\) −2.28825 + 1.66251i −0.125207 + 0.0909684i
\(335\) 13.4164 0.733017
\(336\) −8.61280 −0.469867
\(337\) −12.4184 + 9.02251i −0.676475 + 0.491488i −0.872186 0.489174i \(-0.837298\pi\)
0.195712 + 0.980662i \(0.437298\pi\)
\(338\) −4.95492 + 15.2497i −0.269512 + 0.829472i
\(339\) −2.63715 8.11631i −0.143230 0.440817i
\(340\) −40.1869 −2.17944
\(341\) 0 0
\(342\) −5.85410 −0.316554
\(343\) 4.01722 + 12.3637i 0.216910 + 0.667579i
\(344\) 22.3817 68.8837i 1.20674 3.71396i
\(345\) −4.14590 + 3.01217i −0.223208 + 0.162170i
\(346\) 47.1246 2.53343
\(347\) 21.5958 1.15932 0.579661 0.814858i \(-0.303185\pi\)
0.579661 + 0.814858i \(0.303185\pi\)
\(348\) −1.85410 + 1.34708i −0.0993903 + 0.0722113i
\(349\) −4.85410 3.52671i −0.259834 0.188781i 0.450240 0.892908i \(-0.351338\pi\)
−0.710074 + 0.704127i \(0.751338\pi\)
\(350\) 0 0
\(351\) −3.70820 11.4127i −0.197929 0.609164i
\(352\) 37.2553 27.0675i 1.98571 1.44270i
\(353\) −2.95595 9.09747i −0.157329 0.484209i 0.841060 0.540941i \(-0.181932\pi\)
−0.998389 + 0.0567320i \(0.981932\pi\)
\(354\) 8.44588 25.9937i 0.448893 1.38155i
\(355\) 2.66312 + 1.93487i 0.141344 + 0.102692i
\(356\) 23.0250 70.8637i 1.22032 3.75577i
\(357\) 1.00000 3.07768i 0.0529256 0.162888i
\(358\) 28.1023 + 20.4175i 1.48525 + 1.07910i
\(359\) 4.39919 13.5393i 0.232180 0.714577i −0.765303 0.643670i \(-0.777411\pi\)
0.997483 0.0709067i \(-0.0225893\pi\)
\(360\) −11.5451 35.5321i −0.608479 1.87271i
\(361\) 14.5623 10.5801i 0.766437 0.556849i
\(362\) −7.03166 21.6412i −0.369576 1.13744i
\(363\) −4.94975 3.59620i −0.259794 0.188752i
\(364\) 10.2971 + 7.48128i 0.539715 + 0.392126i
\(365\) 7.67501 5.57622i 0.401728 0.291873i
\(366\) −31.8885 −1.66684
\(367\) −6.65841 −0.347566 −0.173783 0.984784i \(-0.555599\pi\)
−0.173783 + 0.984784i \(0.555599\pi\)
\(368\) −20.9037 + 15.1874i −1.08968 + 0.791700i
\(369\) 1.01722 3.13068i 0.0529544 0.162977i
\(370\) −7.67501 23.6212i −0.399005 1.22801i
\(371\) −13.7295 −0.712799
\(372\) 0 0
\(373\) −9.29180 −0.481111 −0.240555 0.970635i \(-0.577330\pi\)
−0.240555 + 0.970635i \(0.577330\pi\)
\(374\) 12.7082 + 39.1118i 0.657126 + 2.02242i
\(375\) −3.01971 + 9.29370i −0.155937 + 0.479925i
\(376\) 58.6869 42.6385i 3.02655 2.19891i
\(377\) 1.41641 0.0729487
\(378\) 11.9814 0.616257
\(379\) −6.00000 + 4.35926i −0.308199 + 0.223920i −0.731123 0.682245i \(-0.761004\pi\)
0.422924 + 0.906165i \(0.361004\pi\)
\(380\) −8.78115 6.37988i −0.450464 0.327281i
\(381\) −6.70820 4.87380i −0.343672 0.249692i
\(382\) 7.89919 + 24.3112i 0.404158 + 1.24387i
\(383\) −5.18043 + 3.76380i −0.264708 + 0.192321i −0.712220 0.701956i \(-0.752310\pi\)
0.447512 + 0.894278i \(0.352310\pi\)
\(384\) 0.294445 + 0.906208i 0.0150258 + 0.0462447i
\(385\) 2.93159 9.02251i 0.149408 0.459830i
\(386\) 43.8607 + 31.8666i 2.23245 + 1.62197i
\(387\) −6.69781 + 20.6137i −0.340469 + 1.04786i
\(388\) −10.5000 + 32.3157i −0.533057 + 1.64058i
\(389\) −13.6020 9.88240i −0.689646 0.501057i 0.186897 0.982379i \(-0.440157\pi\)
−0.876544 + 0.481322i \(0.840157\pi\)
\(390\) 4.14590 12.7598i 0.209936 0.646116i
\(391\) −3.00000 9.23305i −0.151717 0.466935i
\(392\) 36.2705 26.3521i 1.83194 1.33098i
\(393\) 2.00310 + 6.16492i 0.101043 + 0.310979i
\(394\) −2.28825 1.66251i −0.115280 0.0837559i
\(395\) −2.93159 2.12993i −0.147504 0.107168i
\(396\) −37.2553 + 27.0675i −1.87215 + 1.36020i
\(397\) 14.7082 0.738184 0.369092 0.929393i \(-0.379669\pi\)
0.369092 + 0.929393i \(0.379669\pi\)
\(398\) −60.7811 −3.04668
\(399\) 0.707107 0.513743i 0.0353996 0.0257193i
\(400\) 0 0
\(401\) 0.166925 + 0.513743i 0.00833585 + 0.0256551i 0.955138 0.296161i \(-0.0957066\pi\)
−0.946802 + 0.321816i \(0.895707\pi\)
\(402\) 13.7295 0.684764
\(403\) 0 0
\(404\) 10.8541 0.540012
\(405\) 1.87132 + 5.75934i 0.0929868 + 0.286184i
\(406\) −0.437016 + 1.34500i −0.0216887 + 0.0667511i
\(407\) −14.5623 + 10.5801i −0.721827 + 0.524438i
\(408\) −24.1803 −1.19711
\(409\) −30.0810 −1.48741 −0.743706 0.668507i \(-0.766934\pi\)
−0.743706 + 0.668507i \(0.766934\pi\)
\(410\) 6.97214 5.06555i 0.344329 0.250170i
\(411\) −1.85410 1.34708i −0.0914561 0.0664468i
\(412\) −42.0517 30.5523i −2.07174 1.50520i
\(413\) −3.69098 11.3597i −0.181621 0.558973i
\(414\) 12.4184 9.02251i 0.610332 0.443432i
\(415\) 2.18508 + 6.72499i 0.107261 + 0.330117i
\(416\) 8.79478 27.0675i 0.431199 1.32710i
\(417\) −12.7082 9.23305i −0.622323 0.452144i
\(418\) −3.43237 + 10.5637i −0.167883 + 0.516690i
\(419\) 9.45492 29.0992i 0.461903 1.42159i −0.400933 0.916107i \(-0.631314\pi\)
0.862836 0.505484i \(-0.168686\pi\)
\(420\) 7.67501 + 5.57622i 0.374502 + 0.272092i
\(421\) 8.16312 25.1235i 0.397846 1.22444i −0.528877 0.848699i \(-0.677387\pi\)
0.926723 0.375746i \(-0.122613\pi\)
\(422\) −4.04508 12.4495i −0.196912 0.606032i
\(423\) −17.5623 + 12.7598i −0.853909 + 0.620401i
\(424\) 31.7016 + 97.5675i 1.53957 + 4.73829i
\(425\) 0 0
\(426\) 2.72526 + 1.98002i 0.132039 + 0.0959322i
\(427\) −11.2743 + 8.19126i −0.545602 + 0.396403i
\(428\) 7.14590 0.345410
\(429\) −9.72327 −0.469444
\(430\) −45.9075 + 33.3537i −2.21386 + 1.60846i
\(431\) −11.0902 + 34.1320i −0.534195 + 1.64408i 0.211188 + 0.977445i \(0.432267\pi\)
−0.745383 + 0.666637i \(0.767733\pi\)
\(432\) −13.9358 42.8900i −0.670487 2.06355i
\(433\) 25.8384 1.24171 0.620857 0.783924i \(-0.286785\pi\)
0.620857 + 0.783924i \(0.286785\pi\)
\(434\) 0 0
\(435\) 1.05573 0.0506183
\(436\) −1.93769 5.96361i −0.0927987 0.285605i
\(437\) 0.810272 2.49376i 0.0387606 0.119293i
\(438\) 7.85410 5.70634i 0.375284 0.272659i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) −70.8869 −3.37940
\(441\) −10.8541 + 7.88597i −0.516862 + 0.375522i
\(442\) 20.5623 + 14.9394i 0.978049 + 0.710594i
\(443\) −4.89919 3.55947i −0.232767 0.169115i 0.465288 0.885160i \(-0.345951\pi\)
−0.698055 + 0.716044i \(0.745951\pi\)
\(444\) −5.56231 17.1190i −0.263975 0.812433i
\(445\) −27.7684 + 20.1750i −1.31635 + 0.956385i
\(446\) −13.0618 40.2000i −0.618493 1.90353i
\(447\) −3.62365 + 11.1524i −0.171393 + 0.527492i
\(448\) 7.04508 + 5.11855i 0.332849 + 0.241829i
\(449\) −10.4153 + 32.0551i −0.491529 + 1.51277i 0.330767 + 0.943713i \(0.392693\pi\)
−0.822296 + 0.569060i \(0.807307\pi\)
\(450\) 0 0
\(451\) −5.05291 3.67116i −0.237932 0.172868i
\(452\) −14.6459 + 45.0754i −0.688885 + 2.12017i
\(453\) −3.38197 10.4086i −0.158899 0.489040i
\(454\) −4.85410 + 3.52671i −0.227814 + 0.165517i
\(455\) −1.81182 5.57622i −0.0849396 0.261417i
\(456\) −5.28360 3.83876i −0.247427 0.179766i
\(457\) 9.15298 + 6.65003i 0.428158 + 0.311075i 0.780912 0.624641i \(-0.214755\pi\)
−0.352754 + 0.935716i \(0.614755\pi\)
\(458\) 8.98606 6.52875i 0.419891 0.305069i
\(459\) 16.9443 0.790891
\(460\) 28.4605 1.32698
\(461\) 4.17888 3.03613i 0.194630 0.141407i −0.486202 0.873846i \(-0.661618\pi\)
0.680832 + 0.732439i \(0.261618\pi\)
\(462\) 3.00000 9.23305i 0.139573 0.429560i
\(463\) 1.18353 + 3.64253i 0.0550032 + 0.169283i 0.974784 0.223150i \(-0.0716338\pi\)
−0.919781 + 0.392432i \(0.871634\pi\)
\(464\) 5.32300 0.247114
\(465\) 0 0
\(466\) −35.2705 −1.63387
\(467\) −4.83688 14.8864i −0.223824 0.688860i −0.998409 0.0563897i \(-0.982041\pi\)
0.774585 0.632470i \(-0.217959\pi\)
\(468\) −8.79478 + 27.0675i −0.406539 + 1.25120i
\(469\) 4.85410 3.52671i 0.224142 0.162848i
\(470\) −56.8328 −2.62150
\(471\) 7.61125 0.350708
\(472\) −72.2041 + 52.4594i −3.32346 + 2.41464i
\(473\) 33.2705 + 24.1724i 1.52978 + 1.11145i
\(474\) −3.00000 2.17963i −0.137795 0.100114i
\(475\) 0 0
\(476\) −14.5397 + 10.5637i −0.666428 + 0.484188i
\(477\) −9.48683 29.1975i −0.434372 1.33686i
\(478\) −9.79633 + 30.1500i −0.448074 + 1.37903i
\(479\) −13.3713 9.71483i −0.610951 0.443882i 0.238798 0.971069i \(-0.423247\pi\)
−0.849749 + 0.527187i \(0.823247\pi\)
\(480\) 6.55524 20.1750i 0.299204 0.920857i
\(481\) −3.43769 + 10.5801i −0.156745 + 0.482413i
\(482\) −49.1729 35.7262i −2.23977 1.62728i
\(483\) −0.708204 + 2.17963i −0.0322244 + 0.0991765i
\(484\) 10.5000 + 32.3157i 0.477273 + 1.46889i
\(485\) 12.6631 9.20029i 0.575003 0.417764i
\(486\) 13.0224 + 40.0787i 0.590707 + 1.81801i
\(487\) 22.7155 + 16.5038i 1.02934 + 0.747859i 0.968176 0.250269i \(-0.0805192\pi\)
0.0611627 + 0.998128i \(0.480519\pi\)
\(488\) 84.2431 + 61.2062i 3.81351 + 2.77068i
\(489\) −10.1939 + 7.40633i −0.460986 + 0.334926i
\(490\) −35.1246 −1.58677
\(491\) 15.8902 0.717115 0.358557 0.933508i \(-0.383269\pi\)
0.358557 + 0.933508i \(0.383269\pi\)
\(492\) 5.05291 3.67116i 0.227803 0.165509i
\(493\) −0.618034 + 1.90211i −0.0278349 + 0.0856669i
\(494\) 2.12132 + 6.52875i 0.0954427 + 0.293742i
\(495\) 21.2132 0.953463
\(496\) 0 0
\(497\) 1.47214 0.0660343
\(498\) 2.23607 + 6.88191i 0.100201 + 0.308386i
\(499\) −5.68121 + 17.4850i −0.254326 + 0.782734i 0.739636 + 0.673007i \(0.234998\pi\)
−0.993962 + 0.109727i \(0.965002\pi\)
\(500\) 43.9058 31.8994i 1.96353 1.42658i
\(501\) 0.944272 0.0421870
\(502\) −28.8732 −1.28867
\(503\) 26.6074 19.3314i 1.18636 0.861945i 0.193490 0.981102i \(-0.438019\pi\)
0.992875 + 0.119158i \(0.0380194\pi\)
\(504\) −13.5172 9.82084i −0.602105 0.437455i
\(505\) −4.04508 2.93893i −0.180004 0.130781i
\(506\) −9.00000 27.6992i −0.400099 1.23138i
\(507\) 4.33075 3.14648i 0.192336 0.139740i
\(508\) 14.2302 + 43.7962i 0.631365 + 1.94314i
\(509\) 2.45517 7.55624i 0.108824 0.334924i −0.881785 0.471651i \(-0.843658\pi\)
0.990609 + 0.136727i \(0.0436582\pi\)
\(510\) 15.3262 + 11.1352i 0.678657 + 0.493073i
\(511\) 1.31105 4.03499i 0.0579974 0.178497i
\(512\) −12.4549 + 38.3323i −0.550435 + 1.69406i
\(513\) 3.70246 + 2.68999i 0.163468 + 0.118766i
\(514\) 4.89919 15.0781i 0.216094 0.665069i
\(515\) 7.39919 + 22.7724i 0.326047 + 1.00347i
\(516\) −33.2705 + 24.1724i −1.46465 + 1.06413i
\(517\) 12.7279 + 39.1725i 0.559773 + 1.72281i
\(518\) −8.98606 6.52875i −0.394825 0.286857i
\(519\) −12.7279 9.24738i −0.558694 0.405915i
\(520\) −35.4435 + 25.7512i −1.55430 + 1.12926i
\(521\) −13.4164 −0.587784 −0.293892 0.955839i \(-0.594951\pi\)
−0.293892 + 0.955839i \(0.594951\pi\)
\(522\) −3.16228 −0.138409
\(523\) 0.500776 0.363835i 0.0218974 0.0159094i −0.576783 0.816898i \(-0.695692\pi\)
0.598680 + 0.800988i \(0.295692\pi\)
\(524\) 11.1246 34.2380i 0.485981 1.49570i
\(525\) 0 0
\(526\) −48.4658 −2.11321
\(527\) 0 0
\(528\) −36.5410 −1.59024
\(529\) −4.98278 15.3354i −0.216643 0.666757i
\(530\) 24.8369 76.4400i 1.07884 3.32034i
\(531\) 21.6074 15.6987i 0.937681 0.681265i
\(532\) −4.85410 −0.210452
\(533\) −3.86008 −0.167199
\(534\) −28.4164 + 20.6457i −1.22970 + 0.893428i
\(535\) −2.66312 1.93487i −0.115137 0.0836517i
\(536\) −36.2705 26.3521i −1.56665 1.13824i
\(537\) −3.58359 11.0292i −0.154643 0.475943i
\(538\) 4.57649 3.32502i 0.197307 0.143352i
\(539\) 7.86629 + 24.2099i 0.338825 + 1.04280i
\(540\) −15.3500 + 47.2425i −0.660560 + 2.03299i
\(541\) −20.8992 15.1841i −0.898526 0.652818i 0.0395608 0.999217i \(-0.487404\pi\)
−0.938087 + 0.346400i \(0.887404\pi\)
\(542\) 15.0405 46.2900i 0.646046 1.98832i
\(543\) −2.34752 + 7.22494i −0.100742 + 0.310052i
\(544\) 32.5119 + 23.6212i 1.39393 + 1.01275i
\(545\) −0.892609 + 2.74717i −0.0382352 + 0.117676i
\(546\) −1.85410 5.70634i −0.0793482 0.244209i
\(547\) −1.95492 + 1.42033i −0.0835861 + 0.0607289i −0.628793 0.777572i \(-0.716451\pi\)
0.545207 + 0.838301i \(0.316451\pi\)
\(548\) 3.93314 + 12.1050i 0.168016 + 0.517099i
\(549\) −25.2101 18.3162i −1.07594 0.781717i
\(550\) 0 0
\(551\) −0.437016 + 0.317511i −0.0186175 + 0.0135264i
\(552\) 17.1246 0.728872
\(553\) −1.62054 −0.0689126
\(554\) 21.4045 15.5513i 0.909389 0.660710i
\(555\) −2.56231 + 7.88597i −0.108764 + 0.334741i
\(556\) 26.9582 + 82.9687i 1.14328 + 3.51866i
\(557\) 10.6460 0.451086 0.225543 0.974233i \(-0.427584\pi\)
0.225543 + 0.974233i \(0.427584\pi\)
\(558\) 0 0
\(559\) 25.4164 1.07500
\(560\) −6.80902 20.9560i −0.287733 0.885553i
\(561\) 4.24264 13.0575i 0.179124 0.551288i
\(562\) −28.2984 + 20.5600i −1.19369 + 0.867270i
\(563\) 9.76393 0.411501 0.205750 0.978605i \(-0.434037\pi\)
0.205750 + 0.978605i \(0.434037\pi\)
\(564\) −41.1884 −1.73435
\(565\) 17.6631 12.8330i 0.743093 0.539889i
\(566\) −50.8328 36.9322i −2.13666 1.55238i
\(567\) 2.19098 + 1.59184i 0.0920126 + 0.0668511i
\(568\) −3.39919 10.4616i −0.142627 0.438960i
\(569\) −9.48683 + 6.89259i −0.397709 + 0.288952i −0.768607 0.639721i \(-0.779050\pi\)
0.370898 + 0.928673i \(0.379050\pi\)
\(570\) 1.58114 + 4.86624i 0.0662266 + 0.203825i
\(571\) 0.810272 2.49376i 0.0339088 0.104361i −0.932670 0.360732i \(-0.882527\pi\)
0.966578 + 0.256371i \(0.0825269\pi\)
\(572\) 43.6869 + 31.7404i 1.82664 + 1.32713i
\(573\) 2.63715 8.11631i 0.110168 0.339064i
\(574\) 1.19098 3.66547i 0.0497107 0.152994i
\(575\) 0 0
\(576\) −6.01722 + 18.5191i −0.250718 + 0.771629i
\(577\) −9.27051 28.5317i −0.385936 1.18779i −0.935799 0.352535i \(-0.885320\pi\)
0.549862 0.835255i \(-0.314680\pi\)
\(578\) 6.97214 5.06555i 0.290003 0.210699i
\(579\) −5.59309 17.2138i −0.232441 0.715380i
\(580\) −4.74342 3.44629i −0.196960 0.143100i
\(581\) 2.55834 + 1.85874i 0.106138 + 0.0771135i
\(582\) 12.9586 9.41498i 0.537152 0.390263i
\(583\) −58.2492 −2.41244
\(584\) −31.7016 −1.31182
\(585\) 10.6066 7.70615i 0.438529 0.318610i
\(586\) −1.85410 + 5.70634i −0.0765922 + 0.235727i
\(587\) 4.86163 + 14.9626i 0.200661 + 0.617571i 0.999864 + 0.0165096i \(0.00525542\pi\)
−0.799203 + 0.601062i \(0.794745\pi\)
\(588\) −25.4558 −1.04978
\(589\) 0 0
\(590\) 69.9230 2.87868
\(591\) 0.291796 + 0.898056i 0.0120029 + 0.0369411i
\(592\) −12.9192 + 39.7612i −0.530976 + 1.63418i
\(593\) −4.19098 + 3.04493i −0.172103 + 0.125040i −0.670502 0.741907i \(-0.733921\pi\)
0.498399 + 0.866948i \(0.333921\pi\)
\(594\) 50.8328 2.08570
\(595\) 8.27895 0.339404
\(596\) 52.6869 38.2793i 2.15814 1.56798i
\(597\) 16.4164 + 11.9272i 0.671879 + 0.488149i
\(598\) −14.5623 10.5801i −0.595497 0.432654i
\(599\) 1.87132 + 5.75934i 0.0764602 + 0.235320i 0.981980 0.188983i \(-0.0605191\pi\)
−0.905520 + 0.424303i \(0.860519\pi\)
\(600\) 0 0
\(601\) −5.61745 17.2887i −0.229141 0.705222i −0.997845 0.0656177i \(-0.979098\pi\)
0.768704 0.639604i \(-0.220902\pi\)
\(602\) −7.84193 + 24.1350i −0.319613 + 0.983669i
\(603\) 10.8541 + 7.88597i 0.442013 + 0.321141i
\(604\) −18.7824 + 57.8062i −0.764244 + 2.35210i
\(605\) 4.83688 14.8864i 0.196647 0.605218i
\(606\) −4.13948 3.00750i −0.168155 0.122172i
\(607\) 4.67376 14.3844i 0.189702 0.583843i −0.810295 0.586022i \(-0.800693\pi\)
0.999998 + 0.00217835i \(0.000693391\pi\)
\(608\) 3.35410 + 10.3229i 0.136027 + 0.418647i
\(609\) 0.381966 0.277515i 0.0154780 0.0112455i
\(610\) −25.2101 77.5887i −1.02073 3.14148i
\(611\) 20.5942 + 14.9626i 0.833153 + 0.605321i
\(612\) −32.5119 23.6212i −1.31421 0.954832i
\(613\) 0.476422 0.346141i 0.0192425 0.0139805i −0.578122 0.815950i \(-0.696214\pi\)
0.597365 + 0.801970i \(0.296214\pi\)
\(614\) 63.1591 2.54889
\(615\) −2.87714 −0.116017
\(616\) −25.6471 + 18.6337i −1.03335 + 0.750774i
\(617\) −2.12461 + 6.53888i −0.0855337 + 0.263246i −0.984671 0.174421i \(-0.944195\pi\)
0.899138 + 0.437666i \(0.144195\pi\)
\(618\) 7.57184 + 23.3037i 0.304584 + 0.937414i
\(619\) −25.8384 −1.03853 −0.519267 0.854612i \(-0.673795\pi\)
−0.519267 + 0.854612i \(0.673795\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 20.6074 + 63.4230i 0.826281 + 2.54303i
\(623\) −4.74342 + 14.5987i −0.190041 + 0.584886i
\(624\) −18.2705 + 13.2743i −0.731406 + 0.531397i
\(625\) −25.0000 −1.00000
\(626\) 30.1599 1.20543
\(627\) 3.00000 2.17963i 0.119808 0.0870459i
\(628\) −34.1976 24.8460i −1.36463 0.991463i
\(629\) −12.7082 9.23305i −0.506709 0.368146i
\(630\) 4.04508 + 12.4495i 0.161160 + 0.496000i
\(631\) −19.1162 + 13.8888i −0.761005 + 0.552903i −0.899219 0.437500i \(-0.855864\pi\)
0.138213 + 0.990403i \(0.455864\pi\)
\(632\) 3.74186 + 11.5163i 0.148843 + 0.458093i
\(633\) −1.35045 + 4.15627i −0.0536757 + 0.165197i
\(634\) −55.5689 40.3732i −2.20692 1.60342i
\(635\) 6.55524 20.1750i 0.260137 0.800619i
\(636\) 18.0000 55.3983i 0.713746 2.19669i
\(637\) 12.7279 + 9.24738i 0.504299 + 0.366394i
\(638\) −1.85410 + 5.70634i −0.0734046 + 0.225916i
\(639\) 1.01722 + 3.13068i 0.0402406 + 0.123848i
\(640\) −1.97214 + 1.43284i −0.0779555 + 0.0566380i
\(641\) 2.62210 + 8.06998i 0.103567 + 0.318745i 0.989391 0.145275i \(-0.0464066\pi\)
−0.885825 + 0.464020i \(0.846407\pi\)
\(642\) −2.72526 1.98002i −0.107557 0.0781451i
\(643\) −3.76622 2.73632i −0.148525 0.107910i 0.511041 0.859556i \(-0.329260\pi\)
−0.659566 + 0.751646i \(0.729260\pi\)
\(644\) 10.2971 7.48128i 0.405763 0.294804i
\(645\) 18.9443 0.745930
\(646\) −9.69316 −0.381372
\(647\) 25.7109 18.6801i 1.01080 0.734389i 0.0464226 0.998922i \(-0.485218\pi\)
0.964377 + 0.264533i \(0.0852179\pi\)
\(648\) 6.25329 19.2456i 0.245652 0.756040i
\(649\) −15.6595 48.1950i −0.614690 1.89182i
\(650\) 0 0
\(651\) 0 0
\(652\) 69.9787 2.74058
\(653\) 7.61803 + 23.4459i 0.298117 + 0.917509i 0.982157 + 0.188064i \(0.0602214\pi\)
−0.684040 + 0.729445i \(0.739779\pi\)
\(654\) −0.913438 + 2.81127i −0.0357182 + 0.109929i
\(655\) −13.4164 + 9.74759i −0.524222 + 0.380870i
\(656\) −14.5066 −0.566387
\(657\) 9.48683 0.370117
\(658\) −20.5623 + 14.9394i −0.801602 + 0.582398i
\(659\) −20.0795 14.5886i −0.782187 0.568292i 0.123447 0.992351i \(-0.460605\pi\)
−0.905635 + 0.424059i \(0.860605\pi\)
\(660\) 32.5623 + 23.6579i 1.26749 + 0.920883i
\(661\) 2.42047 + 7.44945i 0.0941455 + 0.289750i 0.987030 0.160536i \(-0.0513221\pi\)
−0.892885 + 0.450286i \(0.851322\pi\)
\(662\) 66.2710 48.1487i 2.57570 1.87135i
\(663\) −2.62210 8.06998i −0.101834 0.313412i
\(664\) 7.30175 22.4725i 0.283363 0.872102i
\(665\) 1.80902 + 1.31433i 0.0701507 + 0.0509674i
\(666\) 7.67501 23.6212i 0.297401 0.915305i
\(667\) 0.437694 1.34708i 0.0169476 0.0521593i
\(668\) −4.24264 3.08246i −0.164153 0.119264i
\(669\) −4.36068 + 13.4208i −0.168594 + 0.518878i
\(670\) 10.8541 + 33.4055i 0.419331 + 1.29057i
\(671\) −47.8328 + 34.7526i −1.84657 + 1.34161i
\(672\) −2.93159 9.02251i −0.113089 0.348051i
\(673\) 32.3449 + 23.5000i 1.24681 + 0.905857i 0.998032 0.0627044i \(-0.0199725\pi\)
0.248773 + 0.968562i \(0.419973\pi\)
\(674\) −32.5119 23.6212i −1.25231 0.909857i
\(675\) 0 0
\(676\) −29.7295 −1.14344
\(677\) 21.2132 0.815290 0.407645 0.913141i \(-0.366350\pi\)
0.407645 + 0.913141i \(0.366350\pi\)
\(678\) 18.0753 13.1325i 0.694177 0.504349i
\(679\) 2.16312 6.65740i 0.0830129 0.255487i
\(680\) −19.1162 58.8337i −0.733074 2.25617i
\(681\) 2.00310 0.0767591
\(682\) 0 0
\(683\) −41.1803 −1.57572 −0.787861 0.615853i \(-0.788811\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(684\) −3.35410 10.3229i −0.128247 0.394705i
\(685\) 1.81182 5.57622i 0.0692262 0.213056i
\(686\) −27.5344 + 20.0049i −1.05127 + 0.763792i
\(687\) −3.70820 −0.141477
\(688\) 95.5174 3.64157
\(689\) −29.1246 + 21.1603i −1.10956 + 0.806142i
\(690\) −10.8541 7.88597i −0.413209 0.300214i
\(691\) 39.1697 + 28.4585i 1.49009 + 1.08261i 0.974128 + 0.225996i \(0.0725637\pi\)
0.515957 + 0.856614i \(0.327436\pi\)
\(692\) 27.0000 + 83.0975i 1.02639 + 3.15889i
\(693\) 7.67501 5.57622i 0.291549 0.211823i
\(694\) 17.4713 + 53.7713i 0.663203 + 2.04113i
\(695\) 12.4184 38.2200i 0.471058 1.44977i
\(696\) −2.85410 2.07363i −0.108184 0.0786006i
\(697\) 1.68430 5.18376i 0.0637976 0.196349i
\(698\) 4.85410 14.9394i 0.183730 0.565464i
\(699\) 9.52624 + 6.92122i 0.360315 + 0.261784i
\(700\) 0 0
\(701\) −1.12868 3.47371i −0.0426295 0.131200i 0.927477 0.373881i \(-0.121973\pi\)
−0.970106 + 0.242681i \(0.921973\pi\)
\(702\) 25.4164 18.4661i 0.959280 0.696958i
\(703\) −1.31105 4.03499i −0.0494471 0.152183i
\(704\) 29.8898 + 21.7162i 1.12651 + 0.818460i
\(705\) 15.3500 + 11.1524i 0.578115 + 0.420025i
\(706\) 20.2604 14.7200i 0.762509 0.553995i
\(707\) −2.23607 −0.0840960
\(708\) 50.6753 1.90449
\(709\) −33.3221 + 24.2099i −1.25144 + 0.909224i −0.998305 0.0582075i \(-0.981462\pi\)
−0.253134 + 0.967431i \(0.581462\pi\)
\(710\) −2.66312 + 8.19624i −0.0999451 + 0.307599i
\(711\) −1.11977 3.44629i −0.0419946 0.129246i
\(712\) 114.697 4.29847
\(713\) 0 0
\(714\) 8.47214 0.317062
\(715\) −7.68692 23.6579i −0.287474 0.884755i
\(716\) −19.9022 + 61.2525i −0.743778 + 2.28911i
\(717\) 8.56231 6.22088i 0.319765 0.232323i
\(718\) 37.2705 1.39092
\(719\) 37.5648 1.40093 0.700465 0.713687i \(-0.252976\pi\)
0.700465 + 0.713687i \(0.252976\pi\)
\(720\) 39.8607 28.9605i 1.48552 1.07929i
\(721\) 8.66312 + 6.29412i 0.322631 + 0.234405i
\(722\) 38.1246 + 27.6992i 1.41885 + 1.03086i
\(723\) 6.27051 + 19.2986i 0.233203 + 0.717724i
\(724\) 34.1324 24.7986i 1.26852 0.921634i
\(725\) 0 0
\(726\) 4.94975 15.2338i 0.183702 0.565378i
\(727\) 24.6074 + 17.8783i 0.912638 + 0.663070i 0.941681 0.336508i \(-0.109246\pi\)
−0.0290430 + 0.999578i \(0.509246\pi\)
\(728\) −6.05446 + 18.6337i −0.224393 + 0.690612i
\(729\) 1.83688 5.65334i 0.0680326 0.209383i
\(730\) 20.0934 + 14.5987i 0.743691 + 0.540323i
\(731\) −11.0902 + 34.1320i −0.410185 + 1.26242i
\(732\) −18.2705 56.2308i −0.675297 2.07835i
\(733\) 11.6631 8.47375i 0.430787 0.312985i −0.351176 0.936309i \(-0.614218\pi\)
0.781964 + 0.623324i \(0.214218\pi\)
\(734\) −5.38676 16.5788i −0.198829 0.611933i
\(735\) 9.48683 + 6.89259i 0.349927 + 0.254237i
\(736\) −23.0250 16.7287i −0.848714 0.616627i
\(737\) 20.5942 14.9626i 0.758597 0.551153i
\(738\) 8.61803 0.317234
\(739\) 35.1490 1.29298 0.646489 0.762924i \(-0.276237\pi\)
0.646489 + 0.762924i \(0.276237\pi\)
\(740\) 37.2553 27.0675i 1.36953 0.995023i
\(741\) 0.708204 2.17963i 0.0260165 0.0800706i
\(742\) −11.1074 34.1850i −0.407765 1.25497i
\(743\) 36.4844 1.33848 0.669242 0.743045i \(-0.266619\pi\)
0.669242 + 0.743045i \(0.266619\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −7.51722 23.1356i −0.275225 0.847055i
\(747\) −2.18508 + 6.72499i −0.0799479 + 0.246054i
\(748\) −61.6869 + 44.8182i −2.25550 + 1.63871i
\(749\) −1.47214 −0.0537907
\(750\) −25.5834 −0.934172
\(751\) 30.3713 22.0661i 1.10827 0.805202i 0.125876 0.992046i \(-0.459826\pi\)
0.982390 + 0.186844i \(0.0598259\pi\)
\(752\) 77.3951 + 56.2308i 2.82231 + 2.05053i
\(753\) 7.79837 + 5.66585i 0.284189 + 0.206475i
\(754\) 1.14590 + 3.52671i 0.0417311 + 0.128435i
\(755\) 22.6518 16.4575i 0.824382 0.598949i
\(756\) 6.86474 + 21.1275i 0.249668 + 0.768399i
\(757\) −2.86783 + 8.82628i −0.104233 + 0.320797i −0.989550 0.144192i \(-0.953942\pi\)
0.885317 + 0.464989i \(0.153942\pi\)
\(758\) −15.7082 11.4127i −0.570548 0.414527i
\(759\) −3.00465 + 9.24738i −0.109062 + 0.335659i
\(760\) 5.16312 15.8904i 0.187286 0.576407i
\(761\) 32.5119 + 23.6212i 1.17855 + 0.856270i 0.992008 0.126177i \(-0.0402706\pi\)
0.186546 + 0.982446i \(0.440271\pi\)
\(762\) 6.70820 20.6457i 0.243013 0.747916i
\(763\) 0.399187 + 1.22857i 0.0144515 + 0.0444773i
\(764\) −38.3435 + 27.8582i −1.38722 + 1.00787i
\(765\) 5.72061 + 17.6062i 0.206829 + 0.636555i
\(766\) −13.5625 9.85377i −0.490035 0.356031i
\(767\) −25.3376 18.4089i −0.914889 0.664706i
\(768\) 10.2971 7.48128i 0.371565 0.269958i
\(769\) 54.1246 1.95178 0.975892 0.218255i \(-0.0700365\pi\)
0.975892 + 0.218255i \(0.0700365\pi\)
\(770\) 24.8369 0.895058
\(771\) −4.28205 + 3.11109i −0.154214 + 0.112043i
\(772\) −31.0623