Properties

Label 961.2.d.j.388.2
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 388.2
Root \(0.437016 + 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.j.374.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.224514i) q^{2} +(1.85123 + 1.34500i) q^{3} +(-0.572949 + 1.76336i) q^{4} -2.23607 q^{5} -0.874032 q^{6} +(-0.309017 + 0.951057i) q^{7} +(-0.454915 - 1.40008i) q^{8} +(0.690983 + 2.12663i) q^{9} +(0.690983 - 0.502029i) q^{10} +(-1.31105 + 4.03499i) q^{11} +(-3.43237 + 2.49376i) q^{12} +(5.55369 + 4.03499i) q^{13} +(-0.118034 - 0.363271i) q^{14} +(-4.13948 - 3.00750i) q^{15} +(-2.54508 - 1.84911i) q^{16} +(-0.166925 - 0.513743i) q^{17} +(-0.690983 - 0.502029i) q^{18} +(-0.809017 + 0.587785i) q^{19} +(1.28115 - 3.94298i) q^{20} +(-1.85123 + 1.34500i) q^{21} +(-0.500776 - 1.54123i) q^{22} +(-2.12132 - 6.52875i) q^{23} +(1.04096 - 3.20374i) q^{24} -2.62210 q^{26} +(0.540182 - 1.66251i) q^{27} +(-1.50000 - 1.08981i) q^{28} +(-2.99535 + 2.17625i) q^{29} +1.95440 q^{30} +4.14590 q^{32} +(-7.85410 + 5.70634i) q^{33} +(0.166925 + 0.121278i) q^{34} +(0.690983 - 2.12663i) q^{35} -4.14590 q^{36} -4.24264 q^{37} +(0.118034 - 0.363271i) q^{38} +(4.85410 + 14.9394i) q^{39} +(1.01722 + 3.13068i) q^{40} +(-6.04508 + 4.39201i) q^{41} +(0.270091 - 0.831254i) q^{42} +(-0.166925 + 0.121278i) q^{43} +(-6.36396 - 4.62369i) q^{44} +(-1.54508 - 4.75528i) q^{45} +(2.12132 + 1.54123i) q^{46} +(-3.00000 - 2.17963i) q^{47} +(-2.22449 - 6.84626i) q^{48} +(4.85410 + 3.52671i) q^{49} +(0.381966 - 1.17557i) q^{51} +(-10.2971 + 7.48128i) q^{52} +(-1.62054 - 4.98752i) q^{53} +(0.206331 + 0.635021i) q^{54} +(2.93159 - 9.02251i) q^{55} +1.47214 q^{56} -2.28825 q^{57} +(0.437016 - 1.34500i) q^{58} +(4.80902 + 3.49396i) q^{59} +(7.67501 - 5.57622i) q^{60} -4.44897 q^{61} -2.23607 q^{63} +(3.80902 - 2.76741i) q^{64} +(-12.4184 - 9.02251i) q^{65} +(1.14590 - 3.52671i) q^{66} +6.00000 q^{67} +1.00155 q^{68} +(4.85410 - 14.9394i) q^{69} +(0.263932 + 0.812299i) q^{70} +(2.30902 + 7.10642i) q^{71} +(2.66312 - 1.93487i) q^{72} +(-1.31105 + 4.03499i) q^{73} +(1.31105 - 0.952532i) q^{74} +(-0.572949 - 1.76336i) q^{76} +(-3.43237 - 2.49376i) q^{77} +(-4.85410 - 3.52671i) q^{78} +(3.43237 + 10.5637i) q^{79} +(5.69098 + 4.13474i) q^{80} +(8.66312 - 6.29412i) q^{81} +(0.881966 - 2.71441i) q^{82} +(2.55834 - 1.85874i) q^{83} +(-1.31105 - 4.03499i) q^{84} +(0.373256 + 1.14876i) q^{85} +(0.0243541 - 0.0749541i) q^{86} -8.47214 q^{87} +6.24574 q^{88} +(1.81182 - 5.57622i) q^{89} +(1.54508 + 1.12257i) q^{90} +(-5.55369 + 4.03499i) q^{91} +12.7279 q^{92} +1.41641 q^{94} +(1.80902 - 1.31433i) q^{95} +(7.67501 + 5.57622i) q^{96} +(-2.16312 + 6.65740i) q^{97} -2.29180 q^{98} -9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 18 q^{4} + 2 q^{7} - 26 q^{8} + 10 q^{9} + 10 q^{10} + 8 q^{14} + 2 q^{16} - 10 q^{18} - 2 q^{19} - 30 q^{20} - 12 q^{28} + 60 q^{32} - 36 q^{33} + 10 q^{35} - 60 q^{36} - 8 q^{38} + 12 q^{39}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.224514i −0.218508 + 0.158755i −0.691655 0.722228i \(-0.743118\pi\)
0.473147 + 0.880984i \(0.343118\pi\)
\(3\) 1.85123 + 1.34500i 1.06881 + 0.776534i 0.975698 0.219121i \(-0.0703191\pi\)
0.0931103 + 0.995656i \(0.470319\pi\)
\(4\) −0.572949 + 1.76336i −0.286475 + 0.881678i
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −0.874032 −0.356822
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i −0.992318 0.123716i \(-0.960519\pi\)
0.875520 + 0.483181i \(0.160519\pi\)
\(8\) −0.454915 1.40008i −0.160837 0.495005i
\(9\) 0.690983 + 2.12663i 0.230328 + 0.708876i
\(10\) 0.690983 0.502029i 0.218508 0.158755i
\(11\) −1.31105 + 4.03499i −0.395296 + 1.21660i 0.533435 + 0.845841i \(0.320901\pi\)
−0.928731 + 0.370755i \(0.879099\pi\)
\(12\) −3.43237 + 2.49376i −0.990839 + 0.719887i
\(13\) 5.55369 + 4.03499i 1.54032 + 1.11911i 0.950137 + 0.311833i \(0.100943\pi\)
0.590179 + 0.807272i \(0.299057\pi\)
\(14\) −0.118034 0.363271i −0.0315459 0.0970883i
\(15\) −4.13948 3.00750i −1.06881 0.776534i
\(16\) −2.54508 1.84911i −0.636271 0.462278i
\(17\) −0.166925 0.513743i −0.0404853 0.124601i 0.928771 0.370654i \(-0.120866\pi\)
−0.969256 + 0.246053i \(0.920866\pi\)
\(18\) −0.690983 0.502029i −0.162866 0.118329i
\(19\) −0.809017 + 0.587785i −0.185601 + 0.134847i −0.676706 0.736253i \(-0.736593\pi\)
0.491105 + 0.871100i \(0.336593\pi\)
\(20\) 1.28115 3.94298i 0.286475 0.881678i
\(21\) −1.85123 + 1.34500i −0.403971 + 0.293502i
\(22\) −0.500776 1.54123i −0.106766 0.328591i
\(23\) −2.12132 6.52875i −0.442326 1.36134i −0.885390 0.464849i \(-0.846109\pi\)
0.443064 0.896490i \(-0.353891\pi\)
\(24\) 1.04096 3.20374i 0.212485 0.653960i
\(25\) 0 0
\(26\) −2.62210 −0.514235
\(27\) 0.540182 1.66251i 0.103958 0.319950i
\(28\) −1.50000 1.08981i −0.283473 0.205955i
\(29\) −2.99535 + 2.17625i −0.556223 + 0.404120i −0.830075 0.557652i \(-0.811702\pi\)
0.273852 + 0.961772i \(0.411702\pi\)
\(30\) 1.95440 0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) −7.85410 + 5.70634i −1.36722 + 0.993346i
\(34\) 0.166925 + 0.121278i 0.0286274 + 0.0207991i
\(35\) 0.690983 2.12663i 0.116797 0.359466i
\(36\) −4.14590 −0.690983
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) 0.118034 0.363271i 0.0191476 0.0589304i
\(39\) 4.85410 + 14.9394i 0.777278 + 2.39222i
\(40\) 1.01722 + 3.13068i 0.160837 + 0.495005i
\(41\) −6.04508 + 4.39201i −0.944084 + 0.685917i −0.949400 0.314069i \(-0.898308\pi\)
0.00531652 + 0.999986i \(0.498308\pi\)
\(42\) 0.270091 0.831254i 0.0416759 0.128265i
\(43\) −0.166925 + 0.121278i −0.0254559 + 0.0184948i −0.600440 0.799669i \(-0.705008\pi\)
0.574985 + 0.818164i \(0.305008\pi\)
\(44\) −6.36396 4.62369i −0.959403 0.697047i
\(45\) −1.54508 4.75528i −0.230328 0.708876i
\(46\) 2.12132 + 1.54123i 0.312772 + 0.227242i
\(47\) −3.00000 2.17963i −0.437595 0.317931i 0.347084 0.937834i \(-0.387172\pi\)
−0.784679 + 0.619903i \(0.787172\pi\)
\(48\) −2.22449 6.84626i −0.321077 0.988173i
\(49\) 4.85410 + 3.52671i 0.693443 + 0.503816i
\(50\) 0 0
\(51\) 0.381966 1.17557i 0.0534859 0.164613i
\(52\) −10.2971 + 7.48128i −1.42795 + 1.03747i
\(53\) −1.62054 4.98752i −0.222599 0.685089i −0.998526 0.0542670i \(-0.982718\pi\)
0.775928 0.630822i \(-0.217282\pi\)
\(54\) 0.206331 + 0.635021i 0.0280781 + 0.0864155i
\(55\) 2.93159 9.02251i 0.395296 1.21660i
\(56\) 1.47214 0.196722
\(57\) −2.28825 −0.303086
\(58\) 0.437016 1.34500i 0.0573830 0.176607i
\(59\) 4.80902 + 3.49396i 0.626081 + 0.454874i 0.855040 0.518562i \(-0.173532\pi\)
−0.228960 + 0.973436i \(0.573532\pi\)
\(60\) 7.67501 5.57622i 0.990839 0.719887i
\(61\) −4.44897 −0.569632 −0.284816 0.958582i \(-0.591933\pi\)
−0.284816 + 0.958582i \(0.591933\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) 3.80902 2.76741i 0.476127 0.345927i
\(65\) −12.4184 9.02251i −1.54032 1.11911i
\(66\) 1.14590 3.52671i 0.141050 0.434108i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 1.00155 0.121456
\(69\) 4.85410 14.9394i 0.584365 1.79849i
\(70\) 0.263932 + 0.812299i 0.0315459 + 0.0970883i
\(71\) 2.30902 + 7.10642i 0.274030 + 0.843377i 0.989474 + 0.144708i \(0.0462242\pi\)
−0.715445 + 0.698670i \(0.753776\pi\)
\(72\) 2.66312 1.93487i 0.313852 0.228027i
\(73\) −1.31105 + 4.03499i −0.153447 + 0.472260i −0.998000 0.0632110i \(-0.979866\pi\)
0.844554 + 0.535471i \(0.179866\pi\)
\(74\) 1.31105 0.952532i 0.152406 0.110730i
\(75\) 0 0
\(76\) −0.572949 1.76336i −0.0657218 0.202271i
\(77\) −3.43237 2.49376i −0.391155 0.284191i
\(78\) −4.85410 3.52671i −0.549619 0.399321i
\(79\) 3.43237 + 10.5637i 0.386172 + 1.18851i 0.935627 + 0.352991i \(0.114835\pi\)
−0.549455 + 0.835523i \(0.685165\pi\)
\(80\) 5.69098 + 4.13474i 0.636271 + 0.462278i
\(81\) 8.66312 6.29412i 0.962569 0.699347i
\(82\) 0.881966 2.71441i 0.0973969 0.299757i
\(83\) 2.55834 1.85874i 0.280814 0.204023i −0.438458 0.898751i \(-0.644475\pi\)
0.719272 + 0.694728i \(0.244475\pi\)
\(84\) −1.31105 4.03499i −0.143047 0.440254i
\(85\) 0.373256 + 1.14876i 0.0404853 + 0.124601i
\(86\) 0.0243541 0.0749541i 0.00262617 0.00808251i
\(87\) −8.47214 −0.908308
\(88\) 6.24574 0.665799
\(89\) 1.81182 5.57622i 0.192053 0.591078i −0.807945 0.589257i \(-0.799420\pi\)
0.999998 0.00182083i \(-0.000579589\pi\)
\(90\) 1.54508 + 1.12257i 0.162866 + 0.118329i
\(91\) −5.55369 + 4.03499i −0.582185 + 0.422982i
\(92\) 12.7279 1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) 1.80902 1.31433i 0.185601 0.134847i
\(96\) 7.67501 + 5.57622i 0.783327 + 0.569121i
\(97\) −2.16312 + 6.65740i −0.219631 + 0.675956i 0.779161 + 0.626824i \(0.215646\pi\)
−0.998792 + 0.0491321i \(0.984354\pi\)
\(98\) −2.29180 −0.231506
\(99\) −9.48683 −0.953463
\(100\) 0 0
\(101\) −0.690983 2.12663i −0.0687554 0.211607i 0.910775 0.412902i \(-0.135485\pi\)
−0.979531 + 0.201295i \(0.935485\pi\)
\(102\) 0.145898 + 0.449028i 0.0144461 + 0.0444604i
\(103\) 2.19098 1.59184i 0.215884 0.156849i −0.474588 0.880208i \(-0.657403\pi\)
0.690472 + 0.723359i \(0.257403\pi\)
\(104\) 3.12287 9.61121i 0.306223 0.942457i
\(105\) 4.13948 3.00750i 0.403971 0.293502i
\(106\) 1.62054 + 1.17739i 0.157401 + 0.114359i
\(107\) −2.30902 7.10642i −0.223221 0.687004i −0.998467 0.0553447i \(-0.982374\pi\)
0.775246 0.631659i \(-0.217626\pi\)
\(108\) 2.62210 + 1.90506i 0.252311 + 0.183315i
\(109\) 11.8992 + 8.64527i 1.13974 + 0.828066i 0.987082 0.160214i \(-0.0512183\pi\)
0.152653 + 0.988280i \(0.451218\pi\)
\(110\) 1.11977 + 3.44629i 0.106766 + 0.328591i
\(111\) −7.85410 5.70634i −0.745478 0.541622i
\(112\) 2.54508 1.84911i 0.240488 0.174725i
\(113\) −4.39919 + 13.5393i −0.413841 + 1.27367i 0.499443 + 0.866347i \(0.333538\pi\)
−0.913284 + 0.407324i \(0.866462\pi\)
\(114\) 0.707107 0.513743i 0.0662266 0.0481165i
\(115\) 4.74342 + 14.5987i 0.442326 + 1.36134i
\(116\) −2.12132 6.52875i −0.196960 0.606179i
\(117\) −4.74342 + 14.5987i −0.438529 + 1.34965i
\(118\) −2.27051 −0.209017
\(119\) 0.540182 0.0495184
\(120\) −2.32765 + 7.16377i −0.212485 + 0.653960i
\(121\) −5.66312 4.11450i −0.514829 0.374045i
\(122\) 1.37481 0.998856i 0.124469 0.0904322i
\(123\) −17.0981 −1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0.690983 0.502029i 0.0615577 0.0447243i
\(127\) 7.67501 + 5.57622i 0.681047 + 0.494810i 0.873705 0.486456i \(-0.161711\pi\)
−0.192658 + 0.981266i \(0.561711\pi\)
\(128\) −3.11803 + 9.59632i −0.275598 + 0.848203i
\(129\) −0.472136 −0.0415693
\(130\) 5.86319 0.514235
\(131\) −6.00000 + 18.4661i −0.524222 + 1.61339i 0.241626 + 0.970369i \(0.422319\pi\)
−0.765848 + 0.643021i \(0.777681\pi\)
\(132\) −5.56231 17.1190i −0.484137 1.49002i
\(133\) −0.309017 0.951057i −0.0267952 0.0824671i
\(134\) −1.85410 + 1.34708i −0.160170 + 0.116370i
\(135\) −1.20788 + 3.71748i −0.103958 + 0.319950i
\(136\) −0.643347 + 0.467419i −0.0551666 + 0.0400808i
\(137\) 5.55369 + 4.03499i 0.474484 + 0.344733i 0.799186 0.601084i \(-0.205264\pi\)
−0.324702 + 0.945816i \(0.605264\pi\)
\(138\) 1.85410 + 5.70634i 0.157832 + 0.485756i
\(139\) 0.810272 + 0.588697i 0.0687264 + 0.0499327i 0.621618 0.783321i \(-0.286476\pi\)
−0.552892 + 0.833253i \(0.686476\pi\)
\(140\) 3.35410 + 2.43690i 0.283473 + 0.205955i
\(141\) −2.62210 8.06998i −0.220820 0.679615i
\(142\) −2.30902 1.67760i −0.193768 0.140781i
\(143\) −23.5623 + 17.1190i −1.97038 + 1.43156i
\(144\) 2.17376 6.69015i 0.181147 0.557513i
\(145\) 6.69781 4.86624i 0.556223 0.404120i
\(146\) −0.500776 1.54123i −0.0414445 0.127553i
\(147\) 4.24264 + 13.0575i 0.349927 + 1.07696i
\(148\) 2.43082 7.48128i 0.199812 0.614958i
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) −0.937792 + 2.88623i −0.0763164 + 0.234878i −0.981936 0.189213i \(-0.939406\pi\)
0.905620 + 0.424091i \(0.139406\pi\)
\(152\) 1.19098 + 0.865300i 0.0966015 + 0.0701851i
\(153\) 0.977198 0.709976i 0.0790017 0.0573981i
\(154\) 1.62054 0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) 3.80902 2.76741i 0.303993 0.220864i −0.425322 0.905042i \(-0.639839\pi\)
0.729315 + 0.684179i \(0.239839\pi\)
\(158\) −3.43237 2.49376i −0.273065 0.198393i
\(159\) 3.70820 11.4127i 0.294080 0.905084i
\(160\) −9.27051 −0.732898
\(161\) 6.86474 0.541017
\(162\) −1.26393 + 3.88998i −0.0993039 + 0.305626i
\(163\) −3.83688 11.8087i −0.300528 0.924929i −0.981308 0.192442i \(-0.938359\pi\)
0.680781 0.732487i \(-0.261641\pi\)
\(164\) −4.28115 13.1760i −0.334302 1.02888i
\(165\) 17.5623 12.7598i 1.36722 0.993346i
\(166\) −0.373256 + 1.14876i −0.0289703 + 0.0891614i
\(167\) −5.99070 + 4.35250i −0.463575 + 0.336807i −0.794932 0.606699i \(-0.792493\pi\)
0.331357 + 0.943505i \(0.392493\pi\)
\(168\) 2.72526 + 1.98002i 0.210258 + 0.152762i
\(169\) 10.5451 + 32.4544i 0.811160 + 2.49649i
\(170\) −0.373256 0.271187i −0.0286274 0.0207991i
\(171\) −1.80902 1.31433i −0.138339 0.100509i
\(172\) −0.118217 0.363835i −0.00901397 0.0277422i
\(173\) −14.5623 10.5801i −1.10715 0.804393i −0.124939 0.992164i \(-0.539873\pi\)
−0.982213 + 0.187772i \(0.939873\pi\)
\(174\) 2.61803 1.90211i 0.198473 0.144199i
\(175\) 0 0
\(176\) 10.7979 7.84512i 0.813921 0.591348i
\(177\) 4.20323 + 12.9362i 0.315934 + 0.972346i
\(178\) 0.692055 + 2.12993i 0.0518717 + 0.159645i
\(179\) −5.07727 + 15.6262i −0.379493 + 1.16796i 0.560904 + 0.827881i \(0.310454\pi\)
−0.940397 + 0.340078i \(0.889546\pi\)
\(180\) 9.27051 0.690983
\(181\) −18.1784 −1.35119 −0.675597 0.737271i \(-0.736114\pi\)
−0.675597 + 0.737271i \(0.736114\pi\)
\(182\) 0.810272 2.49376i 0.0600614 0.184850i
\(183\) −8.23607 5.98385i −0.608828 0.442339i
\(184\) −8.17578 + 5.94006i −0.602727 + 0.437907i
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) 5.56231 4.04125i 0.405673 0.294739i
\(189\) 1.41421 + 1.02749i 0.102869 + 0.0747386i
\(190\) −0.263932 + 0.812299i −0.0191476 + 0.0589304i
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) 10.7735 0.777512
\(193\) −2.25329 + 6.93491i −0.162195 + 0.499186i −0.998819 0.0485928i \(-0.984526\pi\)
0.836623 + 0.547779i \(0.184526\pi\)
\(194\) −0.826238 2.54290i −0.0593204 0.182569i
\(195\) −10.8541 33.4055i −0.777278 2.39222i
\(196\) −9.00000 + 6.53888i −0.642857 + 0.467063i
\(197\) 2.28825 7.04250i 0.163031 0.501757i −0.835855 0.548950i \(-0.815028\pi\)
0.998886 + 0.0471932i \(0.0150276\pi\)
\(198\) 2.93159 2.12993i 0.208339 0.151367i
\(199\) −11.9176 8.65868i −0.844820 0.613798i 0.0788931 0.996883i \(-0.474861\pi\)
−0.923713 + 0.383086i \(0.874861\pi\)
\(200\) 0 0
\(201\) 11.1074 + 8.06998i 0.783454 + 0.569213i
\(202\) 0.690983 + 0.502029i 0.0486174 + 0.0353226i
\(203\) −1.14412 3.52125i −0.0803017 0.247143i
\(204\) 1.85410 + 1.34708i 0.129813 + 0.0943147i
\(205\) 13.5172 9.82084i 0.944084 0.685917i
\(206\) −0.319660 + 0.983813i −0.0222718 + 0.0685455i
\(207\) 12.4184 9.02251i 0.863140 0.627108i
\(208\) −6.67346 20.5388i −0.462721 1.42411i
\(209\) −1.31105 4.03499i −0.0906871 0.279106i
\(210\) −0.603941 + 1.85874i −0.0416759 + 0.128265i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 9.72327 0.667797
\(213\) −5.28360 + 16.2612i −0.362026 + 1.11420i
\(214\) 2.30902 + 1.67760i 0.157841 + 0.114678i
\(215\) 0.373256 0.271187i 0.0254559 0.0184948i
\(216\) −2.57339 −0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) −7.85410 + 5.70634i −0.530731 + 0.385599i
\(220\) 14.2302 + 10.3389i 0.959403 + 0.697047i
\(221\) 1.14590 3.52671i 0.0770814 0.237232i
\(222\) 3.70820 0.248878
\(223\) 21.8021 1.45998 0.729988 0.683460i \(-0.239526\pi\)
0.729988 + 0.683460i \(0.239526\pi\)
\(224\) −1.28115 + 3.94298i −0.0856006 + 0.263452i
\(225\) 0 0
\(226\) −1.68034 5.17155i −0.111775 0.344007i
\(227\) −12.7082 + 9.23305i −0.843473 + 0.612819i −0.923339 0.383987i \(-0.874551\pi\)
0.0798656 + 0.996806i \(0.474551\pi\)
\(228\) 1.31105 4.03499i 0.0868263 0.267224i
\(229\) 3.43237 2.49376i 0.226817 0.164792i −0.468573 0.883425i \(-0.655232\pi\)
0.695390 + 0.718632i \(0.255232\pi\)
\(230\) −4.74342 3.44629i −0.312772 0.227242i
\(231\) −3.00000 9.23305i −0.197386 0.607490i
\(232\) 4.40957 + 3.20374i 0.289502 + 0.210336i
\(233\) 3.66312 + 2.66141i 0.239979 + 0.174355i 0.701274 0.712892i \(-0.252615\pi\)
−0.461295 + 0.887247i \(0.652615\pi\)
\(234\) −1.81182 5.57622i −0.118443 0.364529i
\(235\) 6.70820 + 4.87380i 0.437595 + 0.317931i
\(236\) −8.91641 + 6.47815i −0.580409 + 0.421692i
\(237\) −7.85410 + 24.1724i −0.510179 + 1.57017i
\(238\) −0.166925 + 0.121278i −0.0108202 + 0.00786130i
\(239\) 5.05291 + 15.5513i 0.326846 + 1.00593i 0.970601 + 0.240696i \(0.0773757\pi\)
−0.643755 + 0.765232i \(0.722624\pi\)
\(240\) 4.97410 + 15.3087i 0.321077 + 0.988173i
\(241\) −4.55214 + 14.0100i −0.293229 + 0.902466i 0.690582 + 0.723254i \(0.257355\pi\)
−0.983811 + 0.179211i \(0.942645\pi\)
\(242\) 2.67376 0.171876
\(243\) 19.2588 1.23545
\(244\) 2.54903 7.84512i 0.163185 0.502232i
\(245\) −10.8541 7.88597i −0.693443 0.503816i
\(246\) 5.28360 3.83876i 0.336870 0.244750i
\(247\) −6.86474 −0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) −3.45492 + 2.51014i −0.218508 + 0.158755i
\(251\) −19.2194 13.9637i −1.21312 0.881382i −0.217608 0.976036i \(-0.569825\pi\)
−0.995510 + 0.0946545i \(0.969825\pi\)
\(252\) 1.28115 3.94298i 0.0807050 0.248385i
\(253\) 29.1246 1.83105
\(254\) −3.62365 −0.227368
\(255\) −0.854102 + 2.62866i −0.0534859 + 0.164613i
\(256\) 1.71885 + 5.29007i 0.107428 + 0.330629i
\(257\) 7.39919 + 22.7724i 0.461549 + 1.42050i 0.863272 + 0.504739i \(0.168411\pi\)
−0.401723 + 0.915761i \(0.631589\pi\)
\(258\) 0.145898 0.106001i 0.00908321 0.00659934i
\(259\) 1.31105 4.03499i 0.0814646 0.250722i
\(260\) 23.0250 16.7287i 1.42795 1.03747i
\(261\) −6.69781 4.86624i −0.414584 0.301213i
\(262\) −2.29180 7.05342i −0.141588 0.435762i
\(263\) 2.18508 + 1.58755i 0.134738 + 0.0978928i 0.653113 0.757261i \(-0.273463\pi\)
−0.518375 + 0.855153i \(0.673463\pi\)
\(264\) 11.5623 + 8.40051i 0.711611 + 0.517015i
\(265\) 3.62365 + 11.1524i 0.222599 + 0.685089i
\(266\) 0.309017 + 0.224514i 0.0189470 + 0.0137658i
\(267\) 10.8541 7.88597i 0.664260 0.482613i
\(268\) −3.43769 + 10.5801i −0.209991 + 0.646285i
\(269\) 11.9814 8.70500i 0.730519 0.530753i −0.159208 0.987245i \(-0.550894\pi\)
0.889728 + 0.456492i \(0.150894\pi\)
\(270\) −0.461370 1.41995i −0.0280781 0.0864155i
\(271\) 8.67656 + 26.7037i 0.527064 + 1.62213i 0.760199 + 0.649690i \(0.225101\pi\)
−0.233135 + 0.972444i \(0.574899\pi\)
\(272\) −0.525130 + 1.61618i −0.0318407 + 0.0979955i
\(273\) −15.7082 −0.950704
\(274\) −2.62210 −0.158407
\(275\) 0 0
\(276\) 23.5623 + 17.1190i 1.41828 + 1.03044i
\(277\) 15.8508 11.5163i 0.952382 0.691946i 0.00101288 0.999999i \(-0.499678\pi\)
0.951369 + 0.308054i \(0.0996776\pi\)
\(278\) −0.382559 −0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) 25.3713 18.4333i 1.51353 1.09964i 0.548944 0.835859i \(-0.315030\pi\)
0.964582 0.263782i \(-0.0849699\pi\)
\(282\) 2.62210 + 1.90506i 0.156144 + 0.113445i
\(283\) 7.41641 22.8254i 0.440860 1.35683i −0.446101 0.894982i \(-0.647188\pi\)
0.886961 0.461844i \(-0.152812\pi\)
\(284\) −13.8541 −0.822090
\(285\) 5.11667 0.303086
\(286\) 3.43769 10.5801i 0.203275 0.625616i
\(287\) −2.30902 7.10642i −0.136297 0.419479i
\(288\) 2.86475 + 8.81678i 0.168807 + 0.519534i
\(289\) 13.5172 9.82084i 0.795131 0.577696i
\(290\) −0.977198 + 3.00750i −0.0573830 + 0.176607i
\(291\) −12.9586 + 9.41498i −0.759647 + 0.551916i
\(292\) −6.36396 4.62369i −0.372423 0.270581i
\(293\) −4.85410 14.9394i −0.283580 0.872768i −0.986821 0.161817i \(-0.948265\pi\)
0.703241 0.710951i \(-0.251735\pi\)
\(294\) −4.24264 3.08246i −0.247436 0.179773i
\(295\) −10.7533 7.81272i −0.626081 0.454874i
\(296\) 1.93004 + 5.94006i 0.112181 + 0.345259i
\(297\) 6.00000 + 4.35926i 0.348155 + 0.252950i
\(298\) −4.14590 + 3.01217i −0.240165 + 0.174490i
\(299\) 14.5623 44.8182i 0.842160 2.59190i
\(300\) 0 0
\(301\) −0.0637598 0.196232i −0.00367505 0.0113106i
\(302\) −0.358205 1.10244i −0.0206124 0.0634383i
\(303\) 1.58114 4.86624i 0.0908341 0.279558i
\(304\) 3.14590 0.180430
\(305\) 9.94820 0.569632
\(306\) −0.142571 + 0.438789i −0.00815025 + 0.0250839i
\(307\) 13.0451 + 9.47781i 0.744522 + 0.540927i 0.894124 0.447819i \(-0.147799\pi\)
−0.149602 + 0.988746i \(0.547799\pi\)
\(308\) 6.36396 4.62369i 0.362620 0.263459i
\(309\) 6.19704 0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) 18.7082 13.5923i 1.05914 0.769513i
\(313\) −16.9949 12.3475i −0.960609 0.697924i −0.00731728 0.999973i \(-0.502329\pi\)
−0.953292 + 0.302050i \(0.902329\pi\)
\(314\) −0.555728 + 1.71036i −0.0313616 + 0.0965209i
\(315\) 5.00000 0.281718
\(316\) −20.5942 −1.15851
\(317\) 6.72542 20.6987i 0.377737 1.16256i −0.563876 0.825860i \(-0.690690\pi\)
0.941613 0.336697i \(-0.109310\pi\)
\(318\) 1.41641 + 4.35926i 0.0794282 + 0.244455i
\(319\) −4.85410 14.9394i −0.271778 0.836445i
\(320\) −8.51722 + 6.18812i −0.476127 + 0.345927i
\(321\) 5.28360 16.2612i 0.294902 0.907614i
\(322\) −2.12132 + 1.54123i −0.118217 + 0.0858894i
\(323\) 0.437016 + 0.317511i 0.0243162 + 0.0176668i
\(324\) 6.13525 + 18.8824i 0.340847 + 1.04902i
\(325\) 0 0
\(326\) 3.83688 + 2.78766i 0.212505 + 0.154394i
\(327\) 10.4003 + 32.0087i 0.575136 + 1.77009i
\(328\) 8.89919 + 6.46564i 0.491375 + 0.357005i
\(329\) 3.00000 2.17963i 0.165395 0.120167i
\(330\) −2.56231 + 7.88597i −0.141050 + 0.434108i
\(331\) −20.7368 + 15.0662i −1.13980 + 0.828111i −0.987091 0.160161i \(-0.948799\pi\)
−0.152706 + 0.988272i \(0.548799\pi\)
\(332\) 1.81182 + 5.57622i 0.0994368 + 0.306035i
\(333\) −2.93159 9.02251i −0.160650 0.494431i
\(334\) 0.874032 2.68999i 0.0478249 0.147190i
\(335\) −13.4164 −0.733017
\(336\) 7.19859 0.392715
\(337\) 1.81182 5.57622i 0.0986963 0.303756i −0.889503 0.456929i \(-0.848949\pi\)
0.988199 + 0.153173i \(0.0489492\pi\)
\(338\) −10.5451 7.66145i −0.573577 0.416728i
\(339\) −26.3542 + 19.1475i −1.43137 + 1.03995i
\(340\) −2.23954 −0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) −10.5172 + 7.64121i −0.567877 + 0.412586i
\(344\) 0.245737 + 0.178538i 0.0132492 + 0.00962613i
\(345\) −10.8541 + 33.4055i −0.584365 + 1.79849i
\(346\) 6.87539 0.369623
\(347\) −25.8384 −1.38708 −0.693539 0.720419i \(-0.743950\pi\)
−0.693539 + 0.720419i \(0.743950\pi\)
\(348\) 4.85410 14.9394i 0.260207 0.800835i
\(349\) 1.85410 + 5.70634i 0.0992478 + 0.305453i 0.988337 0.152280i \(-0.0486615\pi\)
−0.889090 + 0.457733i \(0.848662\pi\)
\(350\) 0 0
\(351\) 9.70820 7.05342i 0.518186 0.376484i
\(352\) −5.43547 + 16.7287i −0.289712 + 0.891641i
\(353\) 12.8554 9.34003i 0.684226 0.497119i −0.190531 0.981681i \(-0.561021\pi\)
0.874757 + 0.484562i \(0.161021\pi\)
\(354\) −4.20323 3.05383i −0.223399 0.162309i
\(355\) −5.16312 15.8904i −0.274030 0.843377i
\(356\) 8.79478 + 6.38978i 0.466122 + 0.338658i
\(357\) 1.00000 + 0.726543i 0.0529256 + 0.0384527i
\(358\) −1.93934 5.96869i −0.102497 0.315455i
\(359\) −7.89919 5.73910i −0.416903 0.302898i 0.359487 0.933150i \(-0.382952\pi\)
−0.776391 + 0.630252i \(0.782952\pi\)
\(360\) −5.95492 + 4.32650i −0.313852 + 0.228027i
\(361\) −5.56231 + 17.1190i −0.292753 + 0.901001i
\(362\) 5.61745 4.08132i 0.295247 0.214509i
\(363\) −4.94975 15.2338i −0.259794 0.799565i
\(364\) −3.93314 12.1050i −0.206153 0.634473i
\(365\) 2.93159 9.02251i 0.153447 0.472260i
\(366\) 3.88854 0.203257
\(367\) 12.3153 0.642851 0.321426 0.946935i \(-0.395838\pi\)
0.321426 + 0.946935i \(0.395838\pi\)
\(368\) −6.67346 + 20.5388i −0.347878 + 1.07066i
\(369\) −13.5172 9.82084i −0.703678 0.511252i
\(370\) −2.93159 + 2.12993i −0.152406 + 0.110730i
\(371\) 5.24419 0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) −0.708204 + 0.514540i −0.0366204 + 0.0266062i
\(375\) 20.6974 + 15.0375i 1.06881 + 0.776534i
\(376\) −1.68692 + 5.19180i −0.0869961 + 0.267747i
\(377\) −25.4164 −1.30901
\(378\) −0.667701 −0.0343428
\(379\) −6.00000 + 18.4661i −0.308199 + 0.948540i 0.670265 + 0.742122i \(0.266181\pi\)
−0.978464 + 0.206418i \(0.933819\pi\)
\(380\) 1.28115 + 3.94298i 0.0657218 + 0.202271i
\(381\) 6.70820 + 20.6457i 0.343672 + 1.05771i
\(382\) −4.39919 + 3.19620i −0.225082 + 0.163532i
\(383\) 5.88754 18.1200i 0.300839 0.925888i −0.680358 0.732880i \(-0.738176\pi\)
0.981197 0.193008i \(-0.0618243\pi\)
\(384\) −18.6792 + 13.5712i −0.953220 + 0.692555i
\(385\) 7.67501 + 5.57622i 0.391155 + 0.284191i
\(386\) −0.860680 2.64890i −0.0438074 0.134825i
\(387\) −0.373256 0.271187i −0.0189737 0.0137852i
\(388\) −10.5000 7.62870i −0.533057 0.387288i
\(389\) −10.4397 32.1300i −0.529313 1.62906i −0.755627 0.655002i \(-0.772668\pi\)
0.226314 0.974054i \(-0.427332\pi\)
\(390\) 10.8541 + 7.88597i 0.549619 + 0.399321i
\(391\) −3.00000 + 2.17963i −0.151717 + 0.110229i
\(392\) 2.72949 8.40051i 0.137860 0.424290i
\(393\) −35.9442 + 26.1150i −1.81315 + 1.31733i
\(394\) 0.874032 + 2.68999i 0.0440331 + 0.135520i
\(395\) −7.67501 23.6212i −0.386172 1.18851i
\(396\) 5.43547 16.7287i 0.273143 0.840647i
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) 5.62675 0.282044
\(399\) 0.707107 2.17625i 0.0353996 0.108949i
\(400\) 0 0
\(401\) −2.99535 + 2.17625i −0.149581 + 0.108677i −0.660059 0.751214i \(-0.729469\pi\)
0.510478 + 0.859891i \(0.329469\pi\)
\(402\) −5.24419 −0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) −19.3713 + 14.0741i −0.962569 + 0.699347i
\(406\) 1.14412 + 0.831254i 0.0567819 + 0.0412544i
\(407\) 5.56231 17.1190i 0.275713 0.848558i
\(408\) −1.81966 −0.0900866
\(409\) 17.3531 0.858057 0.429028 0.903291i \(-0.358856\pi\)
0.429028 + 0.903291i \(0.358856\pi\)
\(410\) −1.97214 + 6.06961i −0.0973969 + 0.299757i
\(411\) 4.85410 + 14.9394i 0.239435 + 0.736906i
\(412\) 1.55166 + 4.77553i 0.0764449 + 0.235273i
\(413\) −4.80902 + 3.49396i −0.236636 + 0.171926i
\(414\) −1.81182 + 5.57622i −0.0890463 + 0.274056i
\(415\) −5.72061 + 4.15627i −0.280814 + 0.204023i
\(416\) 23.0250 + 16.7287i 1.12889 + 0.820190i
\(417\) 0.708204 + 2.17963i 0.0346809 + 0.106737i
\(418\) 1.31105 + 0.952532i 0.0641255 + 0.0465899i
\(419\) 15.0451 + 10.9309i 0.735000 + 0.534009i 0.891141 0.453726i \(-0.149905\pi\)
−0.156141 + 0.987735i \(0.549905\pi\)
\(420\) 2.93159 + 9.02251i 0.143047 + 0.440254i
\(421\) 0.336881 + 0.244758i 0.0164186 + 0.0119288i 0.595964 0.803011i \(-0.296770\pi\)
−0.579546 + 0.814940i \(0.696770\pi\)
\(422\) 1.54508 1.12257i 0.0752136 0.0546458i
\(423\) 2.56231 7.88597i 0.124584 0.383429i
\(424\) −6.24574 + 4.53780i −0.303320 + 0.220375i
\(425\) 0 0
\(426\) −2.01815 6.21124i −0.0977799 0.300936i
\(427\) 1.37481 4.23122i 0.0665316 0.204763i
\(428\) 13.8541 0.669663
\(429\) −66.6443 −3.21762
\(430\) −0.0544574 + 0.167602i −0.00262617 + 0.00808251i
\(431\) 0.0901699 + 0.0655123i 0.00434333 + 0.00315562i 0.589955 0.807436i \(-0.299146\pi\)
−0.585611 + 0.810592i \(0.699146\pi\)
\(432\) −4.44897 + 3.23237i −0.214051 + 0.155517i
\(433\) −21.5958 −1.03783 −0.518913 0.854827i \(-0.673663\pi\)
−0.518913 + 0.854827i \(0.673663\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) −22.0623 + 16.0292i −1.05659 + 0.767660i
\(437\) 5.55369 + 4.03499i 0.265669 + 0.193020i
\(438\) 1.14590 3.52671i 0.0547531 0.168513i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) −13.9659 −0.665799
\(441\) −4.14590 + 12.7598i −0.197424 + 0.607608i
\(442\) 0.437694 + 1.34708i 0.0208190 + 0.0640742i
\(443\) 7.39919 + 22.7724i 0.351546 + 1.08195i 0.957985 + 0.286817i \(0.0925973\pi\)
−0.606439 + 0.795130i \(0.707403\pi\)
\(444\) 14.5623 10.5801i 0.691096 0.502111i
\(445\) −4.05136 + 12.4688i −0.192053 + 0.591078i
\(446\) −6.73722 + 4.89487i −0.319016 + 0.231779i
\(447\) 24.8369 + 18.0450i 1.17474 + 0.853501i
\(448\) 1.45492 + 4.47777i 0.0687383 + 0.211555i
\(449\) −34.1324 24.7986i −1.61081 1.17032i −0.860893 0.508786i \(-0.830095\pi\)
−0.749915 0.661535i \(-0.769905\pi\)
\(450\) 0 0
\(451\) −9.79633 30.1500i −0.461291 1.41971i
\(452\) −21.3541 15.5147i −1.00441 0.729748i
\(453\) −5.61803 + 4.08174i −0.263958 + 0.191777i
\(454\) 1.85410 5.70634i 0.0870173 0.267812i
\(455\) 12.4184 9.02251i 0.582185 0.422982i
\(456\) 1.04096 + 3.20374i 0.0487473 + 0.150029i
\(457\) −3.49613 10.7600i −0.163542 0.503330i 0.835384 0.549667i \(-0.185245\pi\)
−0.998926 + 0.0463365i \(0.985245\pi\)
\(458\) −0.500776 + 1.54123i −0.0233997 + 0.0720169i
\(459\) −0.944272 −0.0440748
\(460\) −28.4605 −1.32698
\(461\) 12.0846 37.1925i 0.562835 1.73223i −0.111464 0.993768i \(-0.535554\pi\)
0.674299 0.738459i \(-0.264446\pi\)
\(462\) 3.00000 + 2.17963i 0.139573 + 0.101405i
\(463\) 12.2515 8.90124i 0.569376 0.413676i −0.265503 0.964110i \(-0.585538\pi\)
0.834878 + 0.550435i \(0.185538\pi\)
\(464\) 11.6476 0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) −12.6631 + 9.20029i −0.585979 + 0.425739i −0.840875 0.541230i \(-0.817959\pi\)
0.254895 + 0.966969i \(0.417959\pi\)
\(468\) −23.0250 16.7287i −1.06433 0.773283i
\(469\) −1.85410 + 5.70634i −0.0856145 + 0.263494i
\(470\) −3.16718 −0.146091
\(471\) 10.7735 0.496418
\(472\) 2.70414 8.32248i 0.124468 0.383073i
\(473\) −0.270510 0.832544i −0.0124381 0.0382804i
\(474\) −3.00000 9.23305i −0.137795 0.424088i
\(475\) 0 0
\(476\) −0.309496 + 0.952532i −0.0141857 + 0.0436592i
\(477\) 9.48683 6.89259i 0.434372 0.315590i
\(478\) −5.05291 3.67116i −0.231115 0.167915i
\(479\) 7.87132 + 24.2254i 0.359650 + 1.10689i 0.953264 + 0.302139i \(0.0977006\pi\)
−0.593614 + 0.804750i \(0.702299\pi\)
\(480\) −17.1618 12.4688i −0.783327 0.569121i
\(481\) −23.5623 17.1190i −1.07435 0.780560i
\(482\) −1.73876 5.35136i −0.0791984 0.243748i
\(483\) 12.7082 + 9.23305i 0.578243 + 0.420118i
\(484\) 10.5000 7.62870i 0.477273 0.346759i
\(485\) 4.83688 14.8864i 0.219631 0.675956i
\(486\) −5.95130 + 4.32387i −0.269956 + 0.196135i
\(487\) −5.74497 17.6812i −0.260329 0.801211i −0.992733 0.120340i \(-0.961601\pi\)
0.732403 0.680871i \(-0.238399\pi\)
\(488\) 2.02390 + 6.22894i 0.0916178 + 0.281971i
\(489\) 8.77973 27.0212i 0.397033 1.22194i
\(490\) 5.12461 0.231506
\(491\) 9.56564 0.431691 0.215846 0.976427i \(-0.430749\pi\)
0.215846 + 0.976427i \(0.430749\pi\)
\(492\) 9.79633 30.1500i 0.441653 1.35927i
\(493\) 1.61803 + 1.17557i 0.0728726 + 0.0529450i
\(494\) 2.12132 1.54123i 0.0954427 0.0693432i
\(495\) 21.2132 0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) −2.23607 + 1.62460i −0.100201 + 0.0728000i
\(499\) 14.8736 + 10.8063i 0.665834 + 0.483756i 0.868628 0.495465i \(-0.165002\pi\)
−0.202794 + 0.979221i \(0.565002\pi\)
\(500\) −6.40576 + 19.7149i −0.286475 + 0.881678i
\(501\) −16.9443 −0.757014
\(502\) 9.07417 0.405000
\(503\) 0.892609 2.74717i 0.0397995 0.122490i −0.929183 0.369621i \(-0.879488\pi\)
0.968982 + 0.247130i \(0.0794876\pi\)
\(504\) 1.01722 + 3.13068i 0.0453106 + 0.139452i
\(505\) 1.54508 + 4.75528i 0.0687554 + 0.211607i
\(506\) −9.00000 + 6.53888i −0.400099 + 0.290689i
\(507\) −24.1297 + 74.2637i −1.07164 + 3.29817i
\(508\) −14.2302 + 10.3389i −0.631365 + 0.458714i
\(509\) −3.86938 2.81127i −0.171507 0.124607i 0.498720 0.866763i \(-0.333804\pi\)
−0.670228 + 0.742156i \(0.733804\pi\)
\(510\) −0.326238 1.00406i −0.0144461 0.0444604i
\(511\) −3.43237 2.49376i −0.151839 0.110318i
\(512\) −18.0451 13.1105i −0.797488 0.579409i
\(513\) 0.540182 + 1.66251i 0.0238496 + 0.0734015i
\(514\) −7.39919 5.37582i −0.326364 0.237117i
\(515\) −4.89919 + 3.55947i −0.215884 + 0.156849i
\(516\) 0.270510 0.832544i 0.0119085 0.0366507i
\(517\) 12.7279 9.24738i 0.559773 0.406699i
\(518\) 0.500776 + 1.54123i 0.0220028 + 0.0677177i
\(519\) −12.7279 39.1725i −0.558694 1.71948i
\(520\) −6.98295 + 21.4913i −0.306223 + 0.942457i
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) 3.16228 0.138409
\(523\) −8.98606 + 27.6562i −0.392933 + 1.20932i 0.537627 + 0.843183i \(0.319321\pi\)
−0.930560 + 0.366140i \(0.880679\pi\)
\(524\) −29.1246 21.1603i −1.27231 0.924391i
\(525\) 0 0
\(526\) −1.03165 −0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) −19.5172 + 14.1801i −0.848575 + 0.616526i
\(530\) −3.62365 2.63273i −0.157401 0.114359i
\(531\) −4.10739 + 12.6412i −0.178246 + 0.548583i
\(532\) 1.85410 0.0803855
\(533\) −51.2942 −2.22180
\(534\) −1.58359 + 4.87380i −0.0685287 + 0.210910i
\(535\) 5.16312 + 15.8904i 0.223221 + 0.687004i
\(536\) −2.72949 8.40051i −0.117896 0.362847i
\(537\) −30.4164 + 22.0988i −1.31256 + 0.953634i
\(538\) −1.74806 + 5.37999i −0.0753644 + 0.231948i
\(539\) −20.5942 + 14.9626i −0.887055 + 0.644484i
\(540\) −5.86319 4.25985i −0.252311 0.183315i
\(541\) −8.60081 26.4706i −0.369778 1.13806i −0.946935 0.321426i \(-0.895838\pi\)
0.577157 0.816633i \(-0.304162\pi\)
\(542\) −8.67656 6.30389i −0.372690 0.270775i
\(543\) −33.6525 24.4500i −1.44417 1.04925i
\(544\) −0.692055 2.12993i −0.0296716 0.0913199i
\(545\) −26.6074 19.3314i −1.13974 0.828066i
\(546\) 4.85410 3.52671i 0.207736 0.150929i
\(547\) −7.54508 + 23.2214i −0.322605 + 0.992875i 0.649906 + 0.760015i \(0.274808\pi\)
−0.972510 + 0.232860i \(0.925192\pi\)
\(548\) −10.2971 + 7.48128i −0.439871 + 0.319585i
\(549\) −3.07416 9.46130i −0.131202 0.403799i
\(550\) 0 0
\(551\) 1.14412 3.52125i 0.0487413 0.150010i
\(552\) −23.1246 −0.984249
\(553\) −11.1074 −0.472334
\(554\) −2.31260 + 7.11745i −0.0982529 + 0.302391i
\(555\) 17.5623 + 12.7598i 0.745478 + 0.541622i
\(556\) −1.50233 + 1.09150i −0.0637129 + 0.0462901i
\(557\) 23.2951 0.987046 0.493523 0.869733i \(-0.335709\pi\)
0.493523 + 0.869733i \(0.335709\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) −5.69098 + 4.13474i −0.240488 + 0.174725i
\(561\) 4.24264 + 3.08246i 0.179124 + 0.130142i
\(562\) −3.70163 + 11.3924i −0.156144 + 0.480561i
\(563\) 14.2361 0.599979 0.299989 0.953943i \(-0.403017\pi\)
0.299989 + 0.953943i \(0.403017\pi\)
\(564\) 15.7326 0.662461
\(565\) 9.83688 30.2748i 0.413841 1.27367i
\(566\) 2.83282 + 8.71851i 0.119072 + 0.366466i
\(567\) 3.30902 + 10.1841i 0.138966 + 0.427692i
\(568\) 8.89919 6.46564i 0.373402 0.271292i
\(569\) 9.48683 29.1975i 0.397709 1.22402i −0.529123 0.848545i \(-0.677479\pi\)
0.926832 0.375477i \(-0.122521\pi\)
\(570\) −1.58114 + 1.14876i −0.0662266 + 0.0481165i
\(571\) 5.55369 + 4.03499i 0.232415 + 0.168859i 0.697897 0.716198i \(-0.254119\pi\)
−0.465483 + 0.885057i \(0.654119\pi\)
\(572\) −16.6869 51.3571i −0.697715 2.14735i
\(573\) 26.3542 + 19.1475i 1.10096 + 0.799897i
\(574\) 2.30902 + 1.67760i 0.0963765 + 0.0700216i
\(575\) 0 0
\(576\) 8.51722 + 6.18812i 0.354884 + 0.257838i
\(577\) 24.2705 17.6336i 1.01039 0.734095i 0.0461028 0.998937i \(-0.485320\pi\)
0.964292 + 0.264842i \(0.0853198\pi\)
\(578\) −1.97214 + 6.06961i −0.0820300 + 0.252463i
\(579\) −13.4988 + 9.80744i −0.560991 + 0.407583i
\(580\) 4.74342 + 14.5987i 0.196960 + 0.606179i
\(581\) 0.977198 + 3.00750i 0.0405410 + 0.124772i
\(582\) 1.89064 5.81878i 0.0783694 0.241196i
\(583\) 22.2492 0.921469
\(584\) 6.24574 0.258451
\(585\) 10.6066 32.6438i 0.438529 1.34965i
\(586\) 4.85410 + 3.52671i 0.200521 + 0.145687i
\(587\) 33.3221 24.2099i 1.37535 0.999251i 0.378054 0.925784i \(-0.376593\pi\)
0.997298 0.0734679i \(-0.0234066\pi\)
\(588\) −25.4558 −1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) 13.7082 9.95959i 0.563880 0.409683i
\(592\) 10.7979 + 7.84512i 0.443790 + 0.322432i
\(593\) −5.30902 + 16.3395i −0.218015 + 0.670982i 0.780911 + 0.624643i \(0.214755\pi\)
−0.998926 + 0.0463389i \(0.985245\pi\)
\(594\) −2.83282 −0.116232
\(595\) −1.20788 −0.0495184
\(596\) −7.68692 + 23.6579i −0.314868 + 0.969065i
\(597\) −10.4164 32.0584i −0.426315 1.31206i
\(598\) 5.56231 + 17.1190i 0.227460 + 0.700049i
\(599\) −19.3713 + 14.0741i −0.791491 + 0.575052i −0.908406 0.418090i \(-0.862700\pi\)
0.116915 + 0.993142i \(0.462700\pi\)
\(600\) 0 0
\(601\) 7.03166 5.10880i 0.286827 0.208392i −0.435062 0.900400i \(-0.643274\pi\)
0.721890 + 0.692008i \(0.243274\pi\)
\(602\) 0.0637598 + 0.0463242i 0.00259865 + 0.00188803i
\(603\) 4.14590 + 12.7598i 0.168834 + 0.519618i
\(604\) −4.55214 3.30732i −0.185224 0.134573i
\(605\) 12.6631 + 9.20029i 0.514829 + 0.374045i
\(606\) 0.603941 + 1.85874i 0.0245334 + 0.0755062i
\(607\) 20.3262 + 14.7679i 0.825017 + 0.599410i 0.918145 0.396244i \(-0.129687\pi\)
−0.0931285 + 0.995654i \(0.529687\pi\)
\(608\) −3.35410 + 2.43690i −0.136027 + 0.0988293i
\(609\) 2.61803 8.05748i 0.106088 0.326506i
\(610\) −3.07416 + 2.23351i −0.124469 + 0.0904322i
\(611\) −7.86629 24.2099i −0.318236 0.979430i
\(612\) 0.692055 + 2.12993i 0.0279747 + 0.0860972i
\(613\) 11.5444 35.5300i 0.466274 1.43504i −0.391100 0.920348i \(-0.627905\pi\)
0.857374 0.514695i \(-0.172095\pi\)
\(614\) −6.15905 −0.248559
\(615\) 38.2325 1.54168
\(616\) −1.93004 + 5.94006i −0.0777636 + 0.239332i
\(617\) 38.1246 + 27.6992i 1.53484 + 1.11513i 0.953471 + 0.301485i \(0.0974824\pi\)
0.581368 + 0.813641i \(0.302518\pi\)
\(618\) −1.91499 + 1.39132i −0.0770322 + 0.0559671i
\(619\) 21.5958 0.868007 0.434003 0.900911i \(-0.357101\pi\)
0.434003 + 0.900911i \(0.357101\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) −5.10739 + 3.71074i −0.204788 + 0.148787i
\(623\) 4.74342 + 3.44629i 0.190041 + 0.138073i
\(624\) 15.2705 46.9978i 0.611310 1.88142i
\(625\) −25.0000 −1.00000
\(626\) 8.02391 0.320700
\(627\) 3.00000 9.23305i 0.119808 0.368733i
\(628\) 2.69756 + 8.30224i 0.107644 + 0.331295i
\(629\) 0.708204 + 2.17963i 0.0282379 + 0.0869074i
\(630\) −1.54508 + 1.12257i −0.0615577 + 0.0447243i
\(631\) 1.43857 4.42746i 0.0572685 0.176254i −0.918330 0.395815i \(-0.870462\pi\)
0.975599 + 0.219560i \(0.0704623\pi\)
\(632\) 13.2287 9.61121i 0.526209 0.382313i
\(633\) −9.25615 6.72499i −0.367899 0.267294i
\(634\) 2.56888 + 7.90621i 0.102023 + 0.313996i
\(635\) −17.1618 12.4688i −0.681047 0.494810i
\(636\) 18.0000 + 13.0778i 0.713746 + 0.518567i
\(637\) 12.7279 + 39.1725i 0.504299 + 1.55207i
\(638\) 4.85410 + 3.52671i 0.192176 + 0.139624i
\(639\) −13.5172 + 9.82084i −0.534733 + 0.388506i
\(640\) 6.97214 21.4580i 0.275598 0.848203i
\(641\) −6.86474 + 4.98752i −0.271141 + 0.196995i −0.715044 0.699079i \(-0.753593\pi\)
0.443903 + 0.896075i \(0.353593\pi\)
\(642\) 2.01815 + 6.21124i 0.0796502 + 0.245138i
\(643\) 7.30175 + 22.4725i 0.287953 + 0.886228i 0.985498 + 0.169687i \(0.0542758\pi\)
−0.697545 + 0.716541i \(0.745724\pi\)
\(644\) −3.93314 + 12.1050i −0.154988 + 0.477003i
\(645\) 1.05573 0.0415693
\(646\) −0.206331 −0.00811798
\(647\) −5.91189 + 18.1949i −0.232421 + 0.715317i 0.765033 + 0.643992i \(0.222723\pi\)
−0.997453 + 0.0713252i \(0.977277\pi\)
\(648\) −12.7533 9.26581i −0.500997 0.363995i
\(649\) −20.4029 + 14.8236i −0.800885 + 0.581877i
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) 5.38197 3.91023i 0.210613 0.153019i −0.477478 0.878644i \(-0.658449\pi\)
0.688091 + 0.725625i \(0.258449\pi\)
\(654\) −10.4003 7.55624i −0.406683 0.295472i
\(655\) 13.4164 41.2915i 0.524222 1.61339i
\(656\) 23.5066 0.917778
\(657\) −9.48683 −0.370117
\(658\) −0.437694 + 1.34708i −0.0170631 + 0.0525148i
\(659\) 14.5795 + 44.8712i 0.567938 + 1.74793i 0.659057 + 0.752093i \(0.270955\pi\)
−0.0911197 + 0.995840i \(0.529045\pi\)
\(660\) 12.4377 + 38.2793i 0.484137 + 1.49002i
\(661\) 37.0795 26.9399i 1.44223 1.04784i 0.454655 0.890668i \(-0.349763\pi\)
0.987571 0.157171i \(-0.0502375\pi\)
\(662\) 3.02546 9.31140i 0.117588 0.361898i
\(663\) 6.86474 4.98752i 0.266604 0.193699i
\(664\) −3.76622 2.73632i −0.146158 0.106190i
\(665\) 0.690983 + 2.12663i 0.0267952 + 0.0824671i
\(666\) 2.93159 + 2.12993i 0.113597 + 0.0825330i
\(667\) 20.5623 + 14.9394i 0.796176 + 0.578455i
\(668\) −4.24264 13.0575i −0.164153 0.505210i
\(669\) 40.3607 + 29.3238i 1.56043 + 1.13372i
\(670\) 4.14590 3.01217i 0.160170 0.116370i
\(671\) 5.83282 17.9516i 0.225173 0.693012i
\(672\) −7.67501 + 5.57622i −0.296070 + 0.215107i
\(673\) 2.30330 + 7.08882i 0.0887856 + 0.273254i 0.985584 0.169185i \(-0.0541134\pi\)
−0.896799 + 0.442439i \(0.854113\pi\)
\(674\) 0.692055 + 2.12993i 0.0266570 + 0.0820417i
\(675\) 0 0
\(676\) −63.2705 −2.43348
\(677\) 21.2132 0.815290 0.407645 0.913141i \(-0.366350\pi\)
0.407645 + 0.913141i \(0.366350\pi\)
\(678\) 3.84503 11.8338i 0.147668 0.454474i
\(679\) −5.66312 4.11450i −0.217331 0.157900i
\(680\) 1.43857 1.04518i 0.0551666 0.0400808i
\(681\) −35.9442 −1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) 3.35410 2.43690i 0.128247 0.0931771i
\(685\) −12.4184 9.02251i −0.474484 0.344733i
\(686\) 1.53444 4.72253i 0.0585853 0.180307i
\(687\) 9.70820 0.370391
\(688\) 0.649096 0.0247466
\(689\) 11.1246 34.2380i 0.423814 1.30437i
\(690\) −4.14590 12.7598i −0.157832 0.485756i
\(691\) −6.66970 20.5272i −0.253727 0.780892i −0.994078 0.108671i \(-0.965340\pi\)
0.740351 0.672221i \(-0.234660\pi\)
\(692\) 27.0000 19.6166i 1.02639 0.745713i
\(693\) 2.93159 9.02251i 0.111362 0.342737i
\(694\) 7.98451 5.80108i 0.303088 0.220206i
\(695\) −1.81182 1.31637i −0.0687264 0.0499327i
\(696\) 3.85410 + 11.8617i 0.146089 + 0.449617i
\(697\) 3.26544 + 2.37248i 0.123687 + 0.0898642i
\(698\) −1.85410 1.34708i −0.0701788 0.0509879i
\(699\) 3.20168 + 9.85377i 0.121099 + 0.372704i
\(700\) 0 0
\(701\) −22.3713 + 16.2537i −0.844953 + 0.613894i −0.923750 0.382996i \(-0.874892\pi\)
0.0787967 + 0.996891i \(0.474892\pi\)
\(702\) −1.41641 + 4.35926i −0.0534589 + 0.164529i
\(703\) 3.43237 2.49376i 0.129454 0.0940540i
\(704\) 6.17268 + 18.9976i 0.232642 + 0.715998i
\(705\) 5.86319 + 18.0450i 0.220820 + 0.679615i
\(706\) −1.87558 + 5.77245i −0.0705885 + 0.217249i
\(707\) 2.23607 0.0840960
\(708\) −25.2194 −0.947803
\(709\) −4.86163 + 14.9626i −0.182582 + 0.561931i −0.999898 0.0142588i \(-0.995461\pi\)
0.817316 + 0.576190i \(0.195461\pi\)
\(710\) 5.16312 + 3.75123i 0.193768 + 0.140781i
\(711\) −20.0934 + 14.5987i −0.753563 + 0.547495i
\(712\) −8.63141 −0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) 52.6869 38.2793i 1.97038 1.43156i
\(716\) −24.6456 17.9061i −0.921048 0.669181i
\(717\) −11.5623 + 35.5851i −0.431802 + 1.32895i
\(718\) 3.72949 0.139183
\(719\) 9.10427 0.339532 0.169766 0.985484i \(-0.445699\pi\)
0.169766 + 0.985484i \(0.445699\pi\)
\(720\) −4.86068 + 14.9596i −0.181147 + 0.557513i
\(721\) 0.836881 + 2.57565i 0.0311671 + 0.0959224i
\(722\) −2.12461 6.53888i −0.0790699 0.243352i
\(723\) −27.2705 + 19.8132i −1.01420 + 0.736860i
\(724\) 10.4153 32.0551i 0.387082 1.19132i
\(725\) 0 0
\(726\) 4.94975 + 3.59620i 0.183702 + 0.133468i
\(727\) −1.10739 3.40820i −0.0410709 0.126403i 0.928419 0.371535i \(-0.121169\pi\)
−0.969490 + 0.245132i \(0.921169\pi\)
\(728\) 8.17578 + 5.94006i 0.303015 + 0.220153i
\(729\) 9.66312 + 7.02067i 0.357893 + 0.260025i
\(730\) 1.11977 + 3.44629i 0.0414445 + 0.127553i
\(731\) 0.0901699 + 0.0655123i 0.00333506 + 0.00242306i
\(732\) 15.2705 11.0947i 0.564414 0.410071i
\(733\) 3.83688 11.8087i 0.141718 0.436164i −0.854856 0.518865i \(-0.826355\pi\)
0.996574 + 0.0827009i \(0.0263546\pi\)
\(734\) −3.80562 + 2.76495i −0.140468 + 0.102056i
\(735\) −9.48683 29.1975i −0.349927 1.07696i
\(736\) −8.79478 27.0675i −0.324180 0.997723i
\(737\) −7.86629 + 24.2099i −0.289758 + 0.891785i
\(738\) 6.38197 0.234923
\(739\) 25.6622 0.943998 0.471999 0.881599i \(-0.343533\pi\)
0.471999 + 0.881599i \(0.343533\pi\)
\(740\) −5.43547 + 16.7287i −0.199812 + 0.614958i
\(741\) −12.7082 9.23305i −0.466848 0.339185i
\(742\) −1.62054 + 1.17739i −0.0594921 + 0.0432235i
\(743\) 1.69936 0.0623433 0.0311717 0.999514i \(-0.490076\pi\)
0.0311717 + 0.999514i \(0.490076\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) 7.01722 5.09831i 0.256919 0.186662i
\(747\) 5.72061 + 4.15627i 0.209306 + 0.152070i
\(748\) −1.31308 + 4.04125i −0.0480110 + 0.147763i
\(749\) 7.47214 0.273026
\(750\) −9.77198 −0.356822
\(751\) 9.12868 28.0952i 0.333110 1.02521i −0.634535 0.772894i \(-0.718808\pi\)
0.967645 0.252314i \(-0.0811915\pi\)
\(752\) 3.60488 + 11.0947i 0.131456 + 0.404581i
\(753\) −16.7984 51.7001i −0.612167 1.88406i
\(754\) 7.85410 5.70634i 0.286030 0.207813i
\(755\) 2.09697 6.45380i 0.0763164 0.234878i
\(756\) −2.62210 + 1.90506i −0.0953647 + 0.0692865i
\(757\) −15.5169 11.2737i −0.563973 0.409750i 0.268938 0.963158i \(-0.413327\pi\)
−0.832911 + 0.553407i \(0.813327\pi\)
\(758\) −2.29180 7.05342i −0.0832418 0.256192i
\(759\) 53.9163 + 39.1725i 1.95704 + 1.42187i
\(760\) −2.66312 1.93487i −0.0966015 0.0701851i
\(761\) −0.692055 2.12993i −0.0250870 0.0772098i 0.937729 0.347367i \(-0.112924\pi\)
−0.962816 + 0.270157i \(0.912924\pi\)
\(762\) −6.70820 4.87380i −0.243013 0.176559i
\(763\) −11.8992 + 8.64527i −0.430779 + 0.312980i
\(764\) −8.15654 + 25.1033i −0.295093 + 0.908204i
\(765\) −2.18508 + 1.58755i −0.0790017 + 0.0573981i
\(766\) 2.24884 + 6.92122i 0.0812539 + 0.250074i
\(767\) 12.6097 + 38.8087i 0.455310 + 1.40130i
\(768\) −3.93314 + 12.1050i −0.141925 + 0.436801i
\(769\) 13.8754 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(770\) −3.62365 −0.130587
\(771\) −16.9312 + 52.1087i −0.609761 + 1.87665i
\(772\)