Properties

Label 961.2.d.j.388.1
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 388.1
Root \(-0.437016 - 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.j.374.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.224514i) q^{2} +(-1.85123 - 1.34500i) q^{3} +(-0.572949 + 1.76336i) q^{4} -2.23607 q^{5} +0.874032 q^{6} +(-0.309017 + 0.951057i) q^{7} +(-0.454915 - 1.40008i) q^{8} +(0.690983 + 2.12663i) q^{9} +(0.690983 - 0.502029i) q^{10} +(1.31105 - 4.03499i) q^{11} +(3.43237 - 2.49376i) q^{12} +(-5.55369 - 4.03499i) q^{13} +(-0.118034 - 0.363271i) q^{14} +(4.13948 + 3.00750i) q^{15} +(-2.54508 - 1.84911i) q^{16} +(0.166925 + 0.513743i) q^{17} +(-0.690983 - 0.502029i) q^{18} +(-0.809017 + 0.587785i) q^{19} +(1.28115 - 3.94298i) q^{20} +(1.85123 - 1.34500i) q^{21} +(0.500776 + 1.54123i) q^{22} +(2.12132 + 6.52875i) q^{23} +(-1.04096 + 3.20374i) q^{24} +2.62210 q^{26} +(-0.540182 + 1.66251i) q^{27} +(-1.50000 - 1.08981i) q^{28} +(2.99535 - 2.17625i) q^{29} -1.95440 q^{30} +4.14590 q^{32} +(-7.85410 + 5.70634i) q^{33} +(-0.166925 - 0.121278i) q^{34} +(0.690983 - 2.12663i) q^{35} -4.14590 q^{36} +4.24264 q^{37} +(0.118034 - 0.363271i) q^{38} +(4.85410 + 14.9394i) q^{39} +(1.01722 + 3.13068i) q^{40} +(-6.04508 + 4.39201i) q^{41} +(-0.270091 + 0.831254i) q^{42} +(0.166925 - 0.121278i) q^{43} +(6.36396 + 4.62369i) q^{44} +(-1.54508 - 4.75528i) q^{45} +(-2.12132 - 1.54123i) q^{46} +(-3.00000 - 2.17963i) q^{47} +(2.22449 + 6.84626i) q^{48} +(4.85410 + 3.52671i) q^{49} +(0.381966 - 1.17557i) q^{51} +(10.2971 - 7.48128i) q^{52} +(1.62054 + 4.98752i) q^{53} +(-0.206331 - 0.635021i) q^{54} +(-2.93159 + 9.02251i) q^{55} +1.47214 q^{56} +2.28825 q^{57} +(-0.437016 + 1.34500i) q^{58} +(4.80902 + 3.49396i) q^{59} +(-7.67501 + 5.57622i) q^{60} +4.44897 q^{61} -2.23607 q^{63} +(3.80902 - 2.76741i) q^{64} +(12.4184 + 9.02251i) q^{65} +(1.14590 - 3.52671i) q^{66} +6.00000 q^{67} -1.00155 q^{68} +(4.85410 - 14.9394i) q^{69} +(0.263932 + 0.812299i) q^{70} +(2.30902 + 7.10642i) q^{71} +(2.66312 - 1.93487i) q^{72} +(1.31105 - 4.03499i) q^{73} +(-1.31105 + 0.952532i) q^{74} +(-0.572949 - 1.76336i) q^{76} +(3.43237 + 2.49376i) q^{77} +(-4.85410 - 3.52671i) q^{78} +(-3.43237 - 10.5637i) q^{79} +(5.69098 + 4.13474i) q^{80} +(8.66312 - 6.29412i) q^{81} +(0.881966 - 2.71441i) q^{82} +(-2.55834 + 1.85874i) q^{83} +(1.31105 + 4.03499i) q^{84} +(-0.373256 - 1.14876i) q^{85} +(-0.0243541 + 0.0749541i) q^{86} -8.47214 q^{87} -6.24574 q^{88} +(-1.81182 + 5.57622i) q^{89} +(1.54508 + 1.12257i) q^{90} +(5.55369 - 4.03499i) q^{91} -12.7279 q^{92} +1.41641 q^{94} +(1.80902 - 1.31433i) q^{95} +(-7.67501 - 5.57622i) q^{96} +(-2.16312 + 6.65740i) q^{97} -2.29180 q^{98} +9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 18 q^{4} + 2 q^{7} - 26 q^{8} + 10 q^{9} + 10 q^{10} + 8 q^{14} + 2 q^{16} - 10 q^{18} - 2 q^{19} - 30 q^{20} - 12 q^{28} + 60 q^{32} - 36 q^{33} + 10 q^{35} - 60 q^{36} - 8 q^{38} + 12 q^{39}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.224514i −0.218508 + 0.158755i −0.691655 0.722228i \(-0.743118\pi\)
0.473147 + 0.880984i \(0.343118\pi\)
\(3\) −1.85123 1.34500i −1.06881 0.776534i −0.0931103 0.995656i \(-0.529681\pi\)
−0.975698 + 0.219121i \(0.929681\pi\)
\(4\) −0.572949 + 1.76336i −0.286475 + 0.881678i
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0.874032 0.356822
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i −0.992318 0.123716i \(-0.960519\pi\)
0.875520 + 0.483181i \(0.160519\pi\)
\(8\) −0.454915 1.40008i −0.160837 0.495005i
\(9\) 0.690983 + 2.12663i 0.230328 + 0.708876i
\(10\) 0.690983 0.502029i 0.218508 0.158755i
\(11\) 1.31105 4.03499i 0.395296 1.21660i −0.533435 0.845841i \(-0.679099\pi\)
0.928731 0.370755i \(-0.120901\pi\)
\(12\) 3.43237 2.49376i 0.990839 0.719887i
\(13\) −5.55369 4.03499i −1.54032 1.11911i −0.950137 0.311833i \(-0.899057\pi\)
−0.590179 0.807272i \(-0.700943\pi\)
\(14\) −0.118034 0.363271i −0.0315459 0.0970883i
\(15\) 4.13948 + 3.00750i 1.06881 + 0.776534i
\(16\) −2.54508 1.84911i −0.636271 0.462278i
\(17\) 0.166925 + 0.513743i 0.0404853 + 0.124601i 0.969256 0.246053i \(-0.0791337\pi\)
−0.928771 + 0.370654i \(0.879134\pi\)
\(18\) −0.690983 0.502029i −0.162866 0.118329i
\(19\) −0.809017 + 0.587785i −0.185601 + 0.134847i −0.676706 0.736253i \(-0.736593\pi\)
0.491105 + 0.871100i \(0.336593\pi\)
\(20\) 1.28115 3.94298i 0.286475 0.881678i
\(21\) 1.85123 1.34500i 0.403971 0.293502i
\(22\) 0.500776 + 1.54123i 0.106766 + 0.328591i
\(23\) 2.12132 + 6.52875i 0.442326 + 1.36134i 0.885390 + 0.464849i \(0.153891\pi\)
−0.443064 + 0.896490i \(0.646109\pi\)
\(24\) −1.04096 + 3.20374i −0.212485 + 0.653960i
\(25\) 0 0
\(26\) 2.62210 0.514235
\(27\) −0.540182 + 1.66251i −0.103958 + 0.319950i
\(28\) −1.50000 1.08981i −0.283473 0.205955i
\(29\) 2.99535 2.17625i 0.556223 0.404120i −0.273852 0.961772i \(-0.588298\pi\)
0.830075 + 0.557652i \(0.188298\pi\)
\(30\) −1.95440 −0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) −7.85410 + 5.70634i −1.36722 + 0.993346i
\(34\) −0.166925 0.121278i −0.0286274 0.0207991i
\(35\) 0.690983 2.12663i 0.116797 0.359466i
\(36\) −4.14590 −0.690983
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 0.118034 0.363271i 0.0191476 0.0589304i
\(39\) 4.85410 + 14.9394i 0.777278 + 2.39222i
\(40\) 1.01722 + 3.13068i 0.160837 + 0.495005i
\(41\) −6.04508 + 4.39201i −0.944084 + 0.685917i −0.949400 0.314069i \(-0.898308\pi\)
0.00531652 + 0.999986i \(0.498308\pi\)
\(42\) −0.270091 + 0.831254i −0.0416759 + 0.128265i
\(43\) 0.166925 0.121278i 0.0254559 0.0184948i −0.574985 0.818164i \(-0.694992\pi\)
0.600440 + 0.799669i \(0.294992\pi\)
\(44\) 6.36396 + 4.62369i 0.959403 + 0.697047i
\(45\) −1.54508 4.75528i −0.230328 0.708876i
\(46\) −2.12132 1.54123i −0.312772 0.227242i
\(47\) −3.00000 2.17963i −0.437595 0.317931i 0.347084 0.937834i \(-0.387172\pi\)
−0.784679 + 0.619903i \(0.787172\pi\)
\(48\) 2.22449 + 6.84626i 0.321077 + 0.988173i
\(49\) 4.85410 + 3.52671i 0.693443 + 0.503816i
\(50\) 0 0
\(51\) 0.381966 1.17557i 0.0534859 0.164613i
\(52\) 10.2971 7.48128i 1.42795 1.03747i
\(53\) 1.62054 + 4.98752i 0.222599 + 0.685089i 0.998526 + 0.0542670i \(0.0172822\pi\)
−0.775928 + 0.630822i \(0.782718\pi\)
\(54\) −0.206331 0.635021i −0.0280781 0.0864155i
\(55\) −2.93159 + 9.02251i −0.395296 + 1.21660i
\(56\) 1.47214 0.196722
\(57\) 2.28825 0.303086
\(58\) −0.437016 + 1.34500i −0.0573830 + 0.176607i
\(59\) 4.80902 + 3.49396i 0.626081 + 0.454874i 0.855040 0.518562i \(-0.173532\pi\)
−0.228960 + 0.973436i \(0.573532\pi\)
\(60\) −7.67501 + 5.57622i −0.990839 + 0.719887i
\(61\) 4.44897 0.569632 0.284816 0.958582i \(-0.408067\pi\)
0.284816 + 0.958582i \(0.408067\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) 3.80902 2.76741i 0.476127 0.345927i
\(65\) 12.4184 + 9.02251i 1.54032 + 1.11911i
\(66\) 1.14590 3.52671i 0.141050 0.434108i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) −1.00155 −0.121456
\(69\) 4.85410 14.9394i 0.584365 1.79849i
\(70\) 0.263932 + 0.812299i 0.0315459 + 0.0970883i
\(71\) 2.30902 + 7.10642i 0.274030 + 0.843377i 0.989474 + 0.144708i \(0.0462242\pi\)
−0.715445 + 0.698670i \(0.753776\pi\)
\(72\) 2.66312 1.93487i 0.313852 0.228027i
\(73\) 1.31105 4.03499i 0.153447 0.472260i −0.844554 0.535471i \(-0.820134\pi\)
0.998000 + 0.0632110i \(0.0201341\pi\)
\(74\) −1.31105 + 0.952532i −0.152406 + 0.110730i
\(75\) 0 0
\(76\) −0.572949 1.76336i −0.0657218 0.202271i
\(77\) 3.43237 + 2.49376i 0.391155 + 0.284191i
\(78\) −4.85410 3.52671i −0.549619 0.399321i
\(79\) −3.43237 10.5637i −0.386172 1.18851i −0.935627 0.352991i \(-0.885165\pi\)
0.549455 0.835523i \(-0.314835\pi\)
\(80\) 5.69098 + 4.13474i 0.636271 + 0.462278i
\(81\) 8.66312 6.29412i 0.962569 0.699347i
\(82\) 0.881966 2.71441i 0.0973969 0.299757i
\(83\) −2.55834 + 1.85874i −0.280814 + 0.204023i −0.719272 0.694728i \(-0.755525\pi\)
0.438458 + 0.898751i \(0.355525\pi\)
\(84\) 1.31105 + 4.03499i 0.143047 + 0.440254i
\(85\) −0.373256 1.14876i −0.0404853 0.124601i
\(86\) −0.0243541 + 0.0749541i −0.00262617 + 0.00808251i
\(87\) −8.47214 −0.908308
\(88\) −6.24574 −0.665799
\(89\) −1.81182 + 5.57622i −0.192053 + 0.591078i 0.807945 + 0.589257i \(0.200580\pi\)
−0.999998 + 0.00182083i \(0.999420\pi\)
\(90\) 1.54508 + 1.12257i 0.162866 + 0.118329i
\(91\) 5.55369 4.03499i 0.582185 0.422982i
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) 1.80902 1.31433i 0.185601 0.134847i
\(96\) −7.67501 5.57622i −0.783327 0.569121i
\(97\) −2.16312 + 6.65740i −0.219631 + 0.675956i 0.779161 + 0.626824i \(0.215646\pi\)
−0.998792 + 0.0491321i \(0.984354\pi\)
\(98\) −2.29180 −0.231506
\(99\) 9.48683 0.953463
\(100\) 0 0
\(101\) −0.690983 2.12663i −0.0687554 0.211607i 0.910775 0.412902i \(-0.135485\pi\)
−0.979531 + 0.201295i \(0.935485\pi\)
\(102\) 0.145898 + 0.449028i 0.0144461 + 0.0444604i
\(103\) 2.19098 1.59184i 0.215884 0.156849i −0.474588 0.880208i \(-0.657403\pi\)
0.690472 + 0.723359i \(0.257403\pi\)
\(104\) −3.12287 + 9.61121i −0.306223 + 0.942457i
\(105\) −4.13948 + 3.00750i −0.403971 + 0.293502i
\(106\) −1.62054 1.17739i −0.157401 0.114359i
\(107\) −2.30902 7.10642i −0.223221 0.687004i −0.998467 0.0553447i \(-0.982374\pi\)
0.775246 0.631659i \(-0.217626\pi\)
\(108\) −2.62210 1.90506i −0.252311 0.183315i
\(109\) 11.8992 + 8.64527i 1.13974 + 0.828066i 0.987082 0.160214i \(-0.0512183\pi\)
0.152653 + 0.988280i \(0.451218\pi\)
\(110\) −1.11977 3.44629i −0.106766 0.328591i
\(111\) −7.85410 5.70634i −0.745478 0.541622i
\(112\) 2.54508 1.84911i 0.240488 0.174725i
\(113\) −4.39919 + 13.5393i −0.413841 + 1.27367i 0.499443 + 0.866347i \(0.333538\pi\)
−0.913284 + 0.407324i \(0.866462\pi\)
\(114\) −0.707107 + 0.513743i −0.0662266 + 0.0481165i
\(115\) −4.74342 14.5987i −0.442326 1.36134i
\(116\) 2.12132 + 6.52875i 0.196960 + 0.606179i
\(117\) 4.74342 14.5987i 0.438529 1.34965i
\(118\) −2.27051 −0.209017
\(119\) −0.540182 −0.0495184
\(120\) 2.32765 7.16377i 0.212485 0.653960i
\(121\) −5.66312 4.11450i −0.514829 0.374045i
\(122\) −1.37481 + 0.998856i −0.124469 + 0.0904322i
\(123\) 17.0981 1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0.690983 0.502029i 0.0615577 0.0447243i
\(127\) −7.67501 5.57622i −0.681047 0.494810i 0.192658 0.981266i \(-0.438289\pi\)
−0.873705 + 0.486456i \(0.838289\pi\)
\(128\) −3.11803 + 9.59632i −0.275598 + 0.848203i
\(129\) −0.472136 −0.0415693
\(130\) −5.86319 −0.514235
\(131\) −6.00000 + 18.4661i −0.524222 + 1.61339i 0.241626 + 0.970369i \(0.422319\pi\)
−0.765848 + 0.643021i \(0.777681\pi\)
\(132\) −5.56231 17.1190i −0.484137 1.49002i
\(133\) −0.309017 0.951057i −0.0267952 0.0824671i
\(134\) −1.85410 + 1.34708i −0.160170 + 0.116370i
\(135\) 1.20788 3.71748i 0.103958 0.319950i
\(136\) 0.643347 0.467419i 0.0551666 0.0400808i
\(137\) −5.55369 4.03499i −0.474484 0.344733i 0.324702 0.945816i \(-0.394736\pi\)
−0.799186 + 0.601084i \(0.794736\pi\)
\(138\) 1.85410 + 5.70634i 0.157832 + 0.485756i
\(139\) −0.810272 0.588697i −0.0687264 0.0499327i 0.552892 0.833253i \(-0.313524\pi\)
−0.621618 + 0.783321i \(0.713524\pi\)
\(140\) 3.35410 + 2.43690i 0.283473 + 0.205955i
\(141\) 2.62210 + 8.06998i 0.220820 + 0.679615i
\(142\) −2.30902 1.67760i −0.193768 0.140781i
\(143\) −23.5623 + 17.1190i −1.97038 + 1.43156i
\(144\) 2.17376 6.69015i 0.181147 0.557513i
\(145\) −6.69781 + 4.86624i −0.556223 + 0.404120i
\(146\) 0.500776 + 1.54123i 0.0414445 + 0.127553i
\(147\) −4.24264 13.0575i −0.349927 1.07696i
\(148\) −2.43082 + 7.48128i −0.199812 + 0.614958i
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) 0.937792 2.88623i 0.0763164 0.234878i −0.905620 0.424091i \(-0.860594\pi\)
0.981936 + 0.189213i \(0.0605937\pi\)
\(152\) 1.19098 + 0.865300i 0.0966015 + 0.0701851i
\(153\) −0.977198 + 0.709976i −0.0790017 + 0.0573981i
\(154\) −1.62054 −0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) 3.80902 2.76741i 0.303993 0.220864i −0.425322 0.905042i \(-0.639839\pi\)
0.729315 + 0.684179i \(0.239839\pi\)
\(158\) 3.43237 + 2.49376i 0.273065 + 0.198393i
\(159\) 3.70820 11.4127i 0.294080 0.905084i
\(160\) −9.27051 −0.732898
\(161\) −6.86474 −0.541017
\(162\) −1.26393 + 3.88998i −0.0993039 + 0.305626i
\(163\) −3.83688 11.8087i −0.300528 0.924929i −0.981308 0.192442i \(-0.938359\pi\)
0.680781 0.732487i \(-0.261641\pi\)
\(164\) −4.28115 13.1760i −0.334302 1.02888i
\(165\) 17.5623 12.7598i 1.36722 0.993346i
\(166\) 0.373256 1.14876i 0.0289703 0.0891614i
\(167\) 5.99070 4.35250i 0.463575 0.336807i −0.331357 0.943505i \(-0.607507\pi\)
0.794932 + 0.606699i \(0.207507\pi\)
\(168\) −2.72526 1.98002i −0.210258 0.152762i
\(169\) 10.5451 + 32.4544i 0.811160 + 2.49649i
\(170\) 0.373256 + 0.271187i 0.0286274 + 0.0207991i
\(171\) −1.80902 1.31433i −0.138339 0.100509i
\(172\) 0.118217 + 0.363835i 0.00901397 + 0.0277422i
\(173\) −14.5623 10.5801i −1.10715 0.804393i −0.124939 0.992164i \(-0.539873\pi\)
−0.982213 + 0.187772i \(0.939873\pi\)
\(174\) 2.61803 1.90211i 0.198473 0.144199i
\(175\) 0 0
\(176\) −10.7979 + 7.84512i −0.813921 + 0.591348i
\(177\) −4.20323 12.9362i −0.315934 0.972346i
\(178\) −0.692055 2.12993i −0.0518717 0.159645i
\(179\) 5.07727 15.6262i 0.379493 1.16796i −0.560904 0.827881i \(-0.689546\pi\)
0.940397 0.340078i \(-0.110454\pi\)
\(180\) 9.27051 0.690983
\(181\) 18.1784 1.35119 0.675597 0.737271i \(-0.263886\pi\)
0.675597 + 0.737271i \(0.263886\pi\)
\(182\) −0.810272 + 2.49376i −0.0600614 + 0.184850i
\(183\) −8.23607 5.98385i −0.608828 0.442339i
\(184\) 8.17578 5.94006i 0.602727 0.437907i
\(185\) −9.48683 −0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) 5.56231 4.04125i 0.405673 0.294739i
\(189\) −1.41421 1.02749i −0.102869 0.0747386i
\(190\) −0.263932 + 0.812299i −0.0191476 + 0.0589304i
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) −10.7735 −0.777512
\(193\) −2.25329 + 6.93491i −0.162195 + 0.499186i −0.998819 0.0485928i \(-0.984526\pi\)
0.836623 + 0.547779i \(0.184526\pi\)
\(194\) −0.826238 2.54290i −0.0593204 0.182569i
\(195\) −10.8541 33.4055i −0.777278 2.39222i
\(196\) −9.00000 + 6.53888i −0.642857 + 0.467063i
\(197\) −2.28825 + 7.04250i −0.163031 + 0.501757i −0.998886 0.0471932i \(-0.984972\pi\)
0.835855 + 0.548950i \(0.184972\pi\)
\(198\) −2.93159 + 2.12993i −0.208339 + 0.151367i
\(199\) 11.9176 + 8.65868i 0.844820 + 0.613798i 0.923713 0.383086i \(-0.125139\pi\)
−0.0788931 + 0.996883i \(0.525139\pi\)
\(200\) 0 0
\(201\) −11.1074 8.06998i −0.783454 0.569213i
\(202\) 0.690983 + 0.502029i 0.0486174 + 0.0353226i
\(203\) 1.14412 + 3.52125i 0.0803017 + 0.247143i
\(204\) 1.85410 + 1.34708i 0.129813 + 0.0943147i
\(205\) 13.5172 9.82084i 0.944084 0.685917i
\(206\) −0.319660 + 0.983813i −0.0222718 + 0.0685455i
\(207\) −12.4184 + 9.02251i −0.863140 + 0.627108i
\(208\) 6.67346 + 20.5388i 0.462721 + 1.42411i
\(209\) 1.31105 + 4.03499i 0.0906871 + 0.279106i
\(210\) 0.603941 1.85874i 0.0416759 0.128265i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −9.72327 −0.667797
\(213\) 5.28360 16.2612i 0.362026 1.11420i
\(214\) 2.30902 + 1.67760i 0.157841 + 0.114678i
\(215\) −0.373256 + 0.271187i −0.0254559 + 0.0184948i
\(216\) 2.57339 0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) −7.85410 + 5.70634i −0.530731 + 0.385599i
\(220\) −14.2302 10.3389i −0.959403 0.697047i
\(221\) 1.14590 3.52671i 0.0770814 0.237232i
\(222\) 3.70820 0.248878
\(223\) −21.8021 −1.45998 −0.729988 0.683460i \(-0.760474\pi\)
−0.729988 + 0.683460i \(0.760474\pi\)
\(224\) −1.28115 + 3.94298i −0.0856006 + 0.263452i
\(225\) 0 0
\(226\) −1.68034 5.17155i −0.111775 0.344007i
\(227\) −12.7082 + 9.23305i −0.843473 + 0.612819i −0.923339 0.383987i \(-0.874551\pi\)
0.0798656 + 0.996806i \(0.474551\pi\)
\(228\) −1.31105 + 4.03499i −0.0868263 + 0.267224i
\(229\) −3.43237 + 2.49376i −0.226817 + 0.164792i −0.695390 0.718632i \(-0.744768\pi\)
0.468573 + 0.883425i \(0.344768\pi\)
\(230\) 4.74342 + 3.44629i 0.312772 + 0.227242i
\(231\) −3.00000 9.23305i −0.197386 0.607490i
\(232\) −4.40957 3.20374i −0.289502 0.210336i
\(233\) 3.66312 + 2.66141i 0.239979 + 0.174355i 0.701274 0.712892i \(-0.252615\pi\)
−0.461295 + 0.887247i \(0.652615\pi\)
\(234\) 1.81182 + 5.57622i 0.118443 + 0.364529i
\(235\) 6.70820 + 4.87380i 0.437595 + 0.317931i
\(236\) −8.91641 + 6.47815i −0.580409 + 0.421692i
\(237\) −7.85410 + 24.1724i −0.510179 + 1.57017i
\(238\) 0.166925 0.121278i 0.0108202 0.00786130i
\(239\) −5.05291 15.5513i −0.326846 1.00593i −0.970601 0.240696i \(-0.922624\pi\)
0.643755 0.765232i \(-0.277376\pi\)
\(240\) −4.97410 15.3087i −0.321077 0.988173i
\(241\) 4.55214 14.0100i 0.293229 0.902466i −0.690582 0.723254i \(-0.742645\pi\)
0.983811 0.179211i \(-0.0573546\pi\)
\(242\) 2.67376 0.171876
\(243\) −19.2588 −1.23545
\(244\) −2.54903 + 7.84512i −0.163185 + 0.502232i
\(245\) −10.8541 7.88597i −0.693443 0.503816i
\(246\) −5.28360 + 3.83876i −0.336870 + 0.244750i
\(247\) 6.86474 0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) −3.45492 + 2.51014i −0.218508 + 0.158755i
\(251\) 19.2194 + 13.9637i 1.21312 + 0.881382i 0.995510 0.0946545i \(-0.0301746\pi\)
0.217608 + 0.976036i \(0.430175\pi\)
\(252\) 1.28115 3.94298i 0.0807050 0.248385i
\(253\) 29.1246 1.83105
\(254\) 3.62365 0.227368
\(255\) −0.854102 + 2.62866i −0.0534859 + 0.164613i
\(256\) 1.71885 + 5.29007i 0.107428 + 0.330629i
\(257\) 7.39919 + 22.7724i 0.461549 + 1.42050i 0.863272 + 0.504739i \(0.168411\pi\)
−0.401723 + 0.915761i \(0.631589\pi\)
\(258\) 0.145898 0.106001i 0.00908321 0.00659934i
\(259\) −1.31105 + 4.03499i −0.0814646 + 0.250722i
\(260\) −23.0250 + 16.7287i −1.42795 + 1.03747i
\(261\) 6.69781 + 4.86624i 0.414584 + 0.301213i
\(262\) −2.29180 7.05342i −0.141588 0.435762i
\(263\) −2.18508 1.58755i −0.134738 0.0978928i 0.518375 0.855153i \(-0.326537\pi\)
−0.653113 + 0.757261i \(0.726537\pi\)
\(264\) 11.5623 + 8.40051i 0.711611 + 0.517015i
\(265\) −3.62365 11.1524i −0.222599 0.685089i
\(266\) 0.309017 + 0.224514i 0.0189470 + 0.0137658i
\(267\) 10.8541 7.88597i 0.664260 0.482613i
\(268\) −3.43769 + 10.5801i −0.209991 + 0.646285i
\(269\) −11.9814 + 8.70500i −0.730519 + 0.530753i −0.889728 0.456492i \(-0.849106\pi\)
0.159208 + 0.987245i \(0.449106\pi\)
\(270\) 0.461370 + 1.41995i 0.0280781 + 0.0864155i
\(271\) −8.67656 26.7037i −0.527064 1.62213i −0.760199 0.649690i \(-0.774899\pi\)
0.233135 0.972444i \(-0.425101\pi\)
\(272\) 0.525130 1.61618i 0.0318407 0.0979955i
\(273\) −15.7082 −0.950704
\(274\) 2.62210 0.158407
\(275\) 0 0
\(276\) 23.5623 + 17.1190i 1.41828 + 1.03044i
\(277\) −15.8508 + 11.5163i −0.952382 + 0.691946i −0.951369 0.308054i \(-0.900322\pi\)
−0.00101288 + 0.999999i \(0.500322\pi\)
\(278\) 0.382559 0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) 25.3713 18.4333i 1.51353 1.09964i 0.548944 0.835859i \(-0.315030\pi\)
0.964582 0.263782i \(-0.0849699\pi\)
\(282\) −2.62210 1.90506i −0.156144 0.113445i
\(283\) 7.41641 22.8254i 0.440860 1.35683i −0.446101 0.894982i \(-0.647188\pi\)
0.886961 0.461844i \(-0.152812\pi\)
\(284\) −13.8541 −0.822090
\(285\) −5.11667 −0.303086
\(286\) 3.43769 10.5801i 0.203275 0.625616i
\(287\) −2.30902 7.10642i −0.136297 0.419479i
\(288\) 2.86475 + 8.81678i 0.168807 + 0.519534i
\(289\) 13.5172 9.82084i 0.795131 0.577696i
\(290\) 0.977198 3.00750i 0.0573830 0.176607i
\(291\) 12.9586 9.41498i 0.759647 0.551916i
\(292\) 6.36396 + 4.62369i 0.372423 + 0.270581i
\(293\) −4.85410 14.9394i −0.283580 0.872768i −0.986821 0.161817i \(-0.948265\pi\)
0.703241 0.710951i \(-0.251735\pi\)
\(294\) 4.24264 + 3.08246i 0.247436 + 0.179773i
\(295\) −10.7533 7.81272i −0.626081 0.454874i
\(296\) −1.93004 5.94006i −0.112181 0.345259i
\(297\) 6.00000 + 4.35926i 0.348155 + 0.252950i
\(298\) −4.14590 + 3.01217i −0.240165 + 0.174490i
\(299\) 14.5623 44.8182i 0.842160 2.59190i
\(300\) 0 0
\(301\) 0.0637598 + 0.196232i 0.00367505 + 0.0113106i
\(302\) 0.358205 + 1.10244i 0.0206124 + 0.0634383i
\(303\) −1.58114 + 4.86624i −0.0908341 + 0.279558i
\(304\) 3.14590 0.180430
\(305\) −9.94820 −0.569632
\(306\) 0.142571 0.438789i 0.00815025 0.0250839i
\(307\) 13.0451 + 9.47781i 0.744522 + 0.540927i 0.894124 0.447819i \(-0.147799\pi\)
−0.149602 + 0.988746i \(0.547799\pi\)
\(308\) −6.36396 + 4.62369i −0.362620 + 0.263459i
\(309\) −6.19704 −0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) 18.7082 13.5923i 1.05914 0.769513i
\(313\) 16.9949 + 12.3475i 0.960609 + 0.697924i 0.953292 0.302050i \(-0.0976708\pi\)
0.00731728 + 0.999973i \(0.497671\pi\)
\(314\) −0.555728 + 1.71036i −0.0313616 + 0.0965209i
\(315\) 5.00000 0.281718
\(316\) 20.5942 1.15851
\(317\) 6.72542 20.6987i 0.377737 1.16256i −0.563876 0.825860i \(-0.690690\pi\)
0.941613 0.336697i \(-0.109310\pi\)
\(318\) 1.41641 + 4.35926i 0.0794282 + 0.244455i
\(319\) −4.85410 14.9394i −0.271778 0.836445i
\(320\) −8.51722 + 6.18812i −0.476127 + 0.345927i
\(321\) −5.28360 + 16.2612i −0.294902 + 0.907614i
\(322\) 2.12132 1.54123i 0.118217 0.0858894i
\(323\) −0.437016 0.317511i −0.0243162 0.0176668i
\(324\) 6.13525 + 18.8824i 0.340847 + 1.04902i
\(325\) 0 0
\(326\) 3.83688 + 2.78766i 0.212505 + 0.154394i
\(327\) −10.4003 32.0087i −0.575136 1.77009i
\(328\) 8.89919 + 6.46564i 0.491375 + 0.357005i
\(329\) 3.00000 2.17963i 0.165395 0.120167i
\(330\) −2.56231 + 7.88597i −0.141050 + 0.434108i
\(331\) 20.7368 15.0662i 1.13980 0.828111i 0.152706 0.988272i \(-0.451201\pi\)
0.987091 + 0.160161i \(0.0512013\pi\)
\(332\) −1.81182 5.57622i −0.0994368 0.306035i
\(333\) 2.93159 + 9.02251i 0.160650 + 0.494431i
\(334\) −0.874032 + 2.68999i −0.0478249 + 0.147190i
\(335\) −13.4164 −0.733017
\(336\) −7.19859 −0.392715
\(337\) −1.81182 + 5.57622i −0.0986963 + 0.303756i −0.988199 0.153173i \(-0.951051\pi\)
0.889503 + 0.456929i \(0.151051\pi\)
\(338\) −10.5451 7.66145i −0.573577 0.416728i
\(339\) 26.3542 19.1475i 1.43137 1.03995i
\(340\) 2.23954 0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) −10.5172 + 7.64121i −0.567877 + 0.412586i
\(344\) −0.245737 0.178538i −0.0132492 0.00962613i
\(345\) −10.8541 + 33.4055i −0.584365 + 1.79849i
\(346\) 6.87539 0.369623
\(347\) 25.8384 1.38708 0.693539 0.720419i \(-0.256050\pi\)
0.693539 + 0.720419i \(0.256050\pi\)
\(348\) 4.85410 14.9394i 0.260207 0.800835i
\(349\) 1.85410 + 5.70634i 0.0992478 + 0.305453i 0.988337 0.152280i \(-0.0486615\pi\)
−0.889090 + 0.457733i \(0.848662\pi\)
\(350\) 0 0
\(351\) 9.70820 7.05342i 0.518186 0.376484i
\(352\) 5.43547 16.7287i 0.289712 0.891641i
\(353\) −12.8554 + 9.34003i −0.684226 + 0.497119i −0.874757 0.484562i \(-0.838979\pi\)
0.190531 + 0.981681i \(0.438979\pi\)
\(354\) 4.20323 + 3.05383i 0.223399 + 0.162309i
\(355\) −5.16312 15.8904i −0.274030 0.843377i
\(356\) −8.79478 6.38978i −0.466122 0.338658i
\(357\) 1.00000 + 0.726543i 0.0529256 + 0.0384527i
\(358\) 1.93934 + 5.96869i 0.102497 + 0.315455i
\(359\) −7.89919 5.73910i −0.416903 0.302898i 0.359487 0.933150i \(-0.382952\pi\)
−0.776391 + 0.630252i \(0.782952\pi\)
\(360\) −5.95492 + 4.32650i −0.313852 + 0.228027i
\(361\) −5.56231 + 17.1190i −0.292753 + 0.901001i
\(362\) −5.61745 + 4.08132i −0.295247 + 0.214509i
\(363\) 4.94975 + 15.2338i 0.259794 + 0.799565i
\(364\) 3.93314 + 12.1050i 0.206153 + 0.634473i
\(365\) −2.93159 + 9.02251i −0.153447 + 0.472260i
\(366\) 3.88854 0.203257
\(367\) −12.3153 −0.642851 −0.321426 0.946935i \(-0.604162\pi\)
−0.321426 + 0.946935i \(0.604162\pi\)
\(368\) 6.67346 20.5388i 0.347878 1.07066i
\(369\) −13.5172 9.82084i −0.703678 0.511252i
\(370\) 2.93159 2.12993i 0.152406 0.110730i
\(371\) −5.24419 −0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) −0.708204 + 0.514540i −0.0366204 + 0.0266062i
\(375\) −20.6974 15.0375i −1.06881 0.776534i
\(376\) −1.68692 + 5.19180i −0.0869961 + 0.267747i
\(377\) −25.4164 −1.30901
\(378\) 0.667701 0.0343428
\(379\) −6.00000 + 18.4661i −0.308199 + 0.948540i 0.670265 + 0.742122i \(0.266181\pi\)
−0.978464 + 0.206418i \(0.933819\pi\)
\(380\) 1.28115 + 3.94298i 0.0657218 + 0.202271i
\(381\) 6.70820 + 20.6457i 0.343672 + 1.05771i
\(382\) −4.39919 + 3.19620i −0.225082 + 0.163532i
\(383\) −5.88754 + 18.1200i −0.300839 + 0.925888i 0.680358 + 0.732880i \(0.261824\pi\)
−0.981197 + 0.193008i \(0.938176\pi\)
\(384\) 18.6792 13.5712i 0.953220 0.692555i
\(385\) −7.67501 5.57622i −0.391155 0.284191i
\(386\) −0.860680 2.64890i −0.0438074 0.134825i
\(387\) 0.373256 + 0.271187i 0.0189737 + 0.0137852i
\(388\) −10.5000 7.62870i −0.533057 0.387288i
\(389\) 10.4397 + 32.1300i 0.529313 + 1.62906i 0.755627 + 0.655002i \(0.227332\pi\)
−0.226314 + 0.974054i \(0.572668\pi\)
\(390\) 10.8541 + 7.88597i 0.549619 + 0.399321i
\(391\) −3.00000 + 2.17963i −0.151717 + 0.110229i
\(392\) 2.72949 8.40051i 0.137860 0.424290i
\(393\) 35.9442 26.1150i 1.81315 1.31733i
\(394\) −0.874032 2.68999i −0.0440331 0.135520i
\(395\) 7.67501 + 23.6212i 0.386172 + 1.18851i
\(396\) −5.43547 + 16.7287i −0.273143 + 0.840647i
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) −5.62675 −0.282044
\(399\) −0.707107 + 2.17625i −0.0353996 + 0.108949i
\(400\) 0 0
\(401\) 2.99535 2.17625i 0.149581 0.108677i −0.510478 0.859891i \(-0.670531\pi\)
0.660059 + 0.751214i \(0.270531\pi\)
\(402\) 5.24419 0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) −19.3713 + 14.0741i −0.962569 + 0.699347i
\(406\) −1.14412 0.831254i −0.0567819 0.0412544i
\(407\) 5.56231 17.1190i 0.275713 0.848558i
\(408\) −1.81966 −0.0900866
\(409\) −17.3531 −0.858057 −0.429028 0.903291i \(-0.641144\pi\)
−0.429028 + 0.903291i \(0.641144\pi\)
\(410\) −1.97214 + 6.06961i −0.0973969 + 0.299757i
\(411\) 4.85410 + 14.9394i 0.239435 + 0.736906i
\(412\) 1.55166 + 4.77553i 0.0764449 + 0.235273i
\(413\) −4.80902 + 3.49396i −0.236636 + 0.171926i
\(414\) 1.81182 5.57622i 0.0890463 0.274056i
\(415\) 5.72061 4.15627i 0.280814 0.204023i
\(416\) −23.0250 16.7287i −1.12889 0.820190i
\(417\) 0.708204 + 2.17963i 0.0346809 + 0.106737i
\(418\) −1.31105 0.952532i −0.0641255 0.0465899i
\(419\) 15.0451 + 10.9309i 0.735000 + 0.534009i 0.891141 0.453726i \(-0.149905\pi\)
−0.156141 + 0.987735i \(0.549905\pi\)
\(420\) −2.93159 9.02251i −0.143047 0.440254i
\(421\) 0.336881 + 0.244758i 0.0164186 + 0.0119288i 0.595964 0.803011i \(-0.296770\pi\)
−0.579546 + 0.814940i \(0.696770\pi\)
\(422\) 1.54508 1.12257i 0.0752136 0.0546458i
\(423\) 2.56231 7.88597i 0.124584 0.383429i
\(424\) 6.24574 4.53780i 0.303320 0.220375i
\(425\) 0 0
\(426\) 2.01815 + 6.21124i 0.0977799 + 0.300936i
\(427\) −1.37481 + 4.23122i −0.0665316 + 0.204763i
\(428\) 13.8541 0.669663
\(429\) 66.6443 3.21762
\(430\) 0.0544574 0.167602i 0.00262617 0.00808251i
\(431\) 0.0901699 + 0.0655123i 0.00434333 + 0.00315562i 0.589955 0.807436i \(-0.299146\pi\)
−0.585611 + 0.810592i \(0.699146\pi\)
\(432\) 4.44897 3.23237i 0.214051 0.155517i
\(433\) 21.5958 1.03783 0.518913 0.854827i \(-0.326337\pi\)
0.518913 + 0.854827i \(0.326337\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) −22.0623 + 16.0292i −1.05659 + 0.767660i
\(437\) −5.55369 4.03499i −0.265669 0.193020i
\(438\) 1.14590 3.52671i 0.0547531 0.168513i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 13.9659 0.665799
\(441\) −4.14590 + 12.7598i −0.197424 + 0.607608i
\(442\) 0.437694 + 1.34708i 0.0208190 + 0.0640742i
\(443\) 7.39919 + 22.7724i 0.351546 + 1.08195i 0.957985 + 0.286817i \(0.0925973\pi\)
−0.606439 + 0.795130i \(0.707403\pi\)
\(444\) 14.5623 10.5801i 0.691096 0.502111i
\(445\) 4.05136 12.4688i 0.192053 0.591078i
\(446\) 6.73722 4.89487i 0.319016 0.231779i
\(447\) −24.8369 18.0450i −1.17474 0.853501i
\(448\) 1.45492 + 4.47777i 0.0687383 + 0.211555i
\(449\) 34.1324 + 24.7986i 1.61081 + 1.17032i 0.860893 + 0.508786i \(0.169905\pi\)
0.749915 + 0.661535i \(0.230095\pi\)
\(450\) 0 0
\(451\) 9.79633 + 30.1500i 0.461291 + 1.41971i
\(452\) −21.3541 15.5147i −1.00441 0.729748i
\(453\) −5.61803 + 4.08174i −0.263958 + 0.191777i
\(454\) 1.85410 5.70634i 0.0870173 0.267812i
\(455\) −12.4184 + 9.02251i −0.582185 + 0.422982i
\(456\) −1.04096 3.20374i −0.0487473 0.150029i
\(457\) 3.49613 + 10.7600i 0.163542 + 0.503330i 0.998926 0.0463365i \(-0.0147546\pi\)
−0.835384 + 0.549667i \(0.814755\pi\)
\(458\) 0.500776 1.54123i 0.0233997 0.0720169i
\(459\) −0.944272 −0.0440748
\(460\) 28.4605 1.32698
\(461\) −12.0846 + 37.1925i −0.562835 + 1.73223i 0.111464 + 0.993768i \(0.464446\pi\)
−0.674299 + 0.738459i \(0.735554\pi\)
\(462\) 3.00000 + 2.17963i 0.139573 + 0.101405i
\(463\) −12.2515 + 8.90124i −0.569376 + 0.413676i −0.834878 0.550435i \(-0.814462\pi\)
0.265503 + 0.964110i \(0.414462\pi\)
\(464\) −11.6476 −0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) −12.6631 + 9.20029i −0.585979 + 0.425739i −0.840875 0.541230i \(-0.817959\pi\)
0.254895 + 0.966969i \(0.417959\pi\)
\(468\) 23.0250 + 16.7287i 1.06433 + 0.773283i
\(469\) −1.85410 + 5.70634i −0.0856145 + 0.263494i
\(470\) −3.16718 −0.146091
\(471\) −10.7735 −0.496418
\(472\) 2.70414 8.32248i 0.124468 0.383073i
\(473\) −0.270510 0.832544i −0.0124381 0.0382804i
\(474\) −3.00000 9.23305i −0.137795 0.424088i
\(475\) 0 0
\(476\) 0.309496 0.952532i 0.0141857 0.0436592i
\(477\) −9.48683 + 6.89259i −0.434372 + 0.315590i
\(478\) 5.05291 + 3.67116i 0.231115 + 0.167915i
\(479\) 7.87132 + 24.2254i 0.359650 + 1.10689i 0.953264 + 0.302139i \(0.0977006\pi\)
−0.593614 + 0.804750i \(0.702299\pi\)
\(480\) 17.1618 + 12.4688i 0.783327 + 0.569121i
\(481\) −23.5623 17.1190i −1.07435 0.780560i
\(482\) 1.73876 + 5.35136i 0.0791984 + 0.243748i
\(483\) 12.7082 + 9.23305i 0.578243 + 0.420118i
\(484\) 10.5000 7.62870i 0.477273 0.346759i
\(485\) 4.83688 14.8864i 0.219631 0.675956i
\(486\) 5.95130 4.32387i 0.269956 0.196135i
\(487\) 5.74497 + 17.6812i 0.260329 + 0.801211i 0.992733 + 0.120340i \(0.0383986\pi\)
−0.732403 + 0.680871i \(0.761601\pi\)
\(488\) −2.02390 6.22894i −0.0916178 0.281971i
\(489\) −8.77973 + 27.0212i −0.397033 + 1.22194i
\(490\) 5.12461 0.231506
\(491\) −9.56564 −0.431691 −0.215846 0.976427i \(-0.569251\pi\)
−0.215846 + 0.976427i \(0.569251\pi\)
\(492\) −9.79633 + 30.1500i −0.441653 + 1.35927i
\(493\) 1.61803 + 1.17557i 0.0728726 + 0.0529450i
\(494\) −2.12132 + 1.54123i −0.0954427 + 0.0693432i
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) −2.23607 + 1.62460i −0.100201 + 0.0728000i
\(499\) −14.8736 10.8063i −0.665834 0.483756i 0.202794 0.979221i \(-0.434998\pi\)
−0.868628 + 0.495465i \(0.834998\pi\)
\(500\) −6.40576 + 19.7149i −0.286475 + 0.881678i
\(501\) −16.9443 −0.757014
\(502\) −9.07417 −0.405000
\(503\) 0.892609 2.74717i 0.0397995 0.122490i −0.929183 0.369621i \(-0.879488\pi\)
0.968982 + 0.247130i \(0.0794876\pi\)
\(504\) 1.01722 + 3.13068i 0.0453106 + 0.139452i
\(505\) 1.54508 + 4.75528i 0.0687554 + 0.211607i
\(506\) −9.00000 + 6.53888i −0.400099 + 0.290689i
\(507\) 24.1297 74.2637i 1.07164 3.29817i
\(508\) 14.2302 10.3389i 0.631365 0.458714i
\(509\) 3.86938 + 2.81127i 0.171507 + 0.124607i 0.670228 0.742156i \(-0.266196\pi\)
−0.498720 + 0.866763i \(0.666196\pi\)
\(510\) −0.326238 1.00406i −0.0144461 0.0444604i
\(511\) 3.43237 + 2.49376i 0.151839 + 0.110318i
\(512\) −18.0451 13.1105i −0.797488 0.579409i
\(513\) −0.540182 1.66251i −0.0238496 0.0734015i
\(514\) −7.39919 5.37582i −0.326364 0.237117i
\(515\) −4.89919 + 3.55947i −0.215884 + 0.156849i
\(516\) 0.270510 0.832544i 0.0119085 0.0366507i
\(517\) −12.7279 + 9.24738i −0.559773 + 0.406699i
\(518\) −0.500776 1.54123i −0.0220028 0.0677177i
\(519\) 12.7279 + 39.1725i 0.558694 + 1.71948i
\(520\) 6.98295 21.4913i 0.306223 0.942457i
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) −3.16228 −0.138409
\(523\) 8.98606 27.6562i 0.392933 1.20932i −0.537627 0.843183i \(-0.680679\pi\)
0.930560 0.366140i \(-0.119321\pi\)
\(524\) −29.1246 21.1603i −1.27231 0.924391i
\(525\) 0 0
\(526\) 1.03165 0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) −19.5172 + 14.1801i −0.848575 + 0.616526i
\(530\) 3.62365 + 2.63273i 0.157401 + 0.114359i
\(531\) −4.10739 + 12.6412i −0.178246 + 0.548583i
\(532\) 1.85410 0.0803855
\(533\) 51.2942 2.22180
\(534\) −1.58359 + 4.87380i −0.0685287 + 0.210910i
\(535\) 5.16312 + 15.8904i 0.223221 + 0.687004i
\(536\) −2.72949 8.40051i −0.117896 0.362847i
\(537\) −30.4164 + 22.0988i −1.31256 + 0.953634i
\(538\) 1.74806 5.37999i 0.0753644 0.231948i
\(539\) 20.5942 14.9626i 0.887055 0.644484i
\(540\) 5.86319 + 4.25985i 0.252311 + 0.183315i
\(541\) −8.60081 26.4706i −0.369778 1.13806i −0.946935 0.321426i \(-0.895838\pi\)
0.577157 0.816633i \(-0.304162\pi\)
\(542\) 8.67656 + 6.30389i 0.372690 + 0.270775i
\(543\) −33.6525 24.4500i −1.44417 1.04925i
\(544\) 0.692055 + 2.12993i 0.0296716 + 0.0913199i
\(545\) −26.6074 19.3314i −1.13974 0.828066i
\(546\) 4.85410 3.52671i 0.207736 0.150929i
\(547\) −7.54508 + 23.2214i −0.322605 + 0.992875i 0.649906 + 0.760015i \(0.274808\pi\)
−0.972510 + 0.232860i \(0.925192\pi\)
\(548\) 10.2971 7.48128i 0.439871 0.319585i
\(549\) 3.07416 + 9.46130i 0.131202 + 0.403799i
\(550\) 0 0
\(551\) −1.14412 + 3.52125i −0.0487413 + 0.150010i
\(552\) −23.1246 −0.984249
\(553\) 11.1074 0.472334
\(554\) 2.31260 7.11745i 0.0982529 0.302391i
\(555\) 17.5623 + 12.7598i 0.745478 + 0.541622i
\(556\) 1.50233 1.09150i 0.0637129 0.0462901i
\(557\) −23.2951 −0.987046 −0.493523 0.869733i \(-0.664291\pi\)
−0.493523 + 0.869733i \(0.664291\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) −5.69098 + 4.13474i −0.240488 + 0.174725i
\(561\) −4.24264 3.08246i −0.179124 0.130142i
\(562\) −3.70163 + 11.3924i −0.156144 + 0.480561i
\(563\) 14.2361 0.599979 0.299989 0.953943i \(-0.403017\pi\)
0.299989 + 0.953943i \(0.403017\pi\)
\(564\) −15.7326 −0.662461
\(565\) 9.83688 30.2748i 0.413841 1.27367i
\(566\) 2.83282 + 8.71851i 0.119072 + 0.366466i
\(567\) 3.30902 + 10.1841i 0.138966 + 0.427692i
\(568\) 8.89919 6.46564i 0.373402 0.271292i
\(569\) −9.48683 + 29.1975i −0.397709 + 1.22402i 0.529123 + 0.848545i \(0.322521\pi\)
−0.926832 + 0.375477i \(0.877479\pi\)
\(570\) 1.58114 1.14876i 0.0662266 0.0481165i
\(571\) −5.55369 4.03499i −0.232415 0.168859i 0.465483 0.885057i \(-0.345881\pi\)
−0.697897 + 0.716198i \(0.745881\pi\)
\(572\) −16.6869 51.3571i −0.697715 2.14735i
\(573\) −26.3542 19.1475i −1.10096 0.799897i
\(574\) 2.30902 + 1.67760i 0.0963765 + 0.0700216i
\(575\) 0 0
\(576\) 8.51722 + 6.18812i 0.354884 + 0.257838i
\(577\) 24.2705 17.6336i 1.01039 0.734095i 0.0461028 0.998937i \(-0.485320\pi\)
0.964292 + 0.264842i \(0.0853198\pi\)
\(578\) −1.97214 + 6.06961i −0.0820300 + 0.252463i
\(579\) 13.4988 9.80744i 0.560991 0.407583i
\(580\) −4.74342 14.5987i −0.196960 0.606179i
\(581\) −0.977198 3.00750i −0.0405410 0.124772i
\(582\) −1.89064 + 5.81878i −0.0783694 + 0.241196i
\(583\) 22.2492 0.921469
\(584\) −6.24574 −0.258451
\(585\) −10.6066 + 32.6438i −0.438529 + 1.34965i
\(586\) 4.85410 + 3.52671i 0.200521 + 0.145687i
\(587\) −33.3221 + 24.2099i −1.37535 + 0.999251i −0.378054 + 0.925784i \(0.623407\pi\)
−0.997298 + 0.0734679i \(0.976593\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) 13.7082 9.95959i 0.563880 0.409683i
\(592\) −10.7979 7.84512i −0.443790 0.322432i
\(593\) −5.30902 + 16.3395i −0.218015 + 0.670982i 0.780911 + 0.624643i \(0.214755\pi\)
−0.998926 + 0.0463389i \(0.985245\pi\)
\(594\) −2.83282 −0.116232
\(595\) 1.20788 0.0495184
\(596\) −7.68692 + 23.6579i −0.314868 + 0.969065i
\(597\) −10.4164 32.0584i −0.426315 1.31206i
\(598\) 5.56231 + 17.1190i 0.227460 + 0.700049i
\(599\) −19.3713 + 14.0741i −0.791491 + 0.575052i −0.908406 0.418090i \(-0.862700\pi\)
0.116915 + 0.993142i \(0.462700\pi\)
\(600\) 0 0
\(601\) −7.03166 + 5.10880i −0.286827 + 0.208392i −0.721890 0.692008i \(-0.756726\pi\)
0.435062 + 0.900400i \(0.356726\pi\)
\(602\) −0.0637598 0.0463242i −0.00259865 0.00188803i
\(603\) 4.14590 + 12.7598i 0.168834 + 0.519618i
\(604\) 4.55214 + 3.30732i 0.185224 + 0.134573i
\(605\) 12.6631 + 9.20029i 0.514829 + 0.374045i
\(606\) −0.603941 1.85874i −0.0245334 0.0755062i
\(607\) 20.3262 + 14.7679i 0.825017 + 0.599410i 0.918145 0.396244i \(-0.129687\pi\)
−0.0931285 + 0.995654i \(0.529687\pi\)
\(608\) −3.35410 + 2.43690i −0.136027 + 0.0988293i
\(609\) 2.61803 8.05748i 0.106088 0.326506i
\(610\) 3.07416 2.23351i 0.124469 0.0904322i
\(611\) 7.86629 + 24.2099i 0.318236 + 0.979430i
\(612\) −0.692055 2.12993i −0.0279747 0.0860972i
\(613\) −11.5444 + 35.5300i −0.466274 + 1.43504i 0.391100 + 0.920348i \(0.372095\pi\)
−0.857374 + 0.514695i \(0.827905\pi\)
\(614\) −6.15905 −0.248559
\(615\) −38.2325 −1.54168
\(616\) 1.93004 5.94006i 0.0777636 0.239332i
\(617\) 38.1246 + 27.6992i 1.53484 + 1.11513i 0.953471 + 0.301485i \(0.0974824\pi\)
0.581368 + 0.813641i \(0.302518\pi\)
\(618\) 1.91499 1.39132i 0.0770322 0.0559671i
\(619\) −21.5958 −0.868007 −0.434003 0.900911i \(-0.642899\pi\)
−0.434003 + 0.900911i \(0.642899\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) −5.10739 + 3.71074i −0.204788 + 0.148787i
\(623\) −4.74342 3.44629i −0.190041 0.138073i
\(624\) 15.2705 46.9978i 0.611310 1.88142i
\(625\) −25.0000 −1.00000
\(626\) −8.02391 −0.320700
\(627\) 3.00000 9.23305i 0.119808 0.368733i
\(628\) 2.69756 + 8.30224i 0.107644 + 0.331295i
\(629\) 0.708204 + 2.17963i 0.0282379 + 0.0869074i
\(630\) −1.54508 + 1.12257i −0.0615577 + 0.0447243i
\(631\) −1.43857 + 4.42746i −0.0572685 + 0.176254i −0.975599 0.219560i \(-0.929538\pi\)
0.918330 + 0.395815i \(0.129538\pi\)
\(632\) −13.2287 + 9.61121i −0.526209 + 0.382313i
\(633\) 9.25615 + 6.72499i 0.367899 + 0.267294i
\(634\) 2.56888 + 7.90621i 0.102023 + 0.313996i
\(635\) 17.1618 + 12.4688i 0.681047 + 0.494810i
\(636\) 18.0000 + 13.0778i 0.713746 + 0.518567i
\(637\) −12.7279 39.1725i −0.504299 1.55207i
\(638\) 4.85410 + 3.52671i 0.192176 + 0.139624i
\(639\) −13.5172 + 9.82084i −0.534733 + 0.388506i
\(640\) 6.97214 21.4580i 0.275598 0.848203i
\(641\) 6.86474 4.98752i 0.271141 0.196995i −0.443903 0.896075i \(-0.646407\pi\)
0.715044 + 0.699079i \(0.246407\pi\)
\(642\) −2.01815 6.21124i −0.0796502 0.245138i
\(643\) −7.30175 22.4725i −0.287953 0.886228i −0.985498 0.169687i \(-0.945724\pi\)
0.697545 0.716541i \(-0.254276\pi\)
\(644\) 3.93314 12.1050i 0.154988 0.477003i
\(645\) 1.05573 0.0415693
\(646\) 0.206331 0.00811798
\(647\) 5.91189 18.1949i 0.232421 0.715317i −0.765033 0.643992i \(-0.777277\pi\)
0.997453 0.0713252i \(-0.0227228\pi\)
\(648\) −12.7533 9.26581i −0.500997 0.363995i
\(649\) 20.4029 14.8236i 0.800885 0.581877i
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) 5.38197 3.91023i 0.210613 0.153019i −0.477478 0.878644i \(-0.658449\pi\)
0.688091 + 0.725625i \(0.258449\pi\)
\(654\) 10.4003 + 7.55624i 0.406683 + 0.295472i
\(655\) 13.4164 41.2915i 0.524222 1.61339i
\(656\) 23.5066 0.917778
\(657\) 9.48683 0.370117
\(658\) −0.437694 + 1.34708i −0.0170631 + 0.0525148i
\(659\) 14.5795 + 44.8712i 0.567938 + 1.74793i 0.659057 + 0.752093i \(0.270955\pi\)
−0.0911197 + 0.995840i \(0.529045\pi\)
\(660\) 12.4377 + 38.2793i 0.484137 + 1.49002i
\(661\) 37.0795 26.9399i 1.44223 1.04784i 0.454655 0.890668i \(-0.349763\pi\)
0.987571 0.157171i \(-0.0502375\pi\)
\(662\) −3.02546 + 9.31140i −0.117588 + 0.361898i
\(663\) −6.86474 + 4.98752i −0.266604 + 0.193699i
\(664\) 3.76622 + 2.73632i 0.146158 + 0.106190i
\(665\) 0.690983 + 2.12663i 0.0267952 + 0.0824671i
\(666\) −2.93159 2.12993i −0.113597 0.0825330i
\(667\) 20.5623 + 14.9394i 0.796176 + 0.578455i
\(668\) 4.24264 + 13.0575i 0.164153 + 0.505210i
\(669\) 40.3607 + 29.3238i 1.56043 + 1.13372i
\(670\) 4.14590 3.01217i 0.160170 0.116370i
\(671\) 5.83282 17.9516i 0.225173 0.693012i
\(672\) 7.67501 5.57622i 0.296070 0.215107i
\(673\) −2.30330 7.08882i −0.0887856 0.273254i 0.896799 0.442439i \(-0.145887\pi\)
−0.985584 + 0.169185i \(0.945887\pi\)
\(674\) −0.692055 2.12993i −0.0266570 0.0820417i
\(675\) 0 0
\(676\) −63.2705 −2.43348
\(677\) −21.2132 −0.815290 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(678\) −3.84503 + 11.8338i −0.147668 + 0.454474i
\(679\) −5.66312 4.11450i −0.217331 0.157900i
\(680\) −1.43857 + 1.04518i −0.0551666 + 0.0400808i
\(681\) 35.9442 1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) 3.35410 2.43690i 0.128247 0.0931771i
\(685\) 12.4184 + 9.02251i 0.474484 + 0.344733i
\(686\) 1.53444 4.72253i 0.0585853 0.180307i
\(687\) 9.70820 0.370391
\(688\) −0.649096 −0.0247466
\(689\) 11.1246 34.2380i 0.423814 1.30437i
\(690\) −4.14590 12.7598i −0.157832 0.485756i
\(691\) −6.66970 20.5272i −0.253727 0.780892i −0.994078 0.108671i \(-0.965340\pi\)
0.740351 0.672221i \(-0.234660\pi\)
\(692\) 27.0000 19.6166i 1.02639 0.745713i
\(693\) −2.93159 + 9.02251i −0.111362 + 0.342737i
\(694\) −7.98451 + 5.80108i −0.303088 + 0.220206i
\(695\) 1.81182 + 1.31637i 0.0687264 + 0.0499327i
\(696\) 3.85410 + 11.8617i 0.146089 + 0.449617i
\(697\) −3.26544 2.37248i −0.123687 0.0898642i
\(698\) −1.85410 1.34708i −0.0701788 0.0509879i
\(699\) −3.20168 9.85377i −0.121099 0.372704i
\(700\) 0 0
\(701\) −22.3713 + 16.2537i −0.844953 + 0.613894i −0.923750 0.382996i \(-0.874892\pi\)
0.0787967 + 0.996891i \(0.474892\pi\)
\(702\) −1.41641 + 4.35926i −0.0534589 + 0.164529i
\(703\) −3.43237 + 2.49376i −0.129454 + 0.0940540i
\(704\) −6.17268 18.9976i −0.232642 0.715998i
\(705\) −5.86319 18.0450i −0.220820 0.679615i
\(706\) 1.87558 5.77245i 0.0705885 0.217249i
\(707\) 2.23607 0.0840960
\(708\) 25.2194 0.947803
\(709\) 4.86163 14.9626i 0.182582 0.561931i −0.817316 0.576190i \(-0.804539\pi\)
0.999898 + 0.0142588i \(0.00453887\pi\)
\(710\) 5.16312 + 3.75123i 0.193768 + 0.140781i
\(711\) 20.0934 14.5987i 0.753563 0.547495i
\(712\) 8.63141 0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) 52.6869 38.2793i 1.97038 1.43156i
\(716\) 24.6456 + 17.9061i 0.921048 + 0.669181i
\(717\) −11.5623 + 35.5851i −0.431802 + 1.32895i
\(718\) 3.72949 0.139183
\(719\) −9.10427 −0.339532 −0.169766 0.985484i \(-0.554301\pi\)
−0.169766 + 0.985484i \(0.554301\pi\)
\(720\) −4.86068 + 14.9596i −0.181147 + 0.557513i
\(721\) 0.836881 + 2.57565i 0.0311671 + 0.0959224i
\(722\) −2.12461 6.53888i −0.0790699 0.243352i
\(723\) −27.2705 + 19.8132i −1.01420 + 0.736860i
\(724\) −10.4153 + 32.0551i −0.387082 + 1.19132i
\(725\) 0 0
\(726\) −4.94975 3.59620i −0.183702 0.133468i
\(727\) −1.10739 3.40820i −0.0410709 0.126403i 0.928419 0.371535i \(-0.121169\pi\)
−0.969490 + 0.245132i \(0.921169\pi\)
\(728\) −8.17578 5.94006i −0.303015 0.220153i
\(729\) 9.66312 + 7.02067i 0.357893 + 0.260025i
\(730\) −1.11977 3.44629i −0.0414445 0.127553i
\(731\) 0.0901699 + 0.0655123i 0.00333506 + 0.00242306i
\(732\) 15.2705 11.0947i 0.564414 0.410071i
\(733\) 3.83688 11.8087i 0.141718 0.436164i −0.854856 0.518865i \(-0.826355\pi\)
0.996574 + 0.0827009i \(0.0263546\pi\)
\(734\) 3.80562 2.76495i 0.140468 0.102056i
\(735\) 9.48683 + 29.1975i 0.349927 + 1.07696i
\(736\) 8.79478 + 27.0675i 0.324180 + 0.997723i
\(737\) 7.86629 24.2099i 0.289758 0.891785i
\(738\) 6.38197 0.234923
\(739\) −25.6622 −0.943998 −0.471999 0.881599i \(-0.656467\pi\)
−0.471999 + 0.881599i \(0.656467\pi\)
\(740\) 5.43547 16.7287i 0.199812 0.614958i
\(741\) −12.7082 9.23305i −0.466848 0.339185i
\(742\) 1.62054 1.17739i 0.0594921 0.0432235i
\(743\) −1.69936 −0.0623433 −0.0311717 0.999514i \(-0.509924\pi\)
−0.0311717 + 0.999514i \(0.509924\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) 7.01722 5.09831i 0.256919 0.186662i
\(747\) −5.72061 4.15627i −0.209306 0.152070i
\(748\) −1.31308 + 4.04125i −0.0480110 + 0.147763i
\(749\) 7.47214 0.273026
\(750\) 9.77198 0.356822
\(751\) 9.12868 28.0952i 0.333110 1.02521i −0.634535 0.772894i \(-0.718808\pi\)
0.967645 0.252314i \(-0.0811915\pi\)
\(752\) 3.60488 + 11.0947i 0.131456 + 0.404581i
\(753\) −16.7984 51.7001i −0.612167 1.88406i
\(754\) 7.85410 5.70634i 0.286030 0.207813i
\(755\) −2.09697 + 6.45380i −0.0763164 + 0.234878i
\(756\) 2.62210 1.90506i 0.0953647 0.0692865i
\(757\) 15.5169 + 11.2737i 0.563973 + 0.409750i 0.832911 0.553407i \(-0.186673\pi\)
−0.268938 + 0.963158i \(0.586673\pi\)
\(758\) −2.29180 7.05342i −0.0832418 0.256192i
\(759\) −53.9163 39.1725i −1.95704 1.42187i
\(760\) −2.66312 1.93487i −0.0966015 0.0701851i
\(761\) 0.692055 + 2.12993i 0.0250870 + 0.0772098i 0.962816 0.270157i \(-0.0870757\pi\)
−0.937729 + 0.347367i \(0.887076\pi\)
\(762\) −6.70820 4.87380i −0.243013 0.176559i
\(763\) −11.8992 + 8.64527i −0.430779 + 0.312980i
\(764\) −8.15654 + 25.1033i −0.295093 + 0.908204i
\(765\) 2.18508 1.58755i 0.0790017 0.0573981i
\(766\) −2.24884 6.92122i −0.0812539 0.250074i
\(767\) −12.6097 38.8087i −0.455310 1.40130i
\(768\) 3.93314 12.1050i 0.141925 0.436801i
\(769\) 13.8754 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(770\) 3.62365 0.130587
\(771\) 16.9312 52.1087i 0.609761 1.87665i