Properties

Label 961.2.d.j.374.1
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.1
Root \(-0.437016 + 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.j.388.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.224514i) q^{2} +(-1.85123 + 1.34500i) q^{3} +(-0.572949 - 1.76336i) q^{4} -2.23607 q^{5} +0.874032 q^{6} +(-0.309017 - 0.951057i) q^{7} +(-0.454915 + 1.40008i) q^{8} +(0.690983 - 2.12663i) q^{9} +(0.690983 + 0.502029i) q^{10} +(1.31105 + 4.03499i) q^{11} +(3.43237 + 2.49376i) q^{12} +(-5.55369 + 4.03499i) q^{13} +(-0.118034 + 0.363271i) q^{14} +(4.13948 - 3.00750i) q^{15} +(-2.54508 + 1.84911i) q^{16} +(0.166925 - 0.513743i) q^{17} +(-0.690983 + 0.502029i) q^{18} +(-0.809017 - 0.587785i) q^{19} +(1.28115 + 3.94298i) q^{20} +(1.85123 + 1.34500i) q^{21} +(0.500776 - 1.54123i) q^{22} +(2.12132 - 6.52875i) q^{23} +(-1.04096 - 3.20374i) q^{24} +2.62210 q^{26} +(-0.540182 - 1.66251i) q^{27} +(-1.50000 + 1.08981i) q^{28} +(2.99535 + 2.17625i) q^{29} -1.95440 q^{30} +4.14590 q^{32} +(-7.85410 - 5.70634i) q^{33} +(-0.166925 + 0.121278i) q^{34} +(0.690983 + 2.12663i) q^{35} -4.14590 q^{36} +4.24264 q^{37} +(0.118034 + 0.363271i) q^{38} +(4.85410 - 14.9394i) q^{39} +(1.01722 - 3.13068i) q^{40} +(-6.04508 - 4.39201i) q^{41} +(-0.270091 - 0.831254i) q^{42} +(0.166925 + 0.121278i) q^{43} +(6.36396 - 4.62369i) q^{44} +(-1.54508 + 4.75528i) q^{45} +(-2.12132 + 1.54123i) q^{46} +(-3.00000 + 2.17963i) q^{47} +(2.22449 - 6.84626i) q^{48} +(4.85410 - 3.52671i) q^{49} +(0.381966 + 1.17557i) q^{51} +(10.2971 + 7.48128i) q^{52} +(1.62054 - 4.98752i) q^{53} +(-0.206331 + 0.635021i) q^{54} +(-2.93159 - 9.02251i) q^{55} +1.47214 q^{56} +2.28825 q^{57} +(-0.437016 - 1.34500i) q^{58} +(4.80902 - 3.49396i) q^{59} +(-7.67501 - 5.57622i) q^{60} +4.44897 q^{61} -2.23607 q^{63} +(3.80902 + 2.76741i) q^{64} +(12.4184 - 9.02251i) q^{65} +(1.14590 + 3.52671i) q^{66} +6.00000 q^{67} -1.00155 q^{68} +(4.85410 + 14.9394i) q^{69} +(0.263932 - 0.812299i) q^{70} +(2.30902 - 7.10642i) q^{71} +(2.66312 + 1.93487i) q^{72} +(1.31105 + 4.03499i) q^{73} +(-1.31105 - 0.952532i) q^{74} +(-0.572949 + 1.76336i) q^{76} +(3.43237 - 2.49376i) q^{77} +(-4.85410 + 3.52671i) q^{78} +(-3.43237 + 10.5637i) q^{79} +(5.69098 - 4.13474i) q^{80} +(8.66312 + 6.29412i) q^{81} +(0.881966 + 2.71441i) q^{82} +(-2.55834 - 1.85874i) q^{83} +(1.31105 - 4.03499i) q^{84} +(-0.373256 + 1.14876i) q^{85} +(-0.0243541 - 0.0749541i) q^{86} -8.47214 q^{87} -6.24574 q^{88} +(-1.81182 - 5.57622i) q^{89} +(1.54508 - 1.12257i) q^{90} +(5.55369 + 4.03499i) q^{91} -12.7279 q^{92} +1.41641 q^{94} +(1.80902 + 1.31433i) q^{95} +(-7.67501 + 5.57622i) q^{96} +(-2.16312 - 6.65740i) q^{97} -2.29180 q^{98} +9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 18 q^{4} + 2 q^{7} - 26 q^{8} + 10 q^{9} + 10 q^{10} + 8 q^{14} + 2 q^{16} - 10 q^{18} - 2 q^{19} - 30 q^{20} - 12 q^{28} + 60 q^{32} - 36 q^{33} + 10 q^{35} - 60 q^{36} - 8 q^{38} + 12 q^{39}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.224514i −0.218508 0.158755i 0.473147 0.880984i \(-0.343118\pi\)
−0.691655 + 0.722228i \(0.743118\pi\)
\(3\) −1.85123 + 1.34500i −1.06881 + 0.776534i −0.975698 0.219121i \(-0.929681\pi\)
−0.0931103 + 0.995656i \(0.529681\pi\)
\(4\) −0.572949 1.76336i −0.286475 0.881678i
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0.874032 0.356822
\(7\) −0.309017 0.951057i −0.116797 0.359466i 0.875520 0.483181i \(-0.160519\pi\)
−0.992318 + 0.123716i \(0.960519\pi\)
\(8\) −0.454915 + 1.40008i −0.160837 + 0.495005i
\(9\) 0.690983 2.12663i 0.230328 0.708876i
\(10\) 0.690983 + 0.502029i 0.218508 + 0.158755i
\(11\) 1.31105 + 4.03499i 0.395296 + 1.21660i 0.928731 + 0.370755i \(0.120901\pi\)
−0.533435 + 0.845841i \(0.679099\pi\)
\(12\) 3.43237 + 2.49376i 0.990839 + 0.719887i
\(13\) −5.55369 + 4.03499i −1.54032 + 1.11911i −0.590179 + 0.807272i \(0.700943\pi\)
−0.950137 + 0.311833i \(0.899057\pi\)
\(14\) −0.118034 + 0.363271i −0.0315459 + 0.0970883i
\(15\) 4.13948 3.00750i 1.06881 0.776534i
\(16\) −2.54508 + 1.84911i −0.636271 + 0.462278i
\(17\) 0.166925 0.513743i 0.0404853 0.124601i −0.928771 0.370654i \(-0.879134\pi\)
0.969256 + 0.246053i \(0.0791337\pi\)
\(18\) −0.690983 + 0.502029i −0.162866 + 0.118329i
\(19\) −0.809017 0.587785i −0.185601 0.134847i 0.491105 0.871100i \(-0.336593\pi\)
−0.676706 + 0.736253i \(0.736593\pi\)
\(20\) 1.28115 + 3.94298i 0.286475 + 0.881678i
\(21\) 1.85123 + 1.34500i 0.403971 + 0.293502i
\(22\) 0.500776 1.54123i 0.106766 0.328591i
\(23\) 2.12132 6.52875i 0.442326 1.36134i −0.443064 0.896490i \(-0.646109\pi\)
0.885390 0.464849i \(-0.153891\pi\)
\(24\) −1.04096 3.20374i −0.212485 0.653960i
\(25\) 0 0
\(26\) 2.62210 0.514235
\(27\) −0.540182 1.66251i −0.103958 0.319950i
\(28\) −1.50000 + 1.08981i −0.283473 + 0.205955i
\(29\) 2.99535 + 2.17625i 0.556223 + 0.404120i 0.830075 0.557652i \(-0.188298\pi\)
−0.273852 + 0.961772i \(0.588298\pi\)
\(30\) −1.95440 −0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) −7.85410 5.70634i −1.36722 0.993346i
\(34\) −0.166925 + 0.121278i −0.0286274 + 0.0207991i
\(35\) 0.690983 + 2.12663i 0.116797 + 0.359466i
\(36\) −4.14590 −0.690983
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 0.118034 + 0.363271i 0.0191476 + 0.0589304i
\(39\) 4.85410 14.9394i 0.777278 2.39222i
\(40\) 1.01722 3.13068i 0.160837 0.495005i
\(41\) −6.04508 4.39201i −0.944084 0.685917i 0.00531652 0.999986i \(-0.498308\pi\)
−0.949400 + 0.314069i \(0.898308\pi\)
\(42\) −0.270091 0.831254i −0.0416759 0.128265i
\(43\) 0.166925 + 0.121278i 0.0254559 + 0.0184948i 0.600440 0.799669i \(-0.294992\pi\)
−0.574985 + 0.818164i \(0.694992\pi\)
\(44\) 6.36396 4.62369i 0.959403 0.697047i
\(45\) −1.54508 + 4.75528i −0.230328 + 0.708876i
\(46\) −2.12132 + 1.54123i −0.312772 + 0.227242i
\(47\) −3.00000 + 2.17963i −0.437595 + 0.317931i −0.784679 0.619903i \(-0.787172\pi\)
0.347084 + 0.937834i \(0.387172\pi\)
\(48\) 2.22449 6.84626i 0.321077 0.988173i
\(49\) 4.85410 3.52671i 0.693443 0.503816i
\(50\) 0 0
\(51\) 0.381966 + 1.17557i 0.0534859 + 0.164613i
\(52\) 10.2971 + 7.48128i 1.42795 + 1.03747i
\(53\) 1.62054 4.98752i 0.222599 0.685089i −0.775928 0.630822i \(-0.782718\pi\)
0.998526 0.0542670i \(-0.0172822\pi\)
\(54\) −0.206331 + 0.635021i −0.0280781 + 0.0864155i
\(55\) −2.93159 9.02251i −0.395296 1.21660i
\(56\) 1.47214 0.196722
\(57\) 2.28825 0.303086
\(58\) −0.437016 1.34500i −0.0573830 0.176607i
\(59\) 4.80902 3.49396i 0.626081 0.454874i −0.228960 0.973436i \(-0.573532\pi\)
0.855040 + 0.518562i \(0.173532\pi\)
\(60\) −7.67501 5.57622i −0.990839 0.719887i
\(61\) 4.44897 0.569632 0.284816 0.958582i \(-0.408067\pi\)
0.284816 + 0.958582i \(0.408067\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) 3.80902 + 2.76741i 0.476127 + 0.345927i
\(65\) 12.4184 9.02251i 1.54032 1.11911i
\(66\) 1.14590 + 3.52671i 0.141050 + 0.434108i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) −1.00155 −0.121456
\(69\) 4.85410 + 14.9394i 0.584365 + 1.79849i
\(70\) 0.263932 0.812299i 0.0315459 0.0970883i
\(71\) 2.30902 7.10642i 0.274030 0.843377i −0.715445 0.698670i \(-0.753776\pi\)
0.989474 0.144708i \(-0.0462242\pi\)
\(72\) 2.66312 + 1.93487i 0.313852 + 0.228027i
\(73\) 1.31105 + 4.03499i 0.153447 + 0.472260i 0.998000 0.0632110i \(-0.0201341\pi\)
−0.844554 + 0.535471i \(0.820134\pi\)
\(74\) −1.31105 0.952532i −0.152406 0.110730i
\(75\) 0 0
\(76\) −0.572949 + 1.76336i −0.0657218 + 0.202271i
\(77\) 3.43237 2.49376i 0.391155 0.284191i
\(78\) −4.85410 + 3.52671i −0.549619 + 0.399321i
\(79\) −3.43237 + 10.5637i −0.386172 + 1.18851i 0.549455 + 0.835523i \(0.314835\pi\)
−0.935627 + 0.352991i \(0.885165\pi\)
\(80\) 5.69098 4.13474i 0.636271 0.462278i
\(81\) 8.66312 + 6.29412i 0.962569 + 0.699347i
\(82\) 0.881966 + 2.71441i 0.0973969 + 0.299757i
\(83\) −2.55834 1.85874i −0.280814 0.204023i 0.438458 0.898751i \(-0.355525\pi\)
−0.719272 + 0.694728i \(0.755525\pi\)
\(84\) 1.31105 4.03499i 0.143047 0.440254i
\(85\) −0.373256 + 1.14876i −0.0404853 + 0.124601i
\(86\) −0.0243541 0.0749541i −0.00262617 0.00808251i
\(87\) −8.47214 −0.908308
\(88\) −6.24574 −0.665799
\(89\) −1.81182 5.57622i −0.192053 0.591078i −0.999998 0.00182083i \(-0.999420\pi\)
0.807945 0.589257i \(-0.200580\pi\)
\(90\) 1.54508 1.12257i 0.162866 0.118329i
\(91\) 5.55369 + 4.03499i 0.582185 + 0.422982i
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) 1.80902 + 1.31433i 0.185601 + 0.134847i
\(96\) −7.67501 + 5.57622i −0.783327 + 0.569121i
\(97\) −2.16312 6.65740i −0.219631 0.675956i −0.998792 0.0491321i \(-0.984354\pi\)
0.779161 0.626824i \(-0.215646\pi\)
\(98\) −2.29180 −0.231506
\(99\) 9.48683 0.953463
\(100\) 0 0
\(101\) −0.690983 + 2.12663i −0.0687554 + 0.211607i −0.979531 0.201295i \(-0.935485\pi\)
0.910775 + 0.412902i \(0.135485\pi\)
\(102\) 0.145898 0.449028i 0.0144461 0.0444604i
\(103\) 2.19098 + 1.59184i 0.215884 + 0.156849i 0.690472 0.723359i \(-0.257403\pi\)
−0.474588 + 0.880208i \(0.657403\pi\)
\(104\) −3.12287 9.61121i −0.306223 0.942457i
\(105\) −4.13948 3.00750i −0.403971 0.293502i
\(106\) −1.62054 + 1.17739i −0.157401 + 0.114359i
\(107\) −2.30902 + 7.10642i −0.223221 + 0.687004i 0.775246 + 0.631659i \(0.217626\pi\)
−0.998467 + 0.0553447i \(0.982374\pi\)
\(108\) −2.62210 + 1.90506i −0.252311 + 0.183315i
\(109\) 11.8992 8.64527i 1.13974 0.828066i 0.152653 0.988280i \(-0.451218\pi\)
0.987082 + 0.160214i \(0.0512183\pi\)
\(110\) −1.11977 + 3.44629i −0.106766 + 0.328591i
\(111\) −7.85410 + 5.70634i −0.745478 + 0.541622i
\(112\) 2.54508 + 1.84911i 0.240488 + 0.174725i
\(113\) −4.39919 13.5393i −0.413841 1.27367i −0.913284 0.407324i \(-0.866462\pi\)
0.499443 0.866347i \(-0.333538\pi\)
\(114\) −0.707107 0.513743i −0.0662266 0.0481165i
\(115\) −4.74342 + 14.5987i −0.442326 + 1.36134i
\(116\) 2.12132 6.52875i 0.196960 0.606179i
\(117\) 4.74342 + 14.5987i 0.438529 + 1.34965i
\(118\) −2.27051 −0.209017
\(119\) −0.540182 −0.0495184
\(120\) 2.32765 + 7.16377i 0.212485 + 0.653960i
\(121\) −5.66312 + 4.11450i −0.514829 + 0.374045i
\(122\) −1.37481 0.998856i −0.124469 0.0904322i
\(123\) 17.0981 1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0.690983 + 0.502029i 0.0615577 + 0.0447243i
\(127\) −7.67501 + 5.57622i −0.681047 + 0.494810i −0.873705 0.486456i \(-0.838289\pi\)
0.192658 + 0.981266i \(0.438289\pi\)
\(128\) −3.11803 9.59632i −0.275598 0.848203i
\(129\) −0.472136 −0.0415693
\(130\) −5.86319 −0.514235
\(131\) −6.00000 18.4661i −0.524222 1.61339i −0.765848 0.643021i \(-0.777681\pi\)
0.241626 0.970369i \(-0.422319\pi\)
\(132\) −5.56231 + 17.1190i −0.484137 + 1.49002i
\(133\) −0.309017 + 0.951057i −0.0267952 + 0.0824671i
\(134\) −1.85410 1.34708i −0.160170 0.116370i
\(135\) 1.20788 + 3.71748i 0.103958 + 0.319950i
\(136\) 0.643347 + 0.467419i 0.0551666 + 0.0400808i
\(137\) −5.55369 + 4.03499i −0.474484 + 0.344733i −0.799186 0.601084i \(-0.794736\pi\)
0.324702 + 0.945816i \(0.394736\pi\)
\(138\) 1.85410 5.70634i 0.157832 0.485756i
\(139\) −0.810272 + 0.588697i −0.0687264 + 0.0499327i −0.621618 0.783321i \(-0.713524\pi\)
0.552892 + 0.833253i \(0.313524\pi\)
\(140\) 3.35410 2.43690i 0.283473 0.205955i
\(141\) 2.62210 8.06998i 0.220820 0.679615i
\(142\) −2.30902 + 1.67760i −0.193768 + 0.140781i
\(143\) −23.5623 17.1190i −1.97038 1.43156i
\(144\) 2.17376 + 6.69015i 0.181147 + 0.557513i
\(145\) −6.69781 4.86624i −0.556223 0.404120i
\(146\) 0.500776 1.54123i 0.0414445 0.127553i
\(147\) −4.24264 + 13.0575i −0.349927 + 1.07696i
\(148\) −2.43082 7.48128i −0.199812 0.614958i
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) 0.937792 + 2.88623i 0.0763164 + 0.234878i 0.981936 0.189213i \(-0.0605937\pi\)
−0.905620 + 0.424091i \(0.860594\pi\)
\(152\) 1.19098 0.865300i 0.0966015 0.0701851i
\(153\) −0.977198 0.709976i −0.0790017 0.0573981i
\(154\) −1.62054 −0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) 3.80902 + 2.76741i 0.303993 + 0.220864i 0.729315 0.684179i \(-0.239839\pi\)
−0.425322 + 0.905042i \(0.639839\pi\)
\(158\) 3.43237 2.49376i 0.273065 0.198393i
\(159\) 3.70820 + 11.4127i 0.294080 + 0.905084i
\(160\) −9.27051 −0.732898
\(161\) −6.86474 −0.541017
\(162\) −1.26393 3.88998i −0.0993039 0.305626i
\(163\) −3.83688 + 11.8087i −0.300528 + 0.924929i 0.680781 + 0.732487i \(0.261641\pi\)
−0.981308 + 0.192442i \(0.938359\pi\)
\(164\) −4.28115 + 13.1760i −0.334302 + 1.02888i
\(165\) 17.5623 + 12.7598i 1.36722 + 0.993346i
\(166\) 0.373256 + 1.14876i 0.0289703 + 0.0891614i
\(167\) 5.99070 + 4.35250i 0.463575 + 0.336807i 0.794932 0.606699i \(-0.207507\pi\)
−0.331357 + 0.943505i \(0.607507\pi\)
\(168\) −2.72526 + 1.98002i −0.210258 + 0.152762i
\(169\) 10.5451 32.4544i 0.811160 2.49649i
\(170\) 0.373256 0.271187i 0.0286274 0.0207991i
\(171\) −1.80902 + 1.31433i −0.138339 + 0.100509i
\(172\) 0.118217 0.363835i 0.00901397 0.0277422i
\(173\) −14.5623 + 10.5801i −1.10715 + 0.804393i −0.982213 0.187772i \(-0.939873\pi\)
−0.124939 + 0.992164i \(0.539873\pi\)
\(174\) 2.61803 + 1.90211i 0.198473 + 0.144199i
\(175\) 0 0
\(176\) −10.7979 7.84512i −0.813921 0.591348i
\(177\) −4.20323 + 12.9362i −0.315934 + 0.972346i
\(178\) −0.692055 + 2.12993i −0.0518717 + 0.159645i
\(179\) 5.07727 + 15.6262i 0.379493 + 1.16796i 0.940397 + 0.340078i \(0.110454\pi\)
−0.560904 + 0.827881i \(0.689546\pi\)
\(180\) 9.27051 0.690983
\(181\) 18.1784 1.35119 0.675597 0.737271i \(-0.263886\pi\)
0.675597 + 0.737271i \(0.263886\pi\)
\(182\) −0.810272 2.49376i −0.0600614 0.184850i
\(183\) −8.23607 + 5.98385i −0.608828 + 0.442339i
\(184\) 8.17578 + 5.94006i 0.602727 + 0.437907i
\(185\) −9.48683 −0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) 5.56231 + 4.04125i 0.405673 + 0.294739i
\(189\) −1.41421 + 1.02749i −0.102869 + 0.0747386i
\(190\) −0.263932 0.812299i −0.0191476 0.0589304i
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) −10.7735 −0.777512
\(193\) −2.25329 6.93491i −0.162195 0.499186i 0.836623 0.547779i \(-0.184526\pi\)
−0.998819 + 0.0485928i \(0.984526\pi\)
\(194\) −0.826238 + 2.54290i −0.0593204 + 0.182569i
\(195\) −10.8541 + 33.4055i −0.777278 + 2.39222i
\(196\) −9.00000 6.53888i −0.642857 0.467063i
\(197\) −2.28825 7.04250i −0.163031 0.501757i 0.835855 0.548950i \(-0.184972\pi\)
−0.998886 + 0.0471932i \(0.984972\pi\)
\(198\) −2.93159 2.12993i −0.208339 0.151367i
\(199\) 11.9176 8.65868i 0.844820 0.613798i −0.0788931 0.996883i \(-0.525139\pi\)
0.923713 + 0.383086i \(0.125139\pi\)
\(200\) 0 0
\(201\) −11.1074 + 8.06998i −0.783454 + 0.569213i
\(202\) 0.690983 0.502029i 0.0486174 0.0353226i
\(203\) 1.14412 3.52125i 0.0803017 0.247143i
\(204\) 1.85410 1.34708i 0.129813 0.0943147i
\(205\) 13.5172 + 9.82084i 0.944084 + 0.685917i
\(206\) −0.319660 0.983813i −0.0222718 0.0685455i
\(207\) −12.4184 9.02251i −0.863140 0.627108i
\(208\) 6.67346 20.5388i 0.462721 1.42411i
\(209\) 1.31105 4.03499i 0.0906871 0.279106i
\(210\) 0.603941 + 1.85874i 0.0416759 + 0.128265i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −9.72327 −0.667797
\(213\) 5.28360 + 16.2612i 0.362026 + 1.11420i
\(214\) 2.30902 1.67760i 0.157841 0.114678i
\(215\) −0.373256 0.271187i −0.0254559 0.0184948i
\(216\) 2.57339 0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) −7.85410 5.70634i −0.530731 0.385599i
\(220\) −14.2302 + 10.3389i −0.959403 + 0.697047i
\(221\) 1.14590 + 3.52671i 0.0770814 + 0.237232i
\(222\) 3.70820 0.248878
\(223\) −21.8021 −1.45998 −0.729988 0.683460i \(-0.760474\pi\)
−0.729988 + 0.683460i \(0.760474\pi\)
\(224\) −1.28115 3.94298i −0.0856006 0.263452i
\(225\) 0 0
\(226\) −1.68034 + 5.17155i −0.111775 + 0.344007i
\(227\) −12.7082 9.23305i −0.843473 0.612819i 0.0798656 0.996806i \(-0.474551\pi\)
−0.923339 + 0.383987i \(0.874551\pi\)
\(228\) −1.31105 4.03499i −0.0868263 0.267224i
\(229\) −3.43237 2.49376i −0.226817 0.164792i 0.468573 0.883425i \(-0.344768\pi\)
−0.695390 + 0.718632i \(0.744768\pi\)
\(230\) 4.74342 3.44629i 0.312772 0.227242i
\(231\) −3.00000 + 9.23305i −0.197386 + 0.607490i
\(232\) −4.40957 + 3.20374i −0.289502 + 0.210336i
\(233\) 3.66312 2.66141i 0.239979 0.174355i −0.461295 0.887247i \(-0.652615\pi\)
0.701274 + 0.712892i \(0.252615\pi\)
\(234\) 1.81182 5.57622i 0.118443 0.364529i
\(235\) 6.70820 4.87380i 0.437595 0.317931i
\(236\) −8.91641 6.47815i −0.580409 0.421692i
\(237\) −7.85410 24.1724i −0.510179 1.57017i
\(238\) 0.166925 + 0.121278i 0.0108202 + 0.00786130i
\(239\) −5.05291 + 15.5513i −0.326846 + 1.00593i 0.643755 + 0.765232i \(0.277376\pi\)
−0.970601 + 0.240696i \(0.922624\pi\)
\(240\) −4.97410 + 15.3087i −0.321077 + 0.988173i
\(241\) 4.55214 + 14.0100i 0.293229 + 0.902466i 0.983811 + 0.179211i \(0.0573546\pi\)
−0.690582 + 0.723254i \(0.742645\pi\)
\(242\) 2.67376 0.171876
\(243\) −19.2588 −1.23545
\(244\) −2.54903 7.84512i −0.163185 0.502232i
\(245\) −10.8541 + 7.88597i −0.693443 + 0.503816i
\(246\) −5.28360 3.83876i −0.336870 0.244750i
\(247\) 6.86474 0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) −3.45492 2.51014i −0.218508 0.158755i
\(251\) 19.2194 13.9637i 1.21312 0.881382i 0.217608 0.976036i \(-0.430175\pi\)
0.995510 + 0.0946545i \(0.0301746\pi\)
\(252\) 1.28115 + 3.94298i 0.0807050 + 0.248385i
\(253\) 29.1246 1.83105
\(254\) 3.62365 0.227368
\(255\) −0.854102 2.62866i −0.0534859 0.164613i
\(256\) 1.71885 5.29007i 0.107428 0.330629i
\(257\) 7.39919 22.7724i 0.461549 1.42050i −0.401723 0.915761i \(-0.631589\pi\)
0.863272 0.504739i \(-0.168411\pi\)
\(258\) 0.145898 + 0.106001i 0.00908321 + 0.00659934i
\(259\) −1.31105 4.03499i −0.0814646 0.250722i
\(260\) −23.0250 16.7287i −1.42795 1.03747i
\(261\) 6.69781 4.86624i 0.414584 0.301213i
\(262\) −2.29180 + 7.05342i −0.141588 + 0.435762i
\(263\) −2.18508 + 1.58755i −0.134738 + 0.0978928i −0.653113 0.757261i \(-0.726537\pi\)
0.518375 + 0.855153i \(0.326537\pi\)
\(264\) 11.5623 8.40051i 0.711611 0.517015i
\(265\) −3.62365 + 11.1524i −0.222599 + 0.685089i
\(266\) 0.309017 0.224514i 0.0189470 0.0137658i
\(267\) 10.8541 + 7.88597i 0.664260 + 0.482613i
\(268\) −3.43769 10.5801i −0.209991 0.646285i
\(269\) −11.9814 8.70500i −0.730519 0.530753i 0.159208 0.987245i \(-0.449106\pi\)
−0.889728 + 0.456492i \(0.849106\pi\)
\(270\) 0.461370 1.41995i 0.0280781 0.0864155i
\(271\) −8.67656 + 26.7037i −0.527064 + 1.62213i 0.233135 + 0.972444i \(0.425101\pi\)
−0.760199 + 0.649690i \(0.774899\pi\)
\(272\) 0.525130 + 1.61618i 0.0318407 + 0.0979955i
\(273\) −15.7082 −0.950704
\(274\) 2.62210 0.158407
\(275\) 0 0
\(276\) 23.5623 17.1190i 1.41828 1.03044i
\(277\) −15.8508 11.5163i −0.952382 0.691946i −0.00101288 0.999999i \(-0.500322\pi\)
−0.951369 + 0.308054i \(0.900322\pi\)
\(278\) 0.382559 0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) 25.3713 + 18.4333i 1.51353 + 1.09964i 0.964582 + 0.263782i \(0.0849699\pi\)
0.548944 + 0.835859i \(0.315030\pi\)
\(282\) −2.62210 + 1.90506i −0.156144 + 0.113445i
\(283\) 7.41641 + 22.8254i 0.440860 + 1.35683i 0.886961 + 0.461844i \(0.152812\pi\)
−0.446101 + 0.894982i \(0.647188\pi\)
\(284\) −13.8541 −0.822090
\(285\) −5.11667 −0.303086
\(286\) 3.43769 + 10.5801i 0.203275 + 0.625616i
\(287\) −2.30902 + 7.10642i −0.136297 + 0.419479i
\(288\) 2.86475 8.81678i 0.168807 0.519534i
\(289\) 13.5172 + 9.82084i 0.795131 + 0.577696i
\(290\) 0.977198 + 3.00750i 0.0573830 + 0.176607i
\(291\) 12.9586 + 9.41498i 0.759647 + 0.551916i
\(292\) 6.36396 4.62369i 0.372423 0.270581i
\(293\) −4.85410 + 14.9394i −0.283580 + 0.872768i 0.703241 + 0.710951i \(0.251735\pi\)
−0.986821 + 0.161817i \(0.948265\pi\)
\(294\) 4.24264 3.08246i 0.247436 0.179773i
\(295\) −10.7533 + 7.81272i −0.626081 + 0.454874i
\(296\) −1.93004 + 5.94006i −0.112181 + 0.345259i
\(297\) 6.00000 4.35926i 0.348155 0.252950i
\(298\) −4.14590 3.01217i −0.240165 0.174490i
\(299\) 14.5623 + 44.8182i 0.842160 + 2.59190i
\(300\) 0 0
\(301\) 0.0637598 0.196232i 0.00367505 0.0113106i
\(302\) 0.358205 1.10244i 0.0206124 0.0634383i
\(303\) −1.58114 4.86624i −0.0908341 0.279558i
\(304\) 3.14590 0.180430
\(305\) −9.94820 −0.569632
\(306\) 0.142571 + 0.438789i 0.00815025 + 0.0250839i
\(307\) 13.0451 9.47781i 0.744522 0.540927i −0.149602 0.988746i \(-0.547799\pi\)
0.894124 + 0.447819i \(0.147799\pi\)
\(308\) −6.36396 4.62369i −0.362620 0.263459i
\(309\) −6.19704 −0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) 18.7082 + 13.5923i 1.05914 + 0.769513i
\(313\) 16.9949 12.3475i 0.960609 0.697924i 0.00731728 0.999973i \(-0.497671\pi\)
0.953292 + 0.302050i \(0.0976708\pi\)
\(314\) −0.555728 1.71036i −0.0313616 0.0965209i
\(315\) 5.00000 0.281718
\(316\) 20.5942 1.15851
\(317\) 6.72542 + 20.6987i 0.377737 + 1.16256i 0.941613 + 0.336697i \(0.109310\pi\)
−0.563876 + 0.825860i \(0.690690\pi\)
\(318\) 1.41641 4.35926i 0.0794282 0.244455i
\(319\) −4.85410 + 14.9394i −0.271778 + 0.836445i
\(320\) −8.51722 6.18812i −0.476127 0.345927i
\(321\) −5.28360 16.2612i −0.294902 0.907614i
\(322\) 2.12132 + 1.54123i 0.118217 + 0.0858894i
\(323\) −0.437016 + 0.317511i −0.0243162 + 0.0176668i
\(324\) 6.13525 18.8824i 0.340847 1.04902i
\(325\) 0 0
\(326\) 3.83688 2.78766i 0.212505 0.154394i
\(327\) −10.4003 + 32.0087i −0.575136 + 1.77009i
\(328\) 8.89919 6.46564i 0.491375 0.357005i
\(329\) 3.00000 + 2.17963i 0.165395 + 0.120167i
\(330\) −2.56231 7.88597i −0.141050 0.434108i
\(331\) 20.7368 + 15.0662i 1.13980 + 0.828111i 0.987091 0.160161i \(-0.0512013\pi\)
0.152706 + 0.988272i \(0.451201\pi\)
\(332\) −1.81182 + 5.57622i −0.0994368 + 0.306035i
\(333\) 2.93159 9.02251i 0.160650 0.494431i
\(334\) −0.874032 2.68999i −0.0478249 0.147190i
\(335\) −13.4164 −0.733017
\(336\) −7.19859 −0.392715
\(337\) −1.81182 5.57622i −0.0986963 0.303756i 0.889503 0.456929i \(-0.151051\pi\)
−0.988199 + 0.153173i \(0.951051\pi\)
\(338\) −10.5451 + 7.66145i −0.573577 + 0.416728i
\(339\) 26.3542 + 19.1475i 1.43137 + 1.03995i
\(340\) 2.23954 0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) −10.5172 7.64121i −0.567877 0.412586i
\(344\) −0.245737 + 0.178538i −0.0132492 + 0.00962613i
\(345\) −10.8541 33.4055i −0.584365 1.79849i
\(346\) 6.87539 0.369623
\(347\) 25.8384 1.38708 0.693539 0.720419i \(-0.256050\pi\)
0.693539 + 0.720419i \(0.256050\pi\)
\(348\) 4.85410 + 14.9394i 0.260207 + 0.800835i
\(349\) 1.85410 5.70634i 0.0992478 0.305453i −0.889090 0.457733i \(-0.848662\pi\)
0.988337 + 0.152280i \(0.0486615\pi\)
\(350\) 0 0
\(351\) 9.70820 + 7.05342i 0.518186 + 0.376484i
\(352\) 5.43547 + 16.7287i 0.289712 + 0.891641i
\(353\) −12.8554 9.34003i −0.684226 0.497119i 0.190531 0.981681i \(-0.438979\pi\)
−0.874757 + 0.484562i \(0.838979\pi\)
\(354\) 4.20323 3.05383i 0.223399 0.162309i
\(355\) −5.16312 + 15.8904i −0.274030 + 0.843377i
\(356\) −8.79478 + 6.38978i −0.466122 + 0.338658i
\(357\) 1.00000 0.726543i 0.0529256 0.0384527i
\(358\) 1.93934 5.96869i 0.102497 0.315455i
\(359\) −7.89919 + 5.73910i −0.416903 + 0.302898i −0.776391 0.630252i \(-0.782952\pi\)
0.359487 + 0.933150i \(0.382952\pi\)
\(360\) −5.95492 4.32650i −0.313852 0.228027i
\(361\) −5.56231 17.1190i −0.292753 0.901001i
\(362\) −5.61745 4.08132i −0.295247 0.214509i
\(363\) 4.94975 15.2338i 0.259794 0.799565i
\(364\) 3.93314 12.1050i 0.206153 0.634473i
\(365\) −2.93159 9.02251i −0.153447 0.472260i
\(366\) 3.88854 0.203257
\(367\) −12.3153 −0.642851 −0.321426 0.946935i \(-0.604162\pi\)
−0.321426 + 0.946935i \(0.604162\pi\)
\(368\) 6.67346 + 20.5388i 0.347878 + 1.07066i
\(369\) −13.5172 + 9.82084i −0.703678 + 0.511252i
\(370\) 2.93159 + 2.12993i 0.152406 + 0.110730i
\(371\) −5.24419 −0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) −0.708204 0.514540i −0.0366204 0.0266062i
\(375\) −20.6974 + 15.0375i −1.06881 + 0.776534i
\(376\) −1.68692 5.19180i −0.0869961 0.267747i
\(377\) −25.4164 −1.30901
\(378\) 0.667701 0.0343428
\(379\) −6.00000 18.4661i −0.308199 0.948540i −0.978464 0.206418i \(-0.933819\pi\)
0.670265 0.742122i \(-0.266181\pi\)
\(380\) 1.28115 3.94298i 0.0657218 0.202271i
\(381\) 6.70820 20.6457i 0.343672 1.05771i
\(382\) −4.39919 3.19620i −0.225082 0.163532i
\(383\) −5.88754 18.1200i −0.300839 0.925888i −0.981197 0.193008i \(-0.938176\pi\)
0.680358 0.732880i \(-0.261824\pi\)
\(384\) 18.6792 + 13.5712i 0.953220 + 0.692555i
\(385\) −7.67501 + 5.57622i −0.391155 + 0.284191i
\(386\) −0.860680 + 2.64890i −0.0438074 + 0.134825i
\(387\) 0.373256 0.271187i 0.0189737 0.0137852i
\(388\) −10.5000 + 7.62870i −0.533057 + 0.387288i
\(389\) 10.4397 32.1300i 0.529313 1.62906i −0.226314 0.974054i \(-0.572668\pi\)
0.755627 0.655002i \(-0.227332\pi\)
\(390\) 10.8541 7.88597i 0.549619 0.399321i
\(391\) −3.00000 2.17963i −0.151717 0.110229i
\(392\) 2.72949 + 8.40051i 0.137860 + 0.424290i
\(393\) 35.9442 + 26.1150i 1.81315 + 1.31733i
\(394\) −0.874032 + 2.68999i −0.0440331 + 0.135520i
\(395\) 7.67501 23.6212i 0.386172 1.18851i
\(396\) −5.43547 16.7287i −0.273143 0.840647i
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) −5.62675 −0.282044
\(399\) −0.707107 2.17625i −0.0353996 0.108949i
\(400\) 0 0
\(401\) 2.99535 + 2.17625i 0.149581 + 0.108677i 0.660059 0.751214i \(-0.270531\pi\)
−0.510478 + 0.859891i \(0.670531\pi\)
\(402\) 5.24419 0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) −19.3713 14.0741i −0.962569 0.699347i
\(406\) −1.14412 + 0.831254i −0.0567819 + 0.0412544i
\(407\) 5.56231 + 17.1190i 0.275713 + 0.848558i
\(408\) −1.81966 −0.0900866
\(409\) −17.3531 −0.858057 −0.429028 0.903291i \(-0.641144\pi\)
−0.429028 + 0.903291i \(0.641144\pi\)
\(410\) −1.97214 6.06961i −0.0973969 0.299757i
\(411\) 4.85410 14.9394i 0.239435 0.736906i
\(412\) 1.55166 4.77553i 0.0764449 0.235273i
\(413\) −4.80902 3.49396i −0.236636 0.171926i
\(414\) 1.81182 + 5.57622i 0.0890463 + 0.274056i
\(415\) 5.72061 + 4.15627i 0.280814 + 0.204023i
\(416\) −23.0250 + 16.7287i −1.12889 + 0.820190i
\(417\) 0.708204 2.17963i 0.0346809 0.106737i
\(418\) −1.31105 + 0.952532i −0.0641255 + 0.0465899i
\(419\) 15.0451 10.9309i 0.735000 0.534009i −0.156141 0.987735i \(-0.549905\pi\)
0.891141 + 0.453726i \(0.149905\pi\)
\(420\) −2.93159 + 9.02251i −0.143047 + 0.440254i
\(421\) 0.336881 0.244758i 0.0164186 0.0119288i −0.579546 0.814940i \(-0.696770\pi\)
0.595964 + 0.803011i \(0.296770\pi\)
\(422\) 1.54508 + 1.12257i 0.0752136 + 0.0546458i
\(423\) 2.56231 + 7.88597i 0.124584 + 0.383429i
\(424\) 6.24574 + 4.53780i 0.303320 + 0.220375i
\(425\) 0 0
\(426\) 2.01815 6.21124i 0.0977799 0.300936i
\(427\) −1.37481 4.23122i −0.0665316 0.204763i
\(428\) 13.8541 0.669663
\(429\) 66.6443 3.21762
\(430\) 0.0544574 + 0.167602i 0.00262617 + 0.00808251i
\(431\) 0.0901699 0.0655123i 0.00434333 0.00315562i −0.585611 0.810592i \(-0.699146\pi\)
0.589955 + 0.807436i \(0.299146\pi\)
\(432\) 4.44897 + 3.23237i 0.214051 + 0.155517i
\(433\) 21.5958 1.03783 0.518913 0.854827i \(-0.326337\pi\)
0.518913 + 0.854827i \(0.326337\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) −22.0623 16.0292i −1.05659 0.767660i
\(437\) −5.55369 + 4.03499i −0.265669 + 0.193020i
\(438\) 1.14590 + 3.52671i 0.0547531 + 0.168513i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 13.9659 0.665799
\(441\) −4.14590 12.7598i −0.197424 0.607608i
\(442\) 0.437694 1.34708i 0.0208190 0.0640742i
\(443\) 7.39919 22.7724i 0.351546 1.08195i −0.606439 0.795130i \(-0.707403\pi\)
0.957985 0.286817i \(-0.0925973\pi\)
\(444\) 14.5623 + 10.5801i 0.691096 + 0.502111i
\(445\) 4.05136 + 12.4688i 0.192053 + 0.591078i
\(446\) 6.73722 + 4.89487i 0.319016 + 0.231779i
\(447\) −24.8369 + 18.0450i −1.17474 + 0.853501i
\(448\) 1.45492 4.47777i 0.0687383 0.211555i
\(449\) 34.1324 24.7986i 1.61081 1.17032i 0.749915 0.661535i \(-0.230095\pi\)
0.860893 0.508786i \(-0.169905\pi\)
\(450\) 0 0
\(451\) 9.79633 30.1500i 0.461291 1.41971i
\(452\) −21.3541 + 15.5147i −1.00441 + 0.729748i
\(453\) −5.61803 4.08174i −0.263958 0.191777i
\(454\) 1.85410 + 5.70634i 0.0870173 + 0.267812i
\(455\) −12.4184 9.02251i −0.582185 0.422982i
\(456\) −1.04096 + 3.20374i −0.0487473 + 0.150029i
\(457\) 3.49613 10.7600i 0.163542 0.503330i −0.835384 0.549667i \(-0.814755\pi\)
0.998926 + 0.0463365i \(0.0147546\pi\)
\(458\) 0.500776 + 1.54123i 0.0233997 + 0.0720169i
\(459\) −0.944272 −0.0440748
\(460\) 28.4605 1.32698
\(461\) −12.0846 37.1925i −0.562835 1.73223i −0.674299 0.738459i \(-0.735554\pi\)
0.111464 0.993768i \(-0.464446\pi\)
\(462\) 3.00000 2.17963i 0.139573 0.101405i
\(463\) −12.2515 8.90124i −0.569376 0.413676i 0.265503 0.964110i \(-0.414462\pi\)
−0.834878 + 0.550435i \(0.814462\pi\)
\(464\) −11.6476 −0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) −12.6631 9.20029i −0.585979 0.425739i 0.254895 0.966969i \(-0.417959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(468\) 23.0250 16.7287i 1.06433 0.773283i
\(469\) −1.85410 5.70634i −0.0856145 0.263494i
\(470\) −3.16718 −0.146091
\(471\) −10.7735 −0.496418
\(472\) 2.70414 + 8.32248i 0.124468 + 0.383073i
\(473\) −0.270510 + 0.832544i −0.0124381 + 0.0382804i
\(474\) −3.00000 + 9.23305i −0.137795 + 0.424088i
\(475\) 0 0
\(476\) 0.309496 + 0.952532i 0.0141857 + 0.0436592i
\(477\) −9.48683 6.89259i −0.434372 0.315590i
\(478\) 5.05291 3.67116i 0.231115 0.167915i
\(479\) 7.87132 24.2254i 0.359650 1.10689i −0.593614 0.804750i \(-0.702299\pi\)
0.953264 0.302139i \(-0.0977006\pi\)
\(480\) 17.1618 12.4688i 0.783327 0.569121i
\(481\) −23.5623 + 17.1190i −1.07435 + 0.780560i
\(482\) 1.73876 5.35136i 0.0791984 0.243748i
\(483\) 12.7082 9.23305i 0.578243 0.420118i
\(484\) 10.5000 + 7.62870i 0.477273 + 0.346759i
\(485\) 4.83688 + 14.8864i 0.219631 + 0.675956i
\(486\) 5.95130 + 4.32387i 0.269956 + 0.196135i
\(487\) 5.74497 17.6812i 0.260329 0.801211i −0.732403 0.680871i \(-0.761601\pi\)
0.992733 0.120340i \(-0.0383986\pi\)
\(488\) −2.02390 + 6.22894i −0.0916178 + 0.281971i
\(489\) −8.77973 27.0212i −0.397033 1.22194i
\(490\) 5.12461 0.231506
\(491\) −9.56564 −0.431691 −0.215846 0.976427i \(-0.569251\pi\)
−0.215846 + 0.976427i \(0.569251\pi\)
\(492\) −9.79633 30.1500i −0.441653 1.35927i
\(493\) 1.61803 1.17557i 0.0728726 0.0529450i
\(494\) −2.12132 1.54123i −0.0954427 0.0693432i
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) −2.23607 1.62460i −0.100201 0.0728000i
\(499\) −14.8736 + 10.8063i −0.665834 + 0.483756i −0.868628 0.495465i \(-0.834998\pi\)
0.202794 + 0.979221i \(0.434998\pi\)
\(500\) −6.40576 19.7149i −0.286475 0.881678i
\(501\) −16.9443 −0.757014
\(502\) −9.07417 −0.405000
\(503\) 0.892609 + 2.74717i 0.0397995 + 0.122490i 0.968982 0.247130i \(-0.0794876\pi\)
−0.929183 + 0.369621i \(0.879488\pi\)
\(504\) 1.01722 3.13068i 0.0453106 0.139452i
\(505\) 1.54508 4.75528i 0.0687554 0.211607i
\(506\) −9.00000 6.53888i −0.400099 0.290689i
\(507\) 24.1297 + 74.2637i 1.07164 + 3.29817i
\(508\) 14.2302 + 10.3389i 0.631365 + 0.458714i
\(509\) 3.86938 2.81127i 0.171507 0.124607i −0.498720 0.866763i \(-0.666196\pi\)
0.670228 + 0.742156i \(0.266196\pi\)
\(510\) −0.326238 + 1.00406i −0.0144461 + 0.0444604i
\(511\) 3.43237 2.49376i 0.151839 0.110318i
\(512\) −18.0451 + 13.1105i −0.797488 + 0.579409i
\(513\) −0.540182 + 1.66251i −0.0238496 + 0.0734015i
\(514\) −7.39919 + 5.37582i −0.326364 + 0.237117i
\(515\) −4.89919 3.55947i −0.215884 0.156849i
\(516\) 0.270510 + 0.832544i 0.0119085 + 0.0366507i
\(517\) −12.7279 9.24738i −0.559773 0.406699i
\(518\) −0.500776 + 1.54123i −0.0220028 + 0.0677177i
\(519\) 12.7279 39.1725i 0.558694 1.71948i
\(520\) 6.98295 + 21.4913i 0.306223 + 0.942457i
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) −3.16228 −0.138409
\(523\) 8.98606 + 27.6562i 0.392933 + 1.20932i 0.930560 + 0.366140i \(0.119321\pi\)
−0.537627 + 0.843183i \(0.680679\pi\)
\(524\) −29.1246 + 21.1603i −1.27231 + 0.924391i
\(525\) 0 0
\(526\) 1.03165 0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) −19.5172 14.1801i −0.848575 0.616526i
\(530\) 3.62365 2.63273i 0.157401 0.114359i
\(531\) −4.10739 12.6412i −0.178246 0.548583i
\(532\) 1.85410 0.0803855
\(533\) 51.2942 2.22180
\(534\) −1.58359 4.87380i −0.0685287 0.210910i
\(535\) 5.16312 15.8904i 0.223221 0.687004i
\(536\) −2.72949 + 8.40051i −0.117896 + 0.362847i
\(537\) −30.4164 22.0988i −1.31256 0.953634i
\(538\) 1.74806 + 5.37999i 0.0753644 + 0.231948i
\(539\) 20.5942 + 14.9626i 0.887055 + 0.644484i
\(540\) 5.86319 4.25985i 0.252311 0.183315i
\(541\) −8.60081 + 26.4706i −0.369778 + 1.13806i 0.577157 + 0.816633i \(0.304162\pi\)
−0.946935 + 0.321426i \(0.895838\pi\)
\(542\) 8.67656 6.30389i 0.372690 0.270775i
\(543\) −33.6525 + 24.4500i −1.44417 + 1.04925i
\(544\) 0.692055 2.12993i 0.0296716 0.0913199i
\(545\) −26.6074 + 19.3314i −1.13974 + 0.828066i
\(546\) 4.85410 + 3.52671i 0.207736 + 0.150929i
\(547\) −7.54508 23.2214i −0.322605 0.992875i −0.972510 0.232860i \(-0.925192\pi\)
0.649906 0.760015i \(-0.274808\pi\)
\(548\) 10.2971 + 7.48128i 0.439871 + 0.319585i
\(549\) 3.07416 9.46130i 0.131202 0.403799i
\(550\) 0 0
\(551\) −1.14412 3.52125i −0.0487413 0.150010i
\(552\) −23.1246 −0.984249
\(553\) 11.1074 0.472334
\(554\) 2.31260 + 7.11745i 0.0982529 + 0.302391i
\(555\) 17.5623 12.7598i 0.745478 0.541622i
\(556\) 1.50233 + 1.09150i 0.0637129 + 0.0462901i
\(557\) −23.2951 −0.987046 −0.493523 0.869733i \(-0.664291\pi\)
−0.493523 + 0.869733i \(0.664291\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) −5.69098 4.13474i −0.240488 0.174725i
\(561\) −4.24264 + 3.08246i −0.179124 + 0.130142i
\(562\) −3.70163 11.3924i −0.156144 0.480561i
\(563\) 14.2361 0.599979 0.299989 0.953943i \(-0.403017\pi\)
0.299989 + 0.953943i \(0.403017\pi\)
\(564\) −15.7326 −0.662461
\(565\) 9.83688 + 30.2748i 0.413841 + 1.27367i
\(566\) 2.83282 8.71851i 0.119072 0.366466i
\(567\) 3.30902 10.1841i 0.138966 0.427692i
\(568\) 8.89919 + 6.46564i 0.373402 + 0.271292i
\(569\) −9.48683 29.1975i −0.397709 1.22402i −0.926832 0.375477i \(-0.877479\pi\)
0.529123 0.848545i \(-0.322521\pi\)
\(570\) 1.58114 + 1.14876i 0.0662266 + 0.0481165i
\(571\) −5.55369 + 4.03499i −0.232415 + 0.168859i −0.697897 0.716198i \(-0.745881\pi\)
0.465483 + 0.885057i \(0.345881\pi\)
\(572\) −16.6869 + 51.3571i −0.697715 + 2.14735i
\(573\) −26.3542 + 19.1475i −1.10096 + 0.799897i
\(574\) 2.30902 1.67760i 0.0963765 0.0700216i
\(575\) 0 0
\(576\) 8.51722 6.18812i 0.354884 0.257838i
\(577\) 24.2705 + 17.6336i 1.01039 + 0.734095i 0.964292 0.264842i \(-0.0853198\pi\)
0.0461028 + 0.998937i \(0.485320\pi\)
\(578\) −1.97214 6.06961i −0.0820300 0.252463i
\(579\) 13.4988 + 9.80744i 0.560991 + 0.407583i
\(580\) −4.74342 + 14.5987i −0.196960 + 0.606179i
\(581\) −0.977198 + 3.00750i −0.0405410 + 0.124772i
\(582\) −1.89064 5.81878i −0.0783694 0.241196i
\(583\) 22.2492 0.921469
\(584\) −6.24574 −0.258451
\(585\) −10.6066 32.6438i −0.438529 1.34965i
\(586\) 4.85410 3.52671i 0.200521 0.145687i
\(587\) −33.3221 24.2099i −1.37535 0.999251i −0.997298 0.0734679i \(-0.976593\pi\)
−0.378054 0.925784i \(-0.623407\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) 13.7082 + 9.95959i 0.563880 + 0.409683i
\(592\) −10.7979 + 7.84512i −0.443790 + 0.322432i
\(593\) −5.30902 16.3395i −0.218015 0.670982i −0.998926 0.0463389i \(-0.985245\pi\)
0.780911 0.624643i \(-0.214755\pi\)
\(594\) −2.83282 −0.116232
\(595\) 1.20788 0.0495184
\(596\) −7.68692 23.6579i −0.314868 0.969065i
\(597\) −10.4164 + 32.0584i −0.426315 + 1.31206i
\(598\) 5.56231 17.1190i 0.227460 0.700049i
\(599\) −19.3713 14.0741i −0.791491 0.575052i 0.116915 0.993142i \(-0.462700\pi\)
−0.908406 + 0.418090i \(0.862700\pi\)
\(600\) 0 0
\(601\) −7.03166 5.10880i −0.286827 0.208392i 0.435062 0.900400i \(-0.356726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(602\) −0.0637598 + 0.0463242i −0.00259865 + 0.00188803i
\(603\) 4.14590 12.7598i 0.168834 0.519618i
\(604\) 4.55214 3.30732i 0.185224 0.134573i
\(605\) 12.6631 9.20029i 0.514829 0.374045i
\(606\) −0.603941 + 1.85874i −0.0245334 + 0.0755062i
\(607\) 20.3262 14.7679i 0.825017 0.599410i −0.0931285 0.995654i \(-0.529687\pi\)
0.918145 + 0.396244i \(0.129687\pi\)
\(608\) −3.35410 2.43690i −0.136027 0.0988293i
\(609\) 2.61803 + 8.05748i 0.106088 + 0.326506i
\(610\) 3.07416 + 2.23351i 0.124469 + 0.0904322i
\(611\) 7.86629 24.2099i 0.318236 0.979430i
\(612\) −0.692055 + 2.12993i −0.0279747 + 0.0860972i
\(613\) −11.5444 35.5300i −0.466274 1.43504i −0.857374 0.514695i \(-0.827905\pi\)
0.391100 0.920348i \(-0.372095\pi\)
\(614\) −6.15905 −0.248559
\(615\) −38.2325 −1.54168
\(616\) 1.93004 + 5.94006i 0.0777636 + 0.239332i
\(617\) 38.1246 27.6992i 1.53484 1.11513i 0.581368 0.813641i \(-0.302518\pi\)
0.953471 0.301485i \(-0.0974824\pi\)
\(618\) 1.91499 + 1.39132i 0.0770322 + 0.0559671i
\(619\) −21.5958 −0.868007 −0.434003 0.900911i \(-0.642899\pi\)
−0.434003 + 0.900911i \(0.642899\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) −5.10739 3.71074i −0.204788 0.148787i
\(623\) −4.74342 + 3.44629i −0.190041 + 0.138073i
\(624\) 15.2705 + 46.9978i 0.611310 + 1.88142i
\(625\) −25.0000 −1.00000
\(626\) −8.02391 −0.320700
\(627\) 3.00000 + 9.23305i 0.119808 + 0.368733i
\(628\) 2.69756 8.30224i 0.107644 0.331295i
\(629\) 0.708204 2.17963i 0.0282379 0.0869074i
\(630\) −1.54508 1.12257i −0.0615577 0.0447243i
\(631\) −1.43857 4.42746i −0.0572685 0.176254i 0.918330 0.395815i \(-0.129538\pi\)
−0.975599 + 0.219560i \(0.929538\pi\)
\(632\) −13.2287 9.61121i −0.526209 0.382313i
\(633\) 9.25615 6.72499i 0.367899 0.267294i
\(634\) 2.56888 7.90621i 0.102023 0.313996i
\(635\) 17.1618 12.4688i 0.681047 0.494810i
\(636\) 18.0000 13.0778i 0.713746 0.518567i
\(637\) −12.7279 + 39.1725i −0.504299 + 1.55207i
\(638\) 4.85410 3.52671i 0.192176 0.139624i
\(639\) −13.5172 9.82084i −0.534733 0.388506i
\(640\) 6.97214 + 21.4580i 0.275598 + 0.848203i
\(641\) 6.86474 + 4.98752i 0.271141 + 0.196995i 0.715044 0.699079i \(-0.246407\pi\)
−0.443903 + 0.896075i \(0.646407\pi\)
\(642\) −2.01815 + 6.21124i −0.0796502 + 0.245138i
\(643\) −7.30175 + 22.4725i −0.287953 + 0.886228i 0.697545 + 0.716541i \(0.254276\pi\)
−0.985498 + 0.169687i \(0.945724\pi\)
\(644\) 3.93314 + 12.1050i 0.154988 + 0.477003i
\(645\) 1.05573 0.0415693
\(646\) 0.206331 0.00811798
\(647\) 5.91189 + 18.1949i 0.232421 + 0.715317i 0.997453 + 0.0713252i \(0.0227228\pi\)
−0.765033 + 0.643992i \(0.777277\pi\)
\(648\) −12.7533 + 9.26581i −0.500997 + 0.363995i
\(649\) 20.4029 + 14.8236i 0.800885 + 0.581877i
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) 5.38197 + 3.91023i 0.210613 + 0.153019i 0.688091 0.725625i \(-0.258449\pi\)
−0.477478 + 0.878644i \(0.658449\pi\)
\(654\) 10.4003 7.55624i 0.406683 0.295472i
\(655\) 13.4164 + 41.2915i 0.524222 + 1.61339i
\(656\) 23.5066 0.917778
\(657\) 9.48683 0.370117
\(658\) −0.437694 1.34708i −0.0170631 0.0525148i
\(659\) 14.5795 44.8712i 0.567938 1.74793i −0.0911197 0.995840i \(-0.529045\pi\)
0.659057 0.752093i \(-0.270955\pi\)
\(660\) 12.4377 38.2793i 0.484137 1.49002i
\(661\) 37.0795 + 26.9399i 1.44223 + 1.04784i 0.987571 + 0.157171i \(0.0502375\pi\)
0.454655 + 0.890668i \(0.349763\pi\)
\(662\) −3.02546 9.31140i −0.117588 0.361898i
\(663\) −6.86474 4.98752i −0.266604 0.193699i
\(664\) 3.76622 2.73632i 0.146158 0.106190i
\(665\) 0.690983 2.12663i 0.0267952 0.0824671i
\(666\) −2.93159 + 2.12993i −0.113597 + 0.0825330i
\(667\) 20.5623 14.9394i 0.796176 0.578455i
\(668\) 4.24264 13.0575i 0.164153 0.505210i
\(669\) 40.3607 29.3238i 1.56043 1.13372i
\(670\) 4.14590 + 3.01217i 0.160170 + 0.116370i
\(671\) 5.83282 + 17.9516i 0.225173 + 0.693012i
\(672\) 7.67501 + 5.57622i 0.296070 + 0.215107i
\(673\) −2.30330 + 7.08882i −0.0887856 + 0.273254i −0.985584 0.169185i \(-0.945887\pi\)
0.896799 + 0.442439i \(0.145887\pi\)
\(674\) −0.692055 + 2.12993i −0.0266570 + 0.0820417i
\(675\) 0 0
\(676\) −63.2705 −2.43348
\(677\) −21.2132 −0.815290 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(678\) −3.84503 11.8338i −0.147668 0.454474i
\(679\) −5.66312 + 4.11450i −0.217331 + 0.157900i
\(680\) −1.43857 1.04518i −0.0551666 0.0400808i
\(681\) 35.9442 1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) 3.35410 + 2.43690i 0.128247 + 0.0931771i
\(685\) 12.4184 9.02251i 0.474484 0.344733i
\(686\) 1.53444 + 4.72253i 0.0585853 + 0.180307i
\(687\) 9.70820 0.370391
\(688\) −0.649096 −0.0247466
\(689\) 11.1246 + 34.2380i 0.423814 + 1.30437i
\(690\) −4.14590 + 12.7598i −0.157832 + 0.485756i
\(691\) −6.66970 + 20.5272i −0.253727 + 0.780892i 0.740351 + 0.672221i \(0.234660\pi\)
−0.994078 + 0.108671i \(0.965340\pi\)
\(692\) 27.0000 + 19.6166i 1.02639 + 0.745713i
\(693\) −2.93159 9.02251i −0.111362 0.342737i
\(694\) −7.98451 5.80108i −0.303088 0.220206i
\(695\) 1.81182 1.31637i 0.0687264 0.0499327i
\(696\) 3.85410 11.8617i 0.146089 0.449617i
\(697\) −3.26544 + 2.37248i −0.123687 + 0.0898642i
\(698\) −1.85410 + 1.34708i −0.0701788 + 0.0509879i
\(699\) −3.20168 + 9.85377i −0.121099 + 0.372704i
\(700\) 0 0
\(701\) −22.3713 16.2537i −0.844953 0.613894i 0.0787967 0.996891i \(-0.474892\pi\)
−0.923750 + 0.382996i \(0.874892\pi\)
\(702\) −1.41641 4.35926i −0.0534589 0.164529i
\(703\) −3.43237 2.49376i −0.129454 0.0940540i
\(704\) −6.17268 + 18.9976i −0.232642 + 0.715998i
\(705\) −5.86319 + 18.0450i −0.220820 + 0.679615i
\(706\) 1.87558 + 5.77245i 0.0705885 + 0.217249i
\(707\) 2.23607 0.0840960
\(708\) 25.2194 0.947803
\(709\) 4.86163 + 14.9626i 0.182582 + 0.561931i 0.999898 0.0142588i \(-0.00453887\pi\)
−0.817316 + 0.576190i \(0.804539\pi\)
\(710\) 5.16312 3.75123i 0.193768 0.140781i
\(711\) 20.0934 + 14.5987i 0.753563 + 0.547495i
\(712\) 8.63141 0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) 52.6869 + 38.2793i 1.97038 + 1.43156i
\(716\) 24.6456 17.9061i 0.921048 0.669181i
\(717\) −11.5623 35.5851i −0.431802 1.32895i
\(718\) 3.72949 0.139183
\(719\) −9.10427 −0.339532 −0.169766 0.985484i \(-0.554301\pi\)
−0.169766 + 0.985484i \(0.554301\pi\)
\(720\) −4.86068 14.9596i −0.181147 0.557513i
\(721\) 0.836881 2.57565i 0.0311671 0.0959224i
\(722\) −2.12461 + 6.53888i −0.0790699 + 0.243352i
\(723\) −27.2705 19.8132i −1.01420 0.736860i
\(724\) −10.4153 32.0551i −0.387082 1.19132i
\(725\) 0 0
\(726\) −4.94975 + 3.59620i −0.183702 + 0.133468i
\(727\) −1.10739 + 3.40820i −0.0410709 + 0.126403i −0.969490 0.245132i \(-0.921169\pi\)
0.928419 + 0.371535i \(0.121169\pi\)
\(728\) −8.17578 + 5.94006i −0.303015 + 0.220153i
\(729\) 9.66312 7.02067i 0.357893 0.260025i
\(730\) −1.11977 + 3.44629i −0.0414445 + 0.127553i
\(731\) 0.0901699 0.0655123i 0.00333506 0.00242306i
\(732\) 15.2705 + 11.0947i 0.564414 + 0.410071i
\(733\) 3.83688 + 11.8087i 0.141718 + 0.436164i 0.996574 0.0827009i \(-0.0263546\pi\)
−0.854856 + 0.518865i \(0.826355\pi\)
\(734\) 3.80562 + 2.76495i 0.140468 + 0.102056i
\(735\) 9.48683 29.1975i 0.349927 1.07696i
\(736\) 8.79478 27.0675i 0.324180 0.997723i
\(737\) 7.86629 + 24.2099i 0.289758 + 0.891785i
\(738\) 6.38197 0.234923
\(739\) −25.6622 −0.943998 −0.471999 0.881599i \(-0.656467\pi\)
−0.471999 + 0.881599i \(0.656467\pi\)
\(740\) 5.43547 + 16.7287i 0.199812 + 0.614958i
\(741\) −12.7082 + 9.23305i −0.466848 + 0.339185i
\(742\) 1.62054 + 1.17739i 0.0594921 + 0.0432235i
\(743\) −1.69936 −0.0623433 −0.0311717 0.999514i \(-0.509924\pi\)
−0.0311717 + 0.999514i \(0.509924\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) 7.01722 + 5.09831i 0.256919 + 0.186662i
\(747\) −5.72061 + 4.15627i −0.209306 + 0.152070i
\(748\) −1.31308 4.04125i −0.0480110 0.147763i
\(749\) 7.47214 0.273026
\(750\) 9.77198 0.356822
\(751\) 9.12868 + 28.0952i 0.333110 + 1.02521i 0.967645 + 0.252314i \(0.0811915\pi\)
−0.634535 + 0.772894i \(0.718808\pi\)
\(752\) 3.60488 11.0947i 0.131456 0.404581i
\(753\) −16.7984 + 51.7001i −0.612167 + 1.88406i
\(754\) 7.85410 + 5.70634i 0.286030 + 0.207813i
\(755\) −2.09697 6.45380i −0.0763164 0.234878i
\(756\) 2.62210 + 1.90506i 0.0953647 + 0.0692865i
\(757\) 15.5169 11.2737i 0.563973 0.409750i −0.268938 0.963158i \(-0.586673\pi\)
0.832911 + 0.553407i \(0.186673\pi\)
\(758\) −2.29180 + 7.05342i −0.0832418 + 0.256192i
\(759\) −53.9163 + 39.1725i −1.95704 + 1.42187i
\(760\) −2.66312 + 1.93487i −0.0966015 + 0.0701851i
\(761\) 0.692055 2.12993i 0.0250870 0.0772098i −0.937729 0.347367i \(-0.887076\pi\)
0.962816 + 0.270157i \(0.0870757\pi\)
\(762\) −6.70820 + 4.87380i −0.243013 + 0.176559i
\(763\) −11.8992 8.64527i −0.430779 0.312980i
\(764\) −8.15654 25.1033i −0.295093 0.908204i
\(765\) 2.18508 + 1.58755i 0.0790017 + 0.0573981i
\(766\) −2.24884 + 6.92122i −0.0812539 + 0.250074i
\(767\) −12.6097 + 38.8087i −0.455310 + 1.40130i
\(768\) 3.93314 + 12.1050i 0.141925 + 0.436801i
\(769\) 13.8754 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(770\) 3.62365 0.130587
\(771\) 16.9312 + 52.1087i 0.609761 + 1.87665i