Properties

Label 961.2.d.h.531.1
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.1
Root \(-0.437016 + 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.h.628.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.118034 + 0.363271i) q^{2} +(-0.707107 + 2.17625i) q^{3} +(1.50000 - 1.08981i) q^{4} -2.23607 q^{5} -0.874032 q^{6} +(0.809017 - 0.587785i) q^{7} +(1.19098 + 0.865300i) q^{8} +(-1.80902 - 1.31433i) q^{9} +(-0.263932 - 0.812299i) q^{10} +(3.43237 - 2.49376i) q^{11} +(1.31105 + 4.03499i) q^{12} +(-2.12132 + 6.52875i) q^{13} +(0.309017 + 0.224514i) q^{14} +(1.58114 - 4.86624i) q^{15} +(0.972136 - 2.99193i) q^{16} +(0.437016 + 0.317511i) q^{17} +(0.263932 - 0.812299i) q^{18} +(0.309017 + 0.951057i) q^{19} +(-3.35410 + 2.43690i) q^{20} +(0.707107 + 2.17625i) q^{21} +(1.31105 + 0.952532i) q^{22} +(5.55369 + 4.03499i) q^{23} +(-2.72526 + 1.98002i) q^{24} -2.62210 q^{26} +(-1.41421 + 1.02749i) q^{27} +(0.572949 - 1.76336i) q^{28} +(1.14412 + 3.52125i) q^{29} +1.95440 q^{30} +4.14590 q^{32} +(3.00000 + 9.23305i) q^{33} +(-0.0637598 + 0.196232i) q^{34} +(-1.80902 + 1.31433i) q^{35} -4.14590 q^{36} -4.24264 q^{37} +(-0.309017 + 0.224514i) q^{38} +(-12.7082 - 9.23305i) q^{39} +(-2.66312 - 1.93487i) q^{40} +(2.30902 + 7.10642i) q^{41} +(-0.707107 + 0.513743i) q^{42} +(0.0637598 + 0.196232i) q^{43} +(2.43082 - 7.48128i) q^{44} +(4.04508 + 2.93893i) q^{45} +(-0.810272 + 2.49376i) q^{46} +(1.14590 - 3.52671i) q^{47} +(5.82378 + 4.23122i) q^{48} +(-1.85410 + 5.70634i) q^{49} +(-1.00000 + 0.726543i) q^{51} +(3.93314 + 12.1050i) q^{52} +(4.24264 + 3.08246i) q^{53} +(-0.540182 - 0.392465i) q^{54} +(-7.67501 + 5.57622i) q^{55} +1.47214 q^{56} -2.28825 q^{57} +(-1.14412 + 0.831254i) q^{58} +(-1.83688 + 5.65334i) q^{59} +(-2.93159 - 9.02251i) q^{60} -4.44897 q^{61} -2.23607 q^{63} +(-1.45492 - 4.47777i) q^{64} +(4.74342 - 14.5987i) q^{65} +(-3.00000 + 2.17963i) q^{66} +6.00000 q^{67} +1.00155 q^{68} +(-12.7082 + 9.23305i) q^{69} +(-0.690983 - 0.502029i) q^{70} +(-6.04508 - 4.39201i) q^{71} +(-1.01722 - 3.13068i) q^{72} +(3.43237 - 2.49376i) q^{73} +(-0.500776 - 1.54123i) q^{74} +(1.50000 + 1.08981i) q^{76} +(1.31105 - 4.03499i) q^{77} +(1.85410 - 5.70634i) q^{78} +(-8.98606 - 6.52875i) q^{79} +(-2.17376 + 6.69015i) q^{80} +(-3.30902 - 10.1841i) q^{81} +(-2.30902 + 1.67760i) q^{82} +(-0.977198 - 3.00750i) q^{83} +(3.43237 + 2.49376i) q^{84} +(-0.977198 - 0.709976i) q^{85} +(-0.0637598 + 0.0463242i) q^{86} -8.47214 q^{87} +6.24574 q^{88} +(-4.74342 + 3.44629i) q^{89} +(-0.590170 + 1.81636i) q^{90} +(2.12132 + 6.52875i) q^{91} +12.7279 q^{92} +1.41641 q^{94} +(-0.690983 - 2.12663i) q^{95} +(-2.93159 + 9.02251i) q^{96} +(5.66312 - 4.11450i) q^{97} -2.29180 q^{98} -9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 12 q^{4} + 2 q^{7} + 14 q^{8} - 10 q^{9} - 20 q^{10} - 2 q^{14} - 28 q^{16} + 20 q^{18} - 2 q^{19} + 18 q^{28} + 60 q^{32} + 24 q^{33} - 10 q^{35} - 60 q^{36} + 2 q^{38} - 48 q^{39} + 10 q^{40}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.118034 + 0.363271i 0.0834626 + 0.256872i 0.984076 0.177750i \(-0.0568820\pi\)
−0.900613 + 0.434622i \(0.856882\pi\)
\(3\) −0.707107 + 2.17625i −0.408248 + 1.25646i 0.509904 + 0.860231i \(0.329681\pi\)
−0.918152 + 0.396228i \(0.870319\pi\)
\(4\) 1.50000 1.08981i 0.750000 0.544907i
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −0.874032 −0.356822
\(7\) 0.809017 0.587785i 0.305780 0.222162i −0.424304 0.905520i \(-0.639481\pi\)
0.730084 + 0.683358i \(0.239481\pi\)
\(8\) 1.19098 + 0.865300i 0.421076 + 0.305930i
\(9\) −1.80902 1.31433i −0.603006 0.438109i
\(10\) −0.263932 0.812299i −0.0834626 0.256872i
\(11\) 3.43237 2.49376i 1.03490 0.751897i 0.0656149 0.997845i \(-0.479099\pi\)
0.969283 + 0.245948i \(0.0790991\pi\)
\(12\) 1.31105 + 4.03499i 0.378467 + 1.16480i
\(13\) −2.12132 + 6.52875i −0.588348 + 1.81075i −0.00296221 + 0.999996i \(0.500943\pi\)
−0.585386 + 0.810755i \(0.699057\pi\)
\(14\) 0.309017 + 0.224514i 0.0825883 + 0.0600039i
\(15\) 1.58114 4.86624i 0.408248 1.25646i
\(16\) 0.972136 2.99193i 0.243034 0.747982i
\(17\) 0.437016 + 0.317511i 0.105992 + 0.0770077i 0.639519 0.768776i \(-0.279134\pi\)
−0.533527 + 0.845783i \(0.679134\pi\)
\(18\) 0.263932 0.812299i 0.0622094 0.191461i
\(19\) 0.309017 + 0.951057i 0.0708934 + 0.218187i 0.980226 0.197884i \(-0.0634068\pi\)
−0.909332 + 0.416071i \(0.863407\pi\)
\(20\) −3.35410 + 2.43690i −0.750000 + 0.544907i
\(21\) 0.707107 + 2.17625i 0.154303 + 0.474897i
\(22\) 1.31105 + 0.952532i 0.279516 + 0.203081i
\(23\) 5.55369 + 4.03499i 1.15802 + 0.841354i 0.989527 0.144348i \(-0.0461086\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(24\) −2.72526 + 1.98002i −0.556292 + 0.404170i
\(25\) 0 0
\(26\) −2.62210 −0.514235
\(27\) −1.41421 + 1.02749i −0.272166 + 0.197740i
\(28\) 0.572949 1.76336i 0.108277 0.333243i
\(29\) 1.14412 + 3.52125i 0.212458 + 0.653879i 0.999324 + 0.0367555i \(0.0117023\pi\)
−0.786866 + 0.617124i \(0.788298\pi\)
\(30\) 1.95440 0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) 3.00000 + 9.23305i 0.522233 + 1.60727i
\(34\) −0.0637598 + 0.196232i −0.0109347 + 0.0336536i
\(35\) −1.80902 + 1.31433i −0.305780 + 0.222162i
\(36\) −4.14590 −0.690983
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) −0.309017 + 0.224514i −0.0501292 + 0.0364210i
\(39\) −12.7082 9.23305i −2.03494 1.47847i
\(40\) −2.66312 1.93487i −0.421076 0.305930i
\(41\) 2.30902 + 7.10642i 0.360608 + 1.10984i 0.952686 + 0.303956i \(0.0983077\pi\)
−0.592078 + 0.805881i \(0.701692\pi\)
\(42\) −0.707107 + 0.513743i −0.109109 + 0.0792723i
\(43\) 0.0637598 + 0.196232i 0.00972328 + 0.0299252i 0.955800 0.294016i \(-0.0949920\pi\)
−0.946077 + 0.323941i \(0.894992\pi\)
\(44\) 2.43082 7.48128i 0.366459 1.12785i
\(45\) 4.04508 + 2.93893i 0.603006 + 0.438109i
\(46\) −0.810272 + 2.49376i −0.119468 + 0.367685i
\(47\) 1.14590 3.52671i 0.167146 0.514424i −0.832042 0.554713i \(-0.812828\pi\)
0.999188 + 0.0402894i \(0.0128280\pi\)
\(48\) 5.82378 + 4.23122i 0.840590 + 0.610725i
\(49\) −1.85410 + 5.70634i −0.264872 + 0.815191i
\(50\) 0 0
\(51\) −1.00000 + 0.726543i −0.140028 + 0.101736i
\(52\) 3.93314 + 12.1050i 0.545429 + 1.67866i
\(53\) 4.24264 + 3.08246i 0.582772 + 0.423408i 0.839722 0.543016i \(-0.182718\pi\)
−0.256951 + 0.966425i \(0.582718\pi\)
\(54\) −0.540182 0.392465i −0.0735094 0.0534077i
\(55\) −7.67501 + 5.57622i −1.03490 + 0.751897i
\(56\) 1.47214 0.196722
\(57\) −2.28825 −0.303086
\(58\) −1.14412 + 0.831254i −0.150231 + 0.109149i
\(59\) −1.83688 + 5.65334i −0.239142 + 0.736002i 0.757403 + 0.652947i \(0.226468\pi\)
−0.996545 + 0.0830548i \(0.973532\pi\)
\(60\) −2.93159 9.02251i −0.378467 1.16480i
\(61\) −4.44897 −0.569632 −0.284816 0.958582i \(-0.591933\pi\)
−0.284816 + 0.958582i \(0.591933\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) −1.45492 4.47777i −0.181864 0.559721i
\(65\) 4.74342 14.5987i 0.588348 1.81075i
\(66\) −3.00000 + 2.17963i −0.369274 + 0.268294i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 1.00155 0.121456
\(69\) −12.7082 + 9.23305i −1.52989 + 1.11153i
\(70\) −0.690983 0.502029i −0.0825883 0.0600039i
\(71\) −6.04508 4.39201i −0.717420 0.521236i 0.168139 0.985763i \(-0.446224\pi\)
−0.885559 + 0.464527i \(0.846224\pi\)
\(72\) −1.01722 3.13068i −0.119881 0.368955i
\(73\) 3.43237 2.49376i 0.401728 0.291873i −0.368516 0.929621i \(-0.620134\pi\)
0.770245 + 0.637749i \(0.220134\pi\)
\(74\) −0.500776 1.54123i −0.0582140 0.179164i
\(75\) 0 0
\(76\) 1.50000 + 1.08981i 0.172062 + 0.125010i
\(77\) 1.31105 4.03499i 0.149408 0.459830i
\(78\) 1.85410 5.70634i 0.209936 0.646116i
\(79\) −8.98606 6.52875i −1.01101 0.734542i −0.0465897 0.998914i \(-0.514835\pi\)
−0.964421 + 0.264372i \(0.914835\pi\)
\(80\) −2.17376 + 6.69015i −0.243034 + 0.747982i
\(81\) −3.30902 10.1841i −0.367669 1.13157i
\(82\) −2.30902 + 1.67760i −0.254988 + 0.185260i
\(83\) −0.977198 3.00750i −0.107261 0.330117i 0.882993 0.469386i \(-0.155525\pi\)
−0.990255 + 0.139269i \(0.955525\pi\)
\(84\) 3.43237 + 2.49376i 0.374502 + 0.272092i
\(85\) −0.977198 0.709976i −0.105992 0.0770077i
\(86\) −0.0637598 + 0.0463242i −0.00687539 + 0.00499527i
\(87\) −8.47214 −0.908308
\(88\) 6.24574 0.665799
\(89\) −4.74342 + 3.44629i −0.502801 + 0.365306i −0.810086 0.586311i \(-0.800580\pi\)
0.307285 + 0.951618i \(0.400580\pi\)
\(90\) −0.590170 + 1.81636i −0.0622094 + 0.191461i
\(91\) 2.12132 + 6.52875i 0.222375 + 0.684399i
\(92\) 12.7279 1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) −0.690983 2.12663i −0.0708934 0.218187i
\(96\) −2.93159 + 9.02251i −0.299204 + 0.920857i
\(97\) 5.66312 4.11450i 0.575003 0.417764i −0.261916 0.965091i \(-0.584354\pi\)
0.836919 + 0.547327i \(0.184354\pi\)
\(98\) −2.29180 −0.231506
\(99\) −9.48683 −0.953463
\(100\) 0 0
\(101\) 1.80902 + 1.31433i 0.180004 + 0.130781i 0.674139 0.738605i \(-0.264515\pi\)
−0.494135 + 0.869385i \(0.664515\pi\)
\(102\) −0.381966 0.277515i −0.0378203 0.0274780i
\(103\) −0.836881 2.57565i −0.0824603 0.253787i 0.901323 0.433148i \(-0.142597\pi\)
−0.983783 + 0.179361i \(0.942597\pi\)
\(104\) −8.17578 + 5.94006i −0.801702 + 0.582470i
\(105\) −1.58114 4.86624i −0.154303 0.474897i
\(106\) −0.618993 + 1.90506i −0.0601219 + 0.185036i
\(107\) 6.04508 + 4.39201i 0.584400 + 0.424592i 0.840308 0.542110i \(-0.182374\pi\)
−0.255907 + 0.966701i \(0.582374\pi\)
\(108\) −1.00155 + 3.08246i −0.0963743 + 0.296610i
\(109\) −4.54508 + 13.9883i −0.435340 + 1.33984i 0.457397 + 0.889262i \(0.348782\pi\)
−0.892738 + 0.450577i \(0.851218\pi\)
\(110\) −2.93159 2.12993i −0.279516 0.203081i
\(111\) 3.00000 9.23305i 0.284747 0.876362i
\(112\) −0.972136 2.99193i −0.0918582 0.282711i
\(113\) 11.5172 8.36775i 1.08345 0.787172i 0.105168 0.994454i \(-0.466462\pi\)
0.978281 + 0.207283i \(0.0664620\pi\)
\(114\) −0.270091 0.831254i −0.0252963 0.0778541i
\(115\) −12.4184 9.02251i −1.15802 0.841354i
\(116\) 5.55369 + 4.03499i 0.515647 + 0.374640i
\(117\) 12.4184 9.02251i 1.14808 0.834132i
\(118\) −2.27051 −0.209017
\(119\) 0.540182 0.0495184
\(120\) 6.09387 4.42746i 0.556292 0.404170i
\(121\) 2.16312 6.65740i 0.196647 0.605218i
\(122\) −0.525130 1.61618i −0.0475430 0.146322i
\(123\) −17.0981 −1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) −0.263932 0.812299i −0.0235129 0.0723654i
\(127\) −2.93159 + 9.02251i −0.260137 + 0.800619i 0.732637 + 0.680619i \(0.238289\pi\)
−0.992774 + 0.119999i \(0.961711\pi\)
\(128\) 8.16312 5.93085i 0.721525 0.524218i
\(129\) −0.472136 −0.0415693
\(130\) 5.86319 0.514235
\(131\) 15.7082 11.4127i 1.37243 0.997130i 0.374889 0.927070i \(-0.377681\pi\)
0.997543 0.0700608i \(-0.0223193\pi\)
\(132\) 14.5623 + 10.5801i 1.26749 + 0.920883i
\(133\) 0.809017 + 0.587785i 0.0701507 + 0.0509674i
\(134\) 0.708204 + 2.17963i 0.0611795 + 0.188291i
\(135\) 3.16228 2.29753i 0.272166 0.197740i
\(136\) 0.245737 + 0.756300i 0.0210717 + 0.0648522i
\(137\) −2.12132 + 6.52875i −0.181237 + 0.557789i −0.999863 0.0165371i \(-0.994736\pi\)
0.818627 + 0.574326i \(0.194736\pi\)
\(138\) −4.85410 3.52671i −0.413209 0.300214i
\(139\) −0.309496 + 0.952532i −0.0262511 + 0.0807927i −0.963324 0.268342i \(-0.913524\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(140\) −1.28115 + 3.94298i −0.108277 + 0.333243i
\(141\) 6.86474 + 4.98752i 0.578115 + 0.420025i
\(142\) 0.881966 2.71441i 0.0740129 0.227788i
\(143\) 9.00000 + 27.6992i 0.752618 + 2.31632i
\(144\) −5.69098 + 4.13474i −0.474249 + 0.344562i
\(145\) −2.55834 7.87375i −0.212458 0.653879i
\(146\) 1.31105 + 0.952532i 0.108503 + 0.0788321i
\(147\) −11.1074 8.06998i −0.916121 0.665601i
\(148\) −6.36396 + 4.62369i −0.523114 + 0.380065i
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) 2.45517 1.78379i 0.199799 0.145162i −0.483387 0.875407i \(-0.660594\pi\)
0.683186 + 0.730244i \(0.260594\pi\)
\(152\) −0.454915 + 1.40008i −0.0368985 + 0.113562i
\(153\) −0.373256 1.14876i −0.0301760 0.0928721i
\(154\) 1.62054 0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) −1.45492 4.47777i −0.116115 0.357365i 0.876063 0.482197i \(-0.160161\pi\)
−0.992178 + 0.124832i \(0.960161\pi\)
\(158\) 1.31105 4.03499i 0.104301 0.321007i
\(159\) −9.70820 + 7.05342i −0.769911 + 0.559373i
\(160\) −9.27051 −0.732898
\(161\) 6.86474 0.541017
\(162\) 3.30902 2.40414i 0.259981 0.188887i
\(163\) 10.0451 + 7.29818i 0.786792 + 0.571638i 0.907010 0.421110i \(-0.138359\pi\)
−0.120218 + 0.992748i \(0.538359\pi\)
\(164\) 11.2082 + 8.14324i 0.875214 + 0.635880i
\(165\) −6.70820 20.6457i −0.522233 1.60727i
\(166\) 0.977198 0.709976i 0.0758452 0.0551048i
\(167\) 2.28825 + 7.04250i 0.177070 + 0.544965i 0.999722 0.0235803i \(-0.00750653\pi\)
−0.822652 + 0.568545i \(0.807507\pi\)
\(168\) −1.04096 + 3.20374i −0.0803116 + 0.247174i
\(169\) −27.6074 20.0579i −2.12365 1.54292i
\(170\) 0.142571 0.438789i 0.0109347 0.0336536i
\(171\) 0.690983 2.12663i 0.0528408 0.162627i
\(172\) 0.309496 + 0.224862i 0.0235989 + 0.0171456i
\(173\) 5.56231 17.1190i 0.422894 1.30153i −0.482102 0.876115i \(-0.660127\pi\)
0.904996 0.425420i \(-0.139873\pi\)
\(174\) −1.00000 3.07768i −0.0758098 0.233319i
\(175\) 0 0
\(176\) −4.12442 12.6937i −0.310890 0.956821i
\(177\) −11.0042 7.99503i −0.827127 0.600943i
\(178\) −1.81182 1.31637i −0.135802 0.0986659i
\(179\) 13.2925 9.65754i 0.993525 0.721838i 0.0328347 0.999461i \(-0.489546\pi\)
0.960690 + 0.277623i \(0.0895465\pi\)
\(180\) 9.27051 0.690983
\(181\) −18.1784 −1.35119 −0.675597 0.737271i \(-0.736114\pi\)
−0.675597 + 0.737271i \(0.736114\pi\)
\(182\) −2.12132 + 1.54123i −0.157243 + 0.114244i
\(183\) 3.14590 9.68208i 0.232551 0.715720i
\(184\) 3.12287 + 9.61121i 0.230221 + 0.708548i
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) −2.12461 6.53888i −0.154953 0.476897i
\(189\) −0.540182 + 1.66251i −0.0392924 + 0.120930i
\(190\) 0.690983 0.502029i 0.0501292 0.0364210i
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) 10.7735 0.777512
\(193\) 5.89919 4.28601i 0.424633 0.308514i −0.354866 0.934917i \(-0.615474\pi\)
0.779499 + 0.626403i \(0.215474\pi\)
\(194\) 2.16312 + 1.57160i 0.155303 + 0.112834i
\(195\) 28.4164 + 20.6457i 2.03494 + 1.47847i
\(196\) 3.43769 + 10.5801i 0.245550 + 0.755724i
\(197\) −5.99070 + 4.35250i −0.426820 + 0.310103i −0.780376 0.625310i \(-0.784972\pi\)
0.353556 + 0.935413i \(0.384972\pi\)
\(198\) −1.11977 3.44629i −0.0795785 0.244917i
\(199\) 4.55214 14.0100i 0.322692 0.993145i −0.649779 0.760123i \(-0.725139\pi\)
0.972471 0.233022i \(-0.0748614\pi\)
\(200\) 0 0
\(201\) −4.24264 + 13.0575i −0.299253 + 0.921005i
\(202\) −0.263932 + 0.812299i −0.0185702 + 0.0571532i
\(203\) 2.99535 + 2.17625i 0.210233 + 0.152743i
\(204\) −0.708204 + 2.17963i −0.0495842 + 0.152604i
\(205\) −5.16312 15.8904i −0.360608 1.10984i
\(206\) 0.836881 0.608030i 0.0583083 0.0423634i
\(207\) −4.74342 14.5987i −0.329690 1.01468i
\(208\) 17.4713 + 12.6937i 1.21142 + 0.880148i
\(209\) 3.43237 + 2.49376i 0.237422 + 0.172497i
\(210\) 1.58114 1.14876i 0.109109 0.0792723i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 9.72327 0.667797
\(213\) 13.8326 10.0500i 0.947797 0.688615i
\(214\) −0.881966 + 2.71441i −0.0602900 + 0.185553i
\(215\) −0.142571 0.438789i −0.00972328 0.0299252i
\(216\) −2.57339 −0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) 3.00000 + 9.23305i 0.202721 + 0.623912i
\(220\) −5.43547 + 16.7287i −0.366459 + 1.12785i
\(221\) −3.00000 + 2.17963i −0.201802 + 0.146618i
\(222\) 3.70820 0.248878
\(223\) 21.8021 1.45998 0.729988 0.683460i \(-0.239526\pi\)
0.729988 + 0.683460i \(0.239526\pi\)
\(224\) 3.35410 2.43690i 0.224105 0.162822i
\(225\) 0 0
\(226\) 4.39919 + 3.19620i 0.292630 + 0.212608i
\(227\) 4.85410 + 14.9394i 0.322178 + 0.991562i 0.972698 + 0.232073i \(0.0745509\pi\)
−0.650520 + 0.759489i \(0.725449\pi\)
\(228\) −3.43237 + 2.49376i −0.227314 + 0.165153i
\(229\) −1.31105 4.03499i −0.0866365 0.266640i 0.898347 0.439286i \(-0.144768\pi\)
−0.984984 + 0.172646i \(0.944768\pi\)
\(230\) 1.81182 5.57622i 0.119468 0.367685i
\(231\) 7.85410 + 5.70634i 0.516762 + 0.375450i
\(232\) −1.68430 + 5.18376i −0.110580 + 0.340330i
\(233\) −1.39919 + 4.30625i −0.0916638 + 0.282112i −0.986370 0.164543i \(-0.947385\pi\)
0.894706 + 0.446655i \(0.147385\pi\)
\(234\) 4.74342 + 3.44629i 0.310087 + 0.225291i
\(235\) −2.56231 + 7.88597i −0.167146 + 0.514424i
\(236\) 3.40576 + 10.4819i 0.221696 + 0.682311i
\(237\) 20.5623 14.9394i 1.33567 0.970418i
\(238\) 0.0637598 + 0.196232i 0.00413293 + 0.0127199i
\(239\) −13.2287 9.61121i −0.855693 0.621698i 0.0710166 0.997475i \(-0.477376\pi\)
−0.926710 + 0.375778i \(0.877376\pi\)
\(240\) −13.0224 9.46130i −0.840590 0.610725i
\(241\) 11.9176 8.65868i 0.767683 0.557755i −0.133574 0.991039i \(-0.542645\pi\)
0.901257 + 0.433284i \(0.142645\pi\)
\(242\) 2.67376 0.171876
\(243\) 19.2588 1.23545
\(244\) −6.67346 + 4.84855i −0.427224 + 0.310397i
\(245\) 4.14590 12.7598i 0.264872 0.815191i
\(246\) −2.01815 6.21124i −0.128673 0.396014i
\(247\) −6.86474 −0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) 1.31966 + 4.06150i 0.0834626 + 0.256872i
\(251\) 7.34116 22.5938i 0.463370 1.42611i −0.397651 0.917537i \(-0.630175\pi\)
0.861021 0.508569i \(-0.169825\pi\)
\(252\) −3.35410 + 2.43690i −0.211289 + 0.153510i
\(253\) 29.1246 1.83105
\(254\) −3.62365 −0.227368
\(255\) 2.23607 1.62460i 0.140028 0.101736i
\(256\) −4.50000 3.26944i −0.281250 0.204340i
\(257\) −19.3713 14.0741i −1.20835 0.877918i −0.213270 0.976993i \(-0.568411\pi\)
−0.995080 + 0.0990757i \(0.968411\pi\)
\(258\) −0.0557281 0.171513i −0.00346948 0.0106780i
\(259\) −3.43237 + 2.49376i −0.213277 + 0.154955i
\(260\) −8.79478 27.0675i −0.545429 1.67866i
\(261\) 2.55834 7.87375i 0.158357 0.487373i
\(262\) 6.00000 + 4.35926i 0.370681 + 0.269316i
\(263\) −0.834626 + 2.56872i −0.0514653 + 0.158394i −0.973486 0.228747i \(-0.926537\pi\)
0.922021 + 0.387141i \(0.126537\pi\)
\(264\) −4.41641 + 13.5923i −0.271811 + 0.836549i
\(265\) −9.48683 6.89259i −0.582772 0.423408i
\(266\) −0.118034 + 0.363271i −0.00723713 + 0.0222736i
\(267\) −4.14590 12.7598i −0.253725 0.780885i
\(268\) 9.00000 6.53888i 0.549762 0.399426i
\(269\) −4.57649 14.0850i −0.279034 0.858777i −0.988124 0.153659i \(-0.950894\pi\)
0.709090 0.705118i \(-0.249106\pi\)
\(270\) 1.20788 + 0.877578i 0.0735094 + 0.0534077i
\(271\) −22.7155 16.5038i −1.37987 1.00253i −0.996892 0.0787769i \(-0.974899\pi\)
−0.382978 0.923757i \(-0.625101\pi\)
\(272\) 1.37481 0.998856i 0.0833600 0.0605646i
\(273\) −15.7082 −0.950704
\(274\) −2.62210 −0.158407
\(275\) 0 0
\(276\) −9.00000 + 27.6992i −0.541736 + 1.66729i
\(277\) −6.05446 18.6337i −0.363778 1.11959i −0.950743 0.309980i \(-0.899678\pi\)
0.586966 0.809612i \(-0.300322\pi\)
\(278\) −0.382559 −0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) −9.69098 29.8258i −0.578116 1.77926i −0.625316 0.780371i \(-0.715030\pi\)
0.0472008 0.998885i \(-0.484970\pi\)
\(282\) −1.00155 + 3.08246i −0.0596415 + 0.183558i
\(283\) −19.4164 + 14.1068i −1.15419 + 0.838565i −0.989032 0.147703i \(-0.952812\pi\)
−0.165154 + 0.986268i \(0.552812\pi\)
\(284\) −13.8541 −0.822090
\(285\) 5.11667 0.303086
\(286\) −9.00000 + 6.53888i −0.532181 + 0.386652i
\(287\) 6.04508 + 4.39201i 0.356830 + 0.259252i
\(288\) −7.50000 5.44907i −0.441942 0.321089i
\(289\) −5.16312 15.8904i −0.303713 0.934732i
\(290\) 2.55834 1.85874i 0.150231 0.109149i
\(291\) 4.94975 + 15.2338i 0.290159 + 0.893019i
\(292\) 2.43082 7.48128i 0.142253 0.437809i
\(293\) 12.7082 + 9.23305i 0.742421 + 0.539401i 0.893468 0.449126i \(-0.148265\pi\)
−0.151047 + 0.988527i \(0.548265\pi\)
\(294\) 1.62054 4.98752i 0.0945121 0.290878i
\(295\) 4.10739 12.6412i 0.239142 0.736002i
\(296\) −5.05291 3.67116i −0.293695 0.213382i
\(297\) −2.29180 + 7.05342i −0.132983 + 0.409281i
\(298\) 1.58359 + 4.87380i 0.0917350 + 0.282331i
\(299\) −38.1246 + 27.6992i −2.20480 + 1.60188i
\(300\) 0 0
\(301\) 0.166925 + 0.121278i 0.00962141 + 0.00699037i
\(302\) 0.937792 + 0.681346i 0.0539639 + 0.0392070i
\(303\) −4.13948 + 3.00750i −0.237807 + 0.172777i
\(304\) 3.14590 0.180430
\(305\) 9.94820 0.569632
\(306\) 0.373256 0.271187i 0.0213376 0.0155027i
\(307\) −4.98278 + 15.3354i −0.284382 + 0.875238i 0.702201 + 0.711979i \(0.252201\pi\)
−0.986583 + 0.163260i \(0.947799\pi\)
\(308\) −2.43082 7.48128i −0.138509 0.426286i
\(309\) 6.19704 0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) −7.14590 21.9928i −0.404557 1.24510i
\(313\) 6.49148 19.9787i 0.366920 1.12926i −0.581850 0.813296i \(-0.697671\pi\)
0.948770 0.315968i \(-0.102329\pi\)
\(314\) 1.45492 1.05706i 0.0821056 0.0596532i
\(315\) 5.00000 0.281718
\(316\) −20.5942 −1.15851
\(317\) −17.6074 + 12.7925i −0.988930 + 0.718499i −0.959686 0.281073i \(-0.909310\pi\)
−0.0292432 + 0.999572i \(0.509310\pi\)
\(318\) −3.70820 2.69417i −0.207946 0.151081i
\(319\) 12.7082 + 9.23305i 0.711523 + 0.516952i
\(320\) 3.25329 + 10.0126i 0.181864 + 0.559721i
\(321\) −13.8326 + 10.0500i −0.772063 + 0.560936i
\(322\) 0.810272 + 2.49376i 0.0451547 + 0.138972i
\(323\) −0.166925 + 0.513743i −0.00928797 + 0.0285854i
\(324\) −16.0623 11.6699i −0.892350 0.648330i
\(325\) 0 0
\(326\) −1.46556 + 4.51052i −0.0811698 + 0.249815i
\(327\) −27.2283 19.7825i −1.50573 1.09397i
\(328\) −3.39919 + 10.4616i −0.187689 + 0.577646i
\(329\) −1.14590 3.52671i −0.0631754 0.194434i
\(330\) 6.70820 4.87380i 0.369274 0.268294i
\(331\) 7.92075 + 24.3775i 0.435364 + 1.33991i 0.892714 + 0.450625i \(0.148799\pi\)
−0.457350 + 0.889287i \(0.651201\pi\)
\(332\) −4.74342 3.44629i −0.260329 0.189140i
\(333\) 7.67501 + 5.57622i 0.420588 + 0.305575i
\(334\) −2.28825 + 1.66251i −0.125207 + 0.0909684i
\(335\) −13.4164 −0.733017
\(336\) 7.19859 0.392715
\(337\) −4.74342 + 3.44629i −0.258390 + 0.187732i −0.709437 0.704769i \(-0.751051\pi\)
0.451047 + 0.892500i \(0.351051\pi\)
\(338\) 4.02786 12.3965i 0.219087 0.674280i
\(339\) 10.0664 + 30.9813i 0.546733 + 1.68267i
\(340\) −2.23954 −0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) 4.01722 + 12.3637i 0.216910 + 0.667579i
\(344\) −0.0938631 + 0.288881i −0.00506076 + 0.0155754i
\(345\) 28.4164 20.6457i 1.52989 1.11153i
\(346\) 6.87539 0.369623
\(347\) −25.8384 −1.38708 −0.693539 0.720419i \(-0.743950\pi\)
−0.693539 + 0.720419i \(0.743950\pi\)
\(348\) −12.7082 + 9.23305i −0.681231 + 0.494943i
\(349\) −4.85410 3.52671i −0.259834 0.188781i 0.450240 0.892908i \(-0.351338\pi\)
−0.710074 + 0.704127i \(0.751338\pi\)
\(350\) 0 0
\(351\) −3.70820 11.4127i −0.197929 0.609164i
\(352\) 14.2302 10.3389i 0.758475 0.551064i
\(353\) −4.91034 15.1125i −0.261351 0.804356i −0.992512 0.122151i \(-0.961021\pi\)
0.731160 0.682206i \(-0.238979\pi\)
\(354\) 1.60549 4.94120i 0.0853310 0.262622i
\(355\) 13.5172 + 9.82084i 0.717420 + 0.521236i
\(356\) −3.35931 + 10.3389i −0.178043 + 0.547960i
\(357\) −0.381966 + 1.17557i −0.0202158 + 0.0622178i
\(358\) 5.07727 + 3.68885i 0.268342 + 0.194962i
\(359\) 3.01722 9.28605i 0.159243 0.490099i −0.839323 0.543633i \(-0.817048\pi\)
0.998566 + 0.0535337i \(0.0170485\pi\)
\(360\) 2.27458 + 7.00042i 0.119881 + 0.368955i
\(361\) 14.5623 10.5801i 0.766437 0.556849i
\(362\) −2.14567 6.60371i −0.112774 0.347083i
\(363\) 12.9586 + 9.41498i 0.680150 + 0.494158i
\(364\) 10.2971 + 7.48128i 0.539715 + 0.392126i
\(365\) −7.67501 + 5.57622i −0.401728 + 0.291873i
\(366\) 3.88854 0.203257
\(367\) 12.3153 0.642851 0.321426 0.946935i \(-0.395838\pi\)
0.321426 + 0.946935i \(0.395838\pi\)
\(368\) 17.4713 12.6937i 0.910756 0.661703i
\(369\) 5.16312 15.8904i 0.268781 0.827224i
\(370\) 1.11977 + 3.44629i 0.0582140 + 0.179164i
\(371\) 5.24419 0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) 0.270510 + 0.832544i 0.0139877 + 0.0430498i
\(375\) −7.90569 + 24.3312i −0.408248 + 1.25646i
\(376\) 4.41641 3.20871i 0.227759 0.165476i
\(377\) −25.4164 −1.30901
\(378\) −0.667701 −0.0343428
\(379\) 15.7082 11.4127i 0.806876 0.586230i −0.106047 0.994361i \(-0.533819\pi\)
0.912923 + 0.408131i \(0.133819\pi\)
\(380\) −3.35410 2.43690i −0.172062 0.125010i
\(381\) −17.5623 12.7598i −0.899744 0.653702i
\(382\) 1.68034 + 5.17155i 0.0859737 + 0.264600i
\(383\) −15.4138 + 11.1988i −0.787607 + 0.572230i −0.907252 0.420587i \(-0.861824\pi\)
0.119645 + 0.992817i \(0.461824\pi\)
\(384\) 7.13483 + 21.9587i 0.364098 + 1.12058i
\(385\) −2.93159 + 9.02251i −0.149408 + 0.459830i
\(386\) 2.25329 + 1.63711i 0.114689 + 0.0833267i
\(387\) 0.142571 0.438789i 0.00724730 0.0223049i
\(388\) 4.01064 12.3435i 0.203610 0.626646i
\(389\) 27.3314 + 19.8574i 1.38576 + 1.00681i 0.996316 + 0.0857617i \(0.0273324\pi\)
0.389443 + 0.921051i \(0.372668\pi\)
\(390\) −4.14590 + 12.7598i −0.209936 + 0.646116i
\(391\) 1.14590 + 3.52671i 0.0579506 + 0.178353i
\(392\) −7.14590 + 5.19180i −0.360922 + 0.262225i
\(393\) 13.7295 + 42.2550i 0.692560 + 2.13148i
\(394\) −2.28825 1.66251i −0.115280 0.0837559i
\(395\) 20.0934 + 14.5987i 1.01101 + 0.734542i
\(396\) −14.2302 + 10.3389i −0.715097 + 0.519548i
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) 5.62675 0.282044
\(399\) −1.85123 + 1.34500i −0.0926774 + 0.0673341i
\(400\) 0 0
\(401\) 1.14412 + 3.52125i 0.0571348 + 0.175843i 0.975551 0.219772i \(-0.0705314\pi\)
−0.918416 + 0.395615i \(0.870531\pi\)
\(402\) −5.24419 −0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) 7.39919 + 22.7724i 0.367669 + 1.13157i
\(406\) −0.437016 + 1.34500i −0.0216887 + 0.0667511i
\(407\) −14.5623 + 10.5801i −0.721827 + 0.524438i
\(408\) −1.81966 −0.0900866
\(409\) 17.3531 0.858057 0.429028 0.903291i \(-0.358856\pi\)
0.429028 + 0.903291i \(0.358856\pi\)
\(410\) 5.16312 3.75123i 0.254988 0.185260i
\(411\) −12.7082 9.23305i −0.626849 0.455433i
\(412\) −4.06231 2.95144i −0.200135 0.145407i
\(413\) 1.83688 + 5.65334i 0.0903870 + 0.278183i
\(414\) 4.74342 3.44629i 0.233126 0.169376i
\(415\) 2.18508 + 6.72499i 0.107261 + 0.330117i
\(416\) −8.79478 + 27.0675i −0.431199 + 1.32710i
\(417\) −1.85410 1.34708i −0.0907958 0.0659670i
\(418\) −0.500776 + 1.54123i −0.0244937 + 0.0753840i
\(419\) −5.74671 + 17.6866i −0.280745 + 0.864045i 0.706897 + 0.707317i \(0.250095\pi\)
−0.987642 + 0.156728i \(0.949905\pi\)
\(420\) −7.67501 5.57622i −0.374502 0.272092i
\(421\) −0.128677 + 0.396027i −0.00627134 + 0.0193012i −0.954143 0.299350i \(-0.903230\pi\)
0.947872 + 0.318652i \(0.103230\pi\)
\(422\) −0.590170 1.81636i −0.0287290 0.0884188i
\(423\) −6.70820 + 4.87380i −0.326164 + 0.236972i
\(424\) 2.38566 + 7.34231i 0.115858 + 0.356574i
\(425\) 0 0
\(426\) 5.28360 + 3.83876i 0.255991 + 0.185988i
\(427\) −3.59929 + 2.61504i −0.174182 + 0.126551i
\(428\) 13.8541 0.669663
\(429\) −66.6443 −3.21762
\(430\) 0.142571 0.103584i 0.00687539 0.00499527i
\(431\) −0.0344419 + 0.106001i −0.00165901 + 0.00510589i −0.951883 0.306463i \(-0.900854\pi\)
0.950224 + 0.311569i \(0.100854\pi\)
\(432\) 1.69936 + 5.23008i 0.0817603 + 0.251632i
\(433\) −21.5958 −1.03783 −0.518913 0.854827i \(-0.673663\pi\)
−0.518913 + 0.854827i \(0.673663\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) 8.42705 + 25.9358i 0.403583 + 1.24210i
\(437\) −2.12132 + 6.52875i −0.101477 + 0.312313i
\(438\) −3.00000 + 2.17963i −0.143346 + 0.104147i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) −13.9659 −0.665799
\(441\) 10.8541 7.88597i 0.516862 0.375522i
\(442\) −1.14590 0.832544i −0.0545048 0.0396001i
\(443\) −19.3713 14.0741i −0.920359 0.668680i 0.0232541 0.999730i \(-0.492597\pi\)
−0.943613 + 0.331049i \(0.892597\pi\)
\(444\) −5.56231 17.1190i −0.263975 0.812433i
\(445\) 10.6066 7.70615i 0.502801 0.365306i
\(446\) 2.57339 + 7.92007i 0.121853 + 0.375026i
\(447\) −9.48683 + 29.1975i −0.448712 + 1.38099i
\(448\) −3.80902 2.76741i −0.179959 0.130748i
\(449\) 13.0374 40.1250i 0.615274 1.89362i 0.217853 0.975982i \(-0.430095\pi\)
0.397421 0.917637i \(-0.369905\pi\)
\(450\) 0 0
\(451\) 25.6471 + 18.6337i 1.20768 + 0.877428i
\(452\) 8.15654 25.1033i 0.383651 1.18076i
\(453\) 2.14590 + 6.60440i 0.100823 + 0.310302i
\(454\) −4.85410 + 3.52671i −0.227814 + 0.165517i
\(455\) −4.74342 14.5987i −0.222375 0.684399i
\(456\) −2.72526 1.98002i −0.127622 0.0927229i
\(457\) 9.15298 + 6.65003i 0.428158 + 0.311075i 0.780912 0.624641i \(-0.214755\pi\)
−0.352754 + 0.935716i \(0.614755\pi\)
\(458\) 1.31105 0.952532i 0.0612613 0.0445089i
\(459\) −0.944272 −0.0440748
\(460\) −28.4605 −1.32698
\(461\) −31.6378 + 22.9862i −1.47352 + 1.07058i −0.493946 + 0.869492i \(0.664446\pi\)
−0.979574 + 0.201083i \(0.935554\pi\)
\(462\) −1.14590 + 3.52671i −0.0533120 + 0.164077i
\(463\) −4.67966 14.4025i −0.217482 0.669341i −0.998968 0.0454182i \(-0.985538\pi\)
0.781486 0.623923i \(-0.214462\pi\)
\(464\) 11.6476 0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) 4.83688 + 14.8864i 0.223824 + 0.688860i 0.998409 + 0.0563897i \(0.0179589\pi\)
−0.774585 + 0.632470i \(0.782041\pi\)
\(468\) 8.79478 27.0675i 0.406539 1.25120i
\(469\) 4.85410 3.52671i 0.224142 0.162848i
\(470\) −3.16718 −0.146091
\(471\) 10.7735 0.496418
\(472\) −7.07953 + 5.14358i −0.325862 + 0.236752i
\(473\) 0.708204 + 0.514540i 0.0325633 + 0.0236586i
\(474\) 7.85410 + 5.70634i 0.360751 + 0.262101i
\(475\) 0 0
\(476\) 0.810272 0.588697i 0.0371388 0.0269829i
\(477\) −3.62365 11.1524i −0.165915 0.510635i
\(478\) 1.93004 5.94006i 0.0882780 0.271692i
\(479\) −20.6074 14.9721i −0.941576 0.684095i 0.00722373 0.999974i \(-0.497701\pi\)
−0.948799 + 0.315879i \(0.897701\pi\)
\(480\) 6.55524 20.1750i 0.299204 0.920857i
\(481\) 9.00000 27.6992i 0.410365 1.26297i
\(482\) 4.55214 + 3.30732i 0.207344 + 0.150644i
\(483\) −4.85410 + 14.9394i −0.220869 + 0.679766i
\(484\) −4.01064 12.3435i −0.182302 0.561068i
\(485\) −12.6631 + 9.20029i −0.575003 + 0.417764i
\(486\) 2.27319 + 6.99617i 0.103114 + 0.317353i
\(487\) 15.0405 + 10.9276i 0.681551 + 0.495176i 0.873872 0.486156i \(-0.161601\pi\)
−0.192321 + 0.981332i \(0.561601\pi\)
\(488\) −5.29865 3.84969i −0.239859 0.174267i
\(489\) −22.9856 + 16.7000i −1.03945 + 0.755202i
\(490\) 5.12461 0.231506
\(491\) 9.56564 0.431691 0.215846 0.976427i \(-0.430749\pi\)
0.215846 + 0.976427i \(0.430749\pi\)
\(492\) −25.6471 + 18.6337i −1.15626 + 0.840073i
\(493\) −0.618034 + 1.90211i −0.0278349 + 0.0856669i
\(494\) −0.810272 2.49376i −0.0364559 0.112200i
\(495\) 21.2132 0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) 0.854102 + 2.62866i 0.0382732 + 0.117793i
\(499\) −5.68121 + 17.4850i −0.254326 + 0.782734i 0.739636 + 0.673007i \(0.234998\pi\)
−0.993962 + 0.109727i \(0.965002\pi\)
\(500\) 16.7705 12.1845i 0.750000 0.544907i
\(501\) −16.9443 −0.757014
\(502\) 9.07417 0.405000
\(503\) −2.33688 + 1.69784i −0.104196 + 0.0757031i −0.638663 0.769486i \(-0.720512\pi\)
0.534467 + 0.845189i \(0.320512\pi\)
\(504\) −2.66312 1.93487i −0.118625 0.0861859i
\(505\) −4.04508 2.93893i −0.180004 0.130781i
\(506\) 3.43769 + 10.5801i 0.152824 + 0.470344i
\(507\) 63.1725 45.8975i 2.80559 2.03838i
\(508\) 5.43547 + 16.7287i 0.241160 + 0.742214i
\(509\) 1.47797 4.54873i 0.0655100 0.201619i −0.912944 0.408086i \(-0.866196\pi\)
0.978454 + 0.206467i \(0.0661965\pi\)
\(510\) 0.854102 + 0.620541i 0.0378203 + 0.0274780i
\(511\) 1.31105 4.03499i 0.0579974 0.178497i
\(512\) 6.89261 21.2133i 0.304613 0.937503i
\(513\) −1.41421 1.02749i −0.0624391 0.0453646i
\(514\) 2.82624 8.69827i 0.124660 0.383664i
\(515\) 1.87132 + 5.75934i 0.0824603 + 0.253787i
\(516\) −0.708204 + 0.514540i −0.0311769 + 0.0226514i
\(517\) −4.86163 14.9626i −0.213814 0.658053i
\(518\) −1.31105 0.952532i −0.0576041 0.0418519i
\(519\) 33.3221 + 24.2099i 1.46268 + 1.06270i
\(520\) 18.2816 13.2824i 0.801702 0.582470i
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) 3.16228 0.138409
\(523\) 23.5258 17.0925i 1.02871 0.747403i 0.0606612 0.998158i \(-0.480679\pi\)
0.968050 + 0.250756i \(0.0806791\pi\)
\(524\) 11.1246 34.2380i 0.485981 1.49570i
\(525\) 0 0
\(526\) −1.03165 −0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) 7.45492 + 22.9439i 0.324127 + 0.997560i
\(530\) 1.38411 4.25985i 0.0601219 0.185036i
\(531\) 10.7533 7.81272i 0.466653 0.339043i
\(532\) 1.85410 0.0803855
\(533\) −51.2942 −2.22180
\(534\) 4.14590 3.01217i 0.179411 0.130349i
\(535\) −13.5172 9.82084i −0.584400 0.424592i
\(536\) 7.14590 + 5.19180i 0.308656 + 0.224252i
\(537\) 11.6180 + 35.7566i 0.501355 + 1.54301i
\(538\) 4.57649 3.32502i 0.197307 0.143352i
\(539\) 7.86629 + 24.2099i 0.338825 + 1.04280i
\(540\) 2.23954 6.89259i 0.0963743 0.296610i
\(541\) 22.5172 + 16.3597i 0.968091 + 0.703359i 0.955016 0.296555i \(-0.0958379\pi\)
0.0130753 + 0.999915i \(0.495838\pi\)
\(542\) 3.31415 10.1999i 0.142355 0.438124i
\(543\) 12.8541 39.5609i 0.551622 1.69772i
\(544\) 1.81182 + 1.31637i 0.0776813 + 0.0564388i
\(545\) 10.1631 31.2789i 0.435340 1.33984i
\(546\) −1.85410 5.70634i −0.0793482 0.244209i
\(547\) 19.7533 14.3516i 0.844590 0.613630i −0.0790593 0.996870i \(-0.525192\pi\)
0.923649 + 0.383240i \(0.125192\pi\)
\(548\) 3.93314 + 12.1050i 0.168016 + 0.517099i
\(549\) 8.04827 + 5.84741i 0.343492 + 0.249561i
\(550\) 0 0
\(551\) −2.99535 + 2.17625i −0.127606 + 0.0927114i
\(552\) −23.1246 −0.984249
\(553\) −11.1074 −0.472334
\(554\) 6.05446 4.39883i 0.257230 0.186888i
\(555\) −6.70820 + 20.6457i −0.284747 + 0.876362i
\(556\) 0.573838 + 1.76609i 0.0243362 + 0.0748990i
\(557\) 23.2951 0.987046 0.493523 0.869733i \(-0.335709\pi\)
0.493523 + 0.869733i \(0.335709\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) 2.17376 + 6.69015i 0.0918582 + 0.282711i
\(561\) −1.62054 + 4.98752i −0.0684194 + 0.210573i
\(562\) 9.69098 7.04091i 0.408789 0.297003i
\(563\) 14.2361 0.599979 0.299989 0.953943i \(-0.403017\pi\)
0.299989 + 0.953943i \(0.403017\pi\)
\(564\) 15.7326 0.662461
\(565\) −25.7533 + 18.7109i −1.08345 + 0.787172i
\(566\) −7.41641 5.38834i −0.311735 0.226489i
\(567\) −8.66312 6.29412i −0.363817 0.264328i
\(568\) −3.39919 10.4616i −0.142627 0.438960i
\(569\) −24.8369 + 18.0450i −1.04121 + 0.756487i −0.970522 0.241011i \(-0.922521\pi\)
−0.0706926 + 0.997498i \(0.522521\pi\)
\(570\) 0.603941 + 1.85874i 0.0252963 + 0.0778541i
\(571\) −2.12132 + 6.52875i −0.0887745 + 0.273220i −0.985581 0.169203i \(-0.945881\pi\)
0.896807 + 0.442422i \(0.145881\pi\)
\(572\) 43.6869 + 31.7404i 1.82664 + 1.32713i
\(573\) −10.0664 + 30.9813i −0.420531 + 1.29426i
\(574\) −0.881966 + 2.71441i −0.0368126 + 0.113297i
\(575\) 0 0
\(576\) −3.25329 + 10.0126i −0.135554 + 0.417191i
\(577\) −9.27051 28.5317i −0.385936 1.18779i −0.935799 0.352535i \(-0.885320\pi\)
0.549862 0.835255i \(-0.314680\pi\)
\(578\) 5.16312 3.75123i 0.214757 0.156030i
\(579\) 5.15608 + 15.8688i 0.214279 + 0.659484i
\(580\) −12.4184 9.02251i −0.515647 0.374640i
\(581\) −2.55834 1.85874i −0.106138 0.0771135i
\(582\) −4.94975 + 3.59620i −0.205174 + 0.149067i
\(583\) 22.2492 0.921469
\(584\) 6.24574 0.258451
\(585\) −27.7684 + 20.1750i −1.14808 + 0.834132i
\(586\) −1.85410 + 5.70634i −0.0765922 + 0.235727i
\(587\) −12.7279 39.1725i −0.525338 1.61682i −0.763647 0.645634i \(-0.776593\pi\)
0.238310 0.971189i \(-0.423407\pi\)
\(588\) −25.4558 −1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) −5.23607 16.1150i −0.215383 0.662881i
\(592\) −4.12442 + 12.6937i −0.169513 + 0.521707i
\(593\) 13.8992 10.0984i 0.570771 0.414690i −0.264614 0.964354i \(-0.585245\pi\)
0.835385 + 0.549665i \(0.185245\pi\)
\(594\) −2.83282 −0.116232
\(595\) −1.20788 −0.0495184
\(596\) 20.1246 14.6214i 0.824336 0.598915i
\(597\) 27.2705 + 19.8132i 1.11611 + 0.810900i
\(598\) −14.5623 10.5801i −0.595497 0.432654i
\(599\) 7.39919 + 22.7724i 0.302323 + 0.930453i 0.980663 + 0.195705i \(0.0626996\pi\)
−0.678340 + 0.734748i \(0.737300\pi\)
\(600\) 0 0
\(601\) −2.68586 8.26621i −0.109558 0.337186i 0.881215 0.472716i \(-0.156726\pi\)
−0.990773 + 0.135530i \(0.956726\pi\)
\(602\) −0.0243541 + 0.0749541i −0.000992598 + 0.00305490i
\(603\) −10.8541 7.88597i −0.442013 0.321141i
\(604\) 1.73876 5.35136i 0.0707492 0.217744i
\(605\) −4.83688 + 14.8864i −0.196647 + 0.605218i
\(606\) −1.58114 1.14876i −0.0642294 0.0466654i
\(607\) −7.76393 + 23.8949i −0.315128 + 0.969865i 0.660573 + 0.750762i \(0.270313\pi\)
−0.975702 + 0.219104i \(0.929687\pi\)
\(608\) 1.28115 + 3.94298i 0.0519576 + 0.159909i
\(609\) −6.85410 + 4.97980i −0.277742 + 0.201792i
\(610\) 1.17423 + 3.61390i 0.0475430 + 0.146322i
\(611\) 20.5942 + 14.9626i 0.833153 + 0.605321i
\(612\) −1.81182 1.31637i −0.0732386 0.0532110i
\(613\) −30.2236 + 21.9587i −1.22072 + 0.886905i −0.996160 0.0875549i \(-0.972095\pi\)
−0.224561 + 0.974460i \(0.572095\pi\)
\(614\) −6.15905 −0.248559
\(615\) 38.2325 1.54168
\(616\) 5.05291 3.67116i 0.203588 0.147915i
\(617\) −14.5623 + 44.8182i −0.586256 + 1.80431i 0.00790912 + 0.999969i \(0.497482\pi\)
−0.594165 + 0.804343i \(0.702518\pi\)
\(618\) 0.731461 + 2.25121i 0.0294237 + 0.0905567i
\(619\) 21.5958 0.868007 0.434003 0.900911i \(-0.357101\pi\)
0.434003 + 0.900911i \(0.357101\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 1.95085 + 6.00410i 0.0782219 + 0.240742i
\(623\) −1.81182 + 5.57622i −0.0725892 + 0.223407i
\(624\) −39.9787 + 29.0462i −1.60043 + 1.16278i
\(625\) −25.0000 −1.00000
\(626\) 8.02391 0.320700
\(627\) −7.85410 + 5.70634i −0.313663 + 0.227889i
\(628\) −7.06231 5.13107i −0.281817 0.204752i
\(629\) −1.85410 1.34708i −0.0739279 0.0537118i
\(630\) 0.590170 + 1.81636i 0.0235129 + 0.0723654i
\(631\) −3.76622 + 2.73632i −0.149931 + 0.108931i −0.660222 0.751071i \(-0.729538\pi\)
0.510291 + 0.860002i \(0.329538\pi\)
\(632\) −5.05291 15.5513i −0.200994 0.618596i
\(633\) 3.53553 10.8813i 0.140525 0.432491i
\(634\) −6.72542 4.88631i −0.267101 0.194060i
\(635\) 6.55524 20.1750i 0.260137 0.800619i
\(636\) −6.87539 + 21.1603i −0.272627 + 0.839059i
\(637\) −33.3221 24.2099i −1.32027 0.959233i
\(638\) −1.85410 + 5.70634i −0.0734046 + 0.225916i
\(639\) 5.16312 + 15.8904i 0.204250 + 0.628616i
\(640\) −18.2533 + 13.2618i −0.721525 + 0.524218i
\(641\) 2.62210 + 8.06998i 0.103567 + 0.318745i 0.989391 0.145275i \(-0.0464066\pi\)
−0.885825 + 0.464020i \(0.846407\pi\)
\(642\) −5.28360 3.83876i −0.208527 0.151504i
\(643\) −19.1162 13.8888i −0.753871 0.547719i 0.143153 0.989701i \(-0.454276\pi\)
−0.897024 + 0.441981i \(0.854276\pi\)
\(644\) 10.2971 7.48128i 0.405763 0.294804i
\(645\) 1.05573 0.0415693
\(646\) −0.206331 −0.00811798
\(647\) 15.4775 11.2451i 0.608485 0.442090i −0.240396 0.970675i \(-0.577277\pi\)
0.848880 + 0.528585i \(0.177277\pi\)
\(648\) 4.87132 14.9924i 0.191364 0.588957i
\(649\) 7.79323 + 23.9851i 0.305911 + 0.941497i
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) −2.05573 6.32688i −0.0804469 0.247590i 0.902742 0.430183i \(-0.141551\pi\)
−0.983189 + 0.182593i \(0.941551\pi\)
\(654\) 3.97255 12.2263i 0.155339 0.478084i
\(655\) −35.1246 + 25.5195i −1.37243 + 0.997130i
\(656\) 23.5066 0.917778
\(657\) −9.48683 −0.370117
\(658\) 1.14590 0.832544i 0.0446718 0.0324559i
\(659\) −38.1697 27.7319i −1.48688 1.08028i −0.975258 0.221072i \(-0.929045\pi\)
−0.511623 0.859210i \(-0.670955\pi\)
\(660\) −32.5623 23.6579i −1.26749 0.920883i
\(661\) −14.1631 43.5896i −0.550881 1.69544i −0.706579 0.707634i \(-0.749763\pi\)
0.155698 0.987805i \(-0.450237\pi\)
\(662\) −7.92075 + 5.75476i −0.307849 + 0.223665i
\(663\) −2.62210 8.06998i −0.101834 0.313412i
\(664\) 1.43857 4.42746i 0.0558273 0.171819i
\(665\) −1.80902 1.31433i −0.0701507 0.0509674i
\(666\) −1.11977 + 3.44629i −0.0433902 + 0.133541i
\(667\) −7.85410 + 24.1724i −0.304112 + 0.935961i
\(668\) 11.1074 + 8.06998i 0.429757 + 0.312237i
\(669\) −15.4164 + 47.4468i −0.596033 + 1.83440i
\(670\) −1.58359 4.87380i −0.0611795 0.188291i
\(671\) −15.2705 + 11.0947i −0.589511 + 0.428305i
\(672\) 2.93159 + 9.02251i 0.113089 + 0.348051i
\(673\) −6.03011 4.38113i −0.232444 0.168880i 0.465467 0.885065i \(-0.345887\pi\)
−0.697910 + 0.716185i \(0.745887\pi\)
\(674\) −1.81182 1.31637i −0.0697888 0.0507046i
\(675\) 0 0
\(676\) −63.2705 −2.43348
\(677\) 21.2132 0.815290 0.407645 0.913141i \(-0.366350\pi\)
0.407645 + 0.913141i \(0.366350\pi\)
\(678\) −10.0664 + 7.31368i −0.386599 + 0.280880i
\(679\) 2.16312 6.65740i 0.0830129 0.255487i
\(680\) −0.549484 1.69114i −0.0210717 0.0648522i
\(681\) −35.9442 −1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) −1.28115 3.94298i −0.0489861 0.150764i
\(685\) 4.74342 14.5987i 0.181237 0.557789i
\(686\) −4.01722 + 2.91868i −0.153378 + 0.111436i
\(687\) 9.70820 0.370391
\(688\) 0.649096 0.0247466
\(689\) −29.1246 + 21.1603i −1.10956 + 0.806142i
\(690\) 10.8541 + 7.88597i 0.413209 + 0.300214i
\(691\) 17.4615 + 12.6865i 0.664266 + 0.482618i 0.868101 0.496387i \(-0.165340\pi\)
−0.203835 + 0.979005i \(0.565340\pi\)
\(692\) −10.3131 31.7404i −0.392045 1.20659i
\(693\) −7.67501 + 5.57622i −0.291549 + 0.211823i
\(694\) −3.04981 9.38635i −0.115769 0.356301i
\(695\) 0.692055 2.12993i 0.0262511 0.0807927i
\(696\) −10.0902 7.33094i −0.382467 0.277878i
\(697\) −1.24729 + 3.83876i −0.0472444 + 0.145403i
\(698\) 0.708204 2.17963i 0.0268059 0.0825001i
\(699\) −8.38212 6.08996i −0.317041 0.230344i
\(700\) 0 0
\(701\) 8.54508 + 26.2991i 0.322743 + 0.993302i 0.972449 + 0.233116i \(0.0748922\pi\)
−0.649706 + 0.760186i \(0.725108\pi\)
\(702\) 3.70820 2.69417i 0.139957 0.101685i
\(703\) −1.31105 4.03499i −0.0494471 0.152183i
\(704\) −16.1603 11.7411i −0.609064 0.442511i
\(705\) −15.3500 11.1524i −0.578115 0.420025i
\(706\) 4.91034 3.56757i 0.184803 0.134267i
\(707\) 2.23607 0.0840960
\(708\) −25.2194 −0.947803
\(709\) 12.7279 9.24738i 0.478007 0.347293i −0.322546 0.946554i \(-0.604539\pi\)
0.800554 + 0.599261i \(0.204539\pi\)
\(710\) −1.97214 + 6.06961i −0.0740129 + 0.227788i
\(711\) 7.67501 + 23.6212i 0.287835 + 0.885866i
\(712\) −8.63141 −0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) −20.1246 61.9372i −0.752618 2.31632i
\(716\) 9.41377 28.9726i 0.351809 1.08276i
\(717\) 30.2705 21.9928i 1.13047 0.821337i
\(718\) 3.72949 0.139183
\(719\) 9.10427 0.339532 0.169766 0.985484i \(-0.445699\pi\)
0.169766 + 0.985484i \(0.445699\pi\)
\(720\) 12.7254 9.24556i 0.474249 0.344562i
\(721\) −2.19098 1.59184i −0.0815965 0.0592833i
\(722\) 5.56231 + 4.04125i 0.207008 + 0.150400i
\(723\) 10.4164 + 32.0584i 0.387390 + 1.19226i
\(724\) −27.2677 + 19.8111i −1.01339 + 0.736274i
\(725\) 0 0
\(726\) −1.89064 + 5.81878i −0.0701681 + 0.215955i
\(727\) 2.89919 + 2.10638i 0.107525 + 0.0781214i 0.640248 0.768168i \(-0.278831\pi\)
−0.532723 + 0.846289i \(0.678831\pi\)
\(728\) −3.12287 + 9.61121i −0.115741 + 0.356215i
\(729\) −3.69098 + 11.3597i −0.136703 + 0.420729i
\(730\) −2.93159 2.12993i −0.108503 0.0788321i
\(731\) −0.0344419 + 0.106001i −0.00127388 + 0.00392059i
\(732\) −5.83282 17.9516i −0.215587 0.663509i
\(733\) −10.0451 + 7.29818i −0.371024 + 0.269564i −0.757635 0.652678i \(-0.773645\pi\)
0.386612 + 0.922243i \(0.373645\pi\)
\(734\) 1.45362 + 4.47378i 0.0536541 + 0.165130i
\(735\) 24.8369 + 18.0450i 0.916121 + 0.665601i
\(736\) 23.0250 + 16.7287i 0.848714 + 0.616627i
\(737\) 20.5942 14.9626i 0.758597 0.551153i
\(738\) 6.38197 0.234923
\(739\) 25.6622 0.943998 0.471999 0.881599i \(-0.343533\pi\)
0.471999 + 0.881599i \(0.343533\pi\)
\(740\) 14.2302 10.3389i 0.523114 0.380065i
\(741\) 4.85410 14.9394i 0.178320 0.548812i
\(742\) 0.618993 + 1.90506i 0.0227239 + 0.0699371i
\(743\) 1.69936 0.0623433 0.0311717 0.999514i \(-0.490076\pi\)
0.0311717 + 0.999514i \(0.490076\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −2.68034 8.24924i −0.0981342 0.302026i
\(747\) −2.18508 + 6.72499i −0.0799479 + 0.246054i
\(748\) 3.43769 2.49763i 0.125695 0.0913224i
\(749\) 7.47214 0.273026
\(750\) −9.77198 −0.356822
\(751\) −23.8992 + 17.3638i −0.872094 + 0.633613i −0.931148 0.364642i \(-0.881192\pi\)
0.0590542 + 0.998255i \(0.481192\pi\)
\(752\) −9.43769 6.85689i −0.344157 0.250045i
\(753\) 43.9787 + 31.9524i 1.60267 + 1.16441i
\(754\) −3.00000 9.23305i −0.109254 0.336248i
\(755\) −5.48993 + 3.98867i −0.199799 + 0.145162i
\(756\) 1.00155 + 3.08246i 0.0364261 + 0.112108i
\(757\) 5.92695 18.2413i 0.215418 0.662990i −0.783705 0.621133i \(-0.786673\pi\)
0.999124 0.0418569i \(-0.0133273\pi\)
\(758\) 6.00000 + 4.35926i 0.217930 + 0.158335i
\(759\) −20.5942 + 63.3825i −0.747522 + 2.30064i
\(760\) 1.01722 3.13068i 0.0368985 0.113562i
\(761\) 1.81182 + 1.31637i 0.0656786 + 0.0477183i 0.620140 0.784491i \(-0.287076\pi\)
−0.554462 + 0.832209i \(0.687076\pi\)
\(762\) 2.56231 7.88597i 0.0928225 0.285678i
\(763\) 4.54508 + 13.9883i 0.164543 + 0.506412i
\(764\) 21.3541 15.5147i 0.772564 0.561301i
\(765\) 0.834626 + 2.56872i 0.0301760 + 0.0928721i
\(766\) −5.88754 4.27755i −0.212725 0.154554i
\(767\) −33.0126 23.9851i −1.19202 0.866051i
\(768\) 10.2971 7.48128i 0.371565 0.269958i
\(769\) 13.8754 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(770\) −3.62365 −0.130587
\(771\) 44.3263 32.2050i 1.59637 1.15983i
\(772\) 4.17783 12.8580i 0.150363 0.462771i
\(773\) 8.34271 + 25.6762i 0.300066 + 0.923510i 0.981472 + 0.191604i \(0.0613689\pi\)
−0.681406 + 0.731906i \(0.738631\pi\)
\(774\) 0.176228 0.00633437
\(775\) 0 0
\(776\) 10.3050 0.369926
\(777\) −3.00000 9.23305i −0.107624 0.331234i
\(778\) −3.98760 + 12.2726i −0.142962 + 0.439993i
\(779\) −6.04508 + 4.39201i −0.216588 + 0.157360i
\(780\) 65.1246 2.33184
\(781\) −31.7016 −1.13437
\(782\) −1.14590 + 0.832544i −0.0409772 + 0.0297717i
\(783\) −5.23607 3.80423i −0.187122 0.135952i
\(784\) 15.2705 + 11.0947i 0.545375 + 0.396238i
\(785\) 3.25329 + 10.0126i 0.116115 + 0.357365i
\(786\) −13.7295 + 9.97505i −0.489714 + 0.355798i
\(787\) 2.81338 + 8.65868i 0.100286 + 0.308649i 0.988595 0.150597i \(-0.0481197\pi\)
−0.888309 + 0.459246i \(0.848120\pi\)
\(788\) −4.24264 + 13.0575i −0.151138 + 0.465154i
\(789\) −5.00000 3.63271i −0.178005 0.129328i
\(790\) −2.93159 + 9.02251i −0.104301 + 0.321007i
\(791\) 4.39919 13.5393i 0.156417 0.481402i
\(792\) −11.2987 8.20895i −0.401480 0.291693i
\(793\) 9.43769 29.0462i 0.335142 1.03146i
\(794\) 0.152476 + 0.469272i 0.00541117 + 0.0166539i
\(795\) 21.7082 15.7719i 0.769911 0.559373i
\(796\) −8.44013 25.9760i −0.299152 0.920696i
\(797\) 4.24264 + 3.08246i 0.150282 + 0.109186i 0.660385 0.750927i \(-0.270393\pi\)
−0.510103 + 0.860113i \(0.670393\pi\)
\(798\) −0.707107 0.513743i −0.0250313 0.0181863i
\(799\) 1.62054 1.17739i 0.0573307 0.0416532i
\(800\) 0 0
\(801\) 13.1105 0.463236
\(802\) −1.14412 + 0.831254i −0.0404004 + 0.0293526i
\(803\) 5.56231 17.1190i 0.196290 0.604117i
\(804\) 7.86629 + 24.2099i 0.277423 + 0.853819i
\(805\) −15.3500 −0.541017
\(806\) 0 0
\(807\) 33.8885 1.19293
\(808\) 1.01722 + 3.13068i 0.0357857 + 0.110137i
\(809\) 6.81603 20.9776i 0.239639 0.737532i −0.756833 0.653608i \(-0.773255\pi\)
0.996472 0.0839245i \(-0.0267454\pi\)
\(810\) −7.39919 + 5.37582i −0.259981 + 0.188887i
\(811\) −43.4164 −1.52456 −0.762278 0.647250i \(-0.775919\pi\)
−0.762278 + 0.647250i \(0.775919\pi\)
\(812\) 6.86474 0.240905
\(813\) 51.9787 37.7647i 1.82297 1.32447i
\(814\) −5.56231 4.04125i −0.194959 0.141646i
\(815\) −22.4615 16.3192i −0.786792 0.571638i
\(816\) 1.20163 + 3.69822i 0.0420653 + 0.129464i
\(817\) −0.166925 + 0.121278i −0.00583998 + 0.00424299i
\(818\) 2.04826 + 6.30389i 0.0716157 + 0.220410i
\(819\) 4.74342 14.5987i 0.165748 0.510121i
\(820\) −25.0623 18.2088i −0.875214 0.635880i
\(821\) −4.43392 + 13.6462i −0.154745 + 0.476256i −0.998135 0.0610460i \(-0.980556\pi\)
0.843390 + 0.537302i \(0.180556\pi\)
\(822\) 1.85410 5.70634i 0.0646692 0.199031i
\(823\) 12.0846 + 8.77996i 0.421242 + 0.306050i 0.778137 0.628094i \(-0.216165\pi\)
−0.356895 + 0.934144i \(0.616165\pi\)
\(824\) 1.23200 3.79171i 0.0429188 0.132091i
\(825\) 0 0
\(826\) −1.83688 + 1.33457i −0.0639133 + 0.0464357i
\(827\) −14.8492 45.7013i −0.516359 1.58919i −0.780796 0.624786i \(-0.785186\pi\)
0.264437 0.964403i \(-0.414814\pi\)
\(828\) −23.0250 16.7287i −0.800175 0.581361i
\(829\) −4.71906 3.42860i −0.163900 0.119080i 0.502812 0.864396i \(-0.332299\pi\)
−0.666712 + 0.745316i \(0.732299\pi\)
\(830\) −2.18508 + 1.58755i −0.0758452 + 0.0551048i
\(831\) 44.8328 1.55523
\(832\) 32.3206 1.12051
\(833\) −2.62210 + 1.90506i −0.0908502 + 0.0660066i
\(834\) 0.270510 0.832544i 0.00936699 0.0288286i
\(835\) −5.11667 15.7475i −0.177070 0.544965i
\(836\) 7.86629 0.272061
\(837\) 0 0
\(838\) −7.10333 −0.245380
\(839\) 2.29180 + 7.05342i 0.0791216 + 0.243511i 0.982791 0.184719i \(-0.0591374\pi\)
−0.903670 + 0.428230i \(0.859137\pi\)
\(840\) 2.32765 7.16377i 0.0803116 0.247174i
\(841\) 12.3713 8.98829i 0.426597 0.309941i
\(842\) −0.159054 −0.00548135
\(843\) 71.7609 2.47158
\(844\) −7.50000 + 5.44907i −0.258161 + 0.187565i
\(845\) 61.7320 + 44.8509i 2.12365 + 1.54292i
\(846\) −2.56231 1.86162i −0.0880939 0.0640040i
\(847\) −2.16312 6.65740i −0.0743256 0.228751i
\(848\) 13.3469 9.69710i 0.458335 0.333000i
\(849\) −16.9706 52.2300i −0.582428 1.79253i
\(850\) 0 0
\(851\) −23.5623 17.1190i −0.807705 0.586832i
\(852\) 9.79633 30.1500i 0.335617 1.03292i
\(853\) −14.1246 + 43.4711i −0.483617 + 1.48842i 0.350356 + 0.936617i \(0.386061\pi\)
−0.833973 + 0.551805i \(0.813939\pi\)
\(854\) −1.37481 0.998856i −0.0470450 0.0341802i
\(855\) −1.54508 + 4.75528i −0.0528408 + 0.162627i
\(856\) 3.39919 + 10.4616i 0.116182 + 0.357571i
\(857\) 4.85410 3.52671i 0.165813 0.120470i −0.501784 0.864993i \(-0.667323\pi\)
0.667597 + 0.744523i \(0.267323\pi\)
\(858\) −7.86629 24.2099i −0.268551 0.826514i
\(859\) −2.95595 2.14762i −0.100856 0.0732759i 0.536214 0.844082i \(-0.319854\pi\)
−0.637070 + 0.770806i \(0.719854\pi\)
\(860\) −0.692055 0.502807i −0.0235989 0.0171456i
\(861\) −13.8326 + 10.0500i −0.471415 + 0.342503i
\(862\) −0.0425725 −0.00145002
\(863\) −35.3252 −1.20249 −0.601243 0.799067i \(-0.705327\pi\)
−0.601243 + 0.799067i \(0.705327\pi\)
\(864\) −5.86319 + 4.25985i −0.199470 + 0.144923i
\(865\) −12.4377 + 38.2793i −0.422894 + 1.30153i
\(866\) −2.54903 7.84512i −0.0866197 0.266588i
\(867\) 38.2325 1.29844
\(868\) 0 0
\(869\) −47.1246 −1.59859
\(870\) 2.23607 + 6.88191i 0.0758098 + 0.233319i
\(871\) −12.7279 + 39.1725i −0.431269 + 1.32731i
\(872\) −17.5172 + 12.7270i −0.593208 + 0.430991i
\(873\) −15.6525 −0.529756
\(874\) −2.62210 −0.0886937
\(875\) 9.04508 6.57164i 0.305780 0.222162i
\(876\) 14.5623 + 10.5801i 0.492015 + 0.357470i
\(877\) 12.3713 + 8.98829i 0.417750 + 0.303513i 0.776732 0.629831i \(-0.216876\pi\)
−0.358982 + 0.933345i \(0.616876\pi\)
\(878\) −2.95085 9.08178i −0.0995864 0.306495i
\(879\) −29.0795 + 21.1275i −0.980827 + 0.712612i
\(880\) 9.22249 + 28.3839i 0.310890 + 0.956821i
\(881\) 15.3500 47.2425i 0.517155 1.59164i −0.262171 0.965022i \(-0.584438\pi\)
0.779326 0.626619i \(-0.215562\pi\)
\(882\) 4.14590 + 3.01217i 0.139600 + 0.101425i
\(883\) 10.4884 32.2799i 0.352962 1.08631i −0.604219 0.796818i \(-0.706515\pi\)
0.957182 0.289488i \(-0.0934851\pi\)
\(884\) −2.12461 + 6.53888i −0.0714584 + 0.219926i
\(885\) 24.6062 + 17.8774i 0.827127 + 0.600943i
\(886\) 2.82624 8.69827i 0.0949493 0.292224i
\(887\) −5.98278 18.4131i −0.200882 0.618251i −0.999857 0.0168876i \(-0.994624\pi\)
0.798975 0.601364i \(-0.205376\pi\)
\(888\) 11.5623 8.40051i 0.388006 0.281903i
\(889\) 2.93159 + 9.02251i 0.0983225 + 0.302605i
\(890\) 4.05136 + 2.94349i 0.135802 + 0.0986659i
\(891\) −36.7545 26.7037i −1.23132 0.894608i
\(892\) 32.7031 23.7602i 1.09498 0.795551i
\(893\) 3.70820 0.124090
\(894\) −11.7264 −0.392188
\(895\) −29.7228 + 21.5949i −0.993525 + 0.721838i
\(896\) 3.11803 9.59632i 0.104166 0.320591i
\(897\) −33.3221 102.555i −1.11259 3.42421i
\(898\) 16.1151 0.537769
\(899\) 0 0
\(900\) 0 0
\(901\) 0.875388 + 2.69417i 0.0291634 + 0.0897557i
\(902\) −3.74186 + 11.5163i −0.124590 + 0.383450i
\(903\) −0.381966 + 0.277515i −0.0127110 + 0.00923511i
\(904\) 20.9574 0.697034
\(905\) 40.6482 1.35119
\(906\) −2.14590 + 1.55909i −0.0712927 + 0.0517972i
\(907\) 44.9336 + 32.6462i 1.49200 + 1.08400i 0.973436 + 0.228958i \(0.0735318\pi\)
0.518560 + 0.855041i \(0.326468\pi\)
\(908\) 23.5623 + 17.1190i 0.781943 + 0.568115i
\(909\) −1.54508 4.75528i −0.0512472 0.157723i
\(910\) 4.74342 3.44629i 0.157243 0.114244i
\(911\) −4.38521 13.4963i −0.145289 0.447152i 0.851759 0.523933i \(-0.175536\pi\)
−0.997048 + 0.0767809i \(0.975536\pi\)
\(912\) −2.22449 + 6.84626i −0.0736601 + 0.226702i
\(913\) −10.8541 7.88597i −0.359218 0.260987i
\(914\) −1.33540 + 4.10995i −0.0441712 + 0.135945i
\(915\) −7.03444 + 21.6498i −0.232551 + 0.715720i
\(916\) −6.36396 4.62369i −0.210271 0.152771i
\(917\) 6.00000 18.4661i 0.198137 0.609804i
\(918\) −0.111456 0.343027i −0.00367860 0.0113216i
\(919\) −19.8541 + 14.4248i −0.654926 + 0.475832i −0.864946 0.501865i \(-0.832647\pi\)
0.210019 + 0.977697i \(0.432647\pi\)
\(920\) −6.98295 21.4913i −0.230221 0.708548i
\(921\) −29.8504 21.6876i −0.983603 0.714629i
\(922\) −12.0846 8.77996i −0.397984 0.289153i
\(923\) 41.4979 30.1500i 1.36592 0.992399i
\(924\) 18.0000 0.592157
\(925\) 0 0
\(926\) 4.67966 3.39997i 0.153783 0.111730i
\(927\) −1.87132 + 5.75934i −0.0614623 + 0.189162i
\(928\) 4.74342 + 14.5987i 0.155710 + 0.479227i
\(929\) −23.2951 −0.764288 −0.382144 0.924103i \(-0.624814\pi\)
−0.382144 + 0.924103i \(0.624814\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 2.59424 + 7.98424i 0.0849770 + 0.261532i
\(933\) −11.6870 + 35.9688i −0.382614 + 1.17756i
\(934\) −4.83688 + 3.51420i −0.158268 + 0.114988i
\(935\) −5.12461 −0.167593
\(936\) 22.5973 0.738616
\(937\) 45.5066 33.0625i 1.48664 1.08010i 0.511293 0.859407i \(-0.329167\pi\)
0.975342 0.220697i \(-0.0708332\pi\)
\(938\) 1.85410 + 1.34708i 0.0605386 + 0.0439838i
\(939\) 38.8885 + 28.2542i 1.26908 + 0.922040i
\(940\) 4.75078 + 14.6214i 0.154953 + 0.476897i
\(941\) 41.1247 29.8788i 1.34063 0.974022i 0.341205 0.939989i \(-0.389165\pi\)
0.999421 0.0340326i \(-0.0108350\pi\)
\(942\) 1.27164 + 3.91371i 0.0414323 + 0.127516i
\(943\) −15.8508 + 48.7837i −0.516173 + 1.58862i
\(944\) 15.1287 + 10.9916i 0.492396 + 0.357747i
\(945\) 1.20788 3.71748i 0.0392924 0.120930i
\(946\) −0.103326 + 0.318003i −0.00335940 + 0.0103392i
\(947\) 1.81182 + 1.31637i 0.0588764 + 0.0427762i 0.616834 0.787093i \(-0.288415\pi\)
−0.557958 + 0.829869i \(0.688415\pi\)
\(948\) 14.5623 44.8182i 0.472962 1.45563i
\(949\) 9.00000 + 27.6992i 0.292152 + 0.899153i
\(950\) 0 0
\(951\) −15.3894 47.3638i −0.499036 1.53588i
\(952\) 0.643347 + 0.467419i 0.0208510 + 0.0151491i
\(953\) 43.2460 + 31.4200i 1.40087 + 1.01780i 0.994571 + 0.104057i \(0.0331824\pi\)
0.406303 + 0.913738i \(0.366818\pi\)
\(954\) 3.62365 2.63273i 0.117320 0.0852379i
\(955\) −31.8328 −1.03009
\(956\) −30.3175 −0.980537
\(957\) −29.0795 + 21.1275i −0.940006 + 0.682955i
\(958\) 3.00658 9.25330i 0.0971381 0.298960i
\(959\) 2.12132 + 6.52875i 0.0685010 + 0.210824i
\(960\) −24.0903 −0.777512
\(961\) 0 0
\(962\) 11.1246 0.358672
\(963\) −5.16312 15.8904i −0.166379 0.512062i
\(964\) 8.44013 25.9760i 0.271838 0.836632i
\(965\) −13.1910 + 9.58381i −0.424633 + 0.308514i
\(966\) −6.00000 −0.193047
\(967\) 12.9041 0.414969 0.207485 0.978238i \(-0.433472\pi\)
0.207485 + 0.978238i \(0.433472\pi\)
\(968\) 8.33688 6.05710i 0.267958 0.194683i
\(969\) −1.00000 0.726543i −0.0321246 0.0233399i
\(970\) −4.83688 3.51420i −0.155303 0.112834i
\(971\) 5.59675 + 17.2250i 0.179608 + 0.552777i 0.999814 0.0192915i \(-0.00614107\pi\)
−0.820206 + 0.572069i \(0.806141\pi\)
\(972\) 28.8882 20.9885i 0.926590 0.673207i
\(973\) 0.309496 + 0.952532i 0.00992200 + 0.0305368i
\(974\) −2.19438 + 6.75362i −0.0703126 + 0.216400i
\(975\) 0 0
\(976\) −4.32501 + 13.3110i −0.138440 + 0.426075i
\(977\) 13.1287 40.4059i 0.420024 1.29270i −0.487656 0.873036i \(-0.662148\pi\)
0.907680 0.419664i \(-0.137852\pi\)
\(978\) −8.77973 6.37884i −0.280745 0.203973i
\(979\) −7.68692 + 23.6579i −0.245675 + 0.756110i
\(980\) −7.68692 23.6579i −0.245550 0.755724i
\(981\) 26.6074 19.3314i 0.849509 0.617204i
\(982\) 1.12907 + 3.47492i 0.0360301 + 0.110889i
\(983\) −2.43082 1.76609i −0.0775310 0.0563296i 0.548345 0.836252i \(-0.315258\pi\)
−0.625876 + 0.779923i \(0.715258\pi\)
\(984\) −20.3635 14.7950i −0.649165 0.471646i
\(985\) 13.3956 9.73249i 0.426820 0.310103i
\(986\) −0.763932 −0.0243286
\(987\) 8.48528 0.270089
\(988\) −10.2971 + 7.48128i −0.327595 + 0.238011i
\(989\) −0.437694 + 1.34708i −0.0139179 + 0.0428348i
\(990\) 2.50388 + 7.70615i 0.0795785 + 0.244917i
\(991\) 4.44897 0.141326 0.0706631 0.997500i \(-0.477488\pi\)
0.0706631 + 0.997500i \(0.477488\pi\)
\(992\) 0 0
\(993\) −58.6525 −1.86128
\(994\) −0.881966 2.71441i −0.0279743 0.0860959i
\(995\) −10.1789 + 31.3274i −0.322692 + 0.993145i
\(996\) 10.8541 7.88597i 0.343925 0.249876i
\(997\) 48.6656 1.54126 0.770628 0.637285i \(-0.219943\pi\)
0.770628 + 0.637285i \(0.219943\pi\)
\(998\) −7.02236 −0.222289
\(999\) 6.00000 4.35926i 0.189832 0.137921i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.h.531.1 8
31.2 even 5 961.2.d.j.388.2 8
31.3 odd 30 961.2.c.h.439.1 8
31.4 even 5 961.2.d.j.374.2 8
31.5 even 3 961.2.g.i.844.2 16
31.6 odd 6 961.2.g.i.547.2 16
31.7 even 15 961.2.g.p.816.2 16
31.8 even 5 inner 961.2.d.h.628.1 8
31.9 even 15 961.2.g.i.448.1 16
31.10 even 15 961.2.g.p.338.2 16
31.11 odd 30 961.2.g.p.732.2 16
31.12 odd 30 961.2.g.p.235.2 16
31.13 odd 30 961.2.c.h.521.1 8
31.14 even 15 961.2.g.i.846.2 16
31.15 odd 10 961.2.a.h.1.2 yes 4
31.16 even 5 961.2.a.h.1.1 4
31.17 odd 30 961.2.g.i.846.1 16
31.18 even 15 961.2.c.h.521.2 8
31.19 even 15 961.2.g.p.235.1 16
31.20 even 15 961.2.g.p.732.1 16
31.21 odd 30 961.2.g.p.338.1 16
31.22 odd 30 961.2.g.i.448.2 16
31.23 odd 10 inner 961.2.d.h.628.2 8
31.24 odd 30 961.2.g.p.816.1 16
31.25 even 3 961.2.g.i.547.1 16
31.26 odd 6 961.2.g.i.844.1 16
31.27 odd 10 961.2.d.j.374.1 8
31.28 even 15 961.2.c.h.439.2 8
31.29 odd 10 961.2.d.j.388.1 8
31.30 odd 2 inner 961.2.d.h.531.2 8
93.47 odd 10 8649.2.a.r.1.4 4
93.77 even 10 8649.2.a.r.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.1 4 31.16 even 5
961.2.a.h.1.2 yes 4 31.15 odd 10
961.2.c.h.439.1 8 31.3 odd 30
961.2.c.h.439.2 8 31.28 even 15
961.2.c.h.521.1 8 31.13 odd 30
961.2.c.h.521.2 8 31.18 even 15
961.2.d.h.531.1 8 1.1 even 1 trivial
961.2.d.h.531.2 8 31.30 odd 2 inner
961.2.d.h.628.1 8 31.8 even 5 inner
961.2.d.h.628.2 8 31.23 odd 10 inner
961.2.d.j.374.1 8 31.27 odd 10
961.2.d.j.374.2 8 31.4 even 5
961.2.d.j.388.1 8 31.29 odd 10
961.2.d.j.388.2 8 31.2 even 5
961.2.g.i.448.1 16 31.9 even 15
961.2.g.i.448.2 16 31.22 odd 30
961.2.g.i.547.1 16 31.25 even 3
961.2.g.i.547.2 16 31.6 odd 6
961.2.g.i.844.1 16 31.26 odd 6
961.2.g.i.844.2 16 31.5 even 3
961.2.g.i.846.1 16 31.17 odd 30
961.2.g.i.846.2 16 31.14 even 15
961.2.g.p.235.1 16 31.19 even 15
961.2.g.p.235.2 16 31.12 odd 30
961.2.g.p.338.1 16 31.21 odd 30
961.2.g.p.338.2 16 31.10 even 15
961.2.g.p.732.1 16 31.20 even 15
961.2.g.p.732.2 16 31.11 odd 30
961.2.g.p.816.1 16 31.24 odd 30
961.2.g.p.816.2 16 31.7 even 15
8649.2.a.r.1.3 4 93.77 even 10
8649.2.a.r.1.4 4 93.47 odd 10