Properties

Label 961.2.d.b.628.1
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.b.531.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 + 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{3} +(1.30902 + 0.951057i) q^{4} -2.61803 q^{5} -0.618034 q^{6} +(-2.42705 - 1.76336i) q^{7} +(-1.80902 + 1.31433i) q^{8} +(1.61803 - 1.17557i) q^{9} +(0.500000 - 1.53884i) q^{10} +(-0.618034 - 0.449028i) q^{11} +(-0.500000 + 1.53884i) q^{12} +(-1.50000 - 4.61653i) q^{13} +(1.50000 - 1.08981i) q^{14} +(-0.809017 - 2.48990i) q^{15} +(0.572949 + 1.76336i) q^{16} +(0.190983 - 0.138757i) q^{17} +(0.381966 + 1.17557i) q^{18} +(1.54508 - 4.75528i) q^{19} +(-3.42705 - 2.48990i) q^{20} +(0.927051 - 2.85317i) q^{21} +(0.381966 - 0.277515i) q^{22} +(-4.42705 + 3.21644i) q^{23} +(-1.80902 - 1.31433i) q^{24} +1.85410 q^{25} +3.00000 q^{26} +(4.04508 + 2.93893i) q^{27} +(-1.50000 - 4.61653i) q^{28} +(2.66312 - 8.19624i) q^{29} +1.61803 q^{30} -5.61803 q^{32} +(0.236068 - 0.726543i) q^{33} +(0.0450850 + 0.138757i) q^{34} +(6.35410 + 4.61653i) q^{35} +3.23607 q^{36} -0.236068 q^{37} +(2.50000 + 1.81636i) q^{38} +(3.92705 - 2.85317i) q^{39} +(4.73607 - 3.44095i) q^{40} +(2.00000 - 6.15537i) q^{41} +(1.50000 + 1.08981i) q^{42} +(1.42705 - 4.39201i) q^{43} +(-0.381966 - 1.17557i) q^{44} +(-4.23607 + 3.07768i) q^{45} +(-1.04508 - 3.21644i) q^{46} +(-1.04508 - 3.21644i) q^{47} +(-1.50000 + 1.08981i) q^{48} +(0.618034 + 1.90211i) q^{49} +(-0.354102 + 1.08981i) q^{50} +(0.190983 + 0.138757i) q^{51} +(2.42705 - 7.46969i) q^{52} +(-10.2812 + 7.46969i) q^{53} +(-2.50000 + 1.81636i) q^{54} +(1.61803 + 1.17557i) q^{55} +6.70820 q^{56} +5.00000 q^{57} +(4.30902 + 3.13068i) q^{58} +(2.92705 + 9.00854i) q^{59} +(1.30902 - 4.02874i) q^{60} +6.94427 q^{61} -6.00000 q^{63} +(-0.0729490 + 0.224514i) q^{64} +(3.92705 + 12.0862i) q^{65} +(0.381966 + 0.277515i) q^{66} -4.23607 q^{67} +0.381966 q^{68} +(-4.42705 - 3.21644i) q^{69} +(-3.92705 + 2.85317i) q^{70} +(-0.0729490 + 0.0530006i) q^{71} +(-1.38197 + 4.25325i) q^{72} +(-6.92705 - 5.03280i) q^{73} +(0.0450850 - 0.138757i) q^{74} +(0.572949 + 1.76336i) q^{75} +(6.54508 - 4.75528i) q^{76} +(0.708204 + 2.17963i) q^{77} +(0.927051 + 2.85317i) q^{78} +(-1.50000 - 4.61653i) q^{80} +(0.309017 - 0.951057i) q^{81} +(3.23607 + 2.35114i) q^{82} +(1.26393 - 3.88998i) q^{83} +(3.92705 - 2.85317i) q^{84} +(-0.500000 + 0.363271i) q^{85} +(2.30902 + 1.67760i) q^{86} +8.61803 q^{87} +1.70820 q^{88} +(-5.16312 - 3.75123i) q^{89} +(-1.00000 - 3.07768i) q^{90} +(-4.50000 + 13.8496i) q^{91} -8.85410 q^{92} +2.09017 q^{94} +(-4.04508 + 12.4495i) q^{95} +(-1.73607 - 5.34307i) q^{96} +(4.28115 + 3.11044i) q^{97} -1.23607 q^{98} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - q^{3} + 3 q^{4} - 6 q^{5} + 2 q^{6} - 3 q^{7} - 5 q^{8} + 2 q^{9} + 2 q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} + 6 q^{14} - q^{15} + 9 q^{16} + 3 q^{17} + 6 q^{18} - 5 q^{19} - 7 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 + 0.587785i −0.135045 + 0.415627i −0.995597 0.0937362i \(-0.970119\pi\)
0.860552 + 0.509363i \(0.170119\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i 0.999773 0.0213149i \(-0.00678525\pi\)
−0.821362 + 0.570408i \(0.806785\pi\)
\(4\) 1.30902 + 0.951057i 0.654508 + 0.475528i
\(5\) −2.61803 −1.17082 −0.585410 0.810737i \(-0.699067\pi\)
−0.585410 + 0.810737i \(0.699067\pi\)
\(6\) −0.618034 −0.252311
\(7\) −2.42705 1.76336i −0.917339 0.666486i 0.0255212 0.999674i \(-0.491875\pi\)
−0.942860 + 0.333188i \(0.891875\pi\)
\(8\) −1.80902 + 1.31433i −0.639584 + 0.464685i
\(9\) 1.61803 1.17557i 0.539345 0.391857i
\(10\) 0.500000 1.53884i 0.158114 0.486624i
\(11\) −0.618034 0.449028i −0.186344 0.135387i 0.490702 0.871327i \(-0.336740\pi\)
−0.677046 + 0.735940i \(0.736740\pi\)
\(12\) −0.500000 + 1.53884i −0.144338 + 0.444225i
\(13\) −1.50000 4.61653i −0.416025 1.28039i −0.911331 0.411675i \(-0.864944\pi\)
0.495306 0.868719i \(-0.335056\pi\)
\(14\) 1.50000 1.08981i 0.400892 0.291265i
\(15\) −0.809017 2.48990i −0.208887 0.642889i
\(16\) 0.572949 + 1.76336i 0.143237 + 0.440839i
\(17\) 0.190983 0.138757i 0.0463202 0.0336536i −0.564384 0.825512i \(-0.690886\pi\)
0.610704 + 0.791859i \(0.290886\pi\)
\(18\) 0.381966 + 1.17557i 0.0900303 + 0.277085i
\(19\) 1.54508 4.75528i 0.354467 1.09094i −0.601851 0.798608i \(-0.705570\pi\)
0.956318 0.292328i \(-0.0944300\pi\)
\(20\) −3.42705 2.48990i −0.766312 0.556758i
\(21\) 0.927051 2.85317i 0.202299 0.622613i
\(22\) 0.381966 0.277515i 0.0814354 0.0591663i
\(23\) −4.42705 + 3.21644i −0.923104 + 0.670674i −0.944295 0.329101i \(-0.893254\pi\)
0.0211907 + 0.999775i \(0.493254\pi\)
\(24\) −1.80902 1.31433i −0.369264 0.268286i
\(25\) 1.85410 0.370820
\(26\) 3.00000 0.588348
\(27\) 4.04508 + 2.93893i 0.778477 + 0.565597i
\(28\) −1.50000 4.61653i −0.283473 0.872441i
\(29\) 2.66312 8.19624i 0.494529 1.52200i −0.323161 0.946344i \(-0.604746\pi\)
0.817690 0.575659i \(-0.195254\pi\)
\(30\) 1.61803 0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 0.236068 0.726543i 0.0410942 0.126475i
\(34\) 0.0450850 + 0.138757i 0.00773201 + 0.0237967i
\(35\) 6.35410 + 4.61653i 1.07404 + 0.780335i
\(36\) 3.23607 0.539345
\(37\) −0.236068 −0.0388093 −0.0194047 0.999812i \(-0.506177\pi\)
−0.0194047 + 0.999812i \(0.506177\pi\)
\(38\) 2.50000 + 1.81636i 0.405554 + 0.294652i
\(39\) 3.92705 2.85317i 0.628831 0.456873i
\(40\) 4.73607 3.44095i 0.748838 0.544063i
\(41\) 2.00000 6.15537i 0.312348 0.961307i −0.664485 0.747302i \(-0.731349\pi\)
0.976833 0.214005i \(-0.0686510\pi\)
\(42\) 1.50000 + 1.08981i 0.231455 + 0.168162i
\(43\) 1.42705 4.39201i 0.217623 0.669775i −0.781334 0.624113i \(-0.785460\pi\)
0.998957 0.0456620i \(-0.0145397\pi\)
\(44\) −0.381966 1.17557i −0.0575835 0.177224i
\(45\) −4.23607 + 3.07768i −0.631476 + 0.458794i
\(46\) −1.04508 3.21644i −0.154089 0.474238i
\(47\) −1.04508 3.21644i −0.152441 0.469166i 0.845451 0.534052i \(-0.179332\pi\)
−0.997893 + 0.0648863i \(0.979332\pi\)
\(48\) −1.50000 + 1.08981i −0.216506 + 0.157301i
\(49\) 0.618034 + 1.90211i 0.0882906 + 0.271730i
\(50\) −0.354102 + 1.08981i −0.0500776 + 0.154123i
\(51\) 0.190983 + 0.138757i 0.0267430 + 0.0194299i
\(52\) 2.42705 7.46969i 0.336571 1.03586i
\(53\) −10.2812 + 7.46969i −1.41222 + 1.02604i −0.419231 + 0.907880i \(0.637700\pi\)
−0.992994 + 0.118162i \(0.962300\pi\)
\(54\) −2.50000 + 1.81636i −0.340207 + 0.247175i
\(55\) 1.61803 + 1.17557i 0.218176 + 0.158514i
\(56\) 6.70820 0.896421
\(57\) 5.00000 0.662266
\(58\) 4.30902 + 3.13068i 0.565802 + 0.411079i
\(59\) 2.92705 + 9.00854i 0.381070 + 1.17281i 0.939292 + 0.343120i \(0.111484\pi\)
−0.558222 + 0.829692i \(0.688516\pi\)
\(60\) 1.30902 4.02874i 0.168993 0.520108i
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −0.0729490 + 0.224514i −0.00911863 + 0.0280642i
\(65\) 3.92705 + 12.0862i 0.487091 + 1.49911i
\(66\) 0.381966 + 0.277515i 0.0470168 + 0.0341597i
\(67\) −4.23607 −0.517518 −0.258759 0.965942i \(-0.583314\pi\)
−0.258759 + 0.965942i \(0.583314\pi\)
\(68\) 0.381966 0.0463202
\(69\) −4.42705 3.21644i −0.532954 0.387214i
\(70\) −3.92705 + 2.85317i −0.469372 + 0.341019i
\(71\) −0.0729490 + 0.0530006i −0.00865746 + 0.00629001i −0.592106 0.805860i \(-0.701703\pi\)
0.583448 + 0.812150i \(0.301703\pi\)
\(72\) −1.38197 + 4.25325i −0.162866 + 0.501251i
\(73\) −6.92705 5.03280i −0.810750 0.589044i 0.103298 0.994650i \(-0.467060\pi\)
−0.914048 + 0.405606i \(0.867060\pi\)
\(74\) 0.0450850 0.138757i 0.00524102 0.0161302i
\(75\) 0.572949 + 1.76336i 0.0661585 + 0.203615i
\(76\) 6.54508 4.75528i 0.750773 0.545468i
\(77\) 0.708204 + 2.17963i 0.0807073 + 0.248392i
\(78\) 0.927051 + 2.85317i 0.104968 + 0.323058i
\(79\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(80\) −1.50000 4.61653i −0.167705 0.516143i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 3.23607 + 2.35114i 0.357364 + 0.259640i
\(83\) 1.26393 3.88998i 0.138735 0.426981i −0.857418 0.514621i \(-0.827933\pi\)
0.996152 + 0.0876401i \(0.0279326\pi\)
\(84\) 3.92705 2.85317i 0.428476 0.311306i
\(85\) −0.500000 + 0.363271i −0.0542326 + 0.0394023i
\(86\) 2.30902 + 1.67760i 0.248988 + 0.180900i
\(87\) 8.61803 0.923950
\(88\) 1.70820 0.182095
\(89\) −5.16312 3.75123i −0.547290 0.397629i 0.279496 0.960147i \(-0.409833\pi\)
−0.826785 + 0.562518i \(0.809833\pi\)
\(90\) −1.00000 3.07768i −0.105409 0.324416i
\(91\) −4.50000 + 13.8496i −0.471728 + 1.45183i
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) −4.04508 + 12.4495i −0.415017 + 1.27729i
\(96\) −1.73607 5.34307i −0.177187 0.545325i
\(97\) 4.28115 + 3.11044i 0.434685 + 0.315817i 0.783520 0.621367i \(-0.213422\pi\)
−0.348834 + 0.937184i \(0.613422\pi\)
\(98\) −1.23607 −0.124862
\(99\) −1.52786 −0.153556
\(100\) 2.42705 + 1.76336i 0.242705 + 0.176336i
\(101\) −3.85410 + 2.80017i −0.383497 + 0.278627i −0.762786 0.646651i \(-0.776169\pi\)
0.379288 + 0.925279i \(0.376169\pi\)
\(102\) −0.118034 + 0.0857567i −0.0116871 + 0.00849118i
\(103\) −0.0450850 + 0.138757i −0.00444235 + 0.0136722i −0.953253 0.302173i \(-0.902288\pi\)
0.948811 + 0.315845i \(0.102288\pi\)
\(104\) 8.78115 + 6.37988i 0.861063 + 0.625599i
\(105\) −2.42705 + 7.46969i −0.236856 + 0.728968i
\(106\) −2.42705 7.46969i −0.235736 0.725521i
\(107\) −0.881966 + 0.640786i −0.0852629 + 0.0619471i −0.629600 0.776919i \(-0.716781\pi\)
0.544337 + 0.838867i \(0.316781\pi\)
\(108\) 2.50000 + 7.69421i 0.240563 + 0.740376i
\(109\) −2.60081 8.00448i −0.249113 0.766690i −0.994933 0.100543i \(-0.967942\pi\)
0.745820 0.666147i \(-0.232058\pi\)
\(110\) −1.00000 + 0.726543i −0.0953463 + 0.0692731i
\(111\) −0.0729490 0.224514i −0.00692401 0.0213099i
\(112\) 1.71885 5.29007i 0.162416 0.499864i
\(113\) 1.50000 + 1.08981i 0.141108 + 0.102521i 0.656100 0.754674i \(-0.272205\pi\)
−0.514992 + 0.857195i \(0.672205\pi\)
\(114\) −0.954915 + 2.93893i −0.0894360 + 0.275256i
\(115\) 11.5902 8.42075i 1.08079 0.785239i
\(116\) 11.2812 8.19624i 1.04743 0.761002i
\(117\) −7.85410 5.70634i −0.726112 0.527551i
\(118\) −5.85410 −0.538914
\(119\) −0.708204 −0.0649209
\(120\) 4.73607 + 3.44095i 0.432342 + 0.314115i
\(121\) −3.21885 9.90659i −0.292622 0.900599i
\(122\) −1.32624 + 4.08174i −0.120072 + 0.369543i
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 1.14590 3.52671i 0.102085 0.314184i
\(127\) −3.16312 9.73508i −0.280681 0.863849i −0.987660 0.156614i \(-0.949942\pi\)
0.706979 0.707235i \(-0.250058\pi\)
\(128\) −9.20820 6.69015i −0.813898 0.591331i
\(129\) 4.61803 0.406595
\(130\) −7.85410 −0.688850
\(131\) −0.0729490 0.0530006i −0.00637359 0.00463068i 0.584594 0.811326i \(-0.301254\pi\)
−0.590967 + 0.806695i \(0.701254\pi\)
\(132\) 1.00000 0.726543i 0.0870388 0.0632374i
\(133\) −12.1353 + 8.81678i −1.05226 + 0.764512i
\(134\) 0.809017 2.48990i 0.0698884 0.215094i
\(135\) −10.5902 7.69421i −0.911457 0.662212i
\(136\) −0.163119 + 0.502029i −0.0139873 + 0.0430486i
\(137\) 2.00000 + 6.15537i 0.170872 + 0.525888i 0.999421 0.0340275i \(-0.0108334\pi\)
−0.828549 + 0.559916i \(0.810833\pi\)
\(138\) 2.73607 1.98787i 0.232910 0.169219i
\(139\) −1.80902 5.56758i −0.153439 0.472236i 0.844561 0.535460i \(-0.179862\pi\)
−0.997999 + 0.0632239i \(0.979862\pi\)
\(140\) 3.92705 + 12.0862i 0.331896 + 1.02147i
\(141\) 2.73607 1.98787i 0.230418 0.167409i
\(142\) −0.0172209 0.0530006i −0.00144515 0.00444771i
\(143\) −1.14590 + 3.52671i −0.0958248 + 0.294918i
\(144\) 3.00000 + 2.17963i 0.250000 + 0.181636i
\(145\) −6.97214 + 21.4580i −0.579004 + 1.78199i
\(146\) 4.28115 3.11044i 0.354311 0.257422i
\(147\) −1.61803 + 1.17557i −0.133453 + 0.0969594i
\(148\) −0.309017 0.224514i −0.0254010 0.0184549i
\(149\) −17.0344 −1.39552 −0.697758 0.716334i \(-0.745819\pi\)
−0.697758 + 0.716334i \(0.745819\pi\)
\(150\) −1.14590 −0.0935622
\(151\) −15.7812 11.4657i −1.28425 0.933064i −0.284579 0.958652i \(-0.591854\pi\)
−0.999673 + 0.0255888i \(0.991854\pi\)
\(152\) 3.45492 + 10.6331i 0.280231 + 0.862461i
\(153\) 0.145898 0.449028i 0.0117952 0.0363018i
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 3.00000 9.23305i 0.239426 0.736878i −0.757077 0.653325i \(-0.773373\pi\)
0.996503 0.0835524i \(-0.0266266\pi\)
\(158\) 0 0
\(159\) −10.2812 7.46969i −0.815348 0.592385i
\(160\) 14.7082 1.16279
\(161\) 16.4164 1.29379
\(162\) 0.500000 + 0.363271i 0.0392837 + 0.0285413i
\(163\) 10.2812 7.46969i 0.805282 0.585072i −0.107177 0.994240i \(-0.534181\pi\)
0.912459 + 0.409168i \(0.134181\pi\)
\(164\) 8.47214 6.15537i 0.661563 0.480653i
\(165\) −0.618034 + 1.90211i −0.0481139 + 0.148079i
\(166\) 2.04508 + 1.48584i 0.158729 + 0.115324i
\(167\) 2.85410 8.78402i 0.220857 0.679728i −0.777829 0.628476i \(-0.783679\pi\)
0.998686 0.0512518i \(-0.0163211\pi\)
\(168\) 2.07295 + 6.37988i 0.159931 + 0.492219i
\(169\) −8.54508 + 6.20837i −0.657314 + 0.477567i
\(170\) −0.118034 0.363271i −0.00905279 0.0278616i
\(171\) −3.09017 9.51057i −0.236311 0.727291i
\(172\) 6.04508 4.39201i 0.460933 0.334888i
\(173\) 0.281153 + 0.865300i 0.0213757 + 0.0657875i 0.961175 0.275938i \(-0.0889886\pi\)
−0.939800 + 0.341726i \(0.888989\pi\)
\(174\) −1.64590 + 5.06555i −0.124775 + 0.384019i
\(175\) −4.50000 3.26944i −0.340168 0.247147i
\(176\) 0.437694 1.34708i 0.0329924 0.101540i
\(177\) −7.66312 + 5.56758i −0.575995 + 0.418485i
\(178\) 3.19098 2.31838i 0.239174 0.173770i
\(179\) 16.0172 + 11.6372i 1.19718 + 0.869805i 0.994005 0.109337i \(-0.0348728\pi\)
0.203179 + 0.979142i \(0.434873\pi\)
\(180\) −8.47214 −0.631476
\(181\) −17.0000 −1.26360 −0.631800 0.775131i \(-0.717684\pi\)
−0.631800 + 0.775131i \(0.717684\pi\)
\(182\) −7.28115 5.29007i −0.539715 0.392126i
\(183\) 2.14590 + 6.60440i 0.158629 + 0.488211i
\(184\) 3.78115 11.6372i 0.278750 0.857905i
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) 1.69098 5.20431i 0.123328 0.379563i
\(189\) −4.63525 14.2658i −0.337165 1.03769i
\(190\) −6.54508 4.75528i −0.474830 0.344984i
\(191\) −16.0902 −1.16424 −0.582122 0.813102i \(-0.697777\pi\)
−0.582122 + 0.813102i \(0.697777\pi\)
\(192\) −0.236068 −0.0170367
\(193\) 1.92705 + 1.40008i 0.138712 + 0.100780i 0.654977 0.755648i \(-0.272678\pi\)
−0.516265 + 0.856429i \(0.672678\pi\)
\(194\) −2.64590 + 1.92236i −0.189964 + 0.138017i
\(195\) −10.2812 + 7.46969i −0.736249 + 0.534916i
\(196\) −1.00000 + 3.07768i −0.0714286 + 0.219835i
\(197\) 13.2812 + 9.64932i 0.946243 + 0.687486i 0.949915 0.312507i \(-0.101169\pi\)
−0.00367232 + 0.999993i \(0.501169\pi\)
\(198\) 0.291796 0.898056i 0.0207370 0.0638221i
\(199\) 8.25329 + 25.4010i 0.585060 + 1.80063i 0.599029 + 0.800728i \(0.295554\pi\)
−0.0139686 + 0.999902i \(0.504446\pi\)
\(200\) −3.35410 + 2.43690i −0.237171 + 0.172315i
\(201\) −1.30902 4.02874i −0.0923309 0.284165i
\(202\) −0.909830 2.80017i −0.0640154 0.197019i
\(203\) −20.9164 + 15.1967i −1.46804 + 1.06660i
\(204\) 0.118034 + 0.363271i 0.00826403 + 0.0254341i
\(205\) −5.23607 + 16.1150i −0.365703 + 1.12552i
\(206\) −0.0729490 0.0530006i −0.00508260 0.00369272i
\(207\) −3.38197 + 10.4086i −0.235063 + 0.723449i
\(208\) 7.28115 5.29007i 0.504857 0.366800i
\(209\) −3.09017 + 2.24514i −0.213752 + 0.155300i
\(210\) −3.92705 2.85317i −0.270992 0.196887i
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −20.5623 −1.41222
\(213\) −0.0729490 0.0530006i −0.00499838 0.00363154i
\(214\) −0.208204 0.640786i −0.0142325 0.0438032i
\(215\) −3.73607 + 11.4984i −0.254798 + 0.784187i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) 2.64590 8.14324i 0.178793 0.550269i
\(220\) 1.00000 + 3.07768i 0.0674200 + 0.207497i
\(221\) −0.927051 0.673542i −0.0623602 0.0453073i
\(222\) 0.145898 0.00979203
\(223\) −0.708204 −0.0474248 −0.0237124 0.999719i \(-0.507549\pi\)
−0.0237124 + 0.999719i \(0.507549\pi\)
\(224\) 13.6353 + 9.90659i 0.911044 + 0.661912i
\(225\) 3.00000 2.17963i 0.200000 0.145309i
\(226\) −0.927051 + 0.673542i −0.0616665 + 0.0448033i
\(227\) −6.40983 + 19.7274i −0.425435 + 1.30936i 0.477141 + 0.878827i \(0.341673\pi\)
−0.902577 + 0.430529i \(0.858327\pi\)
\(228\) 6.54508 + 4.75528i 0.433459 + 0.314926i
\(229\) 2.23607 6.88191i 0.147764 0.454769i −0.849592 0.527440i \(-0.823152\pi\)
0.997356 + 0.0726703i \(0.0231521\pi\)
\(230\) 2.73607 + 8.42075i 0.180411 + 0.555248i
\(231\) −1.85410 + 1.34708i −0.121991 + 0.0886316i
\(232\) 5.95492 + 18.3273i 0.390959 + 1.20325i
\(233\) 5.80902 + 17.8783i 0.380561 + 1.17125i 0.939649 + 0.342139i \(0.111151\pi\)
−0.559088 + 0.829108i \(0.688849\pi\)
\(234\) 4.85410 3.52671i 0.317323 0.230548i
\(235\) 2.73607 + 8.42075i 0.178481 + 0.549309i
\(236\) −4.73607 + 14.5761i −0.308292 + 0.948824i
\(237\) 0 0
\(238\) 0.135255 0.416272i 0.00876727 0.0269829i
\(239\) −10.8541 + 7.88597i −0.702093 + 0.510101i −0.880613 0.473836i \(-0.842869\pi\)
0.178520 + 0.983936i \(0.442869\pi\)
\(240\) 3.92705 2.85317i 0.253490 0.184171i
\(241\) −6.89919 5.01255i −0.444416 0.322887i 0.342971 0.939346i \(-0.388567\pi\)
−0.787387 + 0.616459i \(0.788567\pi\)
\(242\) 6.43769 0.413831
\(243\) 16.0000 1.02640
\(244\) 9.09017 + 6.60440i 0.581938 + 0.422803i
\(245\) −1.61803 4.97980i −0.103372 0.318148i
\(246\) −1.23607 + 3.80423i −0.0788088 + 0.242549i
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) −1.57295 + 4.84104i −0.0994820 + 0.306174i
\(251\) −0.291796 0.898056i −0.0184180 0.0566848i 0.941425 0.337222i \(-0.109487\pi\)
−0.959843 + 0.280537i \(0.909487\pi\)
\(252\) −7.85410 5.70634i −0.494762 0.359466i
\(253\) 4.18034 0.262816
\(254\) 6.32624 0.396943
\(255\) −0.500000 0.363271i −0.0313112 0.0227489i
\(256\) 5.30902 3.85723i 0.331814 0.241077i
\(257\) −1.14590 + 0.832544i −0.0714792 + 0.0519326i −0.622951 0.782261i \(-0.714066\pi\)
0.551472 + 0.834194i \(0.314066\pi\)
\(258\) −0.881966 + 2.71441i −0.0549088 + 0.168992i
\(259\) 0.572949 + 0.416272i 0.0356013 + 0.0258659i
\(260\) −6.35410 + 19.5559i −0.394065 + 1.21281i
\(261\) −5.32624 16.3925i −0.329686 1.01467i
\(262\) 0.0450850 0.0327561i 0.00278536 0.00202368i
\(263\) 3.33688 + 10.2699i 0.205761 + 0.633267i 0.999681 + 0.0252452i \(0.00803665\pi\)
−0.793920 + 0.608022i \(0.791963\pi\)
\(264\) 0.527864 + 1.62460i 0.0324878 + 0.0999871i
\(265\) 26.9164 19.5559i 1.65346 1.20131i
\(266\) −2.86475 8.81678i −0.175649 0.540591i
\(267\) 1.97214 6.06961i 0.120693 0.371454i
\(268\) −5.54508 4.02874i −0.338720 0.246094i
\(269\) 0.427051 1.31433i 0.0260378 0.0801360i −0.937193 0.348811i \(-0.886586\pi\)
0.963231 + 0.268675i \(0.0865856\pi\)
\(270\) 6.54508 4.75528i 0.398321 0.289397i
\(271\) 7.73607 5.62058i 0.469933 0.341426i −0.327482 0.944857i \(-0.606200\pi\)
0.797415 + 0.603431i \(0.206200\pi\)
\(272\) 0.354102 + 0.257270i 0.0214706 + 0.0155993i
\(273\) −14.5623 −0.881351
\(274\) −4.00000 −0.241649
\(275\) −1.14590 0.832544i −0.0691003 0.0502043i
\(276\) −2.73607 8.42075i −0.164692 0.506870i
\(277\) −4.11803 + 12.6740i −0.247429 + 0.761507i 0.747799 + 0.663925i \(0.231111\pi\)
−0.995228 + 0.0975818i \(0.968889\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) 5.88197 18.1028i 0.350889 1.07992i −0.607466 0.794345i \(-0.707814\pi\)
0.958355 0.285579i \(-0.0921859\pi\)
\(282\) 0.645898 + 1.98787i 0.0384627 + 0.118376i
\(283\) −5.30902 3.85723i −0.315588 0.229288i 0.418702 0.908124i \(-0.362485\pi\)
−0.734291 + 0.678835i \(0.762485\pi\)
\(284\) −0.145898 −0.00865746
\(285\) −13.0902 −0.775395
\(286\) −1.85410 1.34708i −0.109635 0.0796547i
\(287\) −15.7082 + 11.4127i −0.927226 + 0.673669i
\(288\) −9.09017 + 6.60440i −0.535643 + 0.389168i
\(289\) −5.23607 + 16.1150i −0.308004 + 0.947939i
\(290\) −11.2812 8.19624i −0.662452 0.481300i
\(291\) −1.63525 + 5.03280i −0.0958603 + 0.295028i
\(292\) −4.28115 13.1760i −0.250536 0.771069i
\(293\) 6.66312 4.84104i 0.389264 0.282817i −0.375890 0.926664i \(-0.622663\pi\)
0.765154 + 0.643848i \(0.222663\pi\)
\(294\) −0.381966 1.17557i −0.0222767 0.0685607i
\(295\) −7.66312 23.5847i −0.446164 1.37315i
\(296\) 0.427051 0.310271i 0.0248218 0.0180341i
\(297\) −1.18034 3.63271i −0.0684903 0.210791i
\(298\) 3.25329 10.0126i 0.188458 0.580014i
\(299\) 21.4894 + 15.6129i 1.24276 + 0.902919i
\(300\) −0.927051 + 2.85317i −0.0535233 + 0.164728i
\(301\) −11.2082 + 8.14324i −0.646030 + 0.469368i
\(302\) 9.75329 7.08618i 0.561239 0.407764i
\(303\) −3.85410 2.80017i −0.221412 0.160866i
\(304\) 9.27051 0.531700
\(305\) −18.1803 −1.04100
\(306\) 0.236068 + 0.171513i 0.0134951 + 0.00980477i
\(307\) 1.88197 + 5.79210i 0.107409 + 0.330572i 0.990288 0.139028i \(-0.0443979\pi\)
−0.882879 + 0.469601i \(0.844398\pi\)
\(308\) −1.14590 + 3.52671i −0.0652936 + 0.200953i
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −3.35410 + 10.3229i −0.189889 + 0.584417i
\(313\) −0.381966 1.17557i −0.0215900 0.0664472i 0.939681 0.342052i \(-0.111122\pi\)
−0.961271 + 0.275605i \(0.911122\pi\)
\(314\) 4.85410 + 3.52671i 0.273933 + 0.199024i
\(315\) 15.7082 0.885057
\(316\) 0 0
\(317\) −20.9443 15.2169i −1.17635 0.854666i −0.184593 0.982815i \(-0.559097\pi\)
−0.991755 + 0.128149i \(0.959097\pi\)
\(318\) 6.35410 4.61653i 0.356320 0.258882i
\(319\) −5.32624 + 3.86974i −0.298212 + 0.216664i
\(320\) 0.190983 0.587785i 0.0106763 0.0328582i
\(321\) −0.881966 0.640786i −0.0492265 0.0357652i
\(322\) −3.13525 + 9.64932i −0.174721 + 0.537736i
\(323\) −0.364745 1.12257i −0.0202950 0.0624615i
\(324\) 1.30902 0.951057i 0.0727232 0.0528365i
\(325\) −2.78115 8.55951i −0.154271 0.474796i
\(326\) 2.42705 + 7.46969i 0.134422 + 0.413708i
\(327\) 6.80902 4.94704i 0.376540 0.273572i
\(328\) 4.47214 + 13.7638i 0.246932 + 0.759980i
\(329\) −3.13525 + 9.64932i −0.172852 + 0.531984i
\(330\) −1.00000 0.726543i −0.0550482 0.0399948i
\(331\) −3.48278 + 10.7189i −0.191431 + 0.589164i 0.808569 + 0.588402i \(0.200243\pi\)
−1.00000 0.000762014i \(0.999757\pi\)
\(332\) 5.35410 3.88998i 0.293845 0.213491i
\(333\) −0.381966 + 0.277515i −0.0209316 + 0.0152077i
\(334\) 4.61803 + 3.35520i 0.252688 + 0.183588i
\(335\) 11.0902 0.605921
\(336\) 5.56231 0.303449
\(337\) 15.3541 + 11.1554i 0.836391 + 0.607674i 0.921360 0.388710i \(-0.127079\pi\)
−0.0849690 + 0.996384i \(0.527079\pi\)
\(338\) −2.01722 6.20837i −0.109722 0.337691i
\(339\) −0.572949 + 1.76336i −0.0311183 + 0.0957723i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) −4.63525 + 14.2658i −0.250280 + 0.770283i
\(344\) 3.19098 + 9.82084i 0.172046 + 0.529504i
\(345\) 11.5902 + 8.42075i 0.623994 + 0.453358i
\(346\) −0.562306 −0.0302298
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) 11.2812 + 8.19624i 0.604733 + 0.439364i
\(349\) 13.5172 9.82084i 0.723560 0.525697i −0.163959 0.986467i \(-0.552427\pi\)
0.887520 + 0.460770i \(0.152427\pi\)
\(350\) 2.78115 2.02063i 0.148659 0.108007i
\(351\) 7.50000 23.0826i 0.400320 1.23206i
\(352\) 3.47214 + 2.52265i 0.185065 + 0.134458i
\(353\) 10.0066 30.7971i 0.532596 1.63916i −0.216190 0.976351i \(-0.569363\pi\)
0.748786 0.662812i \(-0.230637\pi\)
\(354\) −1.80902 5.56758i −0.0961482 0.295914i
\(355\) 0.190983 0.138757i 0.0101363 0.00736447i
\(356\) −3.19098 9.82084i −0.169122 0.520503i
\(357\) −0.218847 0.673542i −0.0115826 0.0356476i
\(358\) −9.89919 + 7.19218i −0.523188 + 0.380119i
\(359\) −7.82624 24.0867i −0.413053 1.27125i −0.913981 0.405757i \(-0.867008\pi\)
0.500928 0.865489i \(-0.332992\pi\)
\(360\) 3.61803 11.1352i 0.190687 0.586875i
\(361\) −4.85410 3.52671i −0.255479 0.185616i
\(362\) 3.24671 9.99235i 0.170643 0.525186i
\(363\) 8.42705 6.12261i 0.442305 0.321354i
\(364\) −19.0623 + 13.8496i −0.999136 + 0.725915i
\(365\) 18.1353 + 13.1760i 0.949243 + 0.689665i
\(366\) −4.29180 −0.224336
\(367\) 36.2705 1.89331 0.946653 0.322256i \(-0.104441\pi\)
0.946653 + 0.322256i \(0.104441\pi\)
\(368\) −8.20820 5.96361i −0.427882 0.310875i
\(369\) −4.00000 12.3107i −0.208232 0.640871i
\(370\) −0.118034 + 0.363271i −0.00613629 + 0.0188856i
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0.0344419 0.106001i 0.00178095 0.00548119i
\(375\) 2.54508 + 7.83297i 0.131428 + 0.404493i
\(376\) 6.11803 + 4.44501i 0.315514 + 0.229234i
\(377\) −41.8328 −2.15450
\(378\) 9.27051 0.476824
\(379\) 14.8992 + 10.8249i 0.765320 + 0.556037i 0.900537 0.434779i \(-0.143173\pi\)
−0.135218 + 0.990816i \(0.543173\pi\)
\(380\) −17.1353 + 12.4495i −0.879020 + 0.638645i
\(381\) 8.28115 6.01661i 0.424256 0.308240i
\(382\) 3.07295 9.45756i 0.157226 0.483891i
\(383\) −13.6353 9.90659i −0.696729 0.506203i 0.182136 0.983273i \(-0.441699\pi\)
−0.878865 + 0.477070i \(0.841699\pi\)
\(384\) 3.51722 10.8249i 0.179487 0.552406i
\(385\) −1.85410 5.70634i −0.0944938 0.290822i
\(386\) −1.19098 + 0.865300i −0.0606194 + 0.0440426i
\(387\) −2.85410 8.78402i −0.145082 0.446517i
\(388\) 2.64590 + 8.14324i 0.134325 + 0.413410i
\(389\) −23.5172 + 17.0863i −1.19237 + 0.866308i −0.993513 0.113721i \(-0.963723\pi\)
−0.198858 + 0.980028i \(0.563723\pi\)
\(390\) −2.42705 7.46969i −0.122899 0.378243i
\(391\) −0.399187 + 1.22857i −0.0201878 + 0.0621315i
\(392\) −3.61803 2.62866i −0.182738 0.132767i
\(393\) 0.0278640 0.0857567i 0.00140556 0.00432585i
\(394\) −8.20820 + 5.96361i −0.413523 + 0.300442i
\(395\) 0 0
\(396\) −2.00000 1.45309i −0.100504 0.0730203i
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) −16.5066 −0.827400
\(399\) −12.1353 8.81678i −0.607523 0.441391i
\(400\) 1.06231 + 3.26944i 0.0531153 + 0.163472i
\(401\) 9.21885 28.3727i 0.460367 1.41686i −0.404349 0.914605i \(-0.632502\pi\)
0.864717 0.502260i \(-0.167498\pi\)
\(402\) 2.61803 0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) −0.809017 + 2.48990i −0.0402004 + 0.123724i
\(406\) −4.93769 15.1967i −0.245054 0.754198i
\(407\) 0.145898 + 0.106001i 0.00723190 + 0.00525428i
\(408\) −0.527864 −0.0261332
\(409\) 6.18034 0.305598 0.152799 0.988257i \(-0.451171\pi\)
0.152799 + 0.988257i \(0.451171\pi\)
\(410\) −8.47214 6.15537i −0.418409 0.303992i
\(411\) −5.23607 + 3.80423i −0.258276 + 0.187649i
\(412\) −0.190983 + 0.138757i −0.00940906 + 0.00683608i
\(413\) 8.78115 27.0256i 0.432092 1.32984i
\(414\) −5.47214 3.97574i −0.268941 0.195397i
\(415\) −3.30902 + 10.1841i −0.162433 + 0.499918i
\(416\) 8.42705 + 25.9358i 0.413170 + 1.27161i
\(417\) 4.73607 3.44095i 0.231926 0.168504i
\(418\) −0.729490 2.24514i −0.0356805 0.109813i
\(419\) 1.38197 + 4.25325i 0.0675135 + 0.207785i 0.979122 0.203275i \(-0.0651586\pi\)
−0.911608 + 0.411060i \(0.865159\pi\)
\(420\) −10.2812 + 7.46969i −0.501669 + 0.364484i
\(421\) 4.56231 + 14.0413i 0.222353 + 0.684333i 0.998549 + 0.0538414i \(0.0171466\pi\)
−0.776196 + 0.630491i \(0.782853\pi\)
\(422\) 1.52786 4.70228i 0.0743753 0.228904i
\(423\) −5.47214 3.97574i −0.266064 0.193307i
\(424\) 8.78115 27.0256i 0.426450 1.31248i
\(425\) 0.354102 0.257270i 0.0171765 0.0124794i
\(426\) 0.0450850 0.0327561i 0.00218437 0.00158704i
\(427\) −16.8541 12.2452i −0.815627 0.592588i
\(428\) −1.76393 −0.0852629
\(429\) −3.70820 −0.179034
\(430\) −6.04508 4.39201i −0.291520 0.211802i
\(431\) 9.03444 + 27.8052i 0.435174 + 1.33933i 0.892908 + 0.450238i \(0.148661\pi\)
−0.457735 + 0.889089i \(0.651339\pi\)
\(432\) −2.86475 + 8.81678i −0.137830 + 0.424197i
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) 4.20820 12.9515i 0.201536 0.620265i
\(437\) 8.45492 + 26.0216i 0.404453 + 1.24478i
\(438\) 4.28115 + 3.11044i 0.204561 + 0.148623i
\(439\) 41.8328 1.99657 0.998286 0.0585295i \(-0.0186412\pi\)
0.998286 + 0.0585295i \(0.0186412\pi\)
\(440\) −4.47214 −0.213201
\(441\) 3.23607 + 2.35114i 0.154098 + 0.111959i
\(442\) 0.572949 0.416272i 0.0272524 0.0198000i
\(443\) 33.2705 24.1724i 1.58073 1.14847i 0.664877 0.746953i \(-0.268484\pi\)
0.915853 0.401514i \(-0.131516\pi\)
\(444\) 0.118034 0.363271i 0.00560165 0.0172401i
\(445\) 13.5172 + 9.82084i 0.640778 + 0.465552i
\(446\) 0.135255 0.416272i 0.00640451 0.0197110i
\(447\) −5.26393 16.2007i −0.248975 0.766268i
\(448\) 0.572949 0.416272i 0.0270693 0.0196670i
\(449\) −7.43769 22.8909i −0.351006 1.08029i −0.958289 0.285801i \(-0.907740\pi\)
0.607283 0.794486i \(-0.292260\pi\)
\(450\) 0.708204 + 2.17963i 0.0333851 + 0.102749i
\(451\) −4.00000 + 2.90617i −0.188353 + 0.136846i
\(452\) 0.927051 + 2.85317i 0.0436048 + 0.134202i
\(453\) 6.02786 18.5519i 0.283214 0.871642i
\(454\) −10.3713 7.53521i −0.486750 0.353645i
\(455\) 11.7812 36.2587i 0.552309 1.69983i
\(456\) −9.04508 + 6.57164i −0.423575 + 0.307745i
\(457\) −12.7361 + 9.25330i −0.595768 + 0.432851i −0.844374 0.535754i \(-0.820028\pi\)
0.248606 + 0.968605i \(0.420028\pi\)
\(458\) 3.61803 + 2.62866i 0.169060 + 0.122829i
\(459\) 1.18034 0.0550935
\(460\) 23.1803 1.08079
\(461\) 8.69098 + 6.31437i 0.404779 + 0.294089i 0.771485 0.636248i \(-0.219514\pi\)
−0.366705 + 0.930337i \(0.619514\pi\)
\(462\) −0.437694 1.34708i −0.0203634 0.0626720i
\(463\) 9.61803 29.6013i 0.446988 1.37569i −0.433301 0.901249i \(-0.642651\pi\)
0.880289 0.474438i \(-0.157349\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −10.1287 + 31.1729i −0.468699 + 1.44251i 0.385571 + 0.922678i \(0.374005\pi\)
−0.854270 + 0.519830i \(0.825995\pi\)
\(468\) −4.85410 14.9394i −0.224381 0.690574i
\(469\) 10.2812 + 7.46969i 0.474740 + 0.344918i
\(470\) −5.47214 −0.252411
\(471\) 9.70820 0.447330
\(472\) −17.1353 12.4495i −0.788714 0.573034i
\(473\) −2.85410 + 2.07363i −0.131232 + 0.0953454i
\(474\) 0 0
\(475\) 2.86475 8.81678i 0.131444 0.404542i
\(476\) −0.927051 0.673542i −0.0424913 0.0308717i
\(477\) −7.85410 + 24.1724i −0.359615 + 1.10678i
\(478\) −2.56231 7.88597i −0.117197 0.360696i
\(479\) 7.23607 5.25731i 0.330624 0.240213i −0.410071 0.912054i \(-0.634496\pi\)
0.740696 + 0.671841i \(0.234496\pi\)
\(480\) 4.54508 + 13.9883i 0.207454 + 0.638477i
\(481\) 0.354102 + 1.08981i 0.0161457 + 0.0496912i
\(482\) 4.26393 3.09793i 0.194217 0.141107i
\(483\) 5.07295 + 15.6129i 0.230827 + 0.710413i
\(484\) 5.20820 16.0292i 0.236737 0.728600i
\(485\) −11.2082 8.14324i −0.508938 0.369765i
\(486\) −3.05573 + 9.40456i −0.138611 + 0.426600i
\(487\) 18.5451 13.4738i 0.840358 0.610556i −0.0821126 0.996623i \(-0.526167\pi\)
0.922471 + 0.386067i \(0.126167\pi\)
\(488\) −12.5623 + 9.12705i −0.568669 + 0.413162i
\(489\) 10.2812 + 7.46969i 0.464930 + 0.337791i
\(490\) 3.23607 0.146191
\(491\) 27.5967 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(492\) 8.47214 + 6.15537i 0.381953 + 0.277505i
\(493\) −0.628677 1.93487i −0.0283142 0.0871421i
\(494\) 4.63525 14.2658i 0.208550 0.641851i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) −0.781153 + 2.40414i −0.0350043 + 0.107732i
\(499\) −1.28115 3.94298i −0.0573523 0.176512i 0.918277 0.395940i \(-0.129581\pi\)
−0.975629 + 0.219427i \(0.929581\pi\)
\(500\) 10.7812 + 7.83297i 0.482148 + 0.350301i
\(501\) 9.23607 0.412637
\(502\) 0.583592 0.0260470
\(503\) −10.6353 7.72696i −0.474203 0.344528i 0.324874 0.945757i \(-0.394678\pi\)
−0.799077 + 0.601229i \(0.794678\pi\)
\(504\) 10.8541 7.88597i 0.483480 0.351269i
\(505\) 10.0902 7.33094i 0.449007 0.326222i
\(506\) −0.798374 + 2.45714i −0.0354920 + 0.109233i
\(507\) −8.54508 6.20837i −0.379501 0.275723i
\(508\) 5.11803 15.7517i 0.227076 0.698868i
\(509\) 0.590170 + 1.81636i 0.0261588 + 0.0805086i 0.963284 0.268486i \(-0.0865232\pi\)
−0.937125 + 0.348994i \(0.886523\pi\)
\(510\) 0.309017 0.224514i 0.0136835 0.00994165i
\(511\) 7.93769 + 24.4297i 0.351143 + 1.08071i
\(512\) −5.78115 17.7926i −0.255493 0.786327i
\(513\) 20.2254 14.6946i 0.892974 0.648784i
\(514\) −0.270510 0.832544i −0.0119317 0.0367219i
\(515\) 0.118034 0.363271i 0.00520120 0.0160076i
\(516\) 6.04508 + 4.39201i 0.266120 + 0.193348i
\(517\) −0.798374 + 2.45714i −0.0351124 + 0.108065i
\(518\) −0.354102 + 0.257270i −0.0155583 + 0.0113038i
\(519\) −0.736068 + 0.534785i −0.0323098 + 0.0234744i
\(520\) −22.9894 16.7027i −1.00815 0.732464i
\(521\) 31.0689 1.36115 0.680576 0.732677i \(-0.261729\pi\)
0.680576 + 0.732677i \(0.261729\pi\)
\(522\) 10.6525 0.466246
\(523\) 27.6074 + 20.0579i 1.20719 + 0.877073i 0.994972 0.100150i \(-0.0319324\pi\)
0.212215 + 0.977223i \(0.431932\pi\)
\(524\) −0.0450850 0.138757i −0.00196955 0.00606164i
\(525\) 1.71885 5.29007i 0.0750166 0.230877i
\(526\) −6.67376 −0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) 2.14590 6.60440i 0.0932999 0.287148i
\(530\) 6.35410 + 19.5559i 0.276005 + 0.849455i
\(531\) 15.3262 + 11.1352i 0.665102 + 0.483225i
\(532\) −24.2705 −1.05226
\(533\) −31.4164 −1.36080
\(534\) 3.19098 + 2.31838i 0.138087 + 0.100326i
\(535\) 2.30902 1.67760i 0.0998275 0.0725289i
\(536\) 7.66312 5.56758i 0.330996 0.240483i
\(537\) −6.11803 + 18.8294i −0.264013 + 0.812547i
\(538\) 0.690983 + 0.502029i 0.0297904 + 0.0216440i
\(539\) 0.472136 1.45309i 0.0203363 0.0625888i
\(540\) −6.54508 20.1437i −0.281656 0.866847i
\(541\) −17.7984 + 12.9313i −0.765212 + 0.555959i −0.900504 0.434847i \(-0.856803\pi\)
0.135293 + 0.990806i \(0.456803\pi\)
\(542\) 1.82624 + 5.62058i 0.0784436 + 0.241425i
\(543\) −5.25329 16.1680i −0.225440 0.693834i
\(544\) −1.07295 + 0.779543i −0.0460023 + 0.0334226i
\(545\) 6.80902 + 20.9560i 0.291666 + 0.897656i
\(546\) 2.78115 8.55951i 0.119022 0.366313i
\(547\) 19.1803 + 13.9353i 0.820092 + 0.595832i 0.916739 0.399487i \(-0.130812\pi\)
−0.0966468 + 0.995319i \(0.530812\pi\)
\(548\) −3.23607 + 9.95959i −0.138238 + 0.425453i
\(549\) 11.2361 8.16348i 0.479544 0.348409i
\(550\) 0.708204 0.514540i 0.0301979 0.0219401i
\(551\) −34.8607 25.3278i −1.48511 1.07900i
\(552\) 12.2361 0.520802
\(553\) 0 0
\(554\) −6.66312 4.84104i −0.283089 0.205676i
\(555\) 0.190983 + 0.587785i 0.00810678 + 0.0249501i
\(556\) 2.92705 9.00854i 0.124135 0.382047i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) −4.50000 + 13.8496i −0.190160 + 0.585251i
\(561\) −0.0557281 0.171513i −0.00235284 0.00724130i
\(562\) 9.51722 + 6.91467i 0.401460 + 0.291678i
\(563\) −8.56231 −0.360858 −0.180429 0.983588i \(-0.557749\pi\)
−0.180429 + 0.983588i \(0.557749\pi\)
\(564\) 5.47214 0.230418
\(565\) −3.92705 2.85317i −0.165212 0.120034i
\(566\) 3.28115 2.38390i 0.137917 0.100203i
\(567\) −2.42705 + 1.76336i −0.101927 + 0.0740540i
\(568\) 0.0623059 0.191758i 0.00261430 0.00804598i
\(569\) 12.5623 + 9.12705i 0.526639 + 0.382626i 0.819099 0.573652i \(-0.194474\pi\)
−0.292460 + 0.956278i \(0.594474\pi\)
\(570\) 2.50000 7.69421i 0.104713 0.322275i
\(571\) −2.16312 6.65740i −0.0905237 0.278603i 0.895538 0.444986i \(-0.146791\pi\)
−0.986061 + 0.166383i \(0.946791\pi\)
\(572\) −4.85410 + 3.52671i −0.202960 + 0.147459i
\(573\) −4.97214 15.3027i −0.207714 0.639278i
\(574\) −3.70820 11.4127i −0.154777 0.476356i
\(575\) −8.20820 + 5.96361i −0.342306 + 0.248700i
\(576\) 0.145898 + 0.449028i 0.00607908 + 0.0187095i
\(577\) 12.0451 37.0710i 0.501443 1.54328i −0.305225 0.952280i \(-0.598732\pi\)
0.806669 0.591004i \(-0.201268\pi\)
\(578\) −8.47214 6.15537i −0.352394 0.256030i
\(579\) −0.736068 + 2.26538i −0.0305899 + 0.0941462i
\(580\) −29.5344 + 21.4580i −1.22635 + 0.890996i
\(581\) −9.92705 + 7.21242i −0.411843 + 0.299222i
\(582\) −2.64590 1.92236i −0.109676 0.0796843i
\(583\) 9.70820 0.402073
\(584\) 19.1459 0.792263
\(585\) 20.5623 + 14.9394i 0.850147 + 0.617668i
\(586\) 1.57295 + 4.84104i 0.0649779 + 0.199981i
\(587\) −11.1287 + 34.2505i −0.459330 + 1.41367i 0.406646 + 0.913586i \(0.366698\pi\)
−0.865976 + 0.500086i \(0.833302\pi\)
\(588\) −3.23607 −0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) −5.07295 + 15.6129i −0.208673 + 0.642230i
\(592\) −0.135255 0.416272i −0.00555894 0.0171087i
\(593\) −4.94427 3.59222i −0.203037 0.147515i 0.481621 0.876380i \(-0.340048\pi\)
−0.684658 + 0.728865i \(0.740048\pi\)
\(594\) 2.36068 0.0968599
\(595\) 1.85410 0.0760108
\(596\) −22.2984 16.2007i −0.913377 0.663607i
\(597\) −21.6074 + 15.6987i −0.884332 + 0.642505i
\(598\) −13.2812 + 9.64932i −0.543107 + 0.394590i
\(599\) 9.20820 28.3399i 0.376237 1.15794i −0.566403 0.824128i \(-0.691666\pi\)
0.942640 0.333810i \(-0.108334\pi\)
\(600\) −3.35410 2.43690i −0.136931 0.0994859i
\(601\) −6.79837 + 20.9232i −0.277311 + 0.853477i 0.711287 + 0.702902i \(0.248113\pi\)
−0.988599 + 0.150575i \(0.951887\pi\)
\(602\) −2.64590 8.14324i −0.107839 0.331894i
\(603\) −6.85410 + 4.97980i −0.279121 + 0.202793i
\(604\) −9.75329 30.0175i −0.396856 1.22140i
\(605\) 8.42705 + 25.9358i 0.342608 + 1.05444i
\(606\) 2.38197 1.73060i 0.0967608 0.0703008i
\(607\) −7.85410 24.1724i −0.318788 0.981129i −0.974167 0.225829i \(-0.927491\pi\)
0.655379 0.755300i \(-0.272509\pi\)
\(608\) −8.68034 + 26.7153i −0.352034 + 1.08345i
\(609\) −20.9164 15.1967i −0.847576 0.615800i
\(610\) 3.47214 10.6861i 0.140583 0.432669i
\(611\) −13.2812 + 9.64932i −0.537298 + 0.390370i
\(612\) 0.618034 0.449028i 0.0249825 0.0181509i
\(613\) 20.2705 + 14.7274i 0.818718 + 0.594834i 0.916345 0.400390i \(-0.131125\pi\)
−0.0976269 + 0.995223i \(0.531125\pi\)
\(614\) −3.76393 −0.151900
\(615\) −16.9443 −0.683259
\(616\) −4.14590 3.01217i −0.167043 0.121364i
\(617\) −4.39919 13.5393i −0.177105 0.545072i 0.822619 0.568593i \(-0.192512\pi\)
−0.999723 + 0.0235215i \(0.992512\pi\)
\(618\) 0.0278640 0.0857567i 0.00112086 0.00344964i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −3.14590 + 9.68208i −0.126139 + 0.388216i
\(623\) 5.91641 + 18.2088i 0.237036 + 0.729521i
\(624\) 7.28115 + 5.29007i 0.291479 + 0.211772i
\(625\) −30.8328 −1.23331
\(626\) 0.763932 0.0305329
\(627\) −3.09017 2.24514i −0.123410 0.0896623i
\(628\) 12.7082 9.23305i 0.507113 0.368439i
\(629\) −0.0450850 + 0.0327561i −0.00179766 + 0.00130607i
\(630\) −3.00000 + 9.23305i −0.119523 + 0.367854i
\(631\) −7.06231 5.13107i −0.281146 0.204264i 0.438271 0.898843i \(-0.355591\pi\)
−0.719417 + 0.694578i \(0.755591\pi\)
\(632\) 0 0
\(633\) −2.47214 7.60845i −0.0982586 0.302409i
\(634\) 12.9443 9.40456i 0.514083 0.373503i
\(635\) 8.28115 + 25.4868i 0.328628 + 1.01141i
\(636\) −6.35410 19.5559i −0.251957 0.775442i
\(637\) 7.85410 5.70634i 0.311191 0.226093i
\(638\) −1.25735 3.86974i −0.0497791 0.153204i
\(639\) −0.0557281 + 0.171513i −0.00220457 + 0.00678497i
\(640\) 24.1074 + 17.5150i 0.952928 + 0.692343i
\(641\) 12.6976 39.0791i 0.501523 1.54353i −0.305014 0.952348i \(-0.598661\pi\)
0.806538 0.591183i \(-0.201339\pi\)
\(642\) 0.545085 0.396027i 0.0215128 0.0156300i
\(643\) 6.59017 4.78804i 0.259891 0.188822i −0.450208 0.892924i \(-0.648650\pi\)
0.710099 + 0.704102i \(0.248650\pi\)
\(644\) 21.4894 + 15.6129i 0.846799 + 0.615236i
\(645\) −12.0902 −0.476050
\(646\) 0.729490 0.0287014
\(647\) −24.1803 17.5680i −0.950627 0.690671i 0.000327889 1.00000i \(-0.499896\pi\)
−0.950955 + 0.309329i \(0.899896\pi\)
\(648\) 0.690983 + 2.12663i 0.0271444 + 0.0835418i
\(649\) 2.23607 6.88191i 0.0877733 0.270139i
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) 12.2533 37.7117i 0.479508 1.47577i −0.360272 0.932847i \(-0.617316\pi\)
0.839780 0.542927i \(-0.182684\pi\)
\(654\) 1.60739 + 4.94704i 0.0628540 + 0.193445i
\(655\) 0.190983 + 0.138757i 0.00746232 + 0.00542170i
\(656\) 12.0000 0.468521
\(657\) −17.1246 −0.668095
\(658\) −5.07295 3.68571i −0.197764 0.143684i
\(659\) −18.3541 + 13.3350i −0.714974 + 0.519459i −0.884775 0.466019i \(-0.845688\pi\)
0.169800 + 0.985478i \(0.445688\pi\)
\(660\) −2.61803 + 1.90211i −0.101907 + 0.0740396i
\(661\) −5.13525 + 15.8047i −0.199738 + 0.614731i 0.800150 + 0.599800i \(0.204753\pi\)
−0.999889 + 0.0149316i \(0.995247\pi\)
\(662\) −5.63525 4.09425i −0.219020 0.159128i
\(663\) 0.354102 1.08981i 0.0137522 0.0423249i
\(664\) 2.82624 + 8.69827i 0.109679 + 0.337558i
\(665\) 31.7705 23.0826i 1.23201 0.895106i
\(666\) −0.0901699 0.277515i −0.00349401 0.0107535i
\(667\) 14.5729 + 44.8509i 0.564267 + 1.73663i
\(668\) 12.0902 8.78402i 0.467783 0.339864i
\(669\) −0.218847 0.673542i −0.00846112 0.0260406i
\(670\) −2.11803 + 6.51864i −0.0818268 + 0.251837i
\(671\) −4.29180 3.11817i −0.165683 0.120376i
\(672\) −5.20820 + 16.0292i −0.200911 + 0.618340i
\(673\) −3.57295 + 2.59590i −0.137727 + 0.100065i −0.654516 0.756049i \(-0.727127\pi\)
0.516788 + 0.856113i \(0.327127\pi\)
\(674\) −9.48936 + 6.89442i −0.365516 + 0.265563i
\(675\) 7.50000 + 5.44907i 0.288675 + 0.209735i
\(676\) −17.0902 −0.657314
\(677\) −28.6525 −1.10120 −0.550602 0.834768i \(-0.685602\pi\)
−0.550602 + 0.834768i \(0.685602\pi\)
\(678\) −0.927051 0.673542i −0.0356032 0.0258672i
\(679\) −4.90576 15.0984i −0.188266 0.579423i
\(680\) 0.427051 1.31433i 0.0163767 0.0504022i
\(681\) −20.7426 −0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) 5.00000 15.3884i 0.191180 0.588391i
\(685\) −5.23607 16.1150i −0.200060 0.615721i
\(686\) −7.50000 5.44907i −0.286351 0.208046i
\(687\) 7.23607 0.276073
\(688\) 8.56231 0.326435
\(689\) 49.9058 + 36.2587i 1.90126 + 1.38134i
\(690\) −7.16312 + 5.20431i −0.272695 + 0.198125i
\(691\) −3.10081 + 2.25287i −0.117960 + 0.0857033i −0.645201 0.764013i \(-0.723227\pi\)
0.527241 + 0.849716i \(0.323227\pi\)
\(692\) −0.454915 + 1.40008i −0.0172933 + 0.0532232i
\(693\) 3.70820 + 2.69417i 0.140863 + 0.102343i
\(694\) 1.55166 4.77553i 0.0589003 0.181277i
\(695\) 4.73607 + 14.5761i 0.179649 + 0.552904i
\(696\) −15.5902 + 11.3269i −0.590944 + 0.429346i
\(697\) −0.472136 1.45309i −0.0178834 0.0550395i
\(698\) 3.19098 + 9.82084i 0.120780 + 0.371724i
\(699\) −15.2082 + 11.0494i −0.575227 + 0.417927i
\(700\) −2.78115 8.55951i −0.105118 0.323519i
\(701\) −9.28115 + 28.5645i −0.350544 + 1.07886i 0.608004 + 0.793934i \(0.291970\pi\)
−0.958548 + 0.284930i \(0.908030\pi\)
\(702\) 12.1353 + 8.81678i 0.458016 + 0.332768i
\(703\) −0.364745 + 1.12257i −0.0137566 + 0.0423385i
\(704\) 0.145898 0.106001i 0.00549874 0.00399507i
\(705\) −7.16312 + 5.20431i −0.269779 + 0.196006i
\(706\) 16.1910 + 11.7634i 0.609356 + 0.442723i
\(707\) 14.2918 0.537498
\(708\) −15.3262 −0.575995
\(709\) 3.35410 + 2.43690i 0.125966 + 0.0915196i 0.648984 0.760802i \(-0.275194\pi\)
−0.523018 + 0.852321i \(0.675194\pi\)
\(710\) 0.0450850 + 0.138757i 0.00169201 + 0.00520747i
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) 3.00000 9.23305i 0.112194 0.345297i
\(716\) 9.89919 + 30.4666i 0.369950 + 1.13859i
\(717\) −10.8541 7.88597i −0.405354 0.294507i
\(718\) 15.6525 0.584145
\(719\) 41.3820 1.54329 0.771643 0.636055i \(-0.219435\pi\)
0.771643 + 0.636055i \(0.219435\pi\)
\(720\) −7.85410 5.70634i −0.292705 0.212663i
\(721\) 0.354102 0.257270i 0.0131874 0.00958124i
\(722\) 3.00000 2.17963i 0.111648 0.0811173i
\(723\) 2.63525 8.11048i 0.0980062 0.301632i
\(724\) −22.2533 16.1680i −0.827037 0.600878i
\(725\) 4.93769 15.1967i 0.183381 0.564390i
\(726\) 1.98936 + 6.12261i 0.0738320 + 0.227231i
\(727\) 19.2812 14.0086i 0.715098 0.519549i −0.169716 0.985493i \(-0.554285\pi\)
0.884814 + 0.465944i \(0.154285\pi\)
\(728\) −10.0623 30.9686i −0.372934 1.14777i
\(729\) 4.01722 + 12.3637i 0.148786 + 0.457916i
\(730\) −11.2082 + 8.14324i −0.414834 + 0.301395i
\(731\) −0.336881 1.03681i −0.0124600 0.0383479i
\(732\) −3.47214 + 10.6861i −0.128334 + 0.394971i
\(733\) −22.6074 16.4252i −0.835023 0.606680i 0.0859529 0.996299i \(-0.472607\pi\)
−0.920976 + 0.389619i \(0.872607\pi\)
\(734\) −6.92705 + 21.3193i −0.255682 + 0.786909i
\(735\) 4.23607 3.07768i 0.156250 0.113522i
\(736\) 24.8713 18.0701i 0.916769 0.666072i
\(737\) 2.61803 + 1.90211i 0.0964365 + 0.0700652i
\(738\) 8.00000 0.294484
\(739\) −21.7082 −0.798549 −0.399275 0.916831i \(-0.630738\pi\)
−0.399275 + 0.916831i \(0.630738\pi\)
\(740\) 0.809017 + 0.587785i 0.0297401 + 0.0216074i
\(741\) −7.50000 23.0826i −0.275519 0.847961i
\(742\) −7.28115 + 22.4091i −0.267300 + 0.822663i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0.0663712 0.204270i 0.00243002 0.00747884i
\(747\) −2.52786 7.77997i −0.0924897 0.284654i
\(748\) −0.236068 0.171513i −0.00863150 0.00627115i
\(749\) 3.27051 0.119502
\(750\) −5.09017 −0.185867
\(751\) 32.2254 + 23.4131i 1.17592 + 0.854358i 0.991706 0.128528i \(-0.0410252\pi\)
0.184217 + 0.982886i \(0.441025\pi\)
\(752\) 5.07295 3.68571i 0.184991 0.134404i
\(753\) 0.763932 0.555029i 0.0278392 0.0202264i
\(754\) 7.98936 24.5887i 0.290955 0.895468i
\(755\) 41.3156 + 30.0175i 1.50363 + 1.09245i
\(756\) 7.50000 23.0826i 0.272772 0.839507i
\(757\) −13.3262 41.0139i −0.484350 1.49068i −0.832920 0.553394i \(-0.813332\pi\)
0.348569 0.937283i \(-0.386668\pi\)
\(758\) −9.20820 + 6.69015i −0.334457 + 0.242997i
\(759\) 1.29180 + 3.97574i 0.0468892 + 0.144310i
\(760\) −9.04508 27.8379i −0.328100 1.00979i
\(761\) 2.83688 2.06111i 0.102837 0.0747154i −0.535178 0.844739i \(-0.679756\pi\)
0.638015 + 0.770024i \(0.279756\pi\)
\(762\) 1.95492 + 6.01661i 0.0708191 + 0.217959i
\(763\) −7.80244 + 24.0134i −0.282467 + 0.869345i
\(764\) −21.0623 15.3027i −0.762007 0.553631i
\(765\) −0.381966 + 1.17557i −0.0138100 + 0.0425028i
\(766\) 8.42705 6.12261i 0.304482 0.221219i
\(767\) 37.1976 27.0256i 1.34313 0.975838i
\(768\) 5.30902 + 3.85723i 0.191573 + 0.139186i
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) 3.70820 0.133634
\(771\) −1.14590 0.832544i −0.0412685 0.0299833i
\(772\) 1.19098 + 3.66547i 0.0428644 + 0.131923i
\(773\) 5.89919 18.1558i 0.212179 0.653020i −0.787163 0.616745i \(-0.788451\pi\)
0.999342 0.0362746i \(-0.0115491\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.218847 + 0.673542i −0.00785109 + 0.0241632i
\(778\) −5.55166 17.0863i −0.199037 0.612572i
\(779\) −26.1803 19.0211i −0.938008 0.681503i
\(780\) −20.5623 −0.736249
\(781\) 0.0688837 0.00246485
\(782\) −0.645898 0.469272i −0.0230973 0.0167811i
\(783\) 34.8607 25.3278i 1.24582 0.905141i
\(784\) −3.00000 + 2.17963i −0.107143 + 0.0778438i
\(785\) −7.85410 + 24.1724i −0.280325 + 0.862751i
\(786\) 0.0450850 + 0.0327561i 0.00160813 + 0.00116837i
\(787\) −9.66970 + 29.7603i −0.344687 + 1.06084i 0.617063 + 0.786913i \(0.288322\pi\)
−0.961751 + 0.273926i \(0.911678\pi\)
\(788\) 8.20820 + 25.2623i 0.292405 + 0.899931i
\(789\) −8.73607 + 6.34712i −0.311012 + 0.225964i
\(790\) 0 0
\(791\) −1.71885 5.29007i −0.0611152 0.188093i
\(792\) 2.76393 2.00811i 0.0982120 0.0713552i
\(793\) −10.4164 32.0584i −0.369897 1.13843i
\(794\) −3.11146 + 9.57608i −0.110421 + 0.339842i
\(795\) 26.9164 + 19.5559i 0.954627 + 0.693577i
\(796\) −13.3541 + 41.0997i −0.473324 + 1.45674i
\(797\) 7.32624 5.32282i 0.259509 0.188544i −0.450422 0.892816i \(-0.648726\pi\)
0.709930 + 0.704272i \(0.248726\pi\)
\(798\) 7.50000 5.44907i 0.265497 0.192895i
\(799\) −0.645898 0.469272i −0.0228502 0.0166017i
\(800\) −10.4164 −0.368276
\(801\) −12.7639 −0.450991
\(802\) 14.9164 + 10.8374i 0.526717 + 0.382682i
\(803\) 2.02129 + 6.22088i 0.0713296 + 0.219530i
\(804\) 2.11803 6.51864i 0.0746973 0.229895i
\(805\) −42.9787 −1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) 3.29180 10.1311i 0.115805 0.356411i
\(809\) −16.9336 52.1164i −0.595355 1.83231i −0.552953 0.833213i \(-0.686499\pi\)
−0.0424020 0.999101i \(-0.513501\pi\)
\(810\) −1.30902 0.951057i −0.0459942 0.0334167i
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) −41.8328 −1.46804
\(813\) 7.73607 + 5.62058i 0.271316 + 0.197122i
\(814\) −0.0901699 + 0.0655123i −0.00316045 + 0.00229620i
\(815\) −26.9164 + 19.5559i −0.942841 + 0.685014i
\(816\) −0.135255 + 0.416272i −0.00473487 + 0.0145724i
\(817\) −18.6803 13.5721i −0.653542 0.474826i
\(818\) −1.18034 + 3.63271i −0.0412696 + 0.127015i
\(819\) 9.00000 + 27.6992i 0.314485 + 0.967887i
\(820\) −22.1803 + 16.1150i −0.774571 + 0.562759i
\(821\) 10.0344 + 30.8828i 0.350204 + 1.07782i 0.958738 + 0.284290i \(0.0917580\pi\)
−0.608534 + 0.793528i \(0.708242\pi\)
\(822\) −1.23607 3.80423i −0.0431128 0.132688i
\(823\) −4.95492 + 3.59996i −0.172717 + 0.125487i −0.670786 0.741651i \(-0.734043\pi\)
0.498068 + 0.867138i \(0.334043\pi\)
\(824\) −0.100813 0.310271i −0.00351199 0.0108088i
\(825\) 0.437694 1.34708i 0.0152386 0.0468994i
\(826\) 14.2082 + 10.3229i 0.494367 + 0.359178i
\(827\) −0.826238 + 2.54290i −0.0287311 + 0.0884253i −0.964394 0.264470i \(-0.914803\pi\)
0.935663 + 0.352896i \(0.114803\pi\)
\(828\) −14.3262 + 10.4086i −0.497871 + 0.361725i
\(829\) −17.5623 + 12.7598i −0.609964 + 0.443165i −0.849402 0.527747i \(-0.823037\pi\)
0.239438 + 0.970912i \(0.423037\pi\)
\(830\) −5.35410 3.88998i −0.185844 0.135023i
\(831\) −13.3262 −0.462282
\(832\) 1.14590 0.0397269
\(833\) 0.381966 + 0.277515i 0.0132343 + 0.00961531i
\(834\) 1.11803 + 3.44095i 0.0387144 + 0.119151i
\(835\) −7.47214 + 22.9969i −0.258584 + 0.795839i
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) 3.45492 10.6331i 0.119277 0.367097i −0.873538 0.486756i \(-0.838180\pi\)
0.992815 + 0.119659i \(0.0381802\pi\)
\(840\) −5.42705 16.7027i −0.187251 0.576299i
\(841\) −36.6246 26.6093i −1.26292 0.917563i
\(842\) −9.12461 −0.314455
\(843\) 19.0344 0.655581
\(844\) −10.4721 7.60845i −0.360466 0.261894i
\(845\) 22.3713 16.2537i 0.769597 0.559145i
\(846\) 3.38197 2.45714i 0.116274 0.0844783i
\(847\) −9.65654 + 29.7198i −0.331803 + 1.02118i
\(848\) −19.0623 13.8496i −0.654602 0.475596i
\(849\) 2.02786 6.24112i 0.0695961 0.214195i
\(850\) 0.0835921 + 0.257270i 0.00286719 + 0.00882429i
\(851\) 1.04508 0.759299i 0.0358251 0.0260284i
\(852\) −0.0450850 0.138757i −0.00154459 0.00475375i
\(853\) 1.23607 + 3.80423i 0.0423222 + 0.130254i 0.969985 0.243164i \(-0.0781855\pi\)
−0.927663 + 0.373419i \(0.878185\pi\)
\(854\) 10.4164 7.56796i 0.356442 0.258970i
\(855\) 8.09017 + 24.8990i 0.276678 + 0.851527i
\(856\) 0.753289 2.31838i 0.0257469 0.0792408i
\(857\) 6.61803 + 4.80828i 0.226068 + 0.164248i 0.695054 0.718958i \(-0.255381\pi\)
−0.468986 + 0.883206i \(0.655381\pi\)
\(858\) 0.708204 2.17963i 0.0241777 0.0744113i
\(859\) 35.0238 25.4463i 1.19500 0.868216i 0.201213 0.979547i \(-0.435512\pi\)
0.993783 + 0.111332i \(0.0355116\pi\)
\(860\) −15.8262 + 11.4984i −0.539670 + 0.392093i
\(861\) −15.7082 11.4127i −0.535334 0.388943i
\(862\) −18.0689 −0.615429
\(863\) −2.49342 −0.0848771 −0.0424385 0.999099i \(-0.513513\pi\)
−0.0424385 + 0.999099i \(0.513513\pi\)
\(864\) −22.7254 16.5110i −0.773135 0.561715i
\(865\) −0.736068 2.26538i −0.0250271 0.0770254i
\(866\) 0.111456 0.343027i 0.00378744 0.0116565i
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 4.30902 13.2618i 0.146089 0.449617i
\(871\) 6.35410 + 19.5559i 0.215301 + 0.662627i
\(872\) 15.2254 + 11.0619i 0.515598 + 0.374604i
\(873\) 10.5836 0.358200
\(874\) −16.9098 −0.571984
\(875\) −19.9894 14.5231i −0.675764 0.490971i
\(876\) 11.2082 8.14324i 0.378690 0.275134i
\(877\) −13.1803 + 9.57608i −0.445068 + 0.323361i −0.787646 0.616129i \(-0.788700\pi\)
0.342577 + 0.939490i \(0.388700\pi\)
\(878\) −7.98936 + 24.5887i −0.269628 + 0.829829i
\(879\) 6.66312 + 4.84104i 0.224741 + 0.163284i
\(880\) −1.14590 + 3.52671i −0.0386282 + 0.118885i
\(881\) 4.74671 + 14.6089i 0.159921 + 0.492185i 0.998626 0.0523999i \(-0.0166870\pi\)
−0.838705 + 0.544585i \(0.816687\pi\)
\(882\) −2.00000 + 1.45309i −0.0673435 + 0.0489279i
\(883\) 0.309017 + 0.951057i 0.0103992 + 0.0320056i 0.956121 0.292970i \(-0.0946438\pi\)
−0.945722 + 0.324976i \(0.894644\pi\)
\(884\) −0.572949 1.76336i −0.0192704 0.0593081i
\(885\) 20.0623 14.5761i 0.674387 0.489971i
\(886\) 7.85410 + 24.1724i 0.263864 + 0.812089i
\(887\) 12.0836 37.1895i 0.405727 1.24870i −0.514559 0.857455i \(-0.672044\pi\)
0.920286 0.391245i \(-0.127956\pi\)
\(888\) 0.427051 + 0.310271i 0.0143309 + 0.0104120i
\(889\) −9.48936 + 29.2052i −0.318263 + 0.979512i
\(890\) −8.35410 + 6.06961i −0.280030 + 0.203454i
\(891\) −0.618034 + 0.449028i −0.0207049 + 0.0150430i
\(892\) −0.927051 0.673542i −0.0310400 0.0225519i
\(893\) −16.9098 −0.565866
\(894\) 10.5279 0.352104
\(895\) −41.9336 30.4666i −1.40169 1.01838i
\(896\) 10.5517 + 32.4747i 0.352506 + 1.08490i
\(897\) −8.20820 + 25.2623i −0.274064 + 0.843482i
\(898\) 14.8754 0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −0.927051 + 2.85317i −0.0308845 + 0.0950529i
\(902\) −0.944272 2.90617i −0.0314408 0.0967649i
\(903\) −11.2082 8.14324i −0.372986 0.270990i
\(904\) −4.14590 −0.137891
\(905\) 44.5066 1.47945
\(906\) 9.75329 + 7.08618i 0.324031 + 0.235423i
\(907\) −42.8156 + 31.1074i −1.42167 + 1.03290i −0.430175 + 0.902745i \(0.641548\pi\)
−0.991493 + 0.130157i \(0.958452\pi\)
\(908\) −27.1525 + 19.7274i −0.901087 + 0.654678i
\(909\) −2.94427 + 9.06154i −0.0976553 + 0.300552i
\(910\) 19.0623 + 13.8496i 0.631909 + 0.459109i
\(911\) −2.52786 + 7.77997i −0.0837519 + 0.257762i −0.984159 0.177286i \(-0.943268\pi\)
0.900408 + 0.435047i \(0.143268\pi\)
\(912\) 2.86475 + 8.81678i 0.0948612 + 0.291953i
\(913\) −2.52786 + 1.83660i −0.0836601 + 0.0607826i
\(914\) −3.00658 9.25330i −0.0994488 0.306072i
\(915\) −5.61803 17.2905i −0.185726 0.571607i
\(916\) 9.47214 6.88191i 0.312968 0.227385i
\(917\) 0.0835921 + 0.257270i 0.00276046 + 0.00849581i
\(918\) −0.225425 + 0.693786i −0.00744013 + 0.0228984i
\(919\) −7.98936 5.80461i −0.263545 0.191476i 0.448164 0.893952i \(-0.352078\pi\)
−0.711708 + 0.702475i \(0.752078\pi\)
\(920\) −9.89919 + 30.4666i −0.326367 + 1.00445i
\(921\) −4.92705 + 3.57971i −0.162352 + 0.117956i
\(922\) −5.37132 + 3.90249i −0.176895 + 0.128522i
\(923\) 0.354102 + 0.257270i 0.0116554 + 0.00846815i
\(924\) −3.70820 −0.121991
\(925\) −0.437694 −0.0143913
\(926\) 15.5623 + 11.3067i 0.511409 + 0.371560i
\(927\) 0.0901699 + 0.277515i 0.00296157 + 0.00911477i
\(928\) −14.9615 + 46.0467i −0.491135 + 1.51156i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −9.39919 + 28.9277i −0.307881 + 0.947559i
\(933\) 5.09017 + 15.6659i 0.166645 + 0.512880i
\(934\) −16.3885 11.9070i −0.536250 0.389608i
\(935\) 0.472136 0.0154405
\(936\) 21.7082 0.709555
\(937\) −32.7533 23.7967i −1.07000 0.777403i −0.0940905 0.995564i \(-0.529994\pi\)
−0.975913 + 0.218161i \(0.929994\pi\)
\(938\) −6.35410 + 4.61653i −0.207469 + 0.150735i
\(939\) 1.00000 0.726543i 0.0326338 0.0237098i
\(940\) −4.42705 + 13.6251i −0.144394 + 0.444401i
\(941\) 23.1246 + 16.8010i 0.753841 + 0.547697i 0.897015 0.442000i \(-0.145731\pi\)
−0.143174 + 0.989698i \(0.545731\pi\)
\(942\) −1.85410 + 5.70634i −0.0604099 + 0.185923i
\(943\) 10.9443 + 33.6830i 0.356395 + 1.09687i
\(944\) −14.2082 + 10.3229i −0.462438 + 0.335981i
\(945\) 12.1353 + 37.3485i 0.394760 + 1.21495i
\(946\) −0.673762 2.07363i −0.0219059 0.0674194i
\(947\) 17.8541 12.9718i 0.580180 0.421526i −0.258609 0.965982i \(-0.583264\pi\)
0.838789 + 0.544456i \(0.183264\pi\)
\(948\) 0 0
\(949\) −12.8435 + 39.5281i −0.416916 + 1.28314i
\(950\) 4.63525 + 3.36771i 0.150388 + 0.109263i
\(951\) 8.00000 24.6215i 0.259418 0.798406i
\(952\) 1.28115 0.930812i 0.0415224 0.0301678i
\(953\) 34.1525 24.8132i 1.10631 0.803779i 0.124229 0.992254i \(-0.460354\pi\)
0.982078 + 0.188474i \(0.0603542\pi\)
\(954\) −12.7082 9.23305i −0.411443 0.298931i
\(955\) 42.1246 1.36312
\(956\) −21.7082 −0.702093
\(957\) −5.32624 3.86974i −0.172173 0.125091i
\(958\) 1.70820 + 5.25731i 0.0551896 + 0.169856i
\(959\) 6.00000 18.4661i 0.193750 0.596302i
\(960\) 0.618034 0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) −0.673762 + 2.07363i −0.0217117 + 0.0668217i
\(964\) −4.26393 13.1230i −0.137332 0.422664i
\(965\) −5.04508 3.66547i −0.162407 0.117996i
\(966\) −10.1459 −0.326439
\(967\) −43.6525 −1.40377 −0.701884 0.712291i \(-0.747658\pi\)
−0.701884 + 0.712291i \(0.747658\pi\)
\(968\) 18.8435 + 13.6906i 0.605652 + 0.440032i
\(969\) 0.954915 0.693786i 0.0306763 0.0222876i
\(970\) 6.92705 5.03280i 0.222414 0.161593i
\(971\) −6.35410 + 19.5559i −0.203913 + 0.627579i 0.795843 + 0.605502i \(0.207028\pi\)
−0.999756 + 0.0220767i \(0.992972\pi\)
\(972\) 20.9443 + 15.2169i 0.671788 + 0.488082i
\(973\) −5.42705 + 16.7027i −0.173983 + 0.535465i
\(974\) 4.37790 + 13.4738i 0.140277 + 0.431728i
\(975\) 7.28115 5.29007i 0.233184 0.169418i
\(976\) 3.97871 + 12.2452i 0.127356 + 0.391960i
\(977\) −1.87539 5.77185i −0.0599990 0.184658i 0.916565 0.399886i \(-0.130950\pi\)
−0.976564 + 0.215228i \(0.930950\pi\)
\(978\) −6.35410 + 4.61653i −0.203182 + 0.147620i
\(979\) 1.50658 + 4.63677i 0.0481504 + 0.148192i
\(980\) 2.61803 8.05748i 0.0836300 0.257387i
\(981\) −13.6180 9.89408i −0.434790 0.315894i
\(982\) −5.27051 + 16.2210i −0.168189 + 0.517632i
\(983\) 17.0172 12.3637i 0.542765 0.394342i −0.282346 0.959313i \(-0.591113\pi\)
0.825111 + 0.564971i \(0.191113\pi\)
\(984\) −11.7082 + 8.50651i −0.373244 + 0.271178i
\(985\) −34.7705 25.2623i −1.10788 0.804922i
\(986\) 1.25735 0.0400423
\(987\) −10.1459 −0.322947
\(988\) −31.7705 23.0826i −1.01075 0.734356i
\(989\) 7.80902 + 24.0337i 0.248312 + 0.764227i
\(990\) −0.763932 + 2.35114i −0.0242794 + 0.0747242i
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) −0.0516628 + 0.159002i −0.00163864 + 0.00504323i
\(995\) −21.6074 66.5007i −0.685000 2.10821i
\(996\) 5.35410 + 3.88998i 0.169651 + 0.123259i
\(997\) −27.2492 −0.862992 −0.431496 0.902115i \(-0.642014\pi\)
−0.431496 + 0.902115i \(0.642014\pi\)
\(998\) 2.56231 0.0811084
\(999\) −0.954915 0.693786i −0.0302122 0.0219504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.b.628.1 4
31.2 even 5 961.2.a.e.1.1 2
31.3 odd 30 961.2.g.f.816.1 8
31.4 even 5 inner 961.2.d.b.531.1 4
31.5 even 3 961.2.g.c.448.1 8
31.6 odd 6 961.2.g.b.846.1 8
31.7 even 15 961.2.g.c.547.1 8
31.8 even 5 961.2.d.e.388.1 4
31.9 even 15 961.2.g.g.338.1 8
31.10 even 15 961.2.c.d.521.1 4
31.11 odd 30 961.2.g.b.844.1 8
31.12 odd 30 961.2.c.f.439.1 4
31.13 odd 30 961.2.g.f.732.1 8
31.14 even 15 961.2.g.g.235.1 8
31.15 odd 10 961.2.d.f.374.1 4
31.16 even 5 961.2.d.e.374.1 4
31.17 odd 30 961.2.g.f.235.1 8
31.18 even 15 961.2.g.g.732.1 8
31.19 even 15 961.2.c.d.439.1 4
31.20 even 15 961.2.g.c.844.1 8
31.21 odd 30 961.2.c.f.521.1 4
31.22 odd 30 961.2.g.f.338.1 8
31.23 odd 10 961.2.d.f.388.1 4
31.24 odd 30 961.2.g.b.547.1 8
31.25 even 3 961.2.g.c.846.1 8
31.26 odd 6 961.2.g.b.448.1 8
31.27 odd 10 31.2.d.a.4.1 4
31.28 even 15 961.2.g.g.816.1 8
31.29 odd 10 961.2.a.d.1.1 2
31.30 odd 2 31.2.d.a.8.1 yes 4
93.2 odd 10 8649.2.a.f.1.2 2
93.29 even 10 8649.2.a.g.1.2 2
93.89 even 10 279.2.i.a.190.1 4
93.92 even 2 279.2.i.a.163.1 4
124.27 even 10 496.2.n.b.97.1 4
124.123 even 2 496.2.n.b.225.1 4
155.27 even 20 775.2.bf.a.624.2 8
155.58 even 20 775.2.bf.a.624.1 8
155.89 odd 10 775.2.k.c.376.1 4
155.92 even 4 775.2.bf.a.349.1 8
155.123 even 4 775.2.bf.a.349.2 8
155.154 odd 2 775.2.k.c.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.27 odd 10
31.2.d.a.8.1 yes 4 31.30 odd 2
279.2.i.a.163.1 4 93.92 even 2
279.2.i.a.190.1 4 93.89 even 10
496.2.n.b.97.1 4 124.27 even 10
496.2.n.b.225.1 4 124.123 even 2
775.2.k.c.101.1 4 155.154 odd 2
775.2.k.c.376.1 4 155.89 odd 10
775.2.bf.a.349.1 8 155.92 even 4
775.2.bf.a.349.2 8 155.123 even 4
775.2.bf.a.624.1 8 155.58 even 20
775.2.bf.a.624.2 8 155.27 even 20
961.2.a.d.1.1 2 31.29 odd 10
961.2.a.e.1.1 2 31.2 even 5
961.2.c.d.439.1 4 31.19 even 15
961.2.c.d.521.1 4 31.10 even 15
961.2.c.f.439.1 4 31.12 odd 30
961.2.c.f.521.1 4 31.21 odd 30
961.2.d.b.531.1 4 31.4 even 5 inner
961.2.d.b.628.1 4 1.1 even 1 trivial
961.2.d.e.374.1 4 31.16 even 5
961.2.d.e.388.1 4 31.8 even 5
961.2.d.f.374.1 4 31.15 odd 10
961.2.d.f.388.1 4 31.23 odd 10
961.2.g.b.448.1 8 31.26 odd 6
961.2.g.b.547.1 8 31.24 odd 30
961.2.g.b.844.1 8 31.11 odd 30
961.2.g.b.846.1 8 31.6 odd 6
961.2.g.c.448.1 8 31.5 even 3
961.2.g.c.547.1 8 31.7 even 15
961.2.g.c.844.1 8 31.20 even 15
961.2.g.c.846.1 8 31.25 even 3
961.2.g.f.235.1 8 31.17 odd 30
961.2.g.f.338.1 8 31.22 odd 30
961.2.g.f.732.1 8 31.13 odd 30
961.2.g.f.816.1 8 31.3 odd 30
961.2.g.g.235.1 8 31.14 even 15
961.2.g.g.338.1 8 31.9 even 15
961.2.g.g.732.1 8 31.18 even 15
961.2.g.g.816.1 8 31.28 even 15
8649.2.a.f.1.2 2 93.2 odd 10
8649.2.a.g.1.2 2 93.29 even 10