Properties

Label 961.2.c.i.439.7
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.7
Root \(1.14660i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.i.521.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07212 q^{2} +(-1.06970 + 1.85277i) q^{3} +2.29369 q^{4} +(-1.17396 - 2.03335i) q^{5} +(-2.21654 + 3.83916i) q^{6} +(1.83727 - 3.18225i) q^{7} +0.608557 q^{8} +(-0.788498 - 1.36572i) q^{9} +(-2.43258 - 4.21335i) q^{10} +(-2.14032 - 3.70714i) q^{11} +(-2.45355 + 4.24967i) q^{12} +(-1.04360 - 1.80757i) q^{13} +(3.80705 - 6.59400i) q^{14} +5.02310 q^{15} -3.32637 q^{16} +(1.06405 - 1.84298i) q^{17} +(-1.63386 - 2.82993i) q^{18} +(0.310008 - 0.536949i) q^{19} +(-2.69269 - 4.66387i) q^{20} +(3.93064 + 6.80807i) q^{21} +(-4.43500 - 7.68165i) q^{22} +3.35388 q^{23} +(-0.650970 + 1.12751i) q^{24} +(-0.256344 + 0.444001i) q^{25} +(-2.16247 - 3.74550i) q^{26} -3.04436 q^{27} +(4.21412 - 7.29908i) q^{28} +1.37742 q^{29} +10.4085 q^{30} -8.10976 q^{32} +9.15797 q^{33} +(2.20483 - 3.81888i) q^{34} -8.62750 q^{35} +(-1.80857 - 3.13253i) q^{36} +(0.137239 - 0.237704i) q^{37} +(0.642374 - 1.11262i) q^{38} +4.46534 q^{39} +(-0.714418 - 1.23741i) q^{40} +(2.13896 + 3.70478i) q^{41} +(8.14477 + 14.1071i) q^{42} +(0.134846 - 0.233560i) q^{43} +(-4.90923 - 8.50303i) q^{44} +(-1.85132 + 3.20659i) q^{45} +6.94964 q^{46} +5.37916 q^{47} +(3.55821 - 6.16299i) q^{48} +(-3.25113 - 5.63112i) q^{49} +(-0.531176 + 0.920024i) q^{50} +(2.27641 + 3.94286i) q^{51} +(-2.39369 - 4.14600i) q^{52} +(4.75434 + 8.23476i) q^{53} -6.30829 q^{54} +(-5.02528 + 8.70405i) q^{55} +(1.11808 - 1.93658i) q^{56} +(0.663228 + 1.14874i) q^{57} +2.85417 q^{58} +(2.91372 - 5.04671i) q^{59} +11.5214 q^{60} -2.22719 q^{61} -5.79474 q^{63} -10.1517 q^{64} +(-2.45028 + 4.24401i) q^{65} +18.9764 q^{66} +(6.80719 + 11.7904i) q^{67} +(2.44059 - 4.22722i) q^{68} +(-3.58763 + 6.21395i) q^{69} -17.8772 q^{70} +(0.667962 + 1.15694i) q^{71} +(-0.479846 - 0.831117i) q^{72} +(-7.08301 - 12.2681i) q^{73} +(0.284375 - 0.492552i) q^{74} +(-0.548420 - 0.949892i) q^{75} +(0.711061 - 1.23159i) q^{76} -15.7294 q^{77} +9.25272 q^{78} +(4.33831 - 7.51417i) q^{79} +(3.90501 + 6.76368i) q^{80} +(5.62204 - 9.73765i) q^{81} +(4.43218 + 7.67676i) q^{82} +(-2.59274 - 4.49076i) q^{83} +(9.01566 + 15.6156i) q^{84} -4.99657 q^{85} +(0.279418 - 0.483966i) q^{86} +(-1.47342 + 2.55203i) q^{87} +(-1.30251 - 2.25601i) q^{88} -5.01258 q^{89} +(-3.83617 + 6.64444i) q^{90} -7.66950 q^{91} +7.69274 q^{92} +11.1463 q^{94} -1.45574 q^{95} +(8.67498 - 15.0255i) q^{96} +6.71398 q^{97} +(-6.73673 - 11.6684i) q^{98} +(-3.37528 + 5.84615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07212 1.46521 0.732606 0.680653i \(-0.238304\pi\)
0.732606 + 0.680653i \(0.238304\pi\)
\(3\) −1.06970 + 1.85277i −0.617589 + 1.06970i 0.372335 + 0.928098i \(0.378557\pi\)
−0.989924 + 0.141597i \(0.954776\pi\)
\(4\) 2.29369 1.14684
\(5\) −1.17396 2.03335i −0.525009 0.909342i −0.999576 0.0291228i \(-0.990729\pi\)
0.474567 0.880219i \(-0.342605\pi\)
\(6\) −2.21654 + 3.83916i −0.904898 + 1.56733i
\(7\) 1.83727 3.18225i 0.694423 1.20278i −0.275952 0.961171i \(-0.588993\pi\)
0.970375 0.241604i \(-0.0776736\pi\)
\(8\) 0.608557 0.215157
\(9\) −0.788498 1.36572i −0.262833 0.455239i
\(10\) −2.43258 4.21335i −0.769249 1.33238i
\(11\) −2.14032 3.70714i −0.645331 1.11775i −0.984225 0.176921i \(-0.943386\pi\)
0.338894 0.940825i \(-0.389947\pi\)
\(12\) −2.45355 + 4.24967i −0.708278 + 1.22677i
\(13\) −1.04360 1.80757i −0.289442 0.501329i 0.684234 0.729262i \(-0.260137\pi\)
−0.973677 + 0.227933i \(0.926803\pi\)
\(14\) 3.80705 6.59400i 1.01748 1.76232i
\(15\) 5.02310 1.29696
\(16\) −3.32637 −0.831593
\(17\) 1.06405 1.84298i 0.258069 0.446989i −0.707656 0.706558i \(-0.750247\pi\)
0.965725 + 0.259569i \(0.0835805\pi\)
\(18\) −1.63386 2.82993i −0.385105 0.667022i
\(19\) 0.310008 0.536949i 0.0711206 0.123185i −0.828272 0.560326i \(-0.810676\pi\)
0.899393 + 0.437142i \(0.144009\pi\)
\(20\) −2.69269 4.66387i −0.602103 1.04287i
\(21\) 3.93064 + 6.80807i 0.857736 + 1.48564i
\(22\) −4.43500 7.68165i −0.945546 1.63773i
\(23\) 3.35388 0.699331 0.349666 0.936875i \(-0.386295\pi\)
0.349666 + 0.936875i \(0.386295\pi\)
\(24\) −0.650970 + 1.12751i −0.132879 + 0.230153i
\(25\) −0.256344 + 0.444001i −0.0512688 + 0.0888002i
\(26\) −2.16247 3.74550i −0.424094 0.734553i
\(27\) −3.04436 −0.585888
\(28\) 4.21412 7.29908i 0.796395 1.37940i
\(29\) 1.37742 0.255780 0.127890 0.991788i \(-0.459180\pi\)
0.127890 + 0.991788i \(0.459180\pi\)
\(30\) 10.4085 1.90032
\(31\) 0 0
\(32\) −8.10976 −1.43362
\(33\) 9.15797 1.59420
\(34\) 2.20483 3.81888i 0.378126 0.654933i
\(35\) −8.62750 −1.45831
\(36\) −1.80857 3.13253i −0.301428 0.522089i
\(37\) 0.137239 0.237704i 0.0225619 0.0390783i −0.854524 0.519412i \(-0.826151\pi\)
0.877086 + 0.480334i \(0.159484\pi\)
\(38\) 0.642374 1.11262i 0.104207 0.180491i
\(39\) 4.46534 0.715026
\(40\) −0.714418 1.23741i −0.112959 0.195652i
\(41\) 2.13896 + 3.70478i 0.334049 + 0.578590i 0.983302 0.181983i \(-0.0582516\pi\)
−0.649253 + 0.760573i \(0.724918\pi\)
\(42\) 8.14477 + 14.1071i 1.25676 + 2.17678i
\(43\) 0.134846 0.233560i 0.0205639 0.0356176i −0.855560 0.517703i \(-0.826787\pi\)
0.876124 + 0.482085i \(0.160121\pi\)
\(44\) −4.90923 8.50303i −0.740094 1.28188i
\(45\) −1.85132 + 3.20659i −0.275979 + 0.478010i
\(46\) 6.94964 1.02467
\(47\) 5.37916 0.784631 0.392316 0.919831i \(-0.371674\pi\)
0.392316 + 0.919831i \(0.371674\pi\)
\(48\) 3.55821 6.16299i 0.513583 0.889552i
\(49\) −3.25113 5.63112i −0.464447 0.804445i
\(50\) −0.531176 + 0.920024i −0.0751197 + 0.130111i
\(51\) 2.27641 + 3.94286i 0.318761 + 0.552111i
\(52\) −2.39369 4.14600i −0.331945 0.574946i
\(53\) 4.75434 + 8.23476i 0.653059 + 1.13113i 0.982377 + 0.186912i \(0.0598480\pi\)
−0.329317 + 0.944219i \(0.606819\pi\)
\(54\) −6.30829 −0.858450
\(55\) −5.02528 + 8.70405i −0.677609 + 1.17365i
\(56\) 1.11808 1.93658i 0.149410 0.258786i
\(57\) 0.663228 + 1.14874i 0.0878467 + 0.152155i
\(58\) 2.85417 0.374771
\(59\) 2.91372 5.04671i 0.379334 0.657026i −0.611632 0.791143i \(-0.709487\pi\)
0.990965 + 0.134117i \(0.0428198\pi\)
\(60\) 11.5214 1.48741
\(61\) −2.22719 −0.285162 −0.142581 0.989783i \(-0.545540\pi\)
−0.142581 + 0.989783i \(0.545540\pi\)
\(62\) 0 0
\(63\) −5.79474 −0.730068
\(64\) −10.1517 −1.26896
\(65\) −2.45028 + 4.24401i −0.303920 + 0.526404i
\(66\) 18.9764 2.33584
\(67\) 6.80719 + 11.7904i 0.831631 + 1.44043i 0.896744 + 0.442550i \(0.145926\pi\)
−0.0651129 + 0.997878i \(0.520741\pi\)
\(68\) 2.44059 4.22722i 0.295965 0.512626i
\(69\) −3.58763 + 6.21395i −0.431899 + 0.748072i
\(70\) −17.8772 −2.13674
\(71\) 0.667962 + 1.15694i 0.0792725 + 0.137304i 0.902936 0.429774i \(-0.141407\pi\)
−0.823664 + 0.567079i \(0.808074\pi\)
\(72\) −0.479846 0.831117i −0.0565503 0.0979481i
\(73\) −7.08301 12.2681i −0.829004 1.43588i −0.898821 0.438316i \(-0.855575\pi\)
0.0698172 0.997560i \(-0.477758\pi\)
\(74\) 0.284375 0.492552i 0.0330579 0.0572580i
\(75\) −0.548420 0.949892i −0.0633261 0.109684i
\(76\) 0.711061 1.23159i 0.0815643 0.141273i
\(77\) −15.7294 −1.79253
\(78\) 9.25272 1.04766
\(79\) 4.33831 7.51417i 0.488098 0.845410i −0.511809 0.859100i \(-0.671024\pi\)
0.999906 + 0.0136894i \(0.00435762\pi\)
\(80\) 3.90501 + 6.76368i 0.436594 + 0.756203i
\(81\) 5.62204 9.73765i 0.624671 1.08196i
\(82\) 4.43218 + 7.67676i 0.489452 + 0.847756i
\(83\) −2.59274 4.49076i −0.284590 0.492925i 0.687920 0.725787i \(-0.258524\pi\)
−0.972510 + 0.232862i \(0.925191\pi\)
\(84\) 9.01566 + 15.6156i 0.983689 + 1.70380i
\(85\) −4.99657 −0.541954
\(86\) 0.279418 0.483966i 0.0301304 0.0521874i
\(87\) −1.47342 + 2.55203i −0.157967 + 0.273607i
\(88\) −1.30251 2.25601i −0.138848 0.240491i
\(89\) −5.01258 −0.531333 −0.265666 0.964065i \(-0.585592\pi\)
−0.265666 + 0.964065i \(0.585592\pi\)
\(90\) −3.83617 + 6.64444i −0.404367 + 0.700385i
\(91\) −7.66950 −0.803982
\(92\) 7.69274 0.802024
\(93\) 0 0
\(94\) 11.1463 1.14965
\(95\) −1.45574 −0.149356
\(96\) 8.67498 15.0255i 0.885386 1.53353i
\(97\) 6.71398 0.681702 0.340851 0.940117i \(-0.389285\pi\)
0.340851 + 0.940117i \(0.389285\pi\)
\(98\) −6.73673 11.6684i −0.680512 1.17868i
\(99\) −3.37528 + 5.84615i −0.339228 + 0.587560i
\(100\) −0.587973 + 1.01840i −0.0587973 + 0.101840i
\(101\) −18.0626 −1.79730 −0.898648 0.438671i \(-0.855450\pi\)
−0.898648 + 0.438671i \(0.855450\pi\)
\(102\) 4.71700 + 8.17008i 0.467053 + 0.808959i
\(103\) −1.95766 3.39077i −0.192894 0.334102i 0.753314 0.657661i \(-0.228454\pi\)
−0.946208 + 0.323559i \(0.895121\pi\)
\(104\) −0.635089 1.10001i −0.0622756 0.107865i
\(105\) 9.22880 15.9847i 0.900638 1.55995i
\(106\) 9.85157 + 17.0634i 0.956870 + 1.65735i
\(107\) −5.55781 + 9.62641i −0.537294 + 0.930620i 0.461755 + 0.887008i \(0.347220\pi\)
−0.999049 + 0.0436127i \(0.986113\pi\)
\(108\) −6.98282 −0.671922
\(109\) 18.0934 1.73303 0.866516 0.499150i \(-0.166354\pi\)
0.866516 + 0.499150i \(0.166354\pi\)
\(110\) −10.4130 + 18.0358i −0.992840 + 1.71965i
\(111\) 0.293607 + 0.508542i 0.0278679 + 0.0482687i
\(112\) −6.11145 + 10.5853i −0.577477 + 1.00022i
\(113\) −8.76938 15.1890i −0.824954 1.42886i −0.901955 0.431830i \(-0.857868\pi\)
0.0770012 0.997031i \(-0.475465\pi\)
\(114\) 1.37429 + 2.38034i 0.128714 + 0.222939i
\(115\) −3.93730 6.81961i −0.367155 0.635932i
\(116\) 3.15936 0.293339
\(117\) −1.64575 + 2.85053i −0.152150 + 0.263531i
\(118\) 6.03758 10.4574i 0.555804 0.962681i
\(119\) −3.90988 6.77211i −0.358418 0.620798i
\(120\) 3.05684 0.279050
\(121\) −3.66195 + 6.34268i −0.332904 + 0.576607i
\(122\) −4.61500 −0.417823
\(123\) −9.15213 −0.825220
\(124\) 0 0
\(125\) −10.5358 −0.942352
\(126\) −12.0074 −1.06970
\(127\) −7.09914 + 12.2961i −0.629947 + 1.09110i 0.357615 + 0.933869i \(0.383590\pi\)
−0.987562 + 0.157231i \(0.949743\pi\)
\(128\) −4.81596 −0.425675
\(129\) 0.288489 + 0.499677i 0.0254000 + 0.0439941i
\(130\) −5.07728 + 8.79410i −0.445307 + 0.771294i
\(131\) −3.59426 + 6.22543i −0.314032 + 0.543919i −0.979231 0.202747i \(-0.935013\pi\)
0.665200 + 0.746666i \(0.268346\pi\)
\(132\) 21.0055 1.82830
\(133\) −1.13914 1.97304i −0.0987756 0.171084i
\(134\) 14.1053 + 24.4312i 1.21852 + 2.11053i
\(135\) 3.57395 + 6.19026i 0.307596 + 0.532773i
\(136\) 0.647532 1.12156i 0.0555254 0.0961728i
\(137\) 3.78883 + 6.56244i 0.323701 + 0.560667i 0.981249 0.192746i \(-0.0617394\pi\)
−0.657547 + 0.753413i \(0.728406\pi\)
\(138\) −7.43400 + 12.8761i −0.632824 + 1.09608i
\(139\) 20.0982 1.70471 0.852354 0.522965i \(-0.175174\pi\)
0.852354 + 0.522965i \(0.175174\pi\)
\(140\) −19.7888 −1.67246
\(141\) −5.75407 + 9.96634i −0.484580 + 0.839317i
\(142\) 1.38410 + 2.39733i 0.116151 + 0.201179i
\(143\) −4.46728 + 7.73755i −0.373572 + 0.647046i
\(144\) 2.62284 + 4.54289i 0.218570 + 0.378574i
\(145\) −1.61703 2.80077i −0.134287 0.232591i
\(146\) −14.6769 25.4211i −1.21467 2.10386i
\(147\) 13.9109 1.14735
\(148\) 0.314782 0.545219i 0.0258749 0.0448167i
\(149\) −6.15749 + 10.6651i −0.504441 + 0.873717i 0.495546 + 0.868582i \(0.334968\pi\)
−0.999987 + 0.00513554i \(0.998365\pi\)
\(150\) −1.13639 1.96829i −0.0927862 0.160710i
\(151\) 19.8770 1.61756 0.808782 0.588108i \(-0.200127\pi\)
0.808782 + 0.588108i \(0.200127\pi\)
\(152\) 0.188657 0.326764i 0.0153021 0.0265040i
\(153\) −3.35599 −0.271316
\(154\) −32.5932 −2.62644
\(155\) 0 0
\(156\) 10.2421 0.820023
\(157\) −5.80462 −0.463259 −0.231629 0.972804i \(-0.574406\pi\)
−0.231629 + 0.972804i \(0.574406\pi\)
\(158\) 8.98950 15.5703i 0.715166 1.23870i
\(159\) −20.3428 −1.61329
\(160\) 9.52050 + 16.4900i 0.752662 + 1.30365i
\(161\) 6.16198 10.6729i 0.485632 0.841139i
\(162\) 11.6495 20.1776i 0.915274 1.58530i
\(163\) 17.7833 1.39290 0.696449 0.717607i \(-0.254762\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(164\) 4.90610 + 8.49761i 0.383102 + 0.663552i
\(165\) −10.7510 18.6214i −0.836968 1.44967i
\(166\) −5.37247 9.30539i −0.416985 0.722239i
\(167\) 1.09102 1.88969i 0.0844253 0.146229i −0.820721 0.571329i \(-0.806428\pi\)
0.905146 + 0.425100i \(0.139761\pi\)
\(168\) 2.39202 + 4.14310i 0.184548 + 0.319647i
\(169\) 4.32180 7.48558i 0.332446 0.575814i
\(170\) −10.3535 −0.794077
\(171\) −0.977762 −0.0747713
\(172\) 0.309295 0.535715i 0.0235835 0.0408479i
\(173\) 2.75396 + 4.77000i 0.209380 + 0.362657i 0.951519 0.307589i \(-0.0995221\pi\)
−0.742139 + 0.670246i \(0.766189\pi\)
\(174\) −3.05310 + 5.28812i −0.231455 + 0.400891i
\(175\) 0.941947 + 1.63150i 0.0712045 + 0.123330i
\(176\) 7.11950 + 12.3313i 0.536653 + 0.929510i
\(177\) 6.23359 + 10.7969i 0.468545 + 0.811544i
\(178\) −10.3867 −0.778514
\(179\) 6.06695 10.5083i 0.453465 0.785424i −0.545134 0.838349i \(-0.683521\pi\)
0.998598 + 0.0529251i \(0.0168545\pi\)
\(180\) −4.24636 + 7.35491i −0.316505 + 0.548202i
\(181\) 4.82344 + 8.35444i 0.358523 + 0.620980i 0.987714 0.156270i \(-0.0499471\pi\)
−0.629191 + 0.777251i \(0.716614\pi\)
\(182\) −15.8921 −1.17800
\(183\) 2.38241 4.12646i 0.176113 0.305037i
\(184\) 2.04102 0.150466
\(185\) −0.644448 −0.0473808
\(186\) 0 0
\(187\) −9.10960 −0.666160
\(188\) 12.3381 0.899850
\(189\) −5.59332 + 9.68791i −0.406854 + 0.704692i
\(190\) −3.01647 −0.218838
\(191\) −5.23270 9.06331i −0.378625 0.655798i 0.612237 0.790674i \(-0.290270\pi\)
−0.990862 + 0.134876i \(0.956936\pi\)
\(192\) 10.8592 18.8087i 0.783695 1.35740i
\(193\) 0.895325 1.55075i 0.0644469 0.111625i −0.832002 0.554773i \(-0.812805\pi\)
0.896449 + 0.443148i \(0.146138\pi\)
\(194\) 13.9122 0.998837
\(195\) −5.24211 9.07959i −0.375395 0.650203i
\(196\) −7.45707 12.9160i −0.532648 0.922573i
\(197\) 3.19848 + 5.53993i 0.227882 + 0.394704i 0.957180 0.289493i \(-0.0934866\pi\)
−0.729298 + 0.684196i \(0.760153\pi\)
\(198\) −6.99398 + 12.1139i −0.497041 + 0.860900i
\(199\) 0.463578 + 0.802941i 0.0328622 + 0.0569190i 0.881989 0.471270i \(-0.156204\pi\)
−0.849127 + 0.528189i \(0.822871\pi\)
\(200\) −0.156000 + 0.270200i −0.0110309 + 0.0191060i
\(201\) −29.1265 −2.05443
\(202\) −37.4279 −2.63342
\(203\) 2.53069 4.38328i 0.177619 0.307646i
\(204\) 5.22137 + 9.04369i 0.365569 + 0.633185i
\(205\) 5.02208 8.69850i 0.350757 0.607530i
\(206\) −4.05651 7.02608i −0.282630 0.489530i
\(207\) −2.64452 4.58045i −0.183807 0.318363i
\(208\) 3.47140 + 6.01264i 0.240698 + 0.416902i
\(209\) −2.65406 −0.183585
\(210\) 19.1232 33.1223i 1.31963 2.28566i
\(211\) 3.09072 5.35328i 0.212774 0.368535i −0.739808 0.672818i \(-0.765084\pi\)
0.952582 + 0.304283i \(0.0984169\pi\)
\(212\) 10.9050 + 18.8880i 0.748957 + 1.29723i
\(213\) −2.85806 −0.195831
\(214\) −11.5165 + 19.9471i −0.787249 + 1.36356i
\(215\) −0.633214 −0.0431848
\(216\) −1.85267 −0.126058
\(217\) 0 0
\(218\) 37.4917 2.53926
\(219\) 30.3067 2.04793
\(220\) −11.5264 + 19.9644i −0.777112 + 1.34600i
\(221\) −4.44175 −0.298785
\(222\) 0.608389 + 1.05376i 0.0408324 + 0.0707238i
\(223\) 7.94891 13.7679i 0.532298 0.921968i −0.466991 0.884262i \(-0.654662\pi\)
0.999289 0.0377054i \(-0.0120048\pi\)
\(224\) −14.8998 + 25.8073i −0.995536 + 1.72432i
\(225\) 0.808507 0.0539005
\(226\) −18.1712 31.4735i −1.20873 2.09358i
\(227\) 2.32248 + 4.02265i 0.154148 + 0.266993i 0.932749 0.360527i \(-0.117403\pi\)
−0.778600 + 0.627520i \(0.784070\pi\)
\(228\) 1.52124 + 2.63486i 0.100746 + 0.174498i
\(229\) −9.70918 + 16.8168i −0.641601 + 1.11129i 0.343474 + 0.939162i \(0.388396\pi\)
−0.985075 + 0.172123i \(0.944937\pi\)
\(230\) −8.15857 14.1311i −0.537960 0.931774i
\(231\) 16.8257 29.1429i 1.10705 1.91746i
\(232\) 0.838236 0.0550329
\(233\) −14.2485 −0.933449 −0.466724 0.884403i \(-0.654566\pi\)
−0.466724 + 0.884403i \(0.654566\pi\)
\(234\) −3.41020 + 5.90664i −0.222932 + 0.386129i
\(235\) −6.31490 10.9377i −0.411939 0.713499i
\(236\) 6.68316 11.5756i 0.435037 0.753506i
\(237\) 9.28134 + 16.0757i 0.602888 + 1.04423i
\(238\) −8.10175 14.0326i −0.525158 0.909601i
\(239\) −3.40076 5.89029i −0.219977 0.381011i 0.734824 0.678258i \(-0.237265\pi\)
−0.954801 + 0.297247i \(0.903932\pi\)
\(240\) −16.7087 −1.07854
\(241\) −5.75256 + 9.96373i −0.370555 + 0.641820i −0.989651 0.143495i \(-0.954166\pi\)
0.619096 + 0.785315i \(0.287499\pi\)
\(242\) −7.58800 + 13.1428i −0.487775 + 0.844851i
\(243\) 7.46119 + 12.9232i 0.478636 + 0.829021i
\(244\) −5.10847 −0.327037
\(245\) −7.63336 + 13.2214i −0.487677 + 0.844682i
\(246\) −18.9643 −1.20912
\(247\) −1.29410 −0.0823413
\(248\) 0 0
\(249\) 11.0938 0.703039
\(250\) −21.8315 −1.38074
\(251\) −3.64720 + 6.31714i −0.230209 + 0.398734i −0.957870 0.287203i \(-0.907274\pi\)
0.727660 + 0.685938i \(0.240608\pi\)
\(252\) −13.2913 −0.837274
\(253\) −7.17837 12.4333i −0.451300 0.781675i
\(254\) −14.7103 + 25.4790i −0.923005 + 1.59869i
\(255\) 5.34481 9.25748i 0.334705 0.579726i
\(256\) 10.3241 0.645254
\(257\) 12.3278 + 21.3525i 0.768990 + 1.33193i 0.938111 + 0.346334i \(0.112574\pi\)
−0.169121 + 0.985595i \(0.554093\pi\)
\(258\) 0.597784 + 1.03539i 0.0372164 + 0.0644607i
\(259\) −0.504289 0.873454i −0.0313350 0.0542738i
\(260\) −5.62018 + 9.73443i −0.348548 + 0.603704i
\(261\) −1.08609 1.88116i −0.0672273 0.116441i
\(262\) −7.44774 + 12.8999i −0.460123 + 0.796956i
\(263\) 26.2870 1.62093 0.810463 0.585790i \(-0.199215\pi\)
0.810463 + 0.585790i \(0.199215\pi\)
\(264\) 5.57314 0.343003
\(265\) 11.1628 19.3345i 0.685724 1.18771i
\(266\) −2.36043 4.08838i −0.144727 0.250675i
\(267\) 5.36194 9.28715i 0.328145 0.568364i
\(268\) 15.6136 + 27.0435i 0.953751 + 1.65195i
\(269\) −10.4399 18.0824i −0.636532 1.10251i −0.986188 0.165627i \(-0.947035\pi\)
0.349657 0.936878i \(-0.386298\pi\)
\(270\) 7.40565 + 12.8270i 0.450694 + 0.780624i
\(271\) 21.0108 1.27632 0.638159 0.769905i \(-0.279696\pi\)
0.638159 + 0.769905i \(0.279696\pi\)
\(272\) −3.53941 + 6.13044i −0.214608 + 0.371713i
\(273\) 8.20403 14.2098i 0.496530 0.860016i
\(274\) 7.85091 + 13.5982i 0.474291 + 0.821496i
\(275\) 2.19463 0.132341
\(276\) −8.22889 + 14.2529i −0.495321 + 0.857922i
\(277\) 4.75928 0.285958 0.142979 0.989726i \(-0.454332\pi\)
0.142979 + 0.989726i \(0.454332\pi\)
\(278\) 41.6459 2.49776
\(279\) 0 0
\(280\) −5.25032 −0.313767
\(281\) −6.65481 −0.396993 −0.198496 0.980102i \(-0.563606\pi\)
−0.198496 + 0.980102i \(0.563606\pi\)
\(282\) −11.9231 + 20.6515i −0.710012 + 1.22978i
\(283\) −7.24625 −0.430745 −0.215372 0.976532i \(-0.569096\pi\)
−0.215372 + 0.976532i \(0.569096\pi\)
\(284\) 1.53210 + 2.65367i 0.0909132 + 0.157466i
\(285\) 1.55720 2.69715i 0.0922406 0.159765i
\(286\) −9.25674 + 16.0331i −0.547362 + 0.948059i
\(287\) 15.7194 0.927885
\(288\) 6.39453 + 11.0756i 0.376801 + 0.652639i
\(289\) 6.23561 + 10.8004i 0.366801 + 0.635318i
\(290\) −3.35067 5.80354i −0.196758 0.340795i
\(291\) −7.18192 + 12.4395i −0.421012 + 0.729214i
\(292\) −16.2462 28.1393i −0.950738 1.64673i
\(293\) −6.75576 + 11.7013i −0.394676 + 0.683598i −0.993060 0.117611i \(-0.962476\pi\)
0.598384 + 0.801209i \(0.295810\pi\)
\(294\) 28.8250 1.68111
\(295\) −13.6823 −0.796615
\(296\) 0.0835174 0.144656i 0.00485435 0.00840798i
\(297\) 6.51591 + 11.2859i 0.378092 + 0.654874i
\(298\) −12.7591 + 22.0993i −0.739112 + 1.28018i
\(299\) −3.50010 6.06236i −0.202416 0.350595i
\(300\) −1.25791 2.17876i −0.0726252 0.125791i
\(301\) −0.495498 0.858227i −0.0285600 0.0494674i
\(302\) 41.1875 2.37007
\(303\) 19.3215 33.4658i 1.10999 1.92256i
\(304\) −1.03120 + 1.78609i −0.0591434 + 0.102439i
\(305\) 2.61462 + 4.52866i 0.149713 + 0.259310i
\(306\) −6.95402 −0.397535
\(307\) 11.3629 19.6811i 0.648516 1.12326i −0.334962 0.942232i \(-0.608723\pi\)
0.983477 0.181030i \(-0.0579433\pi\)
\(308\) −36.0783 −2.05575
\(309\) 8.37640 0.476517
\(310\) 0 0
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) 2.71741 0.153843
\(313\) 14.0485 24.3328i 0.794070 1.37537i −0.129359 0.991598i \(-0.541292\pi\)
0.923428 0.383771i \(-0.125375\pi\)
\(314\) −12.0279 −0.678772
\(315\) 6.80276 + 11.7827i 0.383292 + 0.663882i
\(316\) 9.95072 17.2352i 0.559772 0.969553i
\(317\) 7.90841 13.6978i 0.444181 0.769344i −0.553814 0.832640i \(-0.686828\pi\)
0.997995 + 0.0632968i \(0.0201615\pi\)
\(318\) −42.1528 −2.36381
\(319\) −2.94811 5.10628i −0.165063 0.285897i
\(320\) 11.9176 + 20.6419i 0.666214 + 1.15392i
\(321\) −11.8903 20.5947i −0.663654 1.14948i
\(322\) 12.7684 22.1155i 0.711553 1.23245i
\(323\) −0.659725 1.14268i −0.0367081 0.0635802i
\(324\) 12.8952 22.3351i 0.716400 1.24084i
\(325\) 1.07008 0.0593575
\(326\) 36.8492 2.04089
\(327\) −19.3544 + 33.5228i −1.07030 + 1.85382i
\(328\) 1.30168 + 2.25457i 0.0718730 + 0.124488i
\(329\) 9.88298 17.1178i 0.544866 0.943736i
\(330\) −22.2775 38.5857i −1.22633 2.12407i
\(331\) 6.47206 + 11.2099i 0.355737 + 0.616154i 0.987244 0.159216i \(-0.0508967\pi\)
−0.631507 + 0.775370i \(0.717563\pi\)
\(332\) −5.94693 10.3004i −0.326380 0.565308i
\(333\) −0.432849 −0.0237200
\(334\) 2.26072 3.91568i 0.123701 0.214256i
\(335\) 15.9827 27.6828i 0.873228 1.51247i
\(336\) −13.0748 22.6462i −0.713287 1.23545i
\(337\) 27.8663 1.51797 0.758987 0.651105i \(-0.225694\pi\)
0.758987 + 0.651105i \(0.225694\pi\)
\(338\) 8.95530 15.5110i 0.487104 0.843689i
\(339\) 37.5223 2.03793
\(340\) −11.4606 −0.621537
\(341\) 0 0
\(342\) −2.02604 −0.109556
\(343\) 1.82899 0.0987564
\(344\) 0.0820615 0.142135i 0.00442446 0.00766339i
\(345\) 16.8469 0.907004
\(346\) 5.70655 + 9.88403i 0.306786 + 0.531369i
\(347\) 2.66175 4.61029i 0.142890 0.247493i −0.785693 0.618616i \(-0.787694\pi\)
0.928584 + 0.371123i \(0.121027\pi\)
\(348\) −3.37956 + 5.85356i −0.181163 + 0.313784i
\(349\) −4.09791 −0.219356 −0.109678 0.993967i \(-0.534982\pi\)
−0.109678 + 0.993967i \(0.534982\pi\)
\(350\) 1.95183 + 3.38067i 0.104330 + 0.180704i
\(351\) 3.17710 + 5.50289i 0.169581 + 0.293723i
\(352\) 17.3575 + 30.0641i 0.925157 + 1.60242i
\(353\) 10.8947 18.8701i 0.579865 1.00436i −0.415629 0.909534i \(-0.636438\pi\)
0.995494 0.0948220i \(-0.0302282\pi\)
\(354\) 12.9167 + 22.3725i 0.686517 + 1.18908i
\(355\) 1.56832 2.71640i 0.0832376 0.144172i
\(356\) −11.4973 −0.609355
\(357\) 16.7295 0.885421
\(358\) 12.5714 21.7744i 0.664422 1.15081i
\(359\) 3.54072 + 6.13270i 0.186872 + 0.323671i 0.944206 0.329356i \(-0.106832\pi\)
−0.757334 + 0.653028i \(0.773498\pi\)
\(360\) −1.12663 + 1.95139i −0.0593789 + 0.102847i
\(361\) 9.30779 + 16.1216i 0.489884 + 0.848503i
\(362\) 9.99475 + 17.3114i 0.525312 + 0.909867i
\(363\) −7.83434 13.5695i −0.411196 0.712212i
\(364\) −17.5914 −0.922042
\(365\) −16.6303 + 28.8045i −0.870469 + 1.50770i
\(366\) 4.93665 8.55053i 0.258043 0.446943i
\(367\) −8.05884 13.9583i −0.420668 0.728619i 0.575337 0.817917i \(-0.304871\pi\)
−0.996005 + 0.0892980i \(0.971538\pi\)
\(368\) −11.1562 −0.581559
\(369\) 3.37313 5.84243i 0.175598 0.304145i
\(370\) −1.33537 −0.0694228
\(371\) 34.9401 1.81400
\(372\) 0 0
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) −18.8762 −0.976065
\(375\) 11.2701 19.5204i 0.581986 1.00803i
\(376\) 3.27352 0.168819
\(377\) −1.43747 2.48977i −0.0740335 0.128230i
\(378\) −11.5900 + 20.0745i −0.596127 + 1.03252i
\(379\) 6.90781 11.9647i 0.354830 0.614584i −0.632258 0.774758i \(-0.717872\pi\)
0.987089 + 0.160173i \(0.0512053\pi\)
\(380\) −3.33902 −0.171288
\(381\) −15.1878 26.3061i −0.778097 1.34770i
\(382\) −10.8428 18.7803i −0.554766 0.960882i
\(383\) 5.15301 + 8.92528i 0.263307 + 0.456060i 0.967119 0.254326i \(-0.0818536\pi\)
−0.703812 + 0.710386i \(0.748520\pi\)
\(384\) 5.15161 8.92286i 0.262892 0.455343i
\(385\) 18.4656 + 31.9834i 0.941095 + 1.63002i
\(386\) 1.85522 3.21334i 0.0944283 0.163555i
\(387\) −0.425304 −0.0216194
\(388\) 15.3998 0.781806
\(389\) −12.6827 + 21.9671i −0.643039 + 1.11378i 0.341712 + 0.939805i \(0.388993\pi\)
−0.984751 + 0.173971i \(0.944340\pi\)
\(390\) −10.8623 18.8140i −0.550033 0.952685i
\(391\) 3.56868 6.18113i 0.180476 0.312593i
\(392\) −1.97849 3.42685i −0.0999290 0.173082i
\(393\) −7.68952 13.3186i −0.387885 0.671837i
\(394\) 6.62764 + 11.4794i 0.333896 + 0.578324i
\(395\) −20.3719 −1.02502
\(396\) −7.74183 + 13.4092i −0.389042 + 0.673840i
\(397\) −8.37941 + 14.5136i −0.420550 + 0.728415i −0.995993 0.0894272i \(-0.971496\pi\)
0.575443 + 0.817842i \(0.304830\pi\)
\(398\) 0.960590 + 1.66379i 0.0481500 + 0.0833983i
\(399\) 4.87412 0.244011
\(400\) 0.852696 1.47691i 0.0426348 0.0738456i
\(401\) 27.6236 1.37946 0.689728 0.724069i \(-0.257730\pi\)
0.689728 + 0.724069i \(0.257730\pi\)
\(402\) −60.3537 −3.01017
\(403\) 0 0
\(404\) −41.4300 −2.06122
\(405\) −26.4001 −1.31183
\(406\) 5.24389 9.08268i 0.260250 0.450766i
\(407\) −1.17494 −0.0582395
\(408\) 1.38532 + 2.39945i 0.0685838 + 0.118791i
\(409\) −11.3053 + 19.5814i −0.559013 + 0.968239i 0.438566 + 0.898699i \(0.355486\pi\)
−0.997579 + 0.0695399i \(0.977847\pi\)
\(410\) 10.4064 18.0244i 0.513934 0.890159i
\(411\) −16.2116 −0.799657
\(412\) −4.49026 7.77736i −0.221219 0.383163i
\(413\) −10.7066 18.5443i −0.526836 0.912507i
\(414\) −5.47977 9.49125i −0.269316 0.466469i
\(415\) −6.08752 + 10.5439i −0.298825 + 0.517580i
\(416\) 8.46334 + 14.6589i 0.414949 + 0.718714i
\(417\) −21.4990 + 37.2373i −1.05281 + 1.82352i
\(418\) −5.49954 −0.268991
\(419\) −6.19097 −0.302449 −0.151224 0.988499i \(-0.548322\pi\)
−0.151224 + 0.988499i \(0.548322\pi\)
\(420\) 21.1680 36.6640i 1.03289 1.78902i
\(421\) −3.27967 5.68055i −0.159841 0.276853i 0.774970 0.631998i \(-0.217765\pi\)
−0.934811 + 0.355145i \(0.884432\pi\)
\(422\) 6.40434 11.0926i 0.311759 0.539982i
\(423\) −4.24146 7.34642i −0.206227 0.357195i
\(424\) 2.89329 + 5.01132i 0.140510 + 0.243371i
\(425\) 0.545524 + 0.944875i 0.0264618 + 0.0458332i
\(426\) −5.92226 −0.286934
\(427\) −4.09195 + 7.08746i −0.198023 + 0.342986i
\(428\) −12.7479 + 22.0800i −0.616192 + 1.06728i
\(429\) −9.55725 16.5536i −0.461428 0.799217i
\(430\) −1.31210 −0.0632749
\(431\) −11.7339 + 20.3236i −0.565200 + 0.978955i 0.431831 + 0.901954i \(0.357868\pi\)
−0.997031 + 0.0770004i \(0.975466\pi\)
\(432\) 10.1267 0.487220
\(433\) −24.3130 −1.16841 −0.584203 0.811607i \(-0.698593\pi\)
−0.584203 + 0.811607i \(0.698593\pi\)
\(434\) 0 0
\(435\) 6.91890 0.331736
\(436\) 41.5006 1.98752
\(437\) 1.03973 1.80086i 0.0497369 0.0861468i
\(438\) 62.7991 3.00066
\(439\) −7.25318 12.5629i −0.346175 0.599593i 0.639391 0.768881i \(-0.279186\pi\)
−0.985567 + 0.169288i \(0.945853\pi\)
\(440\) −3.05817 + 5.29690i −0.145792 + 0.252520i
\(441\) −5.12701 + 8.88025i −0.244143 + 0.422869i
\(442\) −9.20385 −0.437782
\(443\) 8.28299 + 14.3466i 0.393537 + 0.681626i 0.992913 0.118841i \(-0.0379180\pi\)
−0.599376 + 0.800467i \(0.704585\pi\)
\(444\) 0.673443 + 1.16644i 0.0319602 + 0.0553566i
\(445\) 5.88455 + 10.1923i 0.278954 + 0.483163i
\(446\) 16.4711 28.5288i 0.779929 1.35088i
\(447\) −13.1733 22.8168i −0.623074 1.07920i
\(448\) −18.6514 + 32.3051i −0.881194 + 1.52627i
\(449\) −6.81731 −0.321729 −0.160864 0.986977i \(-0.551428\pi\)
−0.160864 + 0.986977i \(0.551428\pi\)
\(450\) 1.67533 0.0789756
\(451\) 9.15611 15.8588i 0.431144 0.746764i
\(452\) −20.1142 34.8388i −0.946093 1.63868i
\(453\) −21.2623 + 36.8274i −0.998990 + 1.73030i
\(454\) 4.81246 + 8.33542i 0.225860 + 0.391201i
\(455\) 9.00365 + 15.5948i 0.422098 + 0.731095i
\(456\) 0.403612 + 0.699076i 0.0189008 + 0.0327372i
\(457\) −21.4277 −1.00235 −0.501174 0.865347i \(-0.667098\pi\)
−0.501174 + 0.865347i \(0.667098\pi\)
\(458\) −20.1186 + 34.8465i −0.940081 + 1.62827i
\(459\) −3.23934 + 5.61070i −0.151200 + 0.261885i
\(460\) −9.03094 15.6420i −0.421070 0.729314i
\(461\) 8.67451 0.404012 0.202006 0.979384i \(-0.435254\pi\)
0.202006 + 0.979384i \(0.435254\pi\)
\(462\) 34.8648 60.3876i 1.62206 2.80949i
\(463\) −3.64987 −0.169624 −0.0848120 0.996397i \(-0.527029\pi\)
−0.0848120 + 0.996397i \(0.527029\pi\)
\(464\) −4.58180 −0.212705
\(465\) 0 0
\(466\) −29.5246 −1.36770
\(467\) −3.08111 −0.142577 −0.0712884 0.997456i \(-0.522711\pi\)
−0.0712884 + 0.997456i \(0.522711\pi\)
\(468\) −3.77484 + 6.53822i −0.174492 + 0.302229i
\(469\) 50.0266 2.31002
\(470\) −13.0852 22.6643i −0.603577 1.04543i
\(471\) 6.20917 10.7546i 0.286104 0.495546i
\(472\) 1.77316 3.07121i 0.0816164 0.141364i
\(473\) −1.15446 −0.0530820
\(474\) 19.2321 + 33.3109i 0.883358 + 1.53002i
\(475\) 0.158937 + 0.275287i 0.00729254 + 0.0126311i
\(476\) −8.96804 15.5331i −0.411050 0.711959i
\(477\) 7.49758 12.9862i 0.343291 0.594597i
\(478\) −7.04679 12.2054i −0.322313 0.558262i
\(479\) 8.70511 15.0777i 0.397747 0.688918i −0.595701 0.803206i \(-0.703126\pi\)
0.993448 + 0.114289i \(0.0364589\pi\)
\(480\) −40.7362 −1.85934
\(481\) −0.572888 −0.0261215
\(482\) −11.9200 + 20.6461i −0.542941 + 0.940402i
\(483\) 13.1829 + 22.8334i 0.599842 + 1.03896i
\(484\) −8.39936 + 14.5481i −0.381789 + 0.661278i
\(485\) −7.88192 13.6519i −0.357900 0.619900i
\(486\) 15.4605 + 26.7784i 0.701302 + 1.21469i
\(487\) 14.3868 + 24.9187i 0.651929 + 1.12917i 0.982654 + 0.185447i \(0.0593732\pi\)
−0.330726 + 0.943727i \(0.607294\pi\)
\(488\) −1.35537 −0.0613547
\(489\) −19.0227 + 32.9484i −0.860238 + 1.48998i
\(490\) −15.8172 + 27.3963i −0.714550 + 1.23764i
\(491\) −4.91284 8.50929i −0.221713 0.384019i 0.733615 0.679565i \(-0.237832\pi\)
−0.955328 + 0.295546i \(0.904498\pi\)
\(492\) −20.9921 −0.946399
\(493\) 1.46563 2.53855i 0.0660088 0.114331i
\(494\) −2.68152 −0.120647
\(495\) 15.8497 0.712391
\(496\) 0 0
\(497\) 4.90891 0.220195
\(498\) 22.9876 1.03010
\(499\) −5.42400 + 9.39465i −0.242812 + 0.420562i −0.961514 0.274756i \(-0.911403\pi\)
0.718702 + 0.695318i \(0.244736\pi\)
\(500\) −24.1659 −1.08073
\(501\) 2.33411 + 4.04280i 0.104280 + 0.180619i
\(502\) −7.55745 + 13.0899i −0.337305 + 0.584230i
\(503\) −4.28047 + 7.41400i −0.190857 + 0.330574i −0.945534 0.325522i \(-0.894460\pi\)
0.754678 + 0.656096i \(0.227793\pi\)
\(504\) −3.52642 −0.157079
\(505\) 21.2047 + 36.7276i 0.943596 + 1.63436i
\(506\) −14.8745 25.7633i −0.661250 1.14532i
\(507\) 9.24602 + 16.0146i 0.410630 + 0.711232i
\(508\) −16.2832 + 28.2033i −0.722451 + 1.25132i
\(509\) −19.7912 34.2793i −0.877228 1.51940i −0.854370 0.519665i \(-0.826057\pi\)
−0.0228575 0.999739i \(-0.507276\pi\)
\(510\) 11.0751 19.1826i 0.490414 0.849421i
\(511\) −52.0536 −2.30272
\(512\) 31.0247 1.37111
\(513\) −0.943776 + 1.63467i −0.0416687 + 0.0721723i
\(514\) 25.5448 + 44.2449i 1.12673 + 1.95156i
\(515\) −4.59641 + 7.96122i −0.202542 + 0.350813i
\(516\) 0.661703 + 1.14610i 0.0291299 + 0.0504544i
\(517\) −11.5131 19.9413i −0.506347 0.877019i
\(518\) −1.04495 1.80990i −0.0459124 0.0795225i
\(519\) −11.7836 −0.517243
\(520\) −1.49113 + 2.58272i −0.0653905 + 0.113260i
\(521\) 0.674660 1.16855i 0.0295574 0.0511949i −0.850868 0.525379i \(-0.823924\pi\)
0.880426 + 0.474184i \(0.157257\pi\)
\(522\) −2.25051 3.89800i −0.0985022 0.170611i
\(523\) −28.4729 −1.24503 −0.622517 0.782607i \(-0.713890\pi\)
−0.622517 + 0.782607i \(0.713890\pi\)
\(524\) −8.24410 + 14.2792i −0.360145 + 0.623790i
\(525\) −4.03039 −0.175900
\(526\) 54.4699 2.37500
\(527\) 0 0
\(528\) −30.4628 −1.32572
\(529\) −11.7515 −0.510936
\(530\) 23.1306 40.0634i 1.00473 1.74024i
\(531\) −9.18985 −0.398805
\(532\) −2.61282 4.52554i −0.113280 0.196207i
\(533\) 4.46443 7.73262i 0.193376 0.334937i
\(534\) 11.1106 19.2441i 0.480802 0.832773i
\(535\) 26.0985 1.12834
\(536\) 4.14256 + 7.17513i 0.178931 + 0.309918i
\(537\) 12.9796 + 22.4813i 0.560110 + 0.970139i
\(538\) −21.6327 37.4690i −0.932653 1.61540i
\(539\) −13.9169 + 24.1048i −0.599444 + 1.03827i
\(540\) 8.19752 + 14.1985i 0.352765 + 0.611007i
\(541\) 7.15480 12.3925i 0.307609 0.532794i −0.670230 0.742154i \(-0.733804\pi\)
0.977839 + 0.209359i \(0.0671378\pi\)
\(542\) 43.5370 1.87008
\(543\) −20.6384 −0.885680
\(544\) −8.62916 + 14.9461i −0.369972 + 0.640810i
\(545\) −21.2408 36.7902i −0.909857 1.57592i
\(546\) 16.9997 29.4444i 0.727522 1.26011i
\(547\) −21.1835 36.6908i −0.905739 1.56879i −0.819922 0.572475i \(-0.805983\pi\)
−0.0858173 0.996311i \(-0.527350\pi\)
\(548\) 8.69038 + 15.0522i 0.371235 + 0.642998i
\(549\) 1.75613 + 3.04171i 0.0749499 + 0.129817i
\(550\) 4.54755 0.193908
\(551\) 0.427010 0.739602i 0.0181912 0.0315081i
\(552\) −2.18327 + 3.78154i −0.0929263 + 0.160953i
\(553\) −15.9413 27.6111i −0.677893 1.17414i
\(554\) 9.86181 0.418988
\(555\) 0.689363 1.19401i 0.0292618 0.0506830i
\(556\) 46.0990 1.95503
\(557\) −27.3019 −1.15682 −0.578409 0.815747i \(-0.696326\pi\)
−0.578409 + 0.815747i \(0.696326\pi\)
\(558\) 0 0
\(559\) −0.562902 −0.0238082
\(560\) 28.6983 1.21272
\(561\) 9.74450 16.8780i 0.411413 0.712588i
\(562\) −13.7896 −0.581678
\(563\) −2.59399 4.49293i −0.109324 0.189354i 0.806173 0.591680i \(-0.201535\pi\)
−0.915497 + 0.402326i \(0.868202\pi\)
\(564\) −13.1980 + 22.8597i −0.555737 + 0.962565i
\(565\) −20.5897 + 35.6624i −0.866216 + 1.50033i
\(566\) −15.0151 −0.631132
\(567\) −20.6584 35.7814i −0.867571 1.50268i
\(568\) 0.406493 + 0.704066i 0.0170561 + 0.0295420i
\(569\) 1.18392 + 2.05060i 0.0496323 + 0.0859657i 0.889774 0.456401i \(-0.150862\pi\)
−0.840142 + 0.542367i \(0.817528\pi\)
\(570\) 3.22671 5.58882i 0.135152 0.234090i
\(571\) 10.1810 + 17.6340i 0.426060 + 0.737958i 0.996519 0.0833685i \(-0.0265678\pi\)
−0.570459 + 0.821326i \(0.693235\pi\)
\(572\) −10.2465 + 17.7475i −0.428429 + 0.742061i
\(573\) 22.3896 0.935339
\(574\) 32.5724 1.35955
\(575\) −0.859746 + 1.48912i −0.0358539 + 0.0621008i
\(576\) 8.00457 + 13.8643i 0.333524 + 0.577680i
\(577\) −12.7909 + 22.1544i −0.532491 + 0.922302i 0.466789 + 0.884369i \(0.345411\pi\)
−0.999280 + 0.0379330i \(0.987923\pi\)
\(578\) 12.9209 + 22.3797i 0.537441 + 0.930874i
\(579\) 1.91545 + 3.31766i 0.0796034 + 0.137877i
\(580\) −3.70895 6.42409i −0.154006 0.266746i
\(581\) −19.0543 −0.790504
\(582\) −14.8818 + 25.7761i −0.616871 + 1.06845i
\(583\) 20.3516 35.2501i 0.842879 1.45991i
\(584\) −4.31041 7.46585i −0.178366 0.308939i
\(585\) 7.72816 0.319520
\(586\) −13.9988 + 24.2466i −0.578283 + 1.00162i
\(587\) −39.9619 −1.64940 −0.824702 0.565567i \(-0.808657\pi\)
−0.824702 + 0.565567i \(0.808657\pi\)
\(588\) 31.9072 1.31583
\(589\) 0 0
\(590\) −28.3514 −1.16721
\(591\) −13.6856 −0.562950
\(592\) −0.456506 + 0.790692i −0.0187623 + 0.0324973i
\(593\) −20.9772 −0.861429 −0.430715 0.902488i \(-0.641738\pi\)
−0.430715 + 0.902488i \(0.641738\pi\)
\(594\) 13.5018 + 23.3857i 0.553984 + 0.959529i
\(595\) −9.18005 + 15.9003i −0.376345 + 0.651849i
\(596\) −14.1233 + 24.4624i −0.578515 + 1.00202i
\(597\) −1.98355 −0.0811813
\(598\) −7.25264 12.5619i −0.296582 0.513696i
\(599\) −10.4707 18.1358i −0.427820 0.741007i 0.568859 0.822435i \(-0.307385\pi\)
−0.996679 + 0.0814285i \(0.974052\pi\)
\(600\) −0.333745 0.578063i −0.0136251 0.0235993i
\(601\) −8.30933 + 14.3922i −0.338945 + 0.587070i −0.984235 0.176868i \(-0.943403\pi\)
0.645290 + 0.763938i \(0.276737\pi\)
\(602\) −1.02673 1.77835i −0.0418465 0.0724802i
\(603\) 10.7349 18.5934i 0.437160 0.757183i
\(604\) 45.5915 1.85509
\(605\) 17.1958 0.699111
\(606\) 40.0365 69.3452i 1.62637 2.81696i
\(607\) −14.7757 25.5922i −0.599726 1.03876i −0.992861 0.119275i \(-0.961943\pi\)
0.393135 0.919481i \(-0.371390\pi\)
\(608\) −2.51409 + 4.35453i −0.101960 + 0.176599i
\(609\) 5.41413 + 9.37755i 0.219392 + 0.379997i
\(610\) 5.41781 + 9.38392i 0.219361 + 0.379944i
\(611\) −5.61369 9.72320i −0.227106 0.393359i
\(612\) −7.69760 −0.311157
\(613\) 18.5499 32.1294i 0.749224 1.29769i −0.198971 0.980005i \(-0.563760\pi\)
0.948195 0.317689i \(-0.102907\pi\)
\(614\) 23.5453 40.7817i 0.950212 1.64582i
\(615\) 10.7442 + 18.6095i 0.433248 + 0.750407i
\(616\) −9.57222 −0.385676
\(617\) 13.1716 22.8138i 0.530267 0.918450i −0.469109 0.883140i \(-0.655425\pi\)
0.999376 0.0353098i \(-0.0112418\pi\)
\(618\) 17.3569 0.698198
\(619\) 26.3796 1.06029 0.530144 0.847908i \(-0.322138\pi\)
0.530144 + 0.847908i \(0.322138\pi\)
\(620\) 0 0
\(621\) −10.2104 −0.409730
\(622\) 19.6713 0.788746
\(623\) −9.20947 + 15.9513i −0.368970 + 0.639074i
\(624\) −14.8534 −0.594611
\(625\) 13.6503 + 23.6430i 0.546012 + 0.945720i
\(626\) 29.1103 50.4204i 1.16348 2.01521i
\(627\) 2.83904 4.91736i 0.113380 0.196381i
\(628\) −13.3140 −0.531286
\(629\) −0.292056 0.505856i −0.0116450 0.0201698i
\(630\) 14.0962 + 24.4153i 0.561604 + 0.972727i
\(631\) 9.98562 + 17.2956i 0.397521 + 0.688527i 0.993419 0.114533i \(-0.0365371\pi\)
−0.595898 + 0.803060i \(0.703204\pi\)
\(632\) 2.64011 4.57280i 0.105018 0.181896i
\(633\) 6.61226 + 11.4528i 0.262814 + 0.455207i
\(634\) 16.3872 28.3834i 0.650819 1.12725i
\(635\) 33.3363 1.32291
\(636\) −46.6600 −1.85019
\(637\) −6.78575 + 11.7533i −0.268861 + 0.465681i
\(638\) −6.10885 10.5808i −0.241852 0.418899i
\(639\) 1.05337 1.82450i 0.0416708 0.0721760i
\(640\) 5.65373 + 9.79254i 0.223483 + 0.387084i
\(641\) 11.6475 + 20.1740i 0.460048 + 0.796826i 0.998963 0.0455342i \(-0.0144990\pi\)
−0.538915 + 0.842360i \(0.681166\pi\)
\(642\) −24.6382 42.6747i −0.972393 1.68423i
\(643\) 38.8939 1.53382 0.766912 0.641752i \(-0.221792\pi\)
0.766912 + 0.641752i \(0.221792\pi\)
\(644\) 14.1337 24.4802i 0.556944 0.964655i
\(645\) 0.677346 1.17320i 0.0266705 0.0461946i
\(646\) −1.36703 2.36777i −0.0537851 0.0931585i
\(647\) 2.23041 0.0876865 0.0438432 0.999038i \(-0.486040\pi\)
0.0438432 + 0.999038i \(0.486040\pi\)
\(648\) 3.42133 5.92591i 0.134402 0.232792i
\(649\) −24.9452 −0.979184
\(650\) 2.21734 0.0869713
\(651\) 0 0
\(652\) 40.7894 1.59744
\(653\) −28.5732 −1.11816 −0.559078 0.829115i \(-0.688845\pi\)
−0.559078 + 0.829115i \(0.688845\pi\)
\(654\) −40.1047 + 69.4634i −1.56822 + 2.71623i
\(655\) 16.8780 0.659478
\(656\) −7.11497 12.3235i −0.277793 0.481151i
\(657\) −11.1699 + 19.3468i −0.435778 + 0.754790i
\(658\) 20.4787 35.4702i 0.798344 1.38277i
\(659\) 5.13778 0.200140 0.100070 0.994980i \(-0.468093\pi\)
0.100070 + 0.994980i \(0.468093\pi\)
\(660\) −24.6595 42.7116i −0.959872 1.66255i
\(661\) 2.94772 + 5.10561i 0.114653 + 0.198585i 0.917641 0.397410i \(-0.130091\pi\)
−0.802988 + 0.595995i \(0.796758\pi\)
\(662\) 13.4109 + 23.2284i 0.521229 + 0.902796i
\(663\) 4.75132 8.22953i 0.184526 0.319609i
\(664\) −1.57783 2.73288i −0.0612316 0.106056i
\(665\) −2.67459 + 4.63253i −0.103716 + 0.179642i
\(666\) −0.896916 −0.0347548
\(667\) 4.61968 0.178875
\(668\) 2.50245 4.33437i 0.0968226 0.167702i
\(669\) 17.0058 + 29.4550i 0.657483 + 1.13879i
\(670\) 33.1181 57.3622i 1.27946 2.21609i
\(671\) 4.76690 + 8.25651i 0.184024 + 0.318739i
\(672\) −31.8766 55.2118i −1.22966 2.12984i
\(673\) 13.6317 + 23.6107i 0.525462 + 0.910127i 0.999560 + 0.0296547i \(0.00944077\pi\)
−0.474098 + 0.880472i \(0.657226\pi\)
\(674\) 57.7424 2.22415
\(675\) 0.780405 1.35170i 0.0300378 0.0520270i
\(676\) 9.91286 17.1696i 0.381264 0.660368i
\(677\) −1.31511 2.27784i −0.0505438 0.0875444i 0.839647 0.543133i \(-0.182762\pi\)
−0.890190 + 0.455589i \(0.849429\pi\)
\(678\) 77.7507 2.98600
\(679\) 12.3354 21.3655i 0.473389 0.819935i
\(680\) −3.04070 −0.116605
\(681\) −9.93738 −0.380801
\(682\) 0 0
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) −2.24268 −0.0857510
\(685\) 8.89583 15.4080i 0.339892 0.588710i
\(686\) 3.78990 0.144699
\(687\) −20.7717 35.9777i −0.792492 1.37264i
\(688\) −0.448549 + 0.776909i −0.0171008 + 0.0296194i
\(689\) 9.92326 17.1876i 0.378046 0.654795i
\(690\) 34.9087 1.32895
\(691\) −8.42291 14.5889i −0.320423 0.554988i 0.660153 0.751131i \(-0.270492\pi\)
−0.980575 + 0.196143i \(0.937158\pi\)
\(692\) 6.31673 + 10.9409i 0.240126 + 0.415911i
\(693\) 12.4026 + 21.4819i 0.471136 + 0.816031i
\(694\) 5.51548 9.55309i 0.209365 0.362630i
\(695\) −23.5944 40.8667i −0.894987 1.55016i
\(696\) −0.896657 + 1.55306i −0.0339877 + 0.0588684i
\(697\) 9.10379 0.344831
\(698\) −8.49136 −0.321403
\(699\) 15.2415 26.3991i 0.576488 0.998506i
\(700\) 2.16053 + 3.74215i 0.0816604 + 0.141440i
\(701\) −10.6122 + 18.3808i −0.400816 + 0.694233i −0.993825 0.110963i \(-0.964607\pi\)
0.593009 + 0.805196i \(0.297940\pi\)
\(702\) 6.58333 + 11.4027i 0.248472 + 0.430366i
\(703\) −0.0850900 0.147380i −0.00320923 0.00555855i
\(704\) 21.7278 + 37.6337i 0.818898 + 1.41837i
\(705\) 27.0201 1.01764
\(706\) 22.5751 39.1012i 0.849625 1.47159i
\(707\) −33.1859 + 57.4796i −1.24808 + 2.16174i
\(708\) 14.2979 + 24.7647i 0.537348 + 0.930714i
\(709\) −51.3442 −1.92827 −0.964136 0.265407i \(-0.914494\pi\)
−0.964136 + 0.265407i \(0.914494\pi\)
\(710\) 3.24974 5.62872i 0.121961 0.211242i
\(711\) −13.6830 −0.513152
\(712\) −3.05044 −0.114320
\(713\) 0 0
\(714\) 34.6656 1.29733
\(715\) 20.9775 0.784515
\(716\) 13.9157 24.1027i 0.520053 0.900759i
\(717\) 14.5511 0.543421
\(718\) 7.33679 + 12.7077i 0.273807 + 0.474247i
\(719\) −20.0999 + 34.8141i −0.749601 + 1.29835i 0.198413 + 0.980119i \(0.436421\pi\)
−0.948014 + 0.318229i \(0.896912\pi\)
\(720\) 6.15819 10.6663i 0.229502 0.397509i
\(721\) −14.3870 −0.535800
\(722\) 19.2869 + 33.4058i 0.717783 + 1.24324i
\(723\) −12.3070 21.3163i −0.457701 0.792762i
\(724\) 11.0635 + 19.1625i 0.411170 + 0.712167i
\(725\) −0.353093 + 0.611574i −0.0131135 + 0.0227133i
\(726\) −16.2337 28.1176i −0.602489 1.04354i
\(727\) 10.7419 18.6056i 0.398396 0.690042i −0.595132 0.803628i \(-0.702900\pi\)
0.993528 + 0.113586i \(0.0362337\pi\)
\(728\) −4.66732 −0.172983
\(729\) 1.80740 0.0669407
\(730\) −34.4600 + 59.6864i −1.27542 + 2.20909i
\(731\) −0.286965 0.497038i −0.0106138 0.0183836i
\(732\) 5.46451 9.46481i 0.201974 0.349830i
\(733\) −11.2357 19.4607i −0.414999 0.718799i 0.580430 0.814310i \(-0.302885\pi\)
−0.995428 + 0.0955115i \(0.969551\pi\)
\(734\) −16.6989 28.9233i −0.616368 1.06758i
\(735\) −16.3307 28.2857i −0.602368 1.04333i
\(736\) −27.1991 −1.00257
\(737\) 29.1392 50.4705i 1.07335 1.85910i
\(738\) 6.98953 12.1062i 0.257288 0.445636i
\(739\) 26.2750 + 45.5097i 0.966542 + 1.67410i 0.705413 + 0.708797i \(0.250762\pi\)
0.261129 + 0.965304i \(0.415905\pi\)
\(740\) −1.47816 −0.0543383
\(741\) 1.38429 2.39766i 0.0508531 0.0880802i
\(742\) 72.4000 2.65789
\(743\) 17.4032 0.638460 0.319230 0.947677i \(-0.396576\pi\)
0.319230 + 0.947677i \(0.396576\pi\)
\(744\) 0 0
\(745\) 28.9145 1.05934
\(746\) −20.3461 −0.744922
\(747\) −4.08874 + 7.08190i −0.149599 + 0.259113i
\(748\) −20.8946 −0.763981
\(749\) 20.4224 + 35.3727i 0.746219 + 1.29249i
\(750\) 23.3530 40.4487i 0.852732 1.47698i
\(751\) 11.2220 19.4370i 0.409496 0.709268i −0.585337 0.810790i \(-0.699038\pi\)
0.994833 + 0.101522i \(0.0323712\pi\)
\(752\) −17.8931 −0.652494
\(753\) −7.80280 13.5148i −0.284350 0.492508i
\(754\) −2.97861 5.15911i −0.108475 0.187884i
\(755\) −23.3347 40.4168i −0.849236 1.47092i
\(756\) −12.8293 + 22.2210i −0.466598 + 0.808172i
\(757\) −7.39642 12.8110i −0.268827 0.465623i 0.699732 0.714405i \(-0.253303\pi\)
−0.968559 + 0.248783i \(0.919969\pi\)
\(758\) 14.3138 24.7923i 0.519902 0.900496i
\(759\) 30.7147 1.11487
\(760\) −0.885901 −0.0321350
\(761\) −9.95063 + 17.2350i −0.360710 + 0.624768i −0.988078 0.153955i \(-0.950799\pi\)
0.627368 + 0.778723i \(0.284132\pi\)
\(762\) −31.4710 54.5095i −1.14008 1.97467i
\(763\) 33.2424 57.5776i 1.20346 2.08445i
\(764\) −12.0022 20.7884i −0.434224 0.752098i
\(765\) 3.93979 + 6.82391i 0.142443 + 0.246719i
\(766\) 10.6777 + 18.4943i 0.385800 + 0.668225i
\(767\) −12.1630 −0.439181
\(768\) −11.0436 + 19.1281i −0.398502 + 0.690226i
\(769\) −2.09853 + 3.63477i −0.0756751 + 0.131073i −0.901380 0.433030i \(-0.857445\pi\)
0.825705 + 0.564103i \(0.190778\pi\)
\(770\) 38.2630 + 66.2734i 1.37890 + 2.38833i
\(771\) −52.7482 −1.89968
\(772\) 2.05360 3.55693i 0.0739105 0.128017i
\(773\) −11.8786 −0.427245 −0.213622 0.976916i \(-0.568526\pi\)
−0.213622 + 0.976916i \(0.568526\pi\)
\(774\) −0.881281 −0.0316770
\(775\) 0 0
\(776\) 4.08584 0.146673
\(777\) 2.15774 0.0774086
\(778\) −26.2801 + 45.5185i −0.942187 + 1.63192i
\(779\) 2.65237 0.0950311
\(780\) −12.0238 20.8258i −0.430519 0.745682i
\(781\) 2.85931 4.95246i 0.102314 0.177213i
\(782\) 7.39473 12.8081i 0.264435 0.458015i
\(783\) −4.19336 −0.149858
\(784\) 10.8145 + 18.7312i 0.386231 + 0.668971i
\(785\) 6.81436 + 11.8028i 0.243215 + 0.421261i
\(786\) −15.9336 27.5978i −0.568333 0.984382i
\(787\) 0.992015 1.71822i 0.0353615 0.0612480i −0.847803 0.530311i \(-0.822075\pi\)
0.883165 + 0.469063i \(0.155408\pi\)
\(788\) 7.33631 + 12.7069i 0.261345 + 0.452663i
\(789\) −28.1191 + 48.7037i −1.00107 + 1.73390i
\(790\) −42.2131 −1.50187
\(791\) −64.4469 −2.29147
\(792\) −2.05405 + 3.55771i −0.0729874 + 0.126418i
\(793\) 2.32429 + 4.02579i 0.0825380 + 0.142960i
\(794\) −17.3632 + 30.0739i −0.616195 + 1.06728i
\(795\) 23.8815 + 41.3640i 0.846991 + 1.46703i
\(796\) 1.06330 + 1.84170i 0.0376878 + 0.0652772i
\(797\) −25.1932 43.6358i −0.892388 1.54566i −0.837005 0.547196i \(-0.815695\pi\)
−0.0553833 0.998465i \(-0.517638\pi\)
\(798\) 10.0998 0.357528
\(799\) 5.72368 9.91370i 0.202489 0.350721i
\(800\) 2.07889 3.60074i 0.0734998 0.127305i
\(801\) 3.95241 + 6.84577i 0.139652 + 0.241884i
\(802\) 57.2394 2.02119
\(803\) −30.3198 + 52.5155i −1.06996 + 1.85323i
\(804\) −66.8071 −2.35611
\(805\) −28.9356 −1.01984
\(806\) 0 0
\(807\) 44.6701 1.57246
\(808\) −10.9921 −0.386701
\(809\) −7.78621 + 13.4861i −0.273748 + 0.474146i −0.969819 0.243828i \(-0.921597\pi\)
0.696070 + 0.717974i \(0.254930\pi\)
\(810\) −54.7042 −1.92211
\(811\) −10.3694 17.9604i −0.364119 0.630673i 0.624515 0.781013i \(-0.285297\pi\)
−0.988634 + 0.150340i \(0.951963\pi\)
\(812\) 5.80460 10.0539i 0.203702 0.352822i
\(813\) −22.4752 + 38.9282i −0.788240 + 1.36527i
\(814\) −2.43461 −0.0853332
\(815\) −20.8768 36.1597i −0.731284 1.26662i
\(816\) −7.57219 13.1154i −0.265080 0.459131i
\(817\) −0.0836067 0.144811i −0.00292503 0.00506630i
\(818\) −23.4260 + 40.5751i −0.819072 + 1.41867i
\(819\) 6.04738 + 10.4744i 0.211313 + 0.366004i
\(820\) 11.5191 19.9516i 0.402264 0.696742i
\(821\) −19.5948 −0.683861 −0.341931 0.939725i \(-0.611081\pi\)
−0.341931 + 0.939725i \(0.611081\pi\)
\(822\) −33.5923 −1.17167
\(823\) 1.05031 1.81919i 0.0366115 0.0634130i −0.847139 0.531371i \(-0.821677\pi\)
0.883751 + 0.467958i \(0.155010\pi\)
\(824\) −1.19135 2.06347i −0.0415025 0.0718845i
\(825\) −2.34759 + 4.06615i −0.0817326 + 0.141565i
\(826\) −22.1853 38.4261i −0.771927 1.33702i
\(827\) −1.75257 3.03554i −0.0609429 0.105556i 0.833944 0.551849i \(-0.186077\pi\)
−0.894887 + 0.446293i \(0.852744\pi\)
\(828\) −6.06571 10.5061i −0.210798 0.365113i
\(829\) 2.08859 0.0725399 0.0362699 0.999342i \(-0.488452\pi\)
0.0362699 + 0.999342i \(0.488452\pi\)
\(830\) −12.6141 + 21.8482i −0.437841 + 0.758363i
\(831\) −5.09098 + 8.81784i −0.176604 + 0.305888i
\(832\) 10.5943 + 18.3498i 0.367290 + 0.636166i
\(833\) −13.8374 −0.479437
\(834\) −44.5485 + 77.1603i −1.54259 + 2.67184i
\(835\) −5.12321 −0.177296
\(836\) −6.08759 −0.210544
\(837\) 0 0
\(838\) −12.8284 −0.443151
\(839\) −10.7734 −0.371938 −0.185969 0.982556i \(-0.559542\pi\)
−0.185969 + 0.982556i \(0.559542\pi\)
\(840\) 5.61624 9.72762i 0.193779 0.335635i
\(841\) −27.1027 −0.934577
\(842\) −6.79587 11.7708i −0.234201 0.405648i
\(843\) 7.11863 12.3298i 0.245178 0.424662i
\(844\) 7.08914 12.2788i 0.244018 0.422652i
\(845\) −20.2944 −0.698149
\(846\) −8.78882 15.2227i −0.302166 0.523366i
\(847\) 13.4560 + 23.3064i 0.462353 + 0.800818i
\(848\) −15.8147 27.3919i −0.543079 0.940641i
\(849\) 7.75128 13.4256i 0.266023 0.460766i
\(850\) 1.13039 + 1.95790i 0.0387721 + 0.0671553i
\(851\) 0.460281 0.797230i 0.0157782 0.0273287i
\(852\) −6.55551 −0.224588
\(853\) 32.6504 1.11793 0.558964 0.829192i \(-0.311199\pi\)
0.558964 + 0.829192i \(0.311199\pi\)
\(854\) −8.47901 + 14.6861i −0.290146 + 0.502547i
\(855\) 1.14785 + 1.98813i 0.0392556 + 0.0679927i
\(856\) −3.38224 + 5.85822i −0.115603 + 0.200230i
\(857\) 21.8669 + 37.8746i 0.746959 + 1.29377i 0.949274 + 0.314450i \(0.101820\pi\)
−0.202315 + 0.979321i \(0.564846\pi\)
\(858\) −19.8038 34.3012i −0.676090 1.17102i
\(859\) −12.1832 21.1018i −0.415684 0.719985i 0.579816 0.814747i \(-0.303124\pi\)
−0.995500 + 0.0947619i \(0.969791\pi\)
\(860\) −1.45239 −0.0495262
\(861\) −16.8149 + 29.1243i −0.573052 + 0.992555i
\(862\) −24.3140 + 42.1130i −0.828137 + 1.43438i
\(863\) −21.7570 37.6842i −0.740616 1.28279i −0.952215 0.305429i \(-0.901200\pi\)
0.211599 0.977357i \(-0.432133\pi\)
\(864\) 24.6891 0.839939
\(865\) 6.46606 11.1995i 0.219853 0.380796i
\(866\) −50.3794 −1.71196
\(867\) −26.6808 −0.906129
\(868\) 0 0
\(869\) −37.1415 −1.25994
\(870\) 14.3368 0.486063
\(871\) 14.2080 24.6089i 0.481419 0.833842i
\(872\) 11.0108 0.372874
\(873\) −5.29396 9.16941i −0.179173 0.310338i
\(874\) 2.15444 3.73160i 0.0728751 0.126223i
\(875\) −19.3571 + 33.5275i −0.654391 + 1.13344i
\(876\) 69.5140 2.34866
\(877\) 19.1219 + 33.1201i 0.645701 + 1.11839i 0.984139 + 0.177398i \(0.0567681\pi\)
−0.338438 + 0.940989i \(0.609899\pi\)
\(878\) −15.0295 26.0318i −0.507220 0.878530i
\(879\) −14.4532 25.0337i −0.487495 0.844366i
\(880\) 16.7160 28.9529i 0.563495 0.976002i
\(881\) 20.3707 + 35.2831i 0.686307 + 1.18872i 0.973024 + 0.230703i \(0.0741025\pi\)
−0.286718 + 0.958015i \(0.592564\pi\)
\(882\) −10.6238 + 18.4009i −0.357722 + 0.619592i
\(883\) −33.1160 −1.11444 −0.557222 0.830364i \(-0.688133\pi\)
−0.557222 + 0.830364i \(0.688133\pi\)
\(884\) −10.1880 −0.342659
\(885\) 14.6359 25.3501i 0.491981 0.852135i
\(886\) 17.1634 + 29.7278i 0.576615 + 0.998726i
\(887\) −6.23376 + 10.7972i −0.209309 + 0.362534i −0.951497 0.307658i \(-0.900455\pi\)
0.742188 + 0.670192i \(0.233788\pi\)
\(888\) 0.178676 + 0.309477i 0.00599599 + 0.0103854i
\(889\) 26.0861 + 45.1824i 0.874899 + 1.51537i
\(890\) 12.1935 + 21.1198i 0.408727 + 0.707936i
\(891\) −48.1318 −1.61248
\(892\) 18.2323 31.5793i 0.610463 1.05735i
\(893\) 1.66758 2.88834i 0.0558035 0.0966545i
\(894\) −27.2966 47.2791i −0.912936 1.58125i
\(895\) −28.4893 −0.952292
\(896\) −8.84823 + 15.3256i −0.295598 + 0.511992i
\(897\) 14.9762 0.500040
\(898\) −14.1263 −0.471401
\(899\) 0 0
\(900\) 1.85446 0.0618154
\(901\) 20.2354 0.674137
\(902\) 18.9726 32.8615i 0.631717 1.09417i
\(903\) 2.12013 0.0705534
\(904\) −5.33666 9.24337i −0.177495 0.307430i
\(905\) 11.3250 19.6155i 0.376456 0.652041i
\(906\) −44.0581 + 76.3108i −1.46373 + 2.53526i
\(907\) 16.9013 0.561197 0.280599 0.959825i \(-0.409467\pi\)
0.280599 + 0.959825i \(0.409467\pi\)
\(908\) 5.32704 + 9.22671i 0.176784 + 0.306199i
\(909\) 14.2423 + 24.6684i 0.472388 + 0.818200i
\(910\) 18.6567 + 32.3143i 0.618462 + 1.07121i
\(911\) −27.2348 + 47.1721i −0.902330 + 1.56288i −0.0778682 + 0.996964i \(0.524811\pi\)
−0.824462 + 0.565918i \(0.808522\pi\)
\(912\) −2.20614 3.82115i −0.0730527 0.126531i
\(913\) −11.0986 + 19.2233i −0.367310 + 0.636199i
\(914\) −44.4009 −1.46865
\(915\) −11.1874 −0.369844
\(916\) −22.2698 + 38.5725i −0.735816 + 1.27447i
\(917\) 13.2072 + 22.8756i 0.436142 + 0.755419i
\(918\) −6.71231 + 11.6261i −0.221539 + 0.383717i
\(919\) 4.38366 + 7.59272i 0.144604 + 0.250461i 0.929225 0.369514i \(-0.120476\pi\)
−0.784621 + 0.619975i \(0.787143\pi\)
\(920\) −2.39607 4.15012i −0.0789961 0.136825i
\(921\) 24.3097 + 42.1057i 0.801032 + 1.38743i
\(922\) 17.9746 0.591963
\(923\) 1.39417 2.41477i 0.0458897 0.0794832i
\(924\) 38.5928 66.8447i 1.26961 2.19903i
\(925\) 0.0703606 + 0.121868i 0.00231344 + 0.00400700i
\(926\) −7.56298 −0.248535
\(927\) −3.08722 + 5.34722i −0.101398 + 0.175626i
\(928\) −11.1705 −0.366690
\(929\) 44.2868 1.45300 0.726501 0.687165i \(-0.241145\pi\)
0.726501 + 0.687165i \(0.241145\pi\)
\(930\) 0 0
\(931\) −4.03150 −0.132127
\(932\) −32.6816 −1.07052
\(933\) −10.1549 + 17.5889i −0.332458 + 0.575834i
\(934\) −6.38443 −0.208905
\(935\) 10.6943 + 18.5230i 0.349740 + 0.605767i
\(936\) −1.00153 + 1.73471i −0.0327361 + 0.0567006i
\(937\) 25.7583 44.6147i 0.841486 1.45750i −0.0471516 0.998888i \(-0.515014\pi\)
0.888638 0.458609i \(-0.151652\pi\)
\(938\) 103.661 3.38466
\(939\) 30.0553 + 52.0573i 0.980818 + 1.69883i
\(940\) −14.4844 25.0877i −0.472429 0.818271i
\(941\) 19.5985 + 33.9456i 0.638893 + 1.10660i 0.985676 + 0.168650i \(0.0539407\pi\)
−0.346783 + 0.937945i \(0.612726\pi\)
\(942\) 12.8662 22.2848i 0.419202 0.726080i
\(943\) 7.17380 + 12.4254i 0.233611 + 0.404626i
\(944\) −9.69211 + 16.7872i −0.315451 + 0.546378i
\(945\) 26.2652 0.854408
\(946\) −2.39217 −0.0777763
\(947\) 28.4582 49.2910i 0.924766 1.60174i 0.132829 0.991139i \(-0.457594\pi\)
0.791937 0.610603i \(-0.209073\pi\)
\(948\) 21.2885 + 36.8727i 0.691418 + 1.19757i
\(949\) −14.7837 + 25.6060i −0.479898 + 0.831207i
\(950\) 0.329337 + 0.570429i 0.0106851 + 0.0185072i
\(951\) 16.9192 + 29.3049i 0.548642 + 0.950276i
\(952\) −2.37938 4.12121i −0.0771162 0.133569i
\(953\) 15.2738 0.494768 0.247384 0.968918i \(-0.420429\pi\)
0.247384 + 0.968918i \(0.420429\pi\)
\(954\) 15.5359 26.9090i 0.502993 0.871210i
\(955\) −12.2859 + 21.2798i −0.397563 + 0.688599i
\(956\) −7.80028 13.5105i −0.252279 0.436960i
\(957\) 12.6143 0.407764
\(958\) 18.0381 31.2428i 0.582783 1.00941i
\(959\) 27.8444 0.899142
\(960\) −50.9928 −1.64579
\(961\) 0 0
\(962\) −1.18709 −0.0382735
\(963\) 17.5293 0.564874
\(964\) −13.1946 + 22.8537i −0.424969 + 0.736067i
\(965\) −4.20429 −0.135341
\(966\) 27.3165 + 47.3136i 0.878895 + 1.52229i
\(967\) 5.64979 9.78573i 0.181685 0.314688i −0.760769 0.649022i \(-0.775178\pi\)
0.942455 + 0.334334i \(0.108511\pi\)
\(968\) −2.22850 + 3.85988i −0.0716267 + 0.124061i
\(969\) 2.82282 0.0906820
\(970\) −16.3323 28.2884i −0.524398 0.908285i
\(971\) 7.93411 + 13.7423i 0.254618 + 0.441011i 0.964792 0.263016i \(-0.0847171\pi\)
−0.710174 + 0.704026i \(0.751384\pi\)
\(972\) 17.1136 + 29.6417i 0.548920 + 0.950758i
\(973\) 36.9259 63.9575i 1.18379 2.05038i
\(974\) 29.8112 + 51.6345i 0.955213 + 1.65448i
\(975\) −1.14466 + 1.98261i −0.0366585 + 0.0634945i
\(976\) 7.40846 0.237139
\(977\) −16.5600 −0.529800 −0.264900 0.964276i \(-0.585339\pi\)
−0.264900 + 0.964276i \(0.585339\pi\)
\(978\) −39.4174 + 68.2730i −1.26043 + 2.18313i
\(979\) 10.7285 + 18.5824i 0.342885 + 0.593895i
\(980\) −17.5085 + 30.3257i −0.559290 + 0.968718i
\(981\) −14.2666 24.7105i −0.455497 0.788944i
\(982\) −10.1800 17.6323i −0.324857 0.562669i
\(983\) 10.8249 + 18.7493i 0.345261 + 0.598010i 0.985401 0.170249i \(-0.0544571\pi\)
−0.640140 + 0.768258i \(0.721124\pi\)
\(984\) −5.56959 −0.177552
\(985\) 7.50975 13.0073i 0.239280 0.414446i
\(986\) 3.03697 5.26019i 0.0967169 0.167519i
\(987\) 21.1436 + 36.6217i 0.673007 + 1.16568i
\(988\) −2.96825 −0.0944326
\(989\) 0.452257 0.783333i 0.0143809 0.0249085i
\(990\) 32.8425 1.04380
\(991\) −32.3028 −1.02613 −0.513066 0.858349i \(-0.671490\pi\)
−0.513066 + 0.858349i \(0.671490\pi\)
\(992\) 0 0
\(993\) −27.6925 −0.878796
\(994\) 10.1719 0.322632
\(995\) 1.08844 1.88523i 0.0345059 0.0597659i
\(996\) 25.4456 0.806276
\(997\) 5.74360 + 9.94821i 0.181902 + 0.315063i 0.942528 0.334127i \(-0.108441\pi\)
−0.760626 + 0.649190i \(0.775108\pi\)
\(998\) −11.2392 + 19.4669i −0.355771 + 0.616213i
\(999\) −0.417804 + 0.723658i −0.0132187 + 0.0228955i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.439.7 16
31.2 even 5 961.2.g.l.547.2 16
31.3 odd 30 31.2.g.a.14.2 16
31.4 even 5 961.2.g.m.235.1 16
31.5 even 3 961.2.a.j.1.7 8
31.6 odd 6 961.2.c.j.521.7 16
31.7 even 15 961.2.g.n.338.1 16
31.8 even 5 961.2.g.n.816.1 16
31.9 even 15 961.2.d.q.374.1 16
31.10 even 15 961.2.d.n.531.4 16
31.11 odd 30 961.2.d.p.388.1 16
31.12 odd 30 961.2.g.k.844.2 16
31.13 odd 30 961.2.d.o.628.4 16
31.14 even 15 961.2.g.m.732.1 16
31.15 odd 10 961.2.g.k.846.2 16
31.16 even 5 961.2.g.j.846.2 16
31.17 odd 30 961.2.g.s.732.1 16
31.18 even 15 961.2.d.n.628.4 16
31.19 even 15 961.2.g.j.844.2 16
31.20 even 15 961.2.d.q.388.1 16
31.21 odd 30 961.2.d.o.531.4 16
31.22 odd 30 961.2.d.p.374.1 16
31.23 odd 10 961.2.g.t.816.1 16
31.24 odd 30 961.2.g.t.338.1 16
31.25 even 3 inner 961.2.c.i.521.7 16
31.26 odd 6 961.2.a.i.1.7 8
31.27 odd 10 961.2.g.s.235.1 16
31.28 even 15 961.2.g.l.448.2 16
31.29 odd 10 31.2.g.a.20.2 yes 16
31.30 odd 2 961.2.c.j.439.7 16
93.5 odd 6 8649.2.a.be.1.2 8
93.26 even 6 8649.2.a.bf.1.2 8
93.29 even 10 279.2.y.c.82.1 16
93.65 even 30 279.2.y.c.262.1 16
124.3 even 30 496.2.bg.c.417.2 16
124.91 even 10 496.2.bg.c.113.2 16
155.3 even 60 775.2.ck.a.324.2 32
155.29 odd 10 775.2.bl.a.51.1 16
155.34 odd 30 775.2.bl.a.76.1 16
155.122 even 20 775.2.ck.a.299.2 32
155.127 even 60 775.2.ck.a.324.3 32
155.153 even 20 775.2.ck.a.299.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.2 16 31.3 odd 30
31.2.g.a.20.2 yes 16 31.29 odd 10
279.2.y.c.82.1 16 93.29 even 10
279.2.y.c.262.1 16 93.65 even 30
496.2.bg.c.113.2 16 124.91 even 10
496.2.bg.c.417.2 16 124.3 even 30
775.2.bl.a.51.1 16 155.29 odd 10
775.2.bl.a.76.1 16 155.34 odd 30
775.2.ck.a.299.2 32 155.122 even 20
775.2.ck.a.299.3 32 155.153 even 20
775.2.ck.a.324.2 32 155.3 even 60
775.2.ck.a.324.3 32 155.127 even 60
961.2.a.i.1.7 8 31.26 odd 6
961.2.a.j.1.7 8 31.5 even 3
961.2.c.i.439.7 16 1.1 even 1 trivial
961.2.c.i.521.7 16 31.25 even 3 inner
961.2.c.j.439.7 16 31.30 odd 2
961.2.c.j.521.7 16 31.6 odd 6
961.2.d.n.531.4 16 31.10 even 15
961.2.d.n.628.4 16 31.18 even 15
961.2.d.o.531.4 16 31.21 odd 30
961.2.d.o.628.4 16 31.13 odd 30
961.2.d.p.374.1 16 31.22 odd 30
961.2.d.p.388.1 16 31.11 odd 30
961.2.d.q.374.1 16 31.9 even 15
961.2.d.q.388.1 16 31.20 even 15
961.2.g.j.844.2 16 31.19 even 15
961.2.g.j.846.2 16 31.16 even 5
961.2.g.k.844.2 16 31.12 odd 30
961.2.g.k.846.2 16 31.15 odd 10
961.2.g.l.448.2 16 31.28 even 15
961.2.g.l.547.2 16 31.2 even 5
961.2.g.m.235.1 16 31.4 even 5
961.2.g.m.732.1 16 31.14 even 15
961.2.g.n.338.1 16 31.7 even 15
961.2.g.n.816.1 16 31.8 even 5
961.2.g.s.235.1 16 31.27 odd 10
961.2.g.s.732.1 16 31.17 odd 30
961.2.g.t.338.1 16 31.24 odd 30
961.2.g.t.816.1 16 31.23 odd 10
8649.2.a.be.1.2 8 93.5 odd 6
8649.2.a.bf.1.2 8 93.26 even 6