Properties

Label 961.2.c.h.439.4
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,12,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.207360000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 32x^{4} + 24x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.4
Root \(-0.437016 + 0.756934i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.h.521.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61803 q^{2} +(0.437016 - 0.756934i) q^{3} +4.85410 q^{4} +(-1.11803 - 1.93649i) q^{5} +(1.14412 - 1.98168i) q^{6} +(0.500000 - 0.866025i) q^{7} +7.47214 q^{8} +(1.11803 + 1.93649i) q^{9} +(-2.92705 - 5.06980i) q^{10} +(-2.12132 - 3.67423i) q^{11} +(2.12132 - 3.67423i) q^{12} +(1.31105 + 2.27080i) q^{13} +(1.30902 - 2.26728i) q^{14} -1.95440 q^{15} +9.85410 q^{16} +(-1.85123 + 3.20642i) q^{17} +(2.92705 + 5.06980i) q^{18} +(-0.500000 + 0.866025i) q^{19} +(-5.42705 - 9.39993i) q^{20} +(-0.437016 - 0.756934i) q^{21} +(-5.55369 - 9.61927i) q^{22} -2.62210 q^{23} +(3.26544 - 5.65591i) q^{24} +(3.43237 + 5.94504i) q^{26} +4.57649 q^{27} +(2.42705 - 4.20378i) q^{28} -0.540182 q^{29} -5.11667 q^{30} +10.8541 q^{32} -3.70820 q^{33} +(-4.84658 + 8.39453i) q^{34} -2.23607 q^{35} +(5.42705 + 9.39993i) q^{36} +(-2.12132 + 3.67423i) q^{37} +(-1.30902 + 2.26728i) q^{38} +2.29180 q^{39} +(-8.35410 - 14.4697i) q^{40} +(0.736068 + 1.27491i) q^{41} +(-1.14412 - 1.98168i) q^{42} +(4.84658 - 8.39453i) q^{43} +(-10.2971 - 17.8351i) q^{44} +(2.50000 - 4.33013i) q^{45} -6.86474 q^{46} -9.70820 q^{47} +(4.30640 - 7.45890i) q^{48} +(3.00000 + 5.19615i) q^{49} +(1.61803 + 2.80252i) q^{51} +(6.36396 + 11.0227i) q^{52} +(6.86474 + 11.8901i) q^{53} +11.9814 q^{54} +(-4.74342 + 8.21584i) q^{55} +(3.73607 - 6.47106i) q^{56} +(0.437016 + 0.756934i) q^{57} -1.41421 q^{58} +(-5.97214 + 10.3440i) q^{59} -9.48683 q^{60} +13.9358 q^{61} +2.23607 q^{63} +8.70820 q^{64} +(2.93159 - 5.07767i) q^{65} -9.70820 q^{66} +(-3.00000 - 5.19615i) q^{67} +(-8.98606 + 15.5643i) q^{68} +(-1.14590 + 1.98475i) q^{69} -5.85410 q^{70} +(0.736068 + 1.27491i) q^{71} +(8.35410 + 14.4697i) q^{72} +(-2.12132 - 3.67423i) q^{73} +(-5.55369 + 9.61927i) q^{74} +(-2.42705 + 4.20378i) q^{76} -4.24264 q^{77} +6.00000 q^{78} +(0.810272 - 1.40343i) q^{79} +(-11.0172 - 19.0824i) q^{80} +(-1.35410 + 2.34537i) q^{81} +(1.92705 + 3.33775i) q^{82} +(1.58114 + 2.73861i) q^{83} +(-2.12132 - 3.67423i) q^{84} +8.27895 q^{85} +(12.6885 - 21.9772i) q^{86} +(-0.236068 + 0.408882i) q^{87} +(-15.8508 - 27.4544i) q^{88} -15.3500 q^{89} +(6.54508 - 11.3364i) q^{90} +2.62210 q^{91} -12.7279 q^{92} -25.4164 q^{94} +2.23607 q^{95} +(4.74342 - 8.21584i) q^{96} -7.00000 q^{97} +(7.85410 + 13.6037i) q^{98} +(4.74342 - 8.21584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{2} + 12 q^{4} + 4 q^{7} + 24 q^{8} - 10 q^{10} + 6 q^{14} + 52 q^{16} + 10 q^{18} - 4 q^{19} - 30 q^{20} + 6 q^{28} + 60 q^{32} + 24 q^{33} + 30 q^{36} - 6 q^{38} + 72 q^{39} - 40 q^{40} - 12 q^{41}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61803 1.85123 0.925615 0.378467i \(-0.123549\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 0.437016 0.756934i 0.252311 0.437016i −0.711850 0.702331i \(-0.752143\pi\)
0.964162 + 0.265315i \(0.0854760\pi\)
\(4\) 4.85410 2.42705
\(5\) −1.11803 1.93649i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(6\) 1.14412 1.98168i 0.467086 0.809017i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 7.47214 2.64180
\(9\) 1.11803 + 1.93649i 0.372678 + 0.645497i
\(10\) −2.92705 5.06980i −0.925615 1.60321i
\(11\) −2.12132 3.67423i −0.639602 1.10782i −0.985520 0.169559i \(-0.945766\pi\)
0.345918 0.938265i \(-0.387568\pi\)
\(12\) 2.12132 3.67423i 0.612372 1.06066i
\(13\) 1.31105 + 2.27080i 0.363619 + 0.629807i 0.988554 0.150870i \(-0.0482076\pi\)
−0.624934 + 0.780677i \(0.714874\pi\)
\(14\) 1.30902 2.26728i 0.349850 0.605957i
\(15\) −1.95440 −0.504623
\(16\) 9.85410 2.46353
\(17\) −1.85123 + 3.20642i −0.448989 + 0.777672i −0.998320 0.0579326i \(-0.981549\pi\)
0.549331 + 0.835605i \(0.314882\pi\)
\(18\) 2.92705 + 5.06980i 0.689913 + 1.19496i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −5.42705 9.39993i −1.21353 2.10189i
\(21\) −0.437016 0.756934i −0.0953647 0.165177i
\(22\) −5.55369 9.61927i −1.18405 2.05084i
\(23\) −2.62210 −0.546745 −0.273372 0.961908i \(-0.588139\pi\)
−0.273372 + 0.961908i \(0.588139\pi\)
\(24\) 3.26544 5.65591i 0.666556 1.15451i
\(25\) 0 0
\(26\) 3.43237 + 5.94504i 0.673143 + 1.16592i
\(27\) 4.57649 0.880746
\(28\) 2.42705 4.20378i 0.458670 0.794439i
\(29\) −0.540182 −0.100309 −0.0501546 0.998741i \(-0.515971\pi\)
−0.0501546 + 0.998741i \(0.515971\pi\)
\(30\) −5.11667 −0.934172
\(31\) 0 0
\(32\) 10.8541 1.91875
\(33\) −3.70820 −0.645515
\(34\) −4.84658 + 8.39453i −0.831182 + 1.43965i
\(35\) −2.23607 −0.377964
\(36\) 5.42705 + 9.39993i 0.904508 + 1.56665i
\(37\) −2.12132 + 3.67423i −0.348743 + 0.604040i −0.986026 0.166589i \(-0.946725\pi\)
0.637284 + 0.770629i \(0.280058\pi\)
\(38\) −1.30902 + 2.26728i −0.212351 + 0.367802i
\(39\) 2.29180 0.366981
\(40\) −8.35410 14.4697i −1.32090 2.28787i
\(41\) 0.736068 + 1.27491i 0.114955 + 0.199107i 0.917762 0.397132i \(-0.129994\pi\)
−0.802807 + 0.596239i \(0.796661\pi\)
\(42\) −1.14412 1.98168i −0.176542 0.305780i
\(43\) 4.84658 8.39453i 0.739097 1.28015i −0.213806 0.976876i \(-0.568586\pi\)
0.952902 0.303277i \(-0.0980808\pi\)
\(44\) −10.2971 17.8351i −1.55235 2.68874i
\(45\) 2.50000 4.33013i 0.372678 0.645497i
\(46\) −6.86474 −1.01215
\(47\) −9.70820 −1.41609 −0.708044 0.706169i \(-0.750422\pi\)
−0.708044 + 0.706169i \(0.750422\pi\)
\(48\) 4.30640 7.45890i 0.621575 1.07660i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 1.61803 + 2.80252i 0.226570 + 0.392431i
\(52\) 6.36396 + 11.0227i 0.882523 + 1.52857i
\(53\) 6.86474 + 11.8901i 0.942944 + 1.63323i 0.759816 + 0.650138i \(0.225289\pi\)
0.183128 + 0.983089i \(0.441378\pi\)
\(54\) 11.9814 1.63046
\(55\) −4.74342 + 8.21584i −0.639602 + 1.10782i
\(56\) 3.73607 6.47106i 0.499253 0.864732i
\(57\) 0.437016 + 0.756934i 0.0578842 + 0.100258i
\(58\) −1.41421 −0.185695
\(59\) −5.97214 + 10.3440i −0.777506 + 1.34668i 0.155869 + 0.987778i \(0.450182\pi\)
−0.933375 + 0.358902i \(0.883151\pi\)
\(60\) −9.48683 −1.22474
\(61\) 13.9358 1.78430 0.892148 0.451742i \(-0.149197\pi\)
0.892148 + 0.451742i \(0.149197\pi\)
\(62\) 0 0
\(63\) 2.23607 0.281718
\(64\) 8.70820 1.08853
\(65\) 2.93159 5.07767i 0.363619 0.629807i
\(66\) −9.70820 −1.19500
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) −8.98606 + 15.5643i −1.08972 + 1.88745i
\(69\) −1.14590 + 1.98475i −0.137950 + 0.238936i
\(70\) −5.85410 −0.699699
\(71\) 0.736068 + 1.27491i 0.0873552 + 0.151304i 0.906392 0.422437i \(-0.138825\pi\)
−0.819037 + 0.573740i \(0.805492\pi\)
\(72\) 8.35410 + 14.4697i 0.984540 + 1.70527i
\(73\) −2.12132 3.67423i −0.248282 0.430037i 0.714767 0.699362i \(-0.246533\pi\)
−0.963049 + 0.269326i \(0.913199\pi\)
\(74\) −5.55369 + 9.61927i −0.645603 + 1.11822i
\(75\) 0 0
\(76\) −2.42705 + 4.20378i −0.278402 + 0.482206i
\(77\) −4.24264 −0.483494
\(78\) 6.00000 0.679366
\(79\) 0.810272 1.40343i 0.0911628 0.157899i −0.816838 0.576867i \(-0.804275\pi\)
0.908001 + 0.418969i \(0.137608\pi\)
\(80\) −11.0172 19.0824i −1.23176 2.13348i
\(81\) −1.35410 + 2.34537i −0.150456 + 0.260597i
\(82\) 1.92705 + 3.33775i 0.212807 + 0.368593i
\(83\) 1.58114 + 2.73861i 0.173553 + 0.300602i 0.939659 0.342111i \(-0.111142\pi\)
−0.766107 + 0.642713i \(0.777809\pi\)
\(84\) −2.12132 3.67423i −0.231455 0.400892i
\(85\) 8.27895 0.897978
\(86\) 12.6885 21.9772i 1.36824 2.36986i
\(87\) −0.236068 + 0.408882i −0.0253091 + 0.0438367i
\(88\) −15.8508 27.4544i −1.68970 2.92665i
\(89\) −15.3500 −1.62710 −0.813549 0.581496i \(-0.802468\pi\)
−0.813549 + 0.581496i \(0.802468\pi\)
\(90\) 6.54508 11.3364i 0.689913 1.19496i
\(91\) 2.62210 0.274870
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) −25.4164 −2.62150
\(95\) 2.23607 0.229416
\(96\) 4.74342 8.21584i 0.484123 0.838525i
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 7.85410 + 13.6037i 0.793384 + 1.37418i
\(99\) 4.74342 8.21584i 0.476731 0.825723i
\(100\) 0 0
\(101\) 2.23607 0.222497 0.111249 0.993793i \(-0.464515\pi\)
0.111249 + 0.993793i \(0.464515\pi\)
\(102\) 4.23607 + 7.33708i 0.419433 + 0.726480i
\(103\) −5.35410 9.27358i −0.527555 0.913753i −0.999484 0.0321160i \(-0.989775\pi\)
0.471929 0.881637i \(-0.343558\pi\)
\(104\) 9.79633 + 16.9677i 0.960609 + 1.66382i
\(105\) −0.977198 + 1.69256i −0.0953647 + 0.165177i
\(106\) 17.9721 + 31.1286i 1.74561 + 3.02348i
\(107\) −0.736068 + 1.27491i −0.0711584 + 0.123250i −0.899409 0.437108i \(-0.856003\pi\)
0.828251 + 0.560357i \(0.189336\pi\)
\(108\) 22.2148 2.13762
\(109\) −1.29180 −0.123732 −0.0618658 0.998084i \(-0.519705\pi\)
−0.0618658 + 0.998084i \(0.519705\pi\)
\(110\) −12.4184 + 21.5093i −1.18405 + 2.05084i
\(111\) 1.85410 + 3.21140i 0.175984 + 0.304812i
\(112\) 4.92705 8.53390i 0.465563 0.806378i
\(113\) 4.88197 + 8.45581i 0.459257 + 0.795456i 0.998922 0.0464238i \(-0.0147825\pi\)
−0.539665 + 0.841880i \(0.681449\pi\)
\(114\) 1.14412 + 1.98168i 0.107157 + 0.185601i
\(115\) 2.93159 + 5.07767i 0.273372 + 0.473495i
\(116\) −2.62210 −0.243456
\(117\) −2.93159 + 5.07767i −0.271026 + 0.469431i
\(118\) −15.6353 + 27.0811i −1.43934 + 2.49301i
\(119\) 1.85123 + 3.20642i 0.169702 + 0.293932i
\(120\) −14.6035 −1.33311
\(121\) −3.50000 + 6.06218i −0.318182 + 0.551107i
\(122\) 36.4844 3.30314
\(123\) 1.28669 0.116017
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 5.85410 0.521525
\(127\) 4.74342 8.21584i 0.420910 0.729038i −0.575119 0.818070i \(-0.695044\pi\)
0.996029 + 0.0890323i \(0.0283774\pi\)
\(128\) 1.09017 0.0963583
\(129\) −4.23607 7.33708i −0.372965 0.645994i
\(130\) 7.67501 13.2935i 0.673143 1.16592i
\(131\) −3.70820 + 6.42280i −0.323987 + 0.561162i −0.981307 0.192450i \(-0.938357\pi\)
0.657320 + 0.753612i \(0.271690\pi\)
\(132\) −18.0000 −1.56670
\(133\) 0.500000 + 0.866025i 0.0433555 + 0.0750939i
\(134\) −7.85410 13.6037i −0.678491 1.17518i
\(135\) −5.11667 8.86234i −0.440373 0.762749i
\(136\) −13.8326 + 23.9588i −1.18614 + 2.05445i
\(137\) 1.31105 + 2.27080i 0.112010 + 0.194008i 0.916581 0.399850i \(-0.130938\pi\)
−0.804570 + 0.593857i \(0.797604\pi\)
\(138\) −3.00000 + 5.19615i −0.255377 + 0.442326i
\(139\) −17.9721 −1.52437 −0.762187 0.647356i \(-0.775875\pi\)
−0.762187 + 0.647356i \(0.775875\pi\)
\(140\) −10.8541 −0.917339
\(141\) −4.24264 + 7.34847i −0.357295 + 0.618853i
\(142\) 1.92705 + 3.33775i 0.161715 + 0.280098i
\(143\) 5.56231 9.63420i 0.465143 0.805652i
\(144\) 11.0172 + 19.0824i 0.918102 + 1.59020i
\(145\) 0.603941 + 1.04606i 0.0501546 + 0.0868703i
\(146\) −5.55369 9.61927i −0.459627 0.796097i
\(147\) 5.24419 0.432534
\(148\) −10.2971 + 17.8351i −0.846417 + 1.46604i
\(149\) 6.70820 11.6190i 0.549557 0.951861i −0.448747 0.893659i \(-0.648130\pi\)
0.998305 0.0582028i \(-0.0185370\pi\)
\(150\) 0 0
\(151\) 12.5216 1.01899 0.509496 0.860473i \(-0.329832\pi\)
0.509496 + 0.860473i \(0.329832\pi\)
\(152\) −3.73607 + 6.47106i −0.303035 + 0.524872i
\(153\) −8.27895 −0.669313
\(154\) −11.1074 −0.895058
\(155\) 0 0
\(156\) 11.1246 0.890682
\(157\) 8.70820 0.694990 0.347495 0.937682i \(-0.387032\pi\)
0.347495 + 0.937682i \(0.387032\pi\)
\(158\) 2.12132 3.67423i 0.168763 0.292306i
\(159\) 12.0000 0.951662
\(160\) −12.1353 21.0189i −0.959376 1.66169i
\(161\) −1.31105 + 2.27080i −0.103325 + 0.178964i
\(162\) −3.54508 + 6.14027i −0.278528 + 0.482425i
\(163\) 14.4164 1.12918 0.564590 0.825371i \(-0.309034\pi\)
0.564590 + 0.825371i \(0.309034\pi\)
\(164\) 3.57295 + 6.18853i 0.279000 + 0.483243i
\(165\) 4.14590 + 7.18091i 0.322758 + 0.559033i
\(166\) 4.13948 + 7.16978i 0.321286 + 0.556483i
\(167\) 0.540182 0.935622i 0.0418005 0.0724006i −0.844368 0.535763i \(-0.820024\pi\)
0.886169 + 0.463363i \(0.153357\pi\)
\(168\) −3.26544 5.65591i −0.251934 0.436363i
\(169\) 3.06231 5.30407i 0.235562 0.408005i
\(170\) 21.6746 1.66236
\(171\) −2.23607 −0.170996
\(172\) 23.5258 40.7479i 1.79383 3.10700i
\(173\) −9.00000 15.5885i −0.684257 1.18517i −0.973670 0.227964i \(-0.926793\pi\)
0.289412 0.957205i \(-0.406540\pi\)
\(174\) −0.618034 + 1.07047i −0.0468530 + 0.0811518i
\(175\) 0 0
\(176\) −20.9037 36.2063i −1.57568 2.72915i
\(177\) 5.21984 + 9.04103i 0.392347 + 0.679565i
\(178\) −40.1869 −3.01213
\(179\) −6.63405 + 11.4905i −0.495852 + 0.858841i −0.999989 0.00478274i \(-0.998478\pi\)
0.504136 + 0.863624i \(0.331811\pi\)
\(180\) 12.1353 21.0189i 0.904508 1.56665i
\(181\) −4.34581 7.52716i −0.323021 0.559489i 0.658089 0.752940i \(-0.271365\pi\)
−0.981110 + 0.193451i \(0.938032\pi\)
\(182\) 6.86474 0.508848
\(183\) 6.09017 10.5485i 0.450198 0.779766i
\(184\) −19.5927 −1.44439
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 15.7082 1.14870
\(188\) −47.1246 −3.43692
\(189\) 2.28825 3.96336i 0.166445 0.288292i
\(190\) 5.85410 0.424701
\(191\) −4.88197 8.45581i −0.353247 0.611841i 0.633570 0.773686i \(-0.281589\pi\)
−0.986816 + 0.161845i \(0.948256\pi\)
\(192\) 3.80562 6.59154i 0.274647 0.475703i
\(193\) 10.3541 17.9338i 0.745305 1.29091i −0.204748 0.978815i \(-0.565637\pi\)
0.950052 0.312091i \(-0.101029\pi\)
\(194\) −18.3262 −1.31575
\(195\) −2.56231 4.43804i −0.183491 0.317815i
\(196\) 14.5623 + 25.2227i 1.04016 + 1.80162i
\(197\) 0.540182 + 0.935622i 0.0384863 + 0.0666603i 0.884627 0.466299i \(-0.154413\pi\)
−0.846141 + 0.532960i \(0.821080\pi\)
\(198\) 12.4184 21.5093i 0.882539 1.52860i
\(199\) −11.6082 20.1059i −0.822880 1.42527i −0.903529 0.428528i \(-0.859032\pi\)
0.0806485 0.996743i \(-0.474301\pi\)
\(200\) 0 0
\(201\) −5.24419 −0.369897
\(202\) 5.85410 0.411893
\(203\) −0.270091 + 0.467811i −0.0189567 + 0.0328339i
\(204\) 7.85410 + 13.6037i 0.549897 + 0.952450i
\(205\) 1.64590 2.85078i 0.114955 0.199107i
\(206\) −14.0172 24.2785i −0.976626 1.69157i
\(207\) −2.93159 5.07767i −0.203760 0.352922i
\(208\) 12.9192 + 22.3767i 0.895785 + 1.55155i
\(209\) 4.24264 0.293470
\(210\) −2.55834 + 4.43117i −0.176542 + 0.305780i
\(211\) 2.50000 4.33013i 0.172107 0.298098i −0.767049 0.641588i \(-0.778276\pi\)
0.939156 + 0.343490i \(0.111609\pi\)
\(212\) 33.3221 + 57.7156i 2.28857 + 3.96393i
\(213\) 1.28669 0.0881628
\(214\) −1.92705 + 3.33775i −0.131730 + 0.228164i
\(215\) −21.6746 −1.47819
\(216\) 34.1962 2.32675
\(217\) 0 0
\(218\) −3.38197 −0.229056
\(219\) −3.70820 −0.250577
\(220\) −23.0250 + 39.8805i −1.55235 + 2.68874i
\(221\) −9.70820 −0.653044
\(222\) 4.85410 + 8.40755i 0.325786 + 0.564278i
\(223\) −8.07262 + 13.9822i −0.540583 + 0.936316i 0.458288 + 0.888804i \(0.348463\pi\)
−0.998871 + 0.0475128i \(0.984871\pi\)
\(224\) 5.42705 9.39993i 0.362610 0.628059i
\(225\) 0 0
\(226\) 12.7812 + 22.1376i 0.850190 + 1.47257i
\(227\) −1.14590 1.98475i −0.0760559 0.131733i 0.825489 0.564418i \(-0.190899\pi\)
−0.901545 + 0.432685i \(0.857566\pi\)
\(228\) 2.12132 + 3.67423i 0.140488 + 0.243332i
\(229\) −2.12132 + 3.67423i −0.140181 + 0.242800i −0.927565 0.373663i \(-0.878102\pi\)
0.787384 + 0.616463i \(0.211435\pi\)
\(230\) 7.67501 + 13.2935i 0.506075 + 0.876548i
\(231\) −1.85410 + 3.21140i −0.121991 + 0.211295i
\(232\) −4.03631 −0.264997
\(233\) −13.4721 −0.882589 −0.441294 0.897362i \(-0.645481\pi\)
−0.441294 + 0.897362i \(0.645481\pi\)
\(234\) −7.67501 + 13.2935i −0.501731 + 0.869024i
\(235\) 10.8541 + 18.7999i 0.708044 + 1.22637i
\(236\) −28.9894 + 50.2110i −1.88705 + 3.26846i
\(237\) −0.708204 1.22665i −0.0460028 0.0796792i
\(238\) 4.84658 + 8.39453i 0.314157 + 0.544136i
\(239\) −6.05446 10.4866i −0.391631 0.678324i 0.601034 0.799223i \(-0.294756\pi\)
−0.992665 + 0.120899i \(0.961422\pi\)
\(240\) −19.2588 −1.24315
\(241\) 11.6082 20.1059i 0.747747 1.29514i −0.201153 0.979560i \(-0.564469\pi\)
0.948900 0.315576i \(-0.102198\pi\)
\(242\) −9.16312 + 15.8710i −0.589028 + 1.02023i
\(243\) 8.04827 + 13.9400i 0.516296 + 0.894252i
\(244\) 67.6458 4.33058
\(245\) 6.70820 11.6190i 0.428571 0.742307i
\(246\) 3.36861 0.214775
\(247\) −2.62210 −0.166840
\(248\) 0 0
\(249\) 2.76393 0.175157
\(250\) −29.2705 −1.85123
\(251\) −5.51428 + 9.55102i −0.348058 + 0.602855i −0.985905 0.167309i \(-0.946492\pi\)
0.637846 + 0.770164i \(0.279826\pi\)
\(252\) 10.8541 0.683744
\(253\) 5.56231 + 9.63420i 0.349699 + 0.605697i
\(254\) 12.4184 21.5093i 0.779201 1.34962i
\(255\) 3.61803 6.26662i 0.226570 0.392431i
\(256\) −14.5623 −0.910144
\(257\) −3.02786 5.24441i −0.188873 0.327138i 0.756002 0.654570i \(-0.227150\pi\)
−0.944875 + 0.327432i \(0.893817\pi\)
\(258\) −11.0902 19.2087i −0.690444 1.19588i
\(259\) 2.12132 + 3.67423i 0.131812 + 0.228306i
\(260\) 14.2302 24.6475i 0.882523 1.52857i
\(261\) −0.603941 1.04606i −0.0373830 0.0647493i
\(262\) −9.70820 + 16.8151i −0.599775 + 1.03884i
\(263\) 18.5123 1.14152 0.570759 0.821118i \(-0.306649\pi\)
0.570759 + 0.821118i \(0.306649\pi\)
\(264\) −27.7082 −1.70532
\(265\) 15.3500 26.5870i 0.942944 1.63323i
\(266\) 1.30902 + 2.26728i 0.0802610 + 0.139016i
\(267\) −6.70820 + 11.6190i −0.410535 + 0.711068i
\(268\) −14.5623 25.2227i −0.889534 1.54072i
\(269\) −1.08036 1.87124i −0.0658709 0.114092i 0.831209 0.555960i \(-0.187649\pi\)
−0.897080 + 0.441868i \(0.854316\pi\)
\(270\) −13.3956 23.2019i −0.815232 1.41202i
\(271\) −18.5911 −1.12933 −0.564665 0.825320i \(-0.690994\pi\)
−0.564665 + 0.825320i \(0.690994\pi\)
\(272\) −18.2422 + 31.5964i −1.10610 + 1.91581i
\(273\) 1.14590 1.98475i 0.0693529 0.120123i
\(274\) 3.43237 + 5.94504i 0.207357 + 0.359153i
\(275\) 0 0
\(276\) −5.56231 + 9.63420i −0.334811 + 0.579910i
\(277\) 10.1058 0.607200 0.303600 0.952800i \(-0.401811\pi\)
0.303600 + 0.952800i \(0.401811\pi\)
\(278\) −47.0516 −2.82197
\(279\) 0 0
\(280\) −16.7082 −0.998506
\(281\) 13.3607 0.797031 0.398516 0.917162i \(-0.369525\pi\)
0.398516 + 0.917162i \(0.369525\pi\)
\(282\) −11.1074 + 19.2385i −0.661435 + 1.14564i
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 3.57295 + 6.18853i 0.212016 + 0.367222i
\(285\) 0.977198 1.69256i 0.0578842 0.100258i
\(286\) 14.5623 25.2227i 0.861087 1.49145i
\(287\) 1.47214 0.0868974
\(288\) 12.1353 + 21.0189i 0.715077 + 1.23855i
\(289\) 1.64590 + 2.85078i 0.0968175 + 0.167693i
\(290\) 1.58114 + 2.73861i 0.0928477 + 0.160817i
\(291\) −3.05911 + 5.29854i −0.179328 + 0.310606i
\(292\) −10.2971 17.8351i −0.602593 1.04372i
\(293\) 1.14590 1.98475i 0.0669441 0.115951i −0.830611 0.556854i \(-0.812008\pi\)
0.897555 + 0.440903i \(0.145342\pi\)
\(294\) 13.7295 0.800719
\(295\) 26.7082 1.55501
\(296\) −15.8508 + 27.4544i −0.921309 + 1.59575i
\(297\) −9.70820 16.8151i −0.563327 0.975711i
\(298\) 17.5623 30.4188i 1.01736 1.76211i
\(299\) −3.43769 5.95426i −0.198807 0.344344i
\(300\) 0 0
\(301\) −4.84658 8.39453i −0.279352 0.483852i
\(302\) 32.7820 1.88639
\(303\) 0.977198 1.69256i 0.0561385 0.0972348i
\(304\) −4.92705 + 8.53390i −0.282586 + 0.489453i
\(305\) −15.5807 26.9866i −0.892148 1.54525i
\(306\) −21.6746 −1.23905
\(307\) −12.0623 + 20.8925i −0.688432 + 1.19240i 0.283913 + 0.958850i \(0.408367\pi\)
−0.972345 + 0.233549i \(0.924966\pi\)
\(308\) −20.5942 −1.17346
\(309\) −9.35931 −0.532433
\(310\) 0 0
\(311\) 25.4721 1.44439 0.722196 0.691688i \(-0.243133\pi\)
0.722196 + 0.691688i \(0.243133\pi\)
\(312\) 17.1246 0.969490
\(313\) 5.76002 9.97665i 0.325576 0.563913i −0.656053 0.754715i \(-0.727775\pi\)
0.981629 + 0.190801i \(0.0611086\pi\)
\(314\) 22.7984 1.28659
\(315\) −2.50000 4.33013i −0.140859 0.243975i
\(316\) 3.93314 6.81241i 0.221257 0.383228i
\(317\) −13.1180 + 22.7211i −0.736782 + 1.27614i 0.217155 + 0.976137i \(0.430322\pi\)
−0.953937 + 0.300007i \(0.903011\pi\)
\(318\) 31.4164 1.76174
\(319\) 1.14590 + 1.98475i 0.0641580 + 0.111125i
\(320\) −9.73607 16.8634i −0.544263 0.942691i
\(321\) 0.643347 + 1.11431i 0.0359081 + 0.0621947i
\(322\) −3.43237 + 5.94504i −0.191278 + 0.331304i
\(323\) −1.85123 3.20642i −0.103005 0.178410i
\(324\) −6.57295 + 11.3847i −0.365164 + 0.632482i
\(325\) 0 0
\(326\) 37.7426 2.09037
\(327\) −0.564536 + 0.977804i −0.0312189 + 0.0540727i
\(328\) 5.50000 + 9.52628i 0.303687 + 0.526001i
\(329\) −4.85410 + 8.40755i −0.267615 + 0.463523i
\(330\) 10.8541 + 18.7999i 0.597499 + 1.03490i
\(331\) −15.6445 27.0970i −0.859897 1.48939i −0.872026 0.489460i \(-0.837194\pi\)
0.0121285 0.999926i \(-0.496139\pi\)
\(332\) 7.67501 + 13.2935i 0.421221 + 0.729576i
\(333\) −9.48683 −0.519875
\(334\) 1.41421 2.44949i 0.0773823 0.134030i
\(335\) −6.70820 + 11.6190i −0.366508 + 0.634811i
\(336\) −4.30640 7.45890i −0.234933 0.406917i
\(337\) −15.3500 −0.836169 −0.418084 0.908408i \(-0.637298\pi\)
−0.418084 + 0.908408i \(0.637298\pi\)
\(338\) 8.01722 13.8862i 0.436079 0.755312i
\(339\) 8.53399 0.463503
\(340\) 40.1869 2.17944
\(341\) 0 0
\(342\) −5.85410 −0.316554
\(343\) 13.0000 0.701934
\(344\) 36.2143 62.7250i 1.95255 3.38191i
\(345\) 5.12461 0.275900
\(346\) −23.5623 40.8111i −1.26672 2.19402i
\(347\) 10.7979 18.7025i 0.579661 1.00400i −0.415857 0.909430i \(-0.636518\pi\)
0.995518 0.0945718i \(-0.0301482\pi\)
\(348\) −1.14590 + 1.98475i −0.0614266 + 0.106394i
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 6.00000 + 10.3923i 0.320256 + 0.554700i
\(352\) −23.0250 39.8805i −1.22724 2.12564i
\(353\) −4.78282 + 8.28409i −0.254564 + 0.440918i −0.964777 0.263069i \(-0.915265\pi\)
0.710213 + 0.703987i \(0.248599\pi\)
\(354\) 13.6657 + 23.6697i 0.726324 + 1.25803i
\(355\) 1.64590 2.85078i 0.0873552 0.151304i
\(356\) −74.5106 −3.94905
\(357\) 3.23607 0.171271
\(358\) −17.3682 + 30.0826i −0.917936 + 1.58991i
\(359\) −7.11803 12.3288i −0.375675 0.650689i 0.614752 0.788720i \(-0.289256\pi\)
−0.990428 + 0.138031i \(0.955923\pi\)
\(360\) 18.6803 32.3553i 0.984540 1.70527i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −11.3775 19.7064i −0.597986 1.03574i
\(363\) 3.05911 + 5.29854i 0.160562 + 0.278101i
\(364\) 12.7279 0.667124
\(365\) −4.74342 + 8.21584i −0.248282 + 0.430037i
\(366\) 15.9443 27.6163i 0.833420 1.44353i
\(367\) −3.32920 5.76635i −0.173783 0.301001i 0.765956 0.642892i \(-0.222266\pi\)
−0.939739 + 0.341892i \(0.888932\pi\)
\(368\) −25.8384 −1.34692
\(369\) −1.64590 + 2.85078i −0.0856820 + 0.148406i
\(370\) 24.8369 1.29121
\(371\) 13.7295 0.712799
\(372\) 0 0
\(373\) −9.29180 −0.481111 −0.240555 0.970635i \(-0.577330\pi\)
−0.240555 + 0.970635i \(0.577330\pi\)
\(374\) 41.1246 2.12650
\(375\) −4.88599 + 8.46278i −0.252311 + 0.437016i
\(376\) −72.5410 −3.74102
\(377\) −0.708204 1.22665i −0.0364744 0.0631754i
\(378\) 5.99070 10.3762i 0.308129 0.533694i
\(379\) −3.70820 + 6.42280i −0.190478 + 0.329917i −0.945409 0.325887i \(-0.894337\pi\)
0.754931 + 0.655804i \(0.227670\pi\)
\(380\) 10.8541 0.556804
\(381\) −4.14590 7.18091i −0.212401 0.367889i
\(382\) −12.7812 22.1376i −0.653941 1.13266i
\(383\) 3.20168 + 5.54548i 0.163598 + 0.283361i 0.936157 0.351583i \(-0.114357\pi\)
−0.772558 + 0.634944i \(0.781023\pi\)
\(384\) 0.476422 0.825187i 0.0243123 0.0421101i
\(385\) 4.74342 + 8.21584i 0.241747 + 0.418718i
\(386\) 27.1074 46.9514i 1.37973 2.38976i
\(387\) 21.6746 1.10178
\(388\) −33.9787 −1.72501
\(389\) 8.40647 14.5604i 0.426225 0.738243i −0.570309 0.821430i \(-0.693177\pi\)
0.996534 + 0.0831870i \(0.0265099\pi\)
\(390\) −6.70820 11.6190i −0.339683 0.588348i
\(391\) 4.85410 8.40755i 0.245482 0.425188i
\(392\) 22.4164 + 38.8264i 1.13220 + 1.96103i
\(393\) 3.24109 + 5.61373i 0.163491 + 0.283175i
\(394\) 1.41421 + 2.44949i 0.0712470 + 0.123404i
\(395\) −3.62365 −0.182326
\(396\) 23.0250 39.8805i 1.15705 2.00407i
\(397\) −7.35410 + 12.7377i −0.369092 + 0.639286i −0.989424 0.145054i \(-0.953665\pi\)
0.620332 + 0.784339i \(0.286998\pi\)
\(398\) −30.3905 52.6380i −1.52334 2.63850i
\(399\) 0.874032 0.0437563
\(400\) 0 0
\(401\) −0.540182 −0.0269754 −0.0134877 0.999909i \(-0.504293\pi\)
−0.0134877 + 0.999909i \(0.504293\pi\)
\(402\) −13.7295 −0.684764
\(403\) 0 0
\(404\) 10.8541 0.540012
\(405\) 6.05573 0.300912
\(406\) −0.707107 + 1.22474i −0.0350931 + 0.0607831i
\(407\) 18.0000 0.892227
\(408\) 12.0902 + 20.9408i 0.598553 + 1.03672i
\(409\) −15.0405 + 26.0509i −0.743706 + 1.28814i 0.207091 + 0.978322i \(0.433600\pi\)
−0.950797 + 0.309815i \(0.899733\pi\)
\(410\) 4.30902 7.46344i 0.212807 0.368593i
\(411\) 2.29180 0.113046
\(412\) −25.9894 45.0149i −1.28040 2.21772i
\(413\) 5.97214 + 10.3440i 0.293870 + 0.508997i
\(414\) −7.67501 13.2935i −0.377206 0.653340i
\(415\) 3.53553 6.12372i 0.173553 0.300602i
\(416\) 14.2302 + 24.6475i 0.697695 + 1.20844i
\(417\) −7.85410 + 13.6037i −0.384617 + 0.666176i
\(418\) 11.1074 0.543280
\(419\) 30.5967 1.49475 0.747374 0.664403i \(-0.231314\pi\)
0.747374 + 0.664403i \(0.231314\pi\)
\(420\) −4.74342 + 8.21584i −0.231455 + 0.400892i
\(421\) −13.2082 22.8773i −0.643728 1.11497i −0.984594 0.174858i \(-0.944053\pi\)
0.340865 0.940112i \(-0.389280\pi\)
\(422\) 6.54508 11.3364i 0.318610 0.551848i
\(423\) −10.8541 18.7999i −0.527744 0.914080i
\(424\) 51.2942 + 88.8442i 2.49107 + 4.31466i
\(425\) 0 0
\(426\) 3.36861 0.163210
\(427\) 6.96790 12.0688i 0.337200 0.584048i
\(428\) −3.57295 + 6.18853i −0.172705 + 0.299134i
\(429\) −4.86163 8.42060i −0.234722 0.406550i
\(430\) −56.7448 −2.73648
\(431\) 17.9443 31.0804i 0.864345 1.49709i −0.00335076 0.999994i \(-0.501067\pi\)
0.867696 0.497095i \(-0.165600\pi\)
\(432\) 45.0972 2.16974
\(433\) −25.8384 −1.24171 −0.620857 0.783924i \(-0.713215\pi\)
−0.620857 + 0.783924i \(0.713215\pi\)
\(434\) 0 0
\(435\) 1.05573 0.0506183
\(436\) −6.27051 −0.300303
\(437\) 1.31105 2.27080i 0.0627159 0.108627i
\(438\) −9.70820 −0.463876
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) −35.4435 + 61.3899i −1.68970 + 2.92665i
\(441\) −6.70820 + 11.6190i −0.319438 + 0.553283i
\(442\) −25.4164 −1.20894
\(443\) −3.02786 5.24441i −0.143858 0.249170i 0.785088 0.619384i \(-0.212618\pi\)
−0.928946 + 0.370214i \(0.879284\pi\)
\(444\) 9.00000 + 15.5885i 0.427121 + 0.739795i
\(445\) 17.1618 + 29.7252i 0.813549 + 1.40911i
\(446\) −21.1344 + 36.6058i −1.00074 + 1.73334i
\(447\) −5.86319 10.1553i −0.277319 0.480331i
\(448\) 4.35410 7.54153i 0.205712 0.356304i
\(449\) 33.7047 1.59062 0.795311 0.606201i \(-0.207307\pi\)
0.795311 + 0.606201i \(0.207307\pi\)
\(450\) 0 0
\(451\) 3.12287 5.40897i 0.147050 0.254699i
\(452\) 23.6976 + 41.0454i 1.11464 + 1.93061i
\(453\) 5.47214 9.47802i 0.257103 0.445316i
\(454\) −3.00000 5.19615i −0.140797 0.243868i
\(455\) −2.93159 5.07767i −0.137435 0.238045i
\(456\) 3.26544 + 5.65591i 0.152918 + 0.264862i
\(457\) 11.3137 0.529233 0.264616 0.964354i \(-0.414755\pi\)
0.264616 + 0.964354i \(0.414755\pi\)
\(458\) −5.55369 + 9.61927i −0.259507 + 0.449479i
\(459\) −8.47214 + 14.6742i −0.395445 + 0.684932i
\(460\) 14.2302 + 24.6475i 0.663489 + 1.14920i
\(461\) 5.16538 0.240576 0.120288 0.992739i \(-0.461618\pi\)
0.120288 + 0.992739i \(0.461618\pi\)
\(462\) −4.85410 + 8.40755i −0.225833 + 0.391155i
\(463\) −3.82998 −0.177994 −0.0889971 0.996032i \(-0.528366\pi\)
−0.0889971 + 0.996032i \(0.528366\pi\)
\(464\) −5.32300 −0.247114
\(465\) 0 0
\(466\) −35.2705 −1.63387
\(467\) −15.6525 −0.724310 −0.362155 0.932118i \(-0.617959\pi\)
−0.362155 + 0.932118i \(0.617959\pi\)
\(468\) −14.2302 + 24.6475i −0.657794 + 1.13933i
\(469\) −6.00000 −0.277054
\(470\) 28.4164 + 49.2187i 1.31075 + 2.27029i
\(471\) 3.80562 6.59154i 0.175354 0.303722i
\(472\) −44.6246 + 77.2921i −2.05401 + 3.55766i
\(473\) −41.1246 −1.89091
\(474\) −1.85410 3.21140i −0.0851617 0.147504i
\(475\) 0 0
\(476\) 8.98606 + 15.5643i 0.411875 + 0.713389i
\(477\) −15.3500 + 26.5870i −0.702829 + 1.21734i
\(478\) −15.8508 27.4544i −0.724998 1.25573i
\(479\) −8.26393 + 14.3136i −0.377589 + 0.654003i −0.990711 0.135985i \(-0.956580\pi\)
0.613122 + 0.789988i \(0.289913\pi\)
\(480\) −21.2132 −0.968246
\(481\) −11.1246 −0.507239
\(482\) 30.3905 52.6380i 1.38425 2.39759i
\(483\) 1.14590 + 1.98475i 0.0521402 + 0.0903094i
\(484\) −16.9894 + 29.4264i −0.772243 + 1.33756i
\(485\) 7.82624 + 13.5554i 0.355371 + 0.615521i
\(486\) 21.0706 + 36.4954i 0.955783 + 1.65547i
\(487\) −14.0390 24.3162i −0.636166 1.10187i −0.986267 0.165160i \(-0.947186\pi\)
0.350100 0.936712i \(-0.386148\pi\)
\(488\) 104.130 4.71375
\(489\) 6.30020 10.9123i 0.284905 0.493470i
\(490\) 17.5623 30.4188i 0.793384 1.37418i
\(491\) 7.94510 + 13.7613i 0.358557 + 0.621040i 0.987720 0.156234i \(-0.0499354\pi\)
−0.629163 + 0.777274i \(0.716602\pi\)
\(492\) 6.24574 0.281580
\(493\) 1.00000 1.73205i 0.0450377 0.0780076i
\(494\) −6.86474 −0.308859
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) 1.47214 0.0660343
\(498\) 7.23607 0.324256
\(499\) −9.19239 + 15.9217i −0.411508 + 0.712752i −0.995055 0.0993269i \(-0.968331\pi\)
0.583547 + 0.812079i \(0.301664\pi\)
\(500\) −54.2705 −2.42705
\(501\) −0.472136 0.817763i −0.0210935 0.0365350i
\(502\) −14.4366 + 25.0049i −0.644336 + 1.11602i
\(503\) 16.4443 28.4823i 0.733214 1.26996i −0.222289 0.974981i \(-0.571353\pi\)
0.955503 0.294983i \(-0.0953139\pi\)
\(504\) 16.7082 0.744243
\(505\) −2.50000 4.33013i −0.111249 0.192688i
\(506\) 14.5623 + 25.2227i 0.647373 + 1.12128i
\(507\) −2.67655 4.63593i −0.118870 0.205889i
\(508\) 23.0250 39.8805i 1.02157 1.76941i
\(509\) 3.97255 + 6.88066i 0.176080 + 0.304980i 0.940535 0.339698i \(-0.110325\pi\)
−0.764454 + 0.644678i \(0.776992\pi\)
\(510\) 9.47214 16.4062i 0.419433 0.726480i
\(511\) −4.24264 −0.187683
\(512\) −40.3050 −1.78124
\(513\) −2.28825 + 3.96336i −0.101029 + 0.174987i
\(514\) −7.92705 13.7301i −0.349647 0.605607i
\(515\) −11.9721 + 20.7363i −0.527555 + 0.913753i
\(516\) −20.5623 35.6150i −0.905205 1.56786i
\(517\) 20.5942 + 35.6702i 0.905732 + 1.56877i
\(518\) 5.55369 + 9.61927i 0.244015 + 0.422647i
\(519\) −15.7326 −0.690583
\(520\) 21.9053 37.9410i 0.960609 1.66382i
\(521\) 6.70820 11.6190i 0.293892 0.509035i −0.680835 0.732437i \(-0.738383\pi\)
0.974726 + 0.223402i \(0.0717161\pi\)
\(522\) −1.58114 2.73861i −0.0692046 0.119866i
\(523\) 0.618993 0.0270667 0.0135333 0.999908i \(-0.495692\pi\)
0.0135333 + 0.999908i \(0.495692\pi\)
\(524\) −18.0000 + 31.1769i −0.786334 + 1.36197i
\(525\) 0 0
\(526\) 48.4658 2.11321
\(527\) 0 0
\(528\) −36.5410 −1.59024
\(529\) −16.1246 −0.701070
\(530\) 40.1869 69.6057i 1.74561 3.02348i
\(531\) −26.7082 −1.15904
\(532\) 2.42705 + 4.20378i 0.105226 + 0.182257i
\(533\) −1.93004 + 3.34293i −0.0835994 + 0.144798i
\(534\) −17.5623 + 30.4188i −0.759995 + 1.31635i
\(535\) 3.29180 0.142317
\(536\) −22.4164 38.8264i −0.968241 1.67704i
\(537\) 5.79837 + 10.0431i 0.250218 + 0.433391i
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 12.7279 22.0454i 0.548230 0.949563i
\(540\) −24.8369 43.0187i −1.06881 1.85123i
\(541\) −12.9164 + 22.3719i −0.555320 + 0.961842i 0.442559 + 0.896739i \(0.354071\pi\)
−0.997879 + 0.0651025i \(0.979263\pi\)
\(542\) −48.6722 −2.09065
\(543\) −7.59675 −0.326008
\(544\) −20.0934 + 34.8028i −0.861499 + 1.49216i
\(545\) 1.44427 + 2.50155i 0.0618658 + 0.107155i
\(546\) 3.00000 5.19615i 0.128388 0.222375i
\(547\) −1.20820 2.09267i −0.0516591 0.0894761i 0.839040 0.544070i \(-0.183118\pi\)
−0.890699 + 0.454594i \(0.849784\pi\)
\(548\) 6.36396 + 11.0227i 0.271855 + 0.470867i
\(549\) 15.5807 + 26.9866i 0.664968 + 1.15176i
\(550\) 0 0
\(551\) 0.270091 0.467811i 0.0115063 0.0199294i
\(552\) −8.56231 + 14.8303i −0.364436 + 0.631222i
\(553\) −0.810272 1.40343i −0.0344563 0.0596800i
\(554\) 26.4574 1.12407
\(555\) 4.14590 7.18091i 0.175984 0.304812i
\(556\) −87.2385 −3.69974
\(557\) −10.6460 −0.451086 −0.225543 0.974233i \(-0.572416\pi\)
−0.225543 + 0.974233i \(0.572416\pi\)
\(558\) 0 0
\(559\) 25.4164 1.07500
\(560\) −22.0344 −0.931125
\(561\) 6.86474 11.8901i 0.289829 0.501999i
\(562\) 34.9787 1.47549
\(563\) −4.88197 8.45581i −0.205750 0.356370i 0.744621 0.667487i \(-0.232630\pi\)
−0.950372 + 0.311117i \(0.899297\pi\)
\(564\) −20.5942 + 35.6702i −0.867173 + 1.50199i
\(565\) 10.9164 18.9078i 0.459257 0.795456i
\(566\) 62.8328 2.64106
\(567\) 1.35410 + 2.34537i 0.0568669 + 0.0984964i
\(568\) 5.50000 + 9.52628i 0.230775 + 0.399714i
\(569\) 5.86319 + 10.1553i 0.245798 + 0.425734i 0.962356 0.271794i \(-0.0876168\pi\)
−0.716558 + 0.697527i \(0.754284\pi\)
\(570\) 2.55834 4.43117i 0.107157 0.185601i
\(571\) 1.31105 + 2.27080i 0.0548657 + 0.0950301i 0.892154 0.451732i \(-0.149194\pi\)
−0.837288 + 0.546762i \(0.815860\pi\)
\(572\) 27.0000 46.7654i 1.12893 1.95536i
\(573\) −8.53399 −0.356513
\(574\) 3.85410 0.160867
\(575\) 0 0
\(576\) 9.73607 + 16.8634i 0.405669 + 0.702640i
\(577\) 15.0000 25.9808i 0.624458 1.08159i −0.364187 0.931326i \(-0.618653\pi\)
0.988645 0.150268i \(-0.0480135\pi\)
\(578\) 4.30902 + 7.46344i 0.179231 + 0.310438i
\(579\) −9.04982 15.6747i −0.376098 0.651420i
\(580\) 2.93159 + 5.07767i 0.121728 + 0.210839i
\(581\) 3.16228 0.131193
\(582\) −8.00886 + 13.8718i −0.331978 + 0.575003i
\(583\) 29.1246 50.4453i 1.20622 2.08923i
\(584\) −15.8508 27.4544i −0.655911 1.13607i
\(585\) 13.1105 0.542052
\(586\) 3.00000 5.19615i 0.123929 0.214651i
\(587\) −15.7326 −0.649353 −0.324676 0.945825i \(-0.605255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 69.9230 2.87868
\(591\) 0.944272 0.0388422
\(592\) −20.9037 + 36.2063i −0.859137 + 1.48807i
\(593\) 5.18034 0.212731 0.106366 0.994327i \(-0.466079\pi\)
0.106366 + 0.994327i \(0.466079\pi\)
\(594\) −25.4164 44.0225i −1.04285 1.80627i
\(595\) 4.13948 7.16978i 0.169702 0.293932i
\(596\) 32.5623 56.3996i 1.33380 2.31022i
\(597\) −20.2918 −0.830488
\(598\) −9.00000 15.5885i −0.368037 0.637459i
\(599\) −3.02786 5.24441i −0.123715 0.214281i 0.797515 0.603299i \(-0.206148\pi\)
−0.921230 + 0.389018i \(0.872814\pi\)
\(600\) 0 0
\(601\) −9.08922 + 15.7430i −0.370757 + 0.642170i −0.989682 0.143280i \(-0.954235\pi\)
0.618925 + 0.785450i \(0.287568\pi\)
\(602\) −12.6885 21.9772i −0.517145 0.895722i
\(603\) 6.70820 11.6190i 0.273179 0.473160i
\(604\) 60.7811 2.47315
\(605\) 15.6525 0.636364
\(606\) 2.55834 4.43117i 0.103925 0.180004i
\(607\) −7.56231 13.0983i −0.306945 0.531644i 0.670748 0.741685i \(-0.265973\pi\)
−0.977692 + 0.210042i \(0.932640\pi\)
\(608\) −5.42705 + 9.39993i −0.220096 + 0.381217i
\(609\) 0.236068 + 0.408882i 0.00956596 + 0.0165687i
\(610\) −40.7908 70.6518i −1.65157 2.86061i
\(611\) −12.7279 22.0454i −0.514917 0.891862i
\(612\) −40.1869 −1.62446
\(613\) −0.294445 + 0.509993i −0.0118925 + 0.0205984i −0.871910 0.489665i \(-0.837119\pi\)
0.860018 + 0.510264i \(0.170452\pi\)
\(614\) −31.5795 + 54.6973i −1.27445 + 2.20741i
\(615\) −1.43857 2.49167i −0.0580086 0.100474i
\(616\) −31.7016 −1.27729
\(617\) 3.43769 5.95426i 0.138396 0.239710i −0.788493 0.615043i \(-0.789139\pi\)
0.926890 + 0.375334i \(0.122472\pi\)
\(618\) −24.5030 −0.985655
\(619\) 25.8384 1.03853 0.519267 0.854612i \(-0.326205\pi\)
0.519267 + 0.854612i \(0.326205\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 66.6869 2.67390
\(623\) −7.67501 + 13.2935i −0.307493 + 0.532593i
\(624\) 22.5836 0.904067
\(625\) 12.5000 + 21.6506i 0.500000 + 0.866025i
\(626\) 15.0799 26.1192i 0.602715 1.04393i
\(627\) 1.85410 3.21140i 0.0740457 0.128251i
\(628\) 42.2705 1.68678
\(629\) −7.85410 13.6037i −0.313164 0.542415i
\(630\) −6.54508 11.3364i −0.260762 0.451654i
\(631\) 11.8145 + 20.4633i 0.470327 + 0.814631i 0.999424 0.0339308i \(-0.0108026\pi\)
−0.529097 + 0.848561i \(0.677469\pi\)
\(632\) 6.05446 10.4866i 0.240834 0.417136i
\(633\) −2.18508 3.78467i −0.0868491 0.150427i
\(634\) −34.3435 + 59.4846i −1.36395 + 2.36244i
\(635\) −21.2132 −0.841820
\(636\) 58.2492 2.30973
\(637\) −7.86629 + 13.6248i −0.311674 + 0.539835i
\(638\) 3.00000 + 5.19615i 0.118771 + 0.205718i
\(639\) −1.64590 + 2.85078i −0.0651107 + 0.112775i
\(640\) −1.21885 2.11111i −0.0481792 0.0834488i
\(641\) 4.24264 + 7.34847i 0.167574 + 0.290247i 0.937566 0.347806i \(-0.113073\pi\)
−0.769992 + 0.638053i \(0.779740\pi\)
\(642\) 1.68430 + 2.91730i 0.0664742 + 0.115137i
\(643\) −4.65530 −0.183587 −0.0917936 0.995778i \(-0.529260\pi\)
−0.0917936 + 0.995778i \(0.529260\pi\)
\(644\) −6.36396 + 11.0227i −0.250775 + 0.434355i
\(645\) −9.47214 + 16.4062i −0.372965 + 0.645994i
\(646\) −4.84658 8.39453i −0.190686 0.330278i
\(647\) 31.7804 1.24942 0.624708 0.780858i \(-0.285218\pi\)
0.624708 + 0.780858i \(0.285218\pi\)
\(648\) −10.1180 + 17.5249i −0.397474 + 0.688445i
\(649\) 50.6753 1.98918
\(650\) 0 0
\(651\) 0 0
\(652\) 69.9787 2.74058
\(653\) 24.6525 0.964726 0.482363 0.875971i \(-0.339779\pi\)
0.482363 + 0.875971i \(0.339779\pi\)
\(654\) −1.47797 + 2.55992i −0.0577933 + 0.100101i
\(655\) 16.5836 0.647975
\(656\) 7.25329 + 12.5631i 0.283193 + 0.490505i
\(657\) 4.74342 8.21584i 0.185058 0.320530i
\(658\) −12.7082 + 22.0113i −0.495417 + 0.858088i
\(659\) 24.8197 0.966837 0.483418 0.875389i \(-0.339395\pi\)
0.483418 + 0.875389i \(0.339395\pi\)
\(660\) 20.1246 + 34.8569i 0.783349 + 1.35680i
\(661\) −3.91641 6.78342i −0.152331 0.263844i 0.779753 0.626087i \(-0.215345\pi\)
−0.932084 + 0.362243i \(0.882011\pi\)
\(662\) −40.9577 70.9409i −1.59187 2.75720i
\(663\) −4.24264 + 7.34847i −0.164771 + 0.285391i
\(664\) 11.8145 + 20.4633i 0.458491 + 0.794130i
\(665\) 1.11803 1.93649i 0.0433555 0.0750939i
\(666\) −24.8369 −0.962408
\(667\) 1.41641 0.0548435
\(668\) 2.62210 4.54160i 0.101452 0.175720i
\(669\) 7.05573 + 12.2209i 0.272790 + 0.472487i
\(670\) −17.5623 + 30.4188i −0.678491 + 1.17518i
\(671\) −29.5623 51.2034i −1.14124 1.97669i
\(672\) −4.74342 8.21584i −0.182981 0.316933i
\(673\) −19.9903 34.6242i −0.770568 1.33466i −0.937252 0.348653i \(-0.886639\pi\)
0.166684 0.986010i \(-0.446694\pi\)
\(674\) −40.1869 −1.54794
\(675\) 0 0
\(676\) 14.8647 25.7465i 0.571721 0.990250i
\(677\) 10.6066 + 18.3712i 0.407645 + 0.706062i 0.994625 0.103540i \(-0.0330168\pi\)
−0.586981 + 0.809601i \(0.699683\pi\)
\(678\) 22.3423 0.858050
\(679\) −3.50000 + 6.06218i −0.134318 + 0.232645i
\(680\) 61.8614 2.37228
\(681\) −2.00310 −0.0767591
\(682\) 0 0
\(683\) −41.1803 −1.57572 −0.787861 0.615853i \(-0.788811\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(684\) −10.8541 −0.415017
\(685\) 2.93159 5.07767i 0.112010 0.194008i
\(686\) 34.0344 1.29944
\(687\) 1.85410 + 3.21140i 0.0707384 + 0.122523i
\(688\) 47.7587 82.7205i 1.82078 3.15369i
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) 13.4164 0.510754
\(691\) 24.2082 + 41.9298i 0.920923 + 1.59509i 0.797989 + 0.602671i \(0.205897\pi\)
0.122934 + 0.992415i \(0.460770\pi\)
\(692\) −43.6869 75.6680i −1.66073 2.87646i
\(693\) −4.74342 8.21584i −0.180187 0.312094i
\(694\) 28.2692 48.9637i 1.07308 1.85864i
\(695\) 20.0934 + 34.8028i 0.762187 + 1.32015i
\(696\) −1.76393 + 3.05522i −0.0668617 + 0.115808i
\(697\) −5.45052 −0.206453
\(698\) 15.7082 0.594564
\(699\) −5.88754 + 10.1975i −0.222687 + 0.385706i
\(700\) 0 0
\(701\) 1.82624 3.16314i 0.0689761 0.119470i −0.829475 0.558544i \(-0.811360\pi\)
0.898451 + 0.439074i \(0.144693\pi\)
\(702\) 15.7082 + 27.2074i 0.592868 + 1.02688i
\(703\) −2.12132 3.67423i −0.0800071 0.138576i
\(704\) −18.4729 31.9960i −0.696223 1.20589i
\(705\) 18.9737 0.714590
\(706\) −12.5216 + 21.6880i −0.471256 + 0.816240i
\(707\) 1.11803 1.93649i 0.0420480 0.0728293i
\(708\) 25.3376 + 43.8861i 0.952246 + 1.64934i
\(709\) −41.1884 −1.54686 −0.773432 0.633880i \(-0.781462\pi\)
−0.773432 + 0.633880i \(0.781462\pi\)
\(710\) 4.30902 7.46344i 0.161715 0.280098i
\(711\) 3.62365 0.135897
\(712\) −114.697 −4.29847
\(713\) 0 0
\(714\) 8.47214 0.317062
\(715\) −24.8754 −0.930287
\(716\) −32.2024 + 55.7761i −1.20346 + 2.08445i
\(717\) −10.5836 −0.395251
\(718\) −18.6353 32.2772i −0.695462 1.20457i
\(719\) 18.7824 32.5320i 0.700465 1.21324i −0.267839 0.963464i \(-0.586309\pi\)
0.968303 0.249777i \(-0.0803573\pi\)
\(720\) 24.6353 42.6695i 0.918102 1.59020i
\(721\) −10.7082 −0.398794
\(722\) 23.5623 + 40.8111i 0.876898 + 1.51883i
\(723\) −10.1459 17.5732i −0.377330 0.653555i
\(724\) −21.0950 36.5376i −0.783989 1.35791i
\(725\) 0 0
\(726\) 8.00886 + 13.8718i 0.297237 + 0.514829i
\(727\) 15.2082 26.3414i 0.564041 0.976948i −0.433097 0.901347i \(-0.642579\pi\)
0.997138 0.0756005i \(-0.0240874\pi\)
\(728\) 19.5927 0.726152
\(729\) 5.94427 0.220158
\(730\) −12.4184 + 21.5093i −0.459627 + 0.796097i
\(731\) 17.9443 + 31.0804i 0.663693 + 1.14955i
\(732\) 29.5623 51.2034i 1.09265 1.89253i
\(733\) 7.20820 + 12.4850i 0.266241 + 0.461143i 0.967888 0.251382i \(-0.0808849\pi\)
−0.701647 + 0.712525i \(0.747552\pi\)
\(734\) −8.71597 15.0965i −0.321712 0.557222i
\(735\) −5.86319 10.1553i −0.216267 0.374585i
\(736\) −28.4605 −1.04907
\(737\) −12.7279 + 22.0454i −0.468839 + 0.812053i
\(738\) −4.30902 + 7.46344i −0.158617 + 0.274733i
\(739\) 17.5745 + 30.4399i 0.646489 + 1.11975i 0.983956 + 0.178414i \(0.0570965\pi\)
−0.337467 + 0.941337i \(0.609570\pi\)
\(740\) 46.0501 1.69283
\(741\) −1.14590 + 1.98475i −0.0420956 + 0.0729117i
\(742\) 35.9442 1.31955
\(743\) −36.4844 −1.33848 −0.669242 0.743045i \(-0.733381\pi\)
−0.669242 + 0.743045i \(0.733381\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −24.3262 −0.890647
\(747\) −3.53553 + 6.12372i −0.129358 + 0.224055i
\(748\) 76.2492 2.78795
\(749\) 0.736068 + 1.27491i 0.0268953 + 0.0465841i
\(750\) −12.7917 + 22.1558i −0.467086 + 0.809017i
\(751\) 18.7705 32.5115i 0.684946 1.18636i −0.288508 0.957477i \(-0.593159\pi\)
0.973454 0.228883i \(-0.0735074\pi\)
\(752\) −95.6656 −3.48857
\(753\) 4.81966 + 8.34790i 0.175638 + 0.304214i
\(754\) −1.85410 3.21140i −0.0675224 0.116952i
\(755\) −13.9996 24.2480i −0.509496 0.882474i
\(756\) 11.1074 19.2385i 0.403971 0.699699i
\(757\) −4.64025 8.03715i −0.168653 0.292115i 0.769294 0.638895i \(-0.220608\pi\)
−0.937946 + 0.346780i \(0.887275\pi\)
\(758\) −9.70820 + 16.8151i −0.352618 + 0.610752i
\(759\) 9.72327 0.352932
\(760\) 16.7082 0.606070
\(761\) −20.0934 + 34.8028i −0.728386 + 1.26160i 0.229178 + 0.973384i \(0.426396\pi\)
−0.957565 + 0.288218i \(0.906937\pi\)
\(762\) −10.8541 18.7999i −0.393203 0.681047i
\(763\) −0.645898 + 1.11873i −0.0233831 + 0.0405007i
\(764\) −23.6976 41.0454i −0.857348 1.48497i
\(765\) 9.25615 + 16.0321i 0.334657 + 0.579642i
\(766\) 8.38212 + 14.5183i 0.302858 + 0.524566i
\(767\) −31.3190 −1.13086
\(768\) −6.36396 + 11.0227i −0.229640 + 0.397748i
\(769\) −27.0623 + 46.8733i −0.975892 + 1.69029i −0.298931 + 0.954275i \(0.596630\pi\)
−0.676960 + 0.736019i \(0.736703\pi\)
\(770\) 12.4184 + 21.5093i 0.447529 + 0.775143i
\(771\) −5.29290 −0.190619
\(772\) 50.2599 87.0526i 1.80889 3.13309i
\(773\) −11.1862 −0.402339 −0.201170 0.979556i \(-0.564474\pi\)
−0.201170 + 0.979556i \(0.564474\pi\)
\(774\) 56.7448 2.03965
\(775\) 0 0
\(776\) −52.3050 −1.87764
\(777\) 3.70820 0.133031
\(778\) 22.0084 38.1197i 0.789040 1.36666i
\(779\) −1.47214 −0.0527447
\(780\) −12.4377 21.5427i −0.445341 0.771353i
\(781\) 3.12287 5.40897i 0.111745 0.193548i
\(782\) 12.7082 22.0113i 0.454444 0.787121i
\(783\) −2.47214 −0.0883469
\(784\) 29.5623 + 51.2034i 1.05580 + 1.82869i
\(785\) −9.73607 16.8634i −0.347495 0.601879i
\(786\) 8.48528 + 14.6969i 0.302660 + 0.524222i
\(787\) 18.7824 32.5320i 0.669520 1.15964i −0.308519 0.951218i \(-0.599833\pi\)
0.978039 0.208424i \(-0.0668334\pi\)
\(788\) 2.62210 + 4.54160i 0.0934083 + 0.161788i
\(789\) 8.09017 14.0126i 0.288018 0.498861i
\(790\) −9.48683 −0.337526
\(791\) 9.76393 0.347165
\(792\) 35.4435 61.3899i 1.25943 2.18139i
\(793\) 18.2705 + 31.6455i 0.648805 + 1.12376i
\(794\) −19.2533 + 33.3477i −0.683274 + 1.18346i
\(795\) −13.4164 23.2379i −0.475831 0.824163i
\(796\) −56.3472 97.5961i −1.99717 3.45920i
\(797\) 6.86474 + 11.8901i 0.243161 + 0.421168i 0.961613 0.274409i \(-0.0884822\pi\)
−0.718452 + 0.695577i \(0.755149\pi\)
\(798\) 2.28825 0.0810030
\(799\) 17.9721 31.1286i 0.635808 1.10125i
\(800\) 0 0
\(801\) −17.1618 29.7252i −0.606384 1.05029i
\(802\) −1.41421 −0.0499376
\(803\) −9.00000 + 15.5885i −0.317603 + 0.550105i
\(804\) −25.4558 −0.897758
\(805\) 5.86319 0.206650
\(806\) 0 0
\(807\) −1.88854 −0.0664799
\(808\) 16.7082 0.587793
\(809\) −23.7565 + 41.1474i −0.835234 + 1.44667i 0.0586064 + 0.998281i \(0.481334\pi\)
−0.893840 + 0.448386i \(0.851999\pi\)
\(810\) 15.8541 0.557056
\(811\) 8.29180 + 14.3618i 0.291164 + 0.504311i 0.974085 0.226181i \(-0.0726240\pi\)
−0.682921 + 0.730492i \(0.739291\pi\)
\(812\) −1.31105 + 2.27080i −0.0460088 + 0.0796895i
\(813\) −8.12461 + 14.0722i −0.284943 + 0.493535i
\(814\) 47.1246 1.65172
\(815\) −16.1180 27.9173i −0.564590 0.977899i
\(816\) 15.9443 + 27.6163i 0.558161 + 0.966763i
\(817\) 4.84658 + 8.39453i 0.169560 + 0.293687i
\(818\) −39.3766 + 68.2023i −1.37677 + 2.38464i
\(819\) 2.93159 + 5.07767i 0.102438 + 0.177428i
\(820\) 7.98936 13.8380i 0.279000 0.483243i
\(821\) 23.8353 0.831858 0.415929 0.909397i \(-0.363457\pi\)
0.415929 + 0.909397i \(0.363457\pi\)
\(822\) 6.00000 0.209274
\(823\) 6.76157 11.7114i 0.235694 0.408233i −0.723780 0.690030i \(-0.757597\pi\)
0.959474 + 0.281797i \(0.0909305\pi\)
\(824\) −40.0066 69.2934i −1.39370 2.41395i
\(825\) 0 0
\(826\) 15.6353 + 27.0811i 0.544020 + 0.942270i
\(827\) 9.17734 + 15.8956i 0.319127 + 0.552745i 0.980306 0.197484i \(-0.0632769\pi\)
−0.661179 + 0.750228i \(0.729944\pi\)
\(828\) −14.2302 24.6475i −0.494535 0.856560i
\(829\) 51.0879 1.77436 0.887178 0.461427i \(-0.152662\pi\)
0.887178 + 0.461427i \(0.152662\pi\)
\(830\) 9.25615 16.0321i 0.321286 0.556483i
\(831\) 4.41641 7.64944i 0.153203 0.265356i
\(832\) 11.4169 + 19.7746i 0.395809 + 0.685561i
\(833\) −22.2148 −0.769696
\(834\) −20.5623 + 35.6150i −0.712014 + 1.23325i
\(835\) −2.41577 −0.0836010
\(836\) 20.5942 0.712266
\(837\) 0 0
\(838\) 80.1033 2.76712
\(839\) −19.4164 −0.670329 −0.335164 0.942160i \(-0.608792\pi\)
−0.335164 + 0.942160i \(0.608792\pi\)
\(840\) −7.30175 + 12.6470i −0.251934 + 0.436363i
\(841\) −28.7082 −0.989938
\(842\) −34.5795 59.8935i −1.19169 2.06407i
\(843\) 5.83883 10.1132i 0.201100 0.348315i
\(844\) 12.1353 21.0189i 0.417713 0.723500i
\(845\) −13.6950 −0.471124
\(846\) −28.4164 49.2187i −0.976976 1.69217i
\(847\) 3.50000 + 6.06218i 0.120261 + 0.208299i
\(848\) 67.6458 + 117.166i 2.32297 + 4.02350i
\(849\) 10.4884 18.1664i 0.359960 0.623470i
\(850\) 0 0
\(851\) 5.56231 9.63420i 0.190673 0.330256i
\(852\) 6.24574 0.213976
\(853\) −32.2918 −1.10565 −0.552825 0.833297i \(-0.686450\pi\)
−0.552825 + 0.833297i \(0.686450\pi\)
\(854\) 18.2422 31.5964i 0.624235 1.08121i
\(855\) 2.50000 + 4.33013i 0.0854982 + 0.148087i
\(856\) −5.50000 + 9.52628i −0.187986 + 0.325602i
\(857\) 3.00000 + 5.19615i 0.102478 + 0.177497i 0.912705 0.408619i \(-0.133990\pi\)
−0.810227 + 0.586116i \(0.800656\pi\)
\(858\) −12.7279 22.0454i −0.434524 0.752618i
\(859\) 20.8005 + 36.0276i 0.709705 + 1.22925i 0.964966 + 0.262374i \(0.0845052\pi\)
−0.255261 + 0.966872i \(0.582161\pi\)
\(860\) −105.211 −3.58765
\(861\) 0.643347 1.11431i 0.0219252 0.0379756i
\(862\) 46.9787 81.3695i 1.60010 2.77146i
\(863\) 15.5413 + 26.9183i 0.529032 + 0.916310i 0.999427 + 0.0338541i \(0.0107782\pi\)
−0.470395 + 0.882456i \(0.655889\pi\)
\(864\) 49.6737 1.68993
\(865\) −20.1246 + 34.8569i −0.684257 + 1.18517i
\(866\) −67.6458 −2.29870
\(867\) 2.87714 0.0977126
\(868\) 0 0
\(869\) −6.87539 −0.233232
\(870\) 2.76393 0.0937061
\(871\) 7.86629 13.6248i 0.266539 0.461659i
\(872\) −9.65248 −0.326874
\(873\) −7.82624 13.5554i −0.264878 0.458782i
\(874\) 3.43237 5.94504i 0.116102 0.201094i
\(875\) −5.59017 + 9.68246i −0.188982 + 0.327327i
\(876\) −18.0000 −0.608164
\(877\) 14.3541 + 24.8620i 0.484704 + 0.839531i 0.999846 0.0175736i \(-0.00559415\pi\)
−0.515142 + 0.857105i \(0.672261\pi\)
\(878\) 32.7254 + 56.6821i 1.10443 + 1.91293i
\(879\) −1.00155 1.73474i −0.0337815 0.0585113i
\(880\) −46.7421 + 80.9597i −1.57568 + 2.72915i
\(881\) −3.62365 6.27634i −0.122084 0.211455i 0.798505 0.601988i \(-0.205624\pi\)
−0.920589 + 0.390532i \(0.872291\pi\)
\(882\) −17.5623 + 30.4188i −0.591354 + 1.02425i
\(883\) −33.9411 −1.14221 −0.571105 0.820877i \(-0.693485\pi\)
−0.571105 + 0.820877i \(0.693485\pi\)
\(884\) −47.1246 −1.58497
\(885\) 11.6719 20.2163i 0.392347 0.679565i
\(886\) −7.92705 13.7301i −0.266314 0.461270i
\(887\) −12.6803 + 21.9630i −0.425764 + 0.737445i −0.996491 0.0836945i \(-0.973328\pi\)
0.570727 + 0.821140i \(0.306661\pi\)
\(888\) 13.8541 + 23.9960i 0.464913 + 0.805253i
\(889\) −4.74342 8.21584i −0.159089 0.275550i
\(890\) 44.9303 + 77.8215i 1.50607 + 2.60858i
\(891\) 11.4899 0.384927
\(892\) −39.1853 + 67.8710i −1.31202 + 2.27249i
\(893\) 4.85410 8.40755i 0.162436 0.281348i
\(894\) −15.3500 26.5870i −0.513381 0.889203i
\(895\) 29.6684 0.991705
\(896\) 0.545085 0.944115i 0.0182100 0.0315407i
\(897\) −6.00931 −0.200645
\(898\) 88.2400 2.94461
\(899\) 0 0
\(900\) 0 0
\(901\) −50.8328 −1.69349
\(902\) 8.17578 14.1609i 0.272224 0.471506i
\(903\) −8.47214 −0.281935
\(904\) 36.4787 + 63.1830i 1.21326 + 2.10143i
\(905\) −9.71752 + 16.8312i −0.323021 + 0.559489i
\(906\) 14.3262 24.8138i 0.475957 0.824382i
\(907\) 11.5410 0.383213 0.191607 0.981472i \(-0.438630\pi\)
0.191607 + 0.981472i \(0.438630\pi\)
\(908\) −5.56231 9.63420i −0.184592 0.319722i
\(909\) 2.50000 + 4.33013i 0.0829198 + 0.143621i
\(910\) −7.67501 13.2935i −0.254424 0.440675i
\(911\) 13.4594 23.3123i 0.445929 0.772372i −0.552187 0.833720i \(-0.686207\pi\)
0.998116 + 0.0613480i \(0.0195400\pi\)
\(912\) 4.30640 + 7.45890i 0.142599 + 0.246989i
\(913\) 6.70820 11.6190i 0.222009 0.384531i
\(914\) 29.6197 0.979732
\(915\) −27.2361 −0.900397
\(916\) −10.2971 + 17.8351i −0.340226 + 0.589289i
\(917\) 3.70820 + 6.42280i 0.122456 + 0.212099i
\(918\) −22.1803 + 38.4175i −0.732060 + 1.26797i
\(919\) 21.2705 + 36.8416i 0.701649 + 1.21529i 0.967887 + 0.251385i \(0.0808860\pi\)
−0.266238 + 0.963907i \(0.585781\pi\)
\(920\) 21.9053 + 37.9410i 0.722195 + 1.25088i
\(921\) 10.5428 + 18.2607i 0.347398 + 0.601712i
\(922\) 13.5231 0.445361
\(923\) −1.93004 + 3.34293i −0.0635281 + 0.110034i
\(924\) −9.00000 + 15.5885i −0.296078 + 0.512823i
\(925\) 0 0
\(926\) −10.0270 −0.329508
\(927\) 11.9721 20.7363i 0.393217 0.681071i
\(928\) −5.86319 −0.192468
\(929\) 10.6460 0.349284 0.174642 0.984632i \(-0.444123\pi\)
0.174642 + 0.984632i \(0.444123\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −65.3951 −2.14209
\(933\) 11.1317 19.2807i 0.364437 0.631223i
\(934\) −40.9787 −1.34086
\(935\) −17.5623 30.4188i −0.574349 0.994801i
\(936\) −21.9053 + 37.9410i −0.715996 + 1.24014i
\(937\) −12.1246 + 21.0004i −0.396094 + 0.686055i −0.993240 0.116078i \(-0.962968\pi\)
0.597146 + 0.802132i \(0.296301\pi\)
\(938\) −15.7082 −0.512891
\(939\) −5.03444 8.71991i −0.164293 0.284563i
\(940\) 52.6869 + 91.2564i 1.71846 + 2.97646i
\(941\) −12.7673 22.1137i −0.416203 0.720885i 0.579351 0.815078i \(-0.303306\pi\)
−0.995554 + 0.0941935i \(0.969973\pi\)
\(942\) 9.96325 17.2569i 0.324620 0.562259i
\(943\) −1.93004 3.34293i −0.0628508 0.108861i
\(944\) −58.8500 + 101.931i −1.91541 + 3.31758i
\(945\) −10.2333 −0.332891
\(946\) −107.666 −3.50051
\(947\) −20.0934 + 34.8028i −0.652949 + 1.13094i 0.329455 + 0.944171i \(0.393135\pi\)
−0.982404 + 0.186769i \(0.940198\pi\)
\(948\) −3.43769 5.95426i −0.111651 0.193385i
\(949\) 5.56231 9.63420i 0.180560 0.312739i
\(950\) 0 0
\(951\) 11.4656 + 19.8590i 0.371797 + 0.643971i
\(952\) 13.8326 + 23.9588i 0.448318 + 0.776510i
\(953\) 18.6699 0.604778 0.302389 0.953185i \(-0.402216\pi\)
0.302389 + 0.953185i \(0.402216\pi\)
\(954\) −40.1869 + 69.6057i −1.30110 + 2.25357i
\(955\) −10.9164 + 18.9078i −0.353247 + 0.611841i
\(956\) −29.3890 50.9032i −0.950508 1.64633i
\(957\) 2.00310 0.0647511
\(958\) −21.6353 + 37.4734i −0.699003 + 1.21071i
\(959\) 2.62210 0.0846719
\(960\) −17.0193 −0.549295
\(961\) 0 0
\(962\) −29.1246 −0.939015
\(963\) −3.29180 −0.106077
\(964\) 56.3472 97.5961i 1.81482 3.14336i
\(965\) −46.3050 −1.49061
\(966\) 3.00000 + 5.19615i 0.0965234 + 0.167183i
\(967\) −22.0084 + 38.1197i −0.707743 + 1.22585i 0.257949 + 0.966158i \(0.416953\pi\)
−0.965692 + 0.259689i \(0.916380\pi\)
\(968\) −26.1525 + 45.2974i −0.840572 + 1.45591i
\(969\) −3.23607 −0.103957
\(970\) 20.4894 + 35.4886i 0.657874 + 1.13947i
\(971\) −26.9443 46.6688i −0.864683 1.49767i −0.867362 0.497678i \(-0.834186\pi\)
0.00267892 0.999996i \(-0.499147\pi\)
\(972\) 39.0671 + 67.6662i 1.25308 + 2.17039i
\(973\) −8.98606 + 15.5643i −0.288080 + 0.498969i
\(974\) −36.7545 63.6607i −1.17769 2.03982i
\(975\) 0 0
\(976\) 137.325 4.39566
\(977\) −42.4853 −1.35922 −0.679612 0.733571i \(-0.737852\pi\)
−0.679612 + 0.733571i \(0.737852\pi\)
\(978\) 16.4941 28.5687i 0.527424 0.913526i
\(979\) 32.5623 + 56.3996i 1.04070 + 1.80254i
\(980\) 32.5623 56.3996i 1.04016 1.80162i
\(981\) −1.44427 2.50155i −0.0461121 0.0798684i
\(982\) 20.8005 + 36.0276i 0.663772 + 1.14969i
\(983\) −26.9582 46.6929i −0.859832 1.48927i −0.872089 0.489348i \(-0.837235\pi\)
0.0122564 0.999925i \(-0.496099\pi\)
\(984\) 9.61435 0.306494
\(985\) 1.20788 2.09211i 0.0384863 0.0666603i
\(986\) 2.61803 4.53457i 0.0833752 0.144410i
\(987\) 4.24264 + 7.34847i 0.135045 + 0.233904i
\(988\) −12.7279 −0.404929
\(989\) −12.7082 + 22.0113i −0.404097 + 0.699917i
\(990\) −55.5369 −1.76508
\(991\) −13.9358 −0.442685 −0.221343 0.975196i \(-0.571044\pi\)
−0.221343 + 0.975196i \(0.571044\pi\)
\(992\) 0 0
\(993\) −27.3475 −0.867847
\(994\) 3.85410 0.122245
\(995\) −25.9566 + 44.9582i −0.822880 + 1.42527i
\(996\) 13.4164 0.425115
\(997\) 29.3328 + 50.8059i 0.928980 + 1.60904i 0.785033 + 0.619454i \(0.212646\pi\)
0.143947 + 0.989585i \(0.454021\pi\)
\(998\) −24.0660 + 41.6835i −0.761795 + 1.31947i
\(999\) −9.70820 + 16.8151i −0.307154 + 0.532006i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.h.439.4 8
31.2 even 5 961.2.g.p.547.1 16
31.3 odd 30 961.2.g.p.448.2 16
31.4 even 5 961.2.g.i.235.1 16
31.5 even 3 961.2.a.h.1.3 4
31.6 odd 6 inner 961.2.c.h.521.3 8
31.7 even 15 961.2.g.i.338.2 16
31.8 even 5 961.2.g.i.816.2 16
31.9 even 15 961.2.d.h.374.2 8
31.10 even 15 961.2.d.j.531.1 8
31.11 odd 30 961.2.d.h.388.1 8
31.12 odd 30 961.2.g.p.844.1 16
31.13 odd 30 961.2.d.j.628.2 8
31.14 even 15 961.2.g.i.732.1 16
31.15 odd 10 961.2.g.p.846.1 16
31.16 even 5 961.2.g.p.846.2 16
31.17 odd 30 961.2.g.i.732.2 16
31.18 even 15 961.2.d.j.628.1 8
31.19 even 15 961.2.g.p.844.2 16
31.20 even 15 961.2.d.h.388.2 8
31.21 odd 30 961.2.d.j.531.2 8
31.22 odd 30 961.2.d.h.374.1 8
31.23 odd 10 961.2.g.i.816.1 16
31.24 odd 30 961.2.g.i.338.1 16
31.25 even 3 inner 961.2.c.h.521.4 8
31.26 odd 6 961.2.a.h.1.4 yes 4
31.27 odd 10 961.2.g.i.235.2 16
31.28 even 15 961.2.g.p.448.1 16
31.29 odd 10 961.2.g.p.547.2 16
31.30 odd 2 inner 961.2.c.h.439.3 8
93.5 odd 6 8649.2.a.r.1.1 4
93.26 even 6 8649.2.a.r.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.3 4 31.5 even 3
961.2.a.h.1.4 yes 4 31.26 odd 6
961.2.c.h.439.3 8 31.30 odd 2 inner
961.2.c.h.439.4 8 1.1 even 1 trivial
961.2.c.h.521.3 8 31.6 odd 6 inner
961.2.c.h.521.4 8 31.25 even 3 inner
961.2.d.h.374.1 8 31.22 odd 30
961.2.d.h.374.2 8 31.9 even 15
961.2.d.h.388.1 8 31.11 odd 30
961.2.d.h.388.2 8 31.20 even 15
961.2.d.j.531.1 8 31.10 even 15
961.2.d.j.531.2 8 31.21 odd 30
961.2.d.j.628.1 8 31.18 even 15
961.2.d.j.628.2 8 31.13 odd 30
961.2.g.i.235.1 16 31.4 even 5
961.2.g.i.235.2 16 31.27 odd 10
961.2.g.i.338.1 16 31.24 odd 30
961.2.g.i.338.2 16 31.7 even 15
961.2.g.i.732.1 16 31.14 even 15
961.2.g.i.732.2 16 31.17 odd 30
961.2.g.i.816.1 16 31.23 odd 10
961.2.g.i.816.2 16 31.8 even 5
961.2.g.p.448.1 16 31.28 even 15
961.2.g.p.448.2 16 31.3 odd 30
961.2.g.p.547.1 16 31.2 even 5
961.2.g.p.547.2 16 31.29 odd 10
961.2.g.p.844.1 16 31.12 odd 30
961.2.g.p.844.2 16 31.19 even 15
961.2.g.p.846.1 16 31.15 odd 10
961.2.g.p.846.2 16 31.16 even 5
8649.2.a.r.1.1 4 93.5 odd 6
8649.2.a.r.1.2 4 93.26 even 6