Properties

Label 961.2.c.f.439.2
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.2
Root \(0.809017 - 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.f.521.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} +(0.500000 - 0.866025i) q^{3} +0.618034 q^{4} +(0.190983 + 0.330792i) q^{5} +(0.809017 - 1.40126i) q^{6} +(-1.50000 + 2.59808i) q^{7} -2.23607 q^{8} +(1.00000 + 1.73205i) q^{9} +(0.309017 + 0.535233i) q^{10} +(2.61803 + 4.53457i) q^{11} +(0.309017 - 0.535233i) q^{12} +(0.927051 + 1.60570i) q^{13} +(-2.42705 + 4.20378i) q^{14} +0.381966 q^{15} -4.85410 q^{16} +(2.11803 - 3.66854i) q^{17} +(1.61803 + 2.80252i) q^{18} +(-2.50000 + 4.33013i) q^{19} +(0.118034 + 0.204441i) q^{20} +(1.50000 + 2.59808i) q^{21} +(4.23607 + 7.33708i) q^{22} +3.47214 q^{23} +(-1.11803 + 1.93649i) q^{24} +(2.42705 - 4.20378i) q^{25} +(1.50000 + 2.59808i) q^{26} +5.00000 q^{27} +(-0.927051 + 1.60570i) q^{28} -6.38197 q^{29} +0.618034 q^{30} -3.38197 q^{32} +5.23607 q^{33} +(3.42705 - 5.93583i) q^{34} -1.14590 q^{35} +(0.618034 + 1.07047i) q^{36} +(2.11803 - 3.66854i) q^{37} +(-4.04508 + 7.00629i) q^{38} +1.85410 q^{39} +(-0.427051 - 0.739674i) q^{40} +(1.23607 + 2.14093i) q^{41} +(2.42705 + 4.20378i) q^{42} +(1.19098 - 2.06284i) q^{43} +(1.61803 + 2.80252i) q^{44} +(-0.381966 + 0.661585i) q^{45} +5.61803 q^{46} -5.61803 q^{47} +(-2.42705 + 4.20378i) q^{48} +(-1.00000 - 1.73205i) q^{49} +(3.92705 - 6.80185i) q^{50} +(-2.11803 - 3.66854i) q^{51} +(0.572949 + 0.992377i) q^{52} +(-0.354102 - 0.613323i) q^{53} +8.09017 q^{54} +(-1.00000 + 1.73205i) q^{55} +(3.35410 - 5.80948i) q^{56} +(2.50000 + 4.33013i) q^{57} -10.3262 q^{58} +(-0.263932 + 0.457144i) q^{59} +0.236068 q^{60} +10.9443 q^{61} -6.00000 q^{63} +4.23607 q^{64} +(-0.354102 + 0.613323i) q^{65} +8.47214 q^{66} +(-0.118034 - 0.204441i) q^{67} +(1.30902 - 2.26728i) q^{68} +(1.73607 - 3.00696i) q^{69} -1.85410 q^{70} +(5.54508 + 9.60437i) q^{71} +(-2.23607 - 3.87298i) q^{72} +(-5.78115 - 10.0133i) q^{73} +(3.42705 - 5.93583i) q^{74} +(-2.42705 - 4.20378i) q^{75} +(-1.54508 + 2.67617i) q^{76} -15.7082 q^{77} +3.00000 q^{78} +(-0.927051 - 1.60570i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.00000 + 3.46410i) q^{82} +(-3.54508 - 6.14027i) q^{83} +(0.927051 + 1.60570i) q^{84} +1.61803 q^{85} +(1.92705 - 3.33775i) q^{86} +(-3.19098 + 5.52694i) q^{87} +(-5.85410 - 10.1396i) q^{88} -8.61803 q^{89} +(-0.618034 + 1.07047i) q^{90} -5.56231 q^{91} +2.14590 q^{92} -9.09017 q^{94} -1.90983 q^{95} +(-1.69098 + 2.92887i) q^{96} -18.7082 q^{97} +(-1.61803 - 2.80252i) q^{98} +(-5.23607 + 9.06914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 3 q^{5} + q^{6} - 6 q^{7} + 4 q^{9} - q^{10} + 6 q^{11} - q^{12} - 3 q^{13} - 3 q^{14} + 6 q^{15} - 6 q^{16} + 4 q^{17} + 2 q^{18} - 10 q^{19} - 4 q^{20} + 6 q^{21}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0.618034 0.309017
\(5\) 0.190983 + 0.330792i 0.0854102 + 0.147935i 0.905566 0.424206i \(-0.139447\pi\)
−0.820156 + 0.572140i \(0.806113\pi\)
\(6\) 0.809017 1.40126i 0.330280 0.572061i
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0.309017 + 0.535233i 0.0977198 + 0.169256i
\(11\) 2.61803 + 4.53457i 0.789367 + 1.36722i 0.926355 + 0.376651i \(0.122924\pi\)
−0.136988 + 0.990573i \(0.543742\pi\)
\(12\) 0.309017 0.535233i 0.0892055 0.154508i
\(13\) 0.927051 + 1.60570i 0.257118 + 0.445341i 0.965469 0.260520i \(-0.0838939\pi\)
−0.708351 + 0.705860i \(0.750561\pi\)
\(14\) −2.42705 + 4.20378i −0.648657 + 1.12351i
\(15\) 0.381966 0.0986232
\(16\) −4.85410 −1.21353
\(17\) 2.11803 3.66854i 0.513699 0.889752i −0.486175 0.873861i \(-0.661608\pi\)
0.999874 0.0158908i \(-0.00505841\pi\)
\(18\) 1.61803 + 2.80252i 0.381374 + 0.660560i
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 0.118034 + 0.204441i 0.0263932 + 0.0457144i
\(21\) 1.50000 + 2.59808i 0.327327 + 0.566947i
\(22\) 4.23607 + 7.33708i 0.903133 + 1.56427i
\(23\) 3.47214 0.723990 0.361995 0.932180i \(-0.382096\pi\)
0.361995 + 0.932180i \(0.382096\pi\)
\(24\) −1.11803 + 1.93649i −0.228218 + 0.395285i
\(25\) 2.42705 4.20378i 0.485410 0.840755i
\(26\) 1.50000 + 2.59808i 0.294174 + 0.509525i
\(27\) 5.00000 0.962250
\(28\) −0.927051 + 1.60570i −0.175196 + 0.303449i
\(29\) −6.38197 −1.18510 −0.592551 0.805533i \(-0.701879\pi\)
−0.592551 + 0.805533i \(0.701879\pi\)
\(30\) 0.618034 0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) 5.23607 0.911482
\(34\) 3.42705 5.93583i 0.587734 1.01799i
\(35\) −1.14590 −0.193692
\(36\) 0.618034 + 1.07047i 0.103006 + 0.178411i
\(37\) 2.11803 3.66854i 0.348203 0.603105i −0.637728 0.770262i \(-0.720125\pi\)
0.985930 + 0.167157i \(0.0534588\pi\)
\(38\) −4.04508 + 7.00629i −0.656199 + 1.13657i
\(39\) 1.85410 0.296894
\(40\) −0.427051 0.739674i −0.0675227 0.116953i
\(41\) 1.23607 + 2.14093i 0.193041 + 0.334357i 0.946257 0.323417i \(-0.104832\pi\)
−0.753215 + 0.657774i \(0.771498\pi\)
\(42\) 2.42705 + 4.20378i 0.374502 + 0.648657i
\(43\) 1.19098 2.06284i 0.181623 0.314581i −0.760810 0.648974i \(-0.775198\pi\)
0.942433 + 0.334394i \(0.108532\pi\)
\(44\) 1.61803 + 2.80252i 0.243928 + 0.422495i
\(45\) −0.381966 + 0.661585i −0.0569401 + 0.0986232i
\(46\) 5.61803 0.828334
\(47\) −5.61803 −0.819474 −0.409737 0.912204i \(-0.634380\pi\)
−0.409737 + 0.912204i \(0.634380\pi\)
\(48\) −2.42705 + 4.20378i −0.350315 + 0.606763i
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) 3.92705 6.80185i 0.555369 0.961927i
\(51\) −2.11803 3.66854i −0.296584 0.513699i
\(52\) 0.572949 + 0.992377i 0.0794537 + 0.137618i
\(53\) −0.354102 0.613323i −0.0486396 0.0842463i 0.840681 0.541531i \(-0.182155\pi\)
−0.889320 + 0.457285i \(0.848822\pi\)
\(54\) 8.09017 1.10093
\(55\) −1.00000 + 1.73205i −0.134840 + 0.233550i
\(56\) 3.35410 5.80948i 0.448211 0.776324i
\(57\) 2.50000 + 4.33013i 0.331133 + 0.573539i
\(58\) −10.3262 −1.35590
\(59\) −0.263932 + 0.457144i −0.0343610 + 0.0595150i −0.882695 0.469947i \(-0.844273\pi\)
0.848333 + 0.529462i \(0.177606\pi\)
\(60\) 0.236068 0.0304762
\(61\) 10.9443 1.40127 0.700635 0.713520i \(-0.252900\pi\)
0.700635 + 0.713520i \(0.252900\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) 4.23607 0.529508
\(65\) −0.354102 + 0.613323i −0.0439209 + 0.0760733i
\(66\) 8.47214 1.04285
\(67\) −0.118034 0.204441i −0.0144201 0.0249764i 0.858725 0.512436i \(-0.171257\pi\)
−0.873145 + 0.487460i \(0.837924\pi\)
\(68\) 1.30902 2.26728i 0.158742 0.274949i
\(69\) 1.73607 3.00696i 0.208998 0.361995i
\(70\) −1.85410 −0.221608
\(71\) 5.54508 + 9.60437i 0.658081 + 1.13983i 0.981112 + 0.193441i \(0.0619647\pi\)
−0.323031 + 0.946388i \(0.604702\pi\)
\(72\) −2.23607 3.87298i −0.263523 0.456435i
\(73\) −5.78115 10.0133i −0.676633 1.17196i −0.975989 0.217821i \(-0.930105\pi\)
0.299356 0.954141i \(-0.403228\pi\)
\(74\) 3.42705 5.93583i 0.398387 0.690026i
\(75\) −2.42705 4.20378i −0.280252 0.485410i
\(76\) −1.54508 + 2.67617i −0.177233 + 0.306977i
\(77\) −15.7082 −1.79012
\(78\) 3.00000 0.339683
\(79\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(80\) −0.927051 1.60570i −0.103647 0.179523i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.00000 + 3.46410i 0.220863 + 0.382546i
\(83\) −3.54508 6.14027i −0.389124 0.673982i 0.603208 0.797584i \(-0.293889\pi\)
−0.992332 + 0.123602i \(0.960555\pi\)
\(84\) 0.927051 + 1.60570i 0.101150 + 0.175196i
\(85\) 1.61803 0.175500
\(86\) 1.92705 3.33775i 0.207799 0.359919i
\(87\) −3.19098 + 5.52694i −0.342109 + 0.592551i
\(88\) −5.85410 10.1396i −0.624049 1.08089i
\(89\) −8.61803 −0.913510 −0.456755 0.889593i \(-0.650988\pi\)
−0.456755 + 0.889593i \(0.650988\pi\)
\(90\) −0.618034 + 1.07047i −0.0651465 + 0.112837i
\(91\) −5.56231 −0.583088
\(92\) 2.14590 0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) −1.90983 −0.195944
\(96\) −1.69098 + 2.92887i −0.172585 + 0.298926i
\(97\) −18.7082 −1.89953 −0.949765 0.312963i \(-0.898678\pi\)
−0.949765 + 0.312963i \(0.898678\pi\)
\(98\) −1.61803 2.80252i −0.163446 0.283097i
\(99\) −5.23607 + 9.06914i −0.526245 + 0.911482i
\(100\) 1.50000 2.59808i 0.150000 0.259808i
\(101\) 9.23607 0.919023 0.459512 0.888172i \(-0.348024\pi\)
0.459512 + 0.888172i \(0.348024\pi\)
\(102\) −3.42705 5.93583i −0.339329 0.587734i
\(103\) 3.42705 + 5.93583i 0.337677 + 0.584874i 0.983995 0.178194i \(-0.0570254\pi\)
−0.646318 + 0.763068i \(0.723692\pi\)
\(104\) −2.07295 3.59045i −0.203269 0.352073i
\(105\) −0.572949 + 0.992377i −0.0559141 + 0.0968461i
\(106\) −0.572949 0.992377i −0.0556497 0.0963882i
\(107\) 5.04508 8.73834i 0.487727 0.844768i −0.512174 0.858882i \(-0.671160\pi\)
0.999900 + 0.0141144i \(0.00449290\pi\)
\(108\) 3.09017 0.297352
\(109\) 18.4164 1.76397 0.881986 0.471276i \(-0.156206\pi\)
0.881986 + 0.471276i \(0.156206\pi\)
\(110\) −1.61803 + 2.80252i −0.154273 + 0.267210i
\(111\) −2.11803 3.66854i −0.201035 0.348203i
\(112\) 7.28115 12.6113i 0.688004 1.19166i
\(113\) −2.42705 4.20378i −0.228318 0.395458i 0.728992 0.684522i \(-0.239989\pi\)
−0.957310 + 0.289064i \(0.906656\pi\)
\(114\) 4.04508 + 7.00629i 0.378857 + 0.656199i
\(115\) 0.663119 + 1.14856i 0.0618362 + 0.107103i
\(116\) −3.94427 −0.366216
\(117\) −1.85410 + 3.21140i −0.171412 + 0.296894i
\(118\) −0.427051 + 0.739674i −0.0393132 + 0.0680925i
\(119\) 6.35410 + 11.0056i 0.582480 + 1.00888i
\(120\) −0.854102 −0.0779685
\(121\) −8.20820 + 14.2170i −0.746200 + 1.29246i
\(122\) 17.7082 1.60323
\(123\) 2.47214 0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) −9.70820 −0.864876
\(127\) −2.88197 + 4.99171i −0.255733 + 0.442943i −0.965094 0.261902i \(-0.915650\pi\)
0.709361 + 0.704845i \(0.248984\pi\)
\(128\) 13.6180 1.20368
\(129\) −1.19098 2.06284i −0.104860 0.181623i
\(130\) −0.572949 + 0.992377i −0.0502510 + 0.0870372i
\(131\) 5.54508 9.60437i 0.484476 0.839138i −0.515365 0.856971i \(-0.672344\pi\)
0.999841 + 0.0178334i \(0.00567684\pi\)
\(132\) 3.23607 0.281664
\(133\) −7.50000 12.9904i −0.650332 1.12641i
\(134\) −0.190983 0.330792i −0.0164984 0.0285761i
\(135\) 0.954915 + 1.65396i 0.0821860 + 0.142350i
\(136\) −4.73607 + 8.20311i −0.406114 + 0.703411i
\(137\) −1.23607 2.14093i −0.105604 0.182912i 0.808381 0.588660i \(-0.200344\pi\)
−0.913985 + 0.405748i \(0.867011\pi\)
\(138\) 2.80902 4.86536i 0.239119 0.414167i
\(139\) −0.854102 −0.0724440 −0.0362220 0.999344i \(-0.511532\pi\)
−0.0362220 + 0.999344i \(0.511532\pi\)
\(140\) −0.708204 −0.0598542
\(141\) −2.80902 + 4.86536i −0.236562 + 0.409737i
\(142\) 8.97214 + 15.5402i 0.752925 + 1.30410i
\(143\) −4.85410 + 8.40755i −0.405920 + 0.703075i
\(144\) −4.85410 8.40755i −0.404508 0.700629i
\(145\) −1.21885 2.11111i −0.101220 0.175318i
\(146\) −9.35410 16.2018i −0.774151 1.34087i
\(147\) −2.00000 −0.164957
\(148\) 1.30902 2.26728i 0.107601 0.186370i
\(149\) −6.01722 + 10.4221i −0.492950 + 0.853814i −0.999967 0.00812166i \(-0.997415\pi\)
0.507017 + 0.861936i \(0.330748\pi\)
\(150\) −3.92705 6.80185i −0.320642 0.555369i
\(151\) 18.5066 1.50604 0.753022 0.657995i \(-0.228595\pi\)
0.753022 + 0.657995i \(0.228595\pi\)
\(152\) 5.59017 9.68246i 0.453423 0.785351i
\(153\) 8.47214 0.684932
\(154\) −25.4164 −2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) −3.70820 −0.295947 −0.147973 0.988991i \(-0.547275\pi\)
−0.147973 + 0.988991i \(0.547275\pi\)
\(158\) 0 0
\(159\) −0.708204 −0.0561642
\(160\) −0.645898 1.11873i −0.0510627 0.0884432i
\(161\) −5.20820 + 9.02087i −0.410464 + 0.710944i
\(162\) −0.809017 + 1.40126i −0.0635624 + 0.110093i
\(163\) 0.708204 0.0554708 0.0277354 0.999615i \(-0.491170\pi\)
0.0277354 + 0.999615i \(0.491170\pi\)
\(164\) 0.763932 + 1.32317i 0.0596531 + 0.103322i
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) −5.73607 9.93516i −0.445205 0.771118i
\(167\) 2.38197 4.12569i 0.184322 0.319255i −0.759026 0.651061i \(-0.774324\pi\)
0.943348 + 0.331805i \(0.107658\pi\)
\(168\) −3.35410 5.80948i −0.258775 0.448211i
\(169\) 4.78115 8.28120i 0.367781 0.637015i
\(170\) 2.61803 0.200794
\(171\) −10.0000 −0.764719
\(172\) 0.736068 1.27491i 0.0561247 0.0972108i
\(173\) −6.04508 10.4704i −0.459599 0.796049i 0.539340 0.842088i \(-0.318674\pi\)
−0.998940 + 0.0460385i \(0.985340\pi\)
\(174\) −5.16312 + 8.94278i −0.391415 + 0.677951i
\(175\) 7.28115 + 12.6113i 0.550403 + 0.953327i
\(176\) −12.7082 22.0113i −0.957917 1.65916i
\(177\) 0.263932 + 0.457144i 0.0198383 + 0.0343610i
\(178\) −13.9443 −1.04517
\(179\) 2.39919 4.15551i 0.179324 0.310598i −0.762325 0.647194i \(-0.775942\pi\)
0.941649 + 0.336596i \(0.109276\pi\)
\(180\) −0.236068 + 0.408882i −0.0175955 + 0.0304762i
\(181\) −8.50000 14.7224i −0.631800 1.09431i −0.987184 0.159589i \(-0.948983\pi\)
0.355383 0.934721i \(-0.384350\pi\)
\(182\) −9.00000 −0.667124
\(183\) 5.47214 9.47802i 0.404512 0.700635i
\(184\) −7.76393 −0.572365
\(185\) 1.61803 0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) −3.47214 −0.253232
\(189\) −7.50000 + 12.9904i −0.545545 + 0.944911i
\(190\) −3.09017 −0.224184
\(191\) 2.45492 + 4.25204i 0.177631 + 0.307667i 0.941069 0.338215i \(-0.109823\pi\)
−0.763437 + 0.645882i \(0.776490\pi\)
\(192\) 2.11803 3.66854i 0.152856 0.264754i
\(193\) 2.30902 3.99933i 0.166207 0.287878i −0.770876 0.636985i \(-0.780181\pi\)
0.937083 + 0.349106i \(0.113515\pi\)
\(194\) −30.2705 −2.17330
\(195\) 0.354102 + 0.613323i 0.0253578 + 0.0439209i
\(196\) −0.618034 1.07047i −0.0441453 0.0764619i
\(197\) 5.20820 + 9.02087i 0.371069 + 0.642711i 0.989730 0.142947i \(-0.0456579\pi\)
−0.618661 + 0.785658i \(0.712325\pi\)
\(198\) −8.47214 + 14.6742i −0.602088 + 1.04285i
\(199\) 6.64590 + 11.5110i 0.471115 + 0.815995i 0.999454 0.0330381i \(-0.0105183\pi\)
−0.528339 + 0.849034i \(0.677185\pi\)
\(200\) −5.42705 + 9.39993i −0.383750 + 0.664675i
\(201\) −0.236068 −0.0166510
\(202\) 14.9443 1.05148
\(203\) 9.57295 16.5808i 0.671889 1.16375i
\(204\) −1.30902 2.26728i −0.0916495 0.158742i
\(205\) −0.472136 + 0.817763i −0.0329754 + 0.0571151i
\(206\) 5.54508 + 9.60437i 0.386344 + 0.669168i
\(207\) 3.47214 + 6.01392i 0.241330 + 0.417996i
\(208\) −4.50000 7.79423i −0.312019 0.540433i
\(209\) −26.1803 −1.81093
\(210\) −0.927051 + 1.60570i −0.0639726 + 0.110804i
\(211\) 4.00000 6.92820i 0.275371 0.476957i −0.694857 0.719148i \(-0.744533\pi\)
0.970229 + 0.242190i \(0.0778659\pi\)
\(212\) −0.218847 0.379054i −0.0150305 0.0260336i
\(213\) 11.0902 0.759886
\(214\) 8.16312 14.1389i 0.558019 0.966518i
\(215\) 0.909830 0.0620499
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) −11.5623 −0.781308
\(220\) −0.618034 + 1.07047i −0.0416678 + 0.0721708i
\(221\) 7.85410 0.528324
\(222\) −3.42705 5.93583i −0.230009 0.398387i
\(223\) 6.35410 11.0056i 0.425502 0.736991i −0.570965 0.820974i \(-0.693431\pi\)
0.996467 + 0.0839830i \(0.0267642\pi\)
\(224\) 5.07295 8.78661i 0.338951 0.587080i
\(225\) 9.70820 0.647214
\(226\) −3.92705 6.80185i −0.261224 0.452452i
\(227\) −10.8713 18.8297i −0.721555 1.24977i −0.960376 0.278706i \(-0.910094\pi\)
0.238821 0.971064i \(-0.423239\pi\)
\(228\) 1.54508 + 2.67617i 0.102326 + 0.177233i
\(229\) 1.38197 2.39364i 0.0913229 0.158176i −0.816745 0.576999i \(-0.804224\pi\)
0.908068 + 0.418823i \(0.137557\pi\)
\(230\) 1.07295 + 1.85840i 0.0707482 + 0.122539i
\(231\) −7.85410 + 13.6037i −0.516762 + 0.895058i
\(232\) 14.2705 0.936905
\(233\) −5.79837 −0.379864 −0.189932 0.981797i \(-0.560827\pi\)
−0.189932 + 0.981797i \(0.560827\pi\)
\(234\) −3.00000 + 5.19615i −0.196116 + 0.339683i
\(235\) −1.07295 1.85840i −0.0699915 0.121229i
\(236\) −0.163119 + 0.282530i −0.0106181 + 0.0183912i
\(237\) 0 0
\(238\) 10.2812 + 17.8075i 0.666428 + 1.15429i
\(239\) −6.70820 11.6190i −0.433918 0.751567i 0.563289 0.826260i \(-0.309536\pi\)
−0.997207 + 0.0746926i \(0.976202\pi\)
\(240\) −1.85410 −0.119682
\(241\) 8.73607 15.1313i 0.562740 0.974694i −0.434516 0.900664i \(-0.643081\pi\)
0.997256 0.0740297i \(-0.0235860\pi\)
\(242\) −13.2812 + 23.0036i −0.853745 + 1.47873i
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 6.76393 0.433016
\(245\) 0.381966 0.661585i 0.0244029 0.0422671i
\(246\) 4.00000 0.255031
\(247\) −9.27051 −0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) 6.09017 0.385176
\(251\) 8.47214 14.6742i 0.534756 0.926225i −0.464419 0.885616i \(-0.653737\pi\)
0.999175 0.0406096i \(-0.0129300\pi\)
\(252\) −3.70820 −0.233595
\(253\) 9.09017 + 15.7446i 0.571494 + 0.989857i
\(254\) −4.66312 + 8.07676i −0.292590 + 0.506781i
\(255\) 0.809017 1.40126i 0.0506626 0.0877502i
\(256\) 13.5623 0.847644
\(257\) 12.7082 + 22.0113i 0.792716 + 1.37302i 0.924279 + 0.381717i \(0.124667\pi\)
−0.131563 + 0.991308i \(0.542000\pi\)
\(258\) −1.92705 3.33775i −0.119973 0.207799i
\(259\) 6.35410 + 11.0056i 0.394825 + 0.683856i
\(260\) −0.218847 + 0.379054i −0.0135723 + 0.0235079i
\(261\) −6.38197 11.0539i −0.395034 0.684219i
\(262\) 8.97214 15.5402i 0.554300 0.960076i
\(263\) 13.7984 0.850844 0.425422 0.904995i \(-0.360126\pi\)
0.425422 + 0.904995i \(0.360126\pi\)
\(264\) −11.7082 −0.720590
\(265\) 0.135255 0.234268i 0.00830864 0.0143910i
\(266\) −12.1353 21.0189i −0.744060 1.28875i
\(267\) −4.30902 + 7.46344i −0.263708 + 0.456755i
\(268\) −0.0729490 0.126351i −0.00445607 0.00771814i
\(269\) 1.80902 + 3.13331i 0.110298 + 0.191041i 0.915890 0.401429i \(-0.131486\pi\)
−0.805593 + 0.592470i \(0.798153\pi\)
\(270\) 1.54508 + 2.67617i 0.0940309 + 0.162866i
\(271\) −10.5623 −0.641614 −0.320807 0.947145i \(-0.603954\pi\)
−0.320807 + 0.947145i \(0.603954\pi\)
\(272\) −10.2812 + 17.8075i −0.623386 + 1.07974i
\(273\) −2.78115 + 4.81710i −0.168323 + 0.291544i
\(274\) −2.00000 3.46410i −0.120824 0.209274i
\(275\) 25.4164 1.53267
\(276\) 1.07295 1.85840i 0.0645839 0.111863i
\(277\) −2.32624 −0.139770 −0.0698850 0.997555i \(-0.522263\pi\)
−0.0698850 + 0.997555i \(0.522263\pi\)
\(278\) −1.38197 −0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) −10.0344 −0.598605 −0.299302 0.954158i \(-0.596754\pi\)
−0.299302 + 0.954158i \(0.596754\pi\)
\(282\) −4.54508 + 7.87232i −0.270656 + 0.468790i
\(283\) −13.5623 −0.806195 −0.403098 0.915157i \(-0.632067\pi\)
−0.403098 + 0.915157i \(0.632067\pi\)
\(284\) 3.42705 + 5.93583i 0.203358 + 0.352226i
\(285\) −0.954915 + 1.65396i −0.0565643 + 0.0979722i
\(286\) −7.85410 + 13.6037i −0.464423 + 0.804404i
\(287\) −7.41641 −0.437777
\(288\) −3.38197 5.85774i −0.199284 0.345170i
\(289\) −0.472136 0.817763i −0.0277727 0.0481037i
\(290\) −1.97214 3.41584i −0.115808 0.200585i
\(291\) −9.35410 + 16.2018i −0.548347 + 0.949765i
\(292\) −3.57295 6.18853i −0.209091 0.362156i
\(293\) 1.88197 3.25966i 0.109946 0.190431i −0.805802 0.592185i \(-0.798266\pi\)
0.915748 + 0.401753i \(0.131599\pi\)
\(294\) −3.23607 −0.188731
\(295\) −0.201626 −0.0117391
\(296\) −4.73607 + 8.20311i −0.275278 + 0.476796i
\(297\) 13.0902 + 22.6728i 0.759569 + 1.31561i
\(298\) −9.73607 + 16.8634i −0.563995 + 0.976868i
\(299\) 3.21885 + 5.57521i 0.186151 + 0.322423i
\(300\) −1.50000 2.59808i −0.0866025 0.150000i
\(301\) 3.57295 + 6.18853i 0.205941 + 0.356701i
\(302\) 29.9443 1.72310
\(303\) 4.61803 7.99867i 0.265299 0.459512i
\(304\) 12.1353 21.0189i 0.696005 1.20552i
\(305\) 2.09017 + 3.62028i 0.119683 + 0.207297i
\(306\) 13.7082 0.783646
\(307\) 2.54508 4.40822i 0.145256 0.251590i −0.784213 0.620492i \(-0.786933\pi\)
0.929468 + 0.368902i \(0.120266\pi\)
\(308\) −9.70820 −0.553176
\(309\) 6.85410 0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) −4.14590 −0.234715
\(313\) 1.61803 2.80252i 0.0914567 0.158408i −0.816668 0.577108i \(-0.804181\pi\)
0.908124 + 0.418701i \(0.137514\pi\)
\(314\) −6.00000 −0.338600
\(315\) −1.14590 1.98475i −0.0645640 0.111828i
\(316\) 0 0
\(317\) 4.94427 8.56373i 0.277698 0.480987i −0.693114 0.720828i \(-0.743762\pi\)
0.970812 + 0.239841i \(0.0770952\pi\)
\(318\) −1.14590 −0.0642588
\(319\) −16.7082 28.9395i −0.935480 1.62030i
\(320\) 0.809017 + 1.40126i 0.0452254 + 0.0783327i
\(321\) −5.04508 8.73834i −0.281589 0.487727i
\(322\) −8.42705 + 14.5961i −0.469621 + 0.813408i
\(323\) 10.5902 + 18.3427i 0.589253 + 1.02062i
\(324\) −0.309017 + 0.535233i −0.0171676 + 0.0297352i
\(325\) 9.00000 0.499230
\(326\) 1.14590 0.0634654
\(327\) 9.20820 15.9491i 0.509215 0.881986i
\(328\) −2.76393 4.78727i −0.152613 0.264333i
\(329\) 8.42705 14.5961i 0.464598 0.804708i
\(330\) 1.61803 + 2.80252i 0.0890698 + 0.154273i
\(331\) 11.1353 + 19.2868i 0.612049 + 1.06010i 0.990895 + 0.134640i \(0.0429878\pi\)
−0.378846 + 0.925460i \(0.623679\pi\)
\(332\) −2.19098 3.79489i −0.120246 0.208272i
\(333\) 8.47214 0.464270
\(334\) 3.85410 6.67550i 0.210887 0.365267i
\(335\) 0.0450850 0.0780895i 0.00246326 0.00426648i
\(336\) −7.28115 12.6113i −0.397219 0.688004i
\(337\) −27.9787 −1.52410 −0.762049 0.647520i \(-0.775806\pi\)
−0.762049 + 0.647520i \(0.775806\pi\)
\(338\) 7.73607 13.3993i 0.420787 0.728824i
\(339\) −4.85410 −0.263639
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) −15.0000 −0.809924
\(344\) −2.66312 + 4.61266i −0.143586 + 0.248698i
\(345\) 1.32624 0.0714022
\(346\) −9.78115 16.9415i −0.525838 0.910778i
\(347\) 16.0623 27.8207i 0.862270 1.49350i −0.00746305 0.999972i \(-0.502376\pi\)
0.869733 0.493523i \(-0.164291\pi\)
\(348\) −1.97214 + 3.41584i −0.105718 + 0.183108i
\(349\) −3.29180 −0.176206 −0.0881029 0.996111i \(-0.528080\pi\)
−0.0881029 + 0.996111i \(0.528080\pi\)
\(350\) 11.7812 + 20.4056i 0.629729 + 1.09072i
\(351\) 4.63525 + 8.02850i 0.247412 + 0.428529i
\(352\) −8.85410 15.3358i −0.471925 0.817398i
\(353\) 17.3090 29.9801i 0.921266 1.59568i 0.123807 0.992306i \(-0.460490\pi\)
0.797459 0.603373i \(-0.206177\pi\)
\(354\) 0.427051 + 0.739674i 0.0226975 + 0.0393132i
\(355\) −2.11803 + 3.66854i −0.112414 + 0.194706i
\(356\) −5.32624 −0.282290
\(357\) 12.7082 0.672589
\(358\) 3.88197 6.72376i 0.205168 0.355362i
\(359\) 4.83688 + 8.37772i 0.255281 + 0.442159i 0.964972 0.262354i \(-0.0844987\pi\)
−0.709691 + 0.704513i \(0.751165\pi\)
\(360\) 0.854102 1.47935i 0.0450151 0.0779685i
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −13.7533 23.8214i −0.722857 1.25202i
\(363\) 8.20820 + 14.2170i 0.430819 + 0.746200i
\(364\) −3.43769 −0.180184
\(365\) 2.20820 3.82472i 0.115583 0.200195i
\(366\) 8.85410 15.3358i 0.462811 0.801613i
\(367\) 1.36475 + 2.36381i 0.0712391 + 0.123390i 0.899445 0.437035i \(-0.143971\pi\)
−0.828206 + 0.560425i \(0.810638\pi\)
\(368\) −16.8541 −0.878581
\(369\) −2.47214 + 4.28187i −0.128694 + 0.222905i
\(370\) 2.61803 0.136105
\(371\) 2.12461 0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) 35.8885 1.85575
\(375\) 1.88197 3.25966i 0.0971843 0.168328i
\(376\) 12.5623 0.647851
\(377\) −5.91641 10.2475i −0.304711 0.527774i
\(378\) −12.1353 + 21.0189i −0.624170 + 1.08109i
\(379\) −4.20820 + 7.28882i −0.216161 + 0.374402i −0.953631 0.300978i \(-0.902687\pi\)
0.737470 + 0.675380i \(0.236020\pi\)
\(380\) −1.18034 −0.0605502
\(381\) 2.88197 + 4.99171i 0.147648 + 0.255733i
\(382\) 3.97214 + 6.87994i 0.203232 + 0.352008i
\(383\) 5.07295 + 8.78661i 0.259216 + 0.448975i 0.966032 0.258422i \(-0.0832027\pi\)
−0.706816 + 0.707397i \(0.749869\pi\)
\(384\) 6.80902 11.7936i 0.347471 0.601838i
\(385\) −3.00000 5.19615i −0.152894 0.264820i
\(386\) 3.73607 6.47106i 0.190161 0.329368i
\(387\) 4.76393 0.242164
\(388\) −11.5623 −0.586987
\(389\) −14.5344 + 25.1744i −0.736925 + 1.27639i 0.216948 + 0.976183i \(0.430390\pi\)
−0.953873 + 0.300209i \(0.902944\pi\)
\(390\) 0.572949 + 0.992377i 0.0290124 + 0.0502510i
\(391\) 7.35410 12.7377i 0.371913 0.644172i
\(392\) 2.23607 + 3.87298i 0.112938 + 0.195615i
\(393\) −5.54508 9.60437i −0.279713 0.484476i
\(394\) 8.42705 + 14.5961i 0.424549 + 0.735340i
\(395\) 0 0
\(396\) −3.23607 + 5.60503i −0.162619 + 0.281664i
\(397\) −14.8541 + 25.7281i −0.745506 + 1.29125i 0.204452 + 0.978877i \(0.434459\pi\)
−0.949958 + 0.312378i \(0.898875\pi\)
\(398\) 10.7533 + 18.6252i 0.539014 + 0.933599i
\(399\) −15.0000 −0.750939
\(400\) −11.7812 + 20.4056i −0.589058 + 1.02028i
\(401\) 23.8328 1.19015 0.595077 0.803669i \(-0.297122\pi\)
0.595077 + 0.803669i \(0.297122\pi\)
\(402\) −0.381966 −0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) −0.381966 −0.0189800
\(406\) 15.4894 26.8284i 0.768724 1.33147i
\(407\) 22.1803 1.09944
\(408\) 4.73607 + 8.20311i 0.234470 + 0.406114i
\(409\) −8.09017 + 14.0126i −0.400033 + 0.692878i −0.993729 0.111811i \(-0.964335\pi\)
0.593696 + 0.804689i \(0.297668\pi\)
\(410\) −0.763932 + 1.32317i −0.0377279 + 0.0653467i
\(411\) −2.47214 −0.121941
\(412\) 2.11803 + 3.66854i 0.104348 + 0.180736i
\(413\) −0.791796 1.37143i −0.0389617 0.0674837i
\(414\) 5.61803 + 9.73072i 0.276111 + 0.478239i
\(415\) 1.35410 2.34537i 0.0664703 0.115130i
\(416\) −3.13525 5.43042i −0.153719 0.266248i
\(417\) −0.427051 + 0.739674i −0.0209128 + 0.0362220i
\(418\) −42.3607 −2.07193
\(419\) −4.47214 −0.218478 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(420\) −0.354102 + 0.613323i −0.0172784 + 0.0299271i
\(421\) −9.61803 16.6589i −0.468754 0.811906i 0.530608 0.847617i \(-0.321964\pi\)
−0.999362 + 0.0357112i \(0.988630\pi\)
\(422\) 6.47214 11.2101i 0.315059 0.545698i
\(423\) −5.61803 9.73072i −0.273158 0.473124i
\(424\) 0.791796 + 1.37143i 0.0384530 + 0.0666026i
\(425\) −10.2812 17.8075i −0.498709 0.863790i
\(426\) 17.9443 0.869403
\(427\) −16.4164 + 28.4341i −0.794446 + 1.37602i
\(428\) 3.11803 5.40059i 0.150716 0.261048i
\(429\) 4.85410 + 8.40755i 0.234358 + 0.405920i
\(430\) 1.47214 0.0709927
\(431\) −12.3820 + 21.4462i −0.596418 + 1.03303i 0.396927 + 0.917850i \(0.370077\pi\)
−0.993345 + 0.115177i \(0.963257\pi\)
\(432\) −24.2705 −1.16772
\(433\) 27.4164 1.31755 0.658774 0.752341i \(-0.271075\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) 11.3820 0.545097
\(437\) −8.68034 + 15.0348i −0.415237 + 0.719212i
\(438\) −18.7082 −0.893913
\(439\) 5.91641 + 10.2475i 0.282375 + 0.489087i 0.971969 0.235108i \(-0.0755445\pi\)
−0.689594 + 0.724196i \(0.742211\pi\)
\(440\) 2.23607 3.87298i 0.106600 0.184637i
\(441\) 2.00000 3.46410i 0.0952381 0.164957i
\(442\) 12.7082 0.604468
\(443\) 0.437694 + 0.758108i 0.0207955 + 0.0360188i 0.876236 0.481882i \(-0.160047\pi\)
−0.855440 + 0.517901i \(0.826713\pi\)
\(444\) −1.30902 2.26728i −0.0621232 0.107601i
\(445\) −1.64590 2.85078i −0.0780230 0.135140i
\(446\) 10.2812 17.8075i 0.486827 0.843209i
\(447\) 6.01722 + 10.4221i 0.284605 + 0.492950i
\(448\) −6.35410 + 11.0056i −0.300203 + 0.519967i
\(449\) −34.0689 −1.60781 −0.803905 0.594758i \(-0.797248\pi\)
−0.803905 + 0.594758i \(0.797248\pi\)
\(450\) 15.7082 0.740492
\(451\) −6.47214 + 11.2101i −0.304761 + 0.527862i
\(452\) −1.50000 2.59808i −0.0705541 0.122203i
\(453\) 9.25329 16.0272i 0.434757 0.753022i
\(454\) −17.5902 30.4671i −0.825548 1.42989i
\(455\) −1.06231 1.83997i −0.0498017 0.0862590i
\(456\) −5.59017 9.68246i −0.261784 0.453423i
\(457\) 26.7426 1.25097 0.625484 0.780237i \(-0.284902\pi\)
0.625484 + 0.780237i \(0.284902\pi\)
\(458\) 2.23607 3.87298i 0.104485 0.180973i
\(459\) 10.5902 18.3427i 0.494307 0.856164i
\(460\) 0.409830 + 0.709846i 0.0191084 + 0.0330968i
\(461\) −31.7426 −1.47840 −0.739201 0.673485i \(-0.764797\pi\)
−0.739201 + 0.673485i \(0.764797\pi\)
\(462\) −12.7082 + 22.0113i −0.591239 + 1.02406i
\(463\) 9.12461 0.424057 0.212028 0.977264i \(-0.431993\pi\)
0.212028 + 0.977264i \(0.431993\pi\)
\(464\) 30.9787 1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) 38.7771 1.79439 0.897195 0.441635i \(-0.145601\pi\)
0.897195 + 0.441635i \(0.145601\pi\)
\(468\) −1.14590 + 1.98475i −0.0529692 + 0.0917453i
\(469\) 0.708204 0.0327018
\(470\) −1.73607 3.00696i −0.0800788 0.138701i
\(471\) −1.85410 + 3.21140i −0.0854325 + 0.147973i
\(472\) 0.590170 1.02220i 0.0271648 0.0470508i
\(473\) 12.4721 0.573469
\(474\) 0 0
\(475\) 12.1353 + 21.0189i 0.556804 + 0.964412i
\(476\) 3.92705 + 6.80185i 0.179996 + 0.311762i
\(477\) 0.708204 1.22665i 0.0324264 0.0561642i
\(478\) −10.8541 18.7999i −0.496455 0.859885i
\(479\) −4.47214 + 7.74597i −0.204337 + 0.353922i −0.949921 0.312489i \(-0.898837\pi\)
0.745584 + 0.666411i \(0.232171\pi\)
\(480\) −1.29180 −0.0589622
\(481\) 7.85410 0.358116
\(482\) 14.1353 24.4830i 0.643843 1.11517i
\(483\) 5.20820 + 9.02087i 0.236981 + 0.410464i
\(484\) −5.07295 + 8.78661i −0.230589 + 0.399391i
\(485\) −3.57295 6.18853i −0.162239 0.281007i
\(486\) 12.9443 + 22.4201i 0.587164 + 1.01700i
\(487\) 20.9615 + 36.3064i 0.949856 + 1.64520i 0.745724 + 0.666255i \(0.232104\pi\)
0.204132 + 0.978943i \(0.434563\pi\)
\(488\) −24.4721 −1.10780
\(489\) 0.354102 0.613323i 0.0160130 0.0277354i
\(490\) 0.618034 1.07047i 0.0279199 0.0483587i
\(491\) −10.7984 18.7033i −0.487324 0.844070i 0.512570 0.858645i \(-0.328694\pi\)
−0.999894 + 0.0145759i \(0.995360\pi\)
\(492\) 1.52786 0.0688814
\(493\) −13.5172 + 23.4125i −0.608785 + 1.05445i
\(494\) −15.0000 −0.674882
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) −11.4721 −0.514079
\(499\) −5.42705 + 9.39993i −0.242948 + 0.420799i −0.961553 0.274620i \(-0.911448\pi\)
0.718605 + 0.695419i \(0.244781\pi\)
\(500\) 2.32624 0.104033
\(501\) −2.38197 4.12569i −0.106418 0.184322i
\(502\) 13.7082 23.7433i 0.611827 1.05972i
\(503\) −9.92705 + 17.1942i −0.442625 + 0.766650i −0.997883 0.0650285i \(-0.979286\pi\)
0.555258 + 0.831678i \(0.312619\pi\)
\(504\) 13.4164 0.597614
\(505\) 1.76393 + 3.05522i 0.0784939 + 0.135956i
\(506\) 14.7082 + 25.4754i 0.653859 + 1.13252i
\(507\) −4.78115 8.28120i −0.212338 0.367781i
\(508\) −1.78115 + 3.08505i −0.0790259 + 0.136877i
\(509\) 6.54508 + 11.3364i 0.290106 + 0.502478i 0.973835 0.227258i \(-0.0729762\pi\)
−0.683729 + 0.729736i \(0.739643\pi\)
\(510\) 1.30902 2.26728i 0.0579642 0.100397i
\(511\) 34.6869 1.53446
\(512\) −5.29180 −0.233867
\(513\) −12.5000 + 21.6506i −0.551888 + 0.955899i
\(514\) 20.5623 + 35.6150i 0.906964 + 1.57091i
\(515\) −1.30902 + 2.26728i −0.0576822 + 0.0999085i
\(516\) −0.736068 1.27491i −0.0324036 0.0561247i
\(517\) −14.7082 25.4754i −0.646866 1.12040i
\(518\) 10.2812 + 17.8075i 0.451728 + 0.782416i
\(519\) −12.0902 −0.530700
\(520\) 0.791796 1.37143i 0.0347226 0.0601412i
\(521\) 13.5344 23.4423i 0.592955 1.02703i −0.400877 0.916132i \(-0.631295\pi\)
0.993832 0.110896i \(-0.0353720\pi\)
\(522\) −10.3262 17.8856i −0.451967 0.782830i
\(523\) −6.12461 −0.267811 −0.133905 0.990994i \(-0.542752\pi\)
−0.133905 + 0.990994i \(0.542752\pi\)
\(524\) 3.42705 5.93583i 0.149711 0.259308i
\(525\) 14.5623 0.635551
\(526\) 22.3262 0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) −10.9443 −0.475838
\(530\) 0.218847 0.379054i 0.00950611 0.0164651i
\(531\) −1.05573 −0.0458147
\(532\) −4.63525 8.02850i −0.200964 0.348079i
\(533\) −2.29180 + 3.96951i −0.0992687 + 0.171938i
\(534\) −6.97214 + 12.0761i −0.301714 + 0.522584i
\(535\) 3.85410 0.166627
\(536\) 0.263932 + 0.457144i 0.0114001 + 0.0197456i
\(537\) −2.39919 4.15551i −0.103533 0.179324i
\(538\) 2.92705 + 5.06980i 0.126194 + 0.218575i
\(539\) 5.23607 9.06914i 0.225533 0.390635i
\(540\) 0.590170 + 1.02220i 0.0253969 + 0.0439887i
\(541\) −11.0000 + 19.0526i −0.472927 + 0.819133i −0.999520 0.0309841i \(-0.990136\pi\)
0.526593 + 0.850118i \(0.323469\pi\)
\(542\) −17.0902 −0.734086
\(543\) −17.0000 −0.729540
\(544\) −7.16312 + 12.4069i −0.307116 + 0.531941i
\(545\) 3.51722 + 6.09201i 0.150661 + 0.260953i
\(546\) −4.50000 + 7.79423i −0.192582 + 0.333562i
\(547\) 5.14590 + 8.91296i 0.220023 + 0.381091i 0.954815 0.297202i \(-0.0960535\pi\)
−0.734792 + 0.678293i \(0.762720\pi\)
\(548\) −0.763932 1.32317i −0.0326336 0.0565230i
\(549\) 10.9443 + 18.9560i 0.467090 + 0.809024i
\(550\) 41.1246 1.75356
\(551\) 15.9549 27.6347i 0.679702 1.17728i
\(552\) −3.88197 + 6.72376i −0.165227 + 0.286182i
\(553\) 0 0
\(554\) −3.76393 −0.159914
\(555\) 0.809017 1.40126i 0.0343409 0.0594801i
\(556\) −0.527864 −0.0223864
\(557\) 0.111456 0.00472255 0.00236127 0.999997i \(-0.499248\pi\)
0.00236127 + 0.999997i \(0.499248\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) 5.56231 0.235050
\(561\) 11.0902 19.2087i 0.468227 0.810994i
\(562\) −16.2361 −0.684877
\(563\) −5.78115 10.0133i −0.243647 0.422008i 0.718104 0.695936i \(-0.245010\pi\)
−0.961750 + 0.273928i \(0.911677\pi\)
\(564\) −1.73607 + 3.00696i −0.0731016 + 0.126616i
\(565\) 0.927051 1.60570i 0.0390013 0.0675523i
\(566\) −21.9443 −0.922387
\(567\) −1.50000 2.59808i −0.0629941 0.109109i
\(568\) −12.3992 21.4760i −0.520258 0.901114i
\(569\) −12.2361 21.1935i −0.512963 0.888477i −0.999887 0.0150332i \(-0.995215\pi\)
0.486924 0.873444i \(-0.338119\pi\)
\(570\) −1.54508 + 2.67617i −0.0647165 + 0.112092i
\(571\) −3.50000 6.06218i −0.146470 0.253694i 0.783450 0.621455i \(-0.213458\pi\)
−0.929921 + 0.367760i \(0.880125\pi\)
\(572\) −3.00000 + 5.19615i −0.125436 + 0.217262i
\(573\) 4.90983 0.205111
\(574\) −12.0000 −0.500870
\(575\) 8.42705 14.5961i 0.351432 0.608699i
\(576\) 4.23607 + 7.33708i 0.176503 + 0.305712i
\(577\) 3.98936 6.90977i 0.166079 0.287657i −0.770959 0.636885i \(-0.780223\pi\)
0.937038 + 0.349227i \(0.113556\pi\)
\(578\) −0.763932 1.32317i −0.0317754 0.0550366i
\(579\) −2.30902 3.99933i −0.0959595 0.166207i
\(580\) −0.753289 1.30473i −0.0312786 0.0541762i
\(581\) 21.2705 0.882449
\(582\) −15.1353 + 26.2150i −0.627377 + 1.08665i
\(583\) 1.85410 3.21140i 0.0767891 0.133003i
\(584\) 12.9271 + 22.3903i 0.534925 + 0.926518i
\(585\) −1.41641 −0.0585613
\(586\) 3.04508 5.27424i 0.125791 0.217877i
\(587\) −40.0132 −1.65152 −0.825760 0.564022i \(-0.809253\pi\)
−0.825760 + 0.564022i \(0.809253\pi\)
\(588\) −1.23607 −0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) 10.4164 0.428474
\(592\) −10.2812 + 17.8075i −0.422553 + 0.731883i
\(593\) 41.8885 1.72016 0.860078 0.510162i \(-0.170415\pi\)
0.860078 + 0.510162i \(0.170415\pi\)
\(594\) 21.1803 + 36.6854i 0.869040 + 1.50522i
\(595\) −2.42705 + 4.20378i −0.0994994 + 0.172338i
\(596\) −3.71885 + 6.44123i −0.152330 + 0.263843i
\(597\) 13.2918 0.543997
\(598\) 5.20820 + 9.02087i 0.212979 + 0.368891i
\(599\) −2.60081 4.50474i −0.106266 0.184059i 0.807989 0.589198i \(-0.200556\pi\)
−0.914255 + 0.405140i \(0.867223\pi\)
\(600\) 5.42705 + 9.39993i 0.221558 + 0.383750i
\(601\) −11.0000 + 19.0526i −0.448699 + 0.777170i −0.998302 0.0582563i \(-0.981446\pi\)
0.549602 + 0.835426i \(0.314779\pi\)
\(602\) 5.78115 + 10.0133i 0.235622 + 0.408110i
\(603\) 0.236068 0.408882i 0.00961343 0.0166510i
\(604\) 11.4377 0.465393
\(605\) −6.27051 −0.254932
\(606\) 7.47214 12.9421i 0.303535 0.525738i
\(607\) −0.708204 1.22665i −0.0287451 0.0497880i 0.851295 0.524687i \(-0.175818\pi\)
−0.880040 + 0.474899i \(0.842484\pi\)
\(608\) 8.45492 14.6443i 0.342892 0.593907i
\(609\) −9.57295 16.5808i −0.387915 0.671889i
\(610\) 3.38197 + 5.85774i 0.136932 + 0.237173i
\(611\) −5.20820 9.02087i −0.210701 0.364945i
\(612\) 5.23607 0.211656
\(613\) −21.4721 + 37.1908i −0.867251 + 1.50212i −0.00245723 + 0.999997i \(0.500782\pi\)
−0.864794 + 0.502127i \(0.832551\pi\)
\(614\) 4.11803 7.13264i 0.166190 0.287850i
\(615\) 0.472136 + 0.817763i 0.0190384 + 0.0329754i
\(616\) 35.1246 1.41521
\(617\) 4.88197 8.45581i 0.196541 0.340418i −0.750864 0.660457i \(-0.770363\pi\)
0.947404 + 0.320039i \(0.103696\pi\)
\(618\) 11.0902 0.446112
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) 12.1803 0.488387
\(623\) 12.9271 22.3903i 0.517911 0.897049i
\(624\) −9.00000 −0.360288
\(625\) −11.4164 19.7738i −0.456656 0.790952i
\(626\) 2.61803 4.53457i 0.104638 0.181238i
\(627\) −13.0902 + 22.6728i −0.522771 + 0.905466i
\(628\) −2.29180 −0.0914526
\(629\) −8.97214 15.5402i −0.357742 0.619628i
\(630\) −1.85410 3.21140i −0.0738692 0.127945i
\(631\) 21.1353 + 36.6073i 0.841381 + 1.45732i 0.888727 + 0.458436i \(0.151590\pi\)
−0.0473460 + 0.998879i \(0.515076\pi\)
\(632\) 0 0
\(633\) −4.00000 6.92820i −0.158986 0.275371i
\(634\) 8.00000 13.8564i 0.317721 0.550308i
\(635\) −2.20163 −0.0873689
\(636\) −0.437694 −0.0173557
\(637\) 1.85410 3.21140i 0.0734622 0.127240i
\(638\) −27.0344 46.8250i −1.07030 1.85382i
\(639\) −11.0902 + 19.2087i −0.438720 + 0.759886i
\(640\) 2.60081 + 4.50474i 0.102806 + 0.178065i
\(641\) 14.9549 + 25.9027i 0.590684 + 1.02309i 0.994141 + 0.108095i \(0.0344752\pi\)
−0.403457 + 0.914999i \(0.632191\pi\)
\(642\) −8.16312 14.1389i −0.322173 0.558019i
\(643\) 14.8541 0.585789 0.292894 0.956145i \(-0.405382\pi\)
0.292894 + 0.956145i \(0.405382\pi\)
\(644\) −3.21885 + 5.57521i −0.126840 + 0.219694i
\(645\) 0.454915 0.787936i 0.0179123 0.0310249i
\(646\) 17.1353 + 29.6791i 0.674178 + 1.16771i
\(647\) 5.88854 0.231503 0.115751 0.993278i \(-0.463072\pi\)
0.115751 + 0.993278i \(0.463072\pi\)
\(648\) 1.11803 1.93649i 0.0439205 0.0760726i
\(649\) −2.76393 −0.108494
\(650\) 14.5623 0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) 8.34752 0.326664 0.163332 0.986571i \(-0.447776\pi\)
0.163332 + 0.986571i \(0.447776\pi\)
\(654\) 14.8992 25.8061i 0.582604 1.00910i
\(655\) 4.23607 0.165517
\(656\) −6.00000 10.3923i −0.234261 0.405751i
\(657\) 11.5623 20.0265i 0.451089 0.781308i
\(658\) 13.6353 23.6170i 0.531558 0.920685i
\(659\) −37.6869 −1.46807 −0.734037 0.679110i \(-0.762366\pi\)
−0.734037 + 0.679110i \(0.762366\pi\)
\(660\) 0.618034 + 1.07047i 0.0240569 + 0.0416678i
\(661\) 7.19098 + 12.4551i 0.279697 + 0.484449i 0.971309 0.237820i \(-0.0764327\pi\)
−0.691613 + 0.722269i \(0.743099\pi\)
\(662\) 18.0172 + 31.2067i 0.700259 + 1.21288i
\(663\) 3.92705 6.80185i 0.152514 0.264162i
\(664\) 7.92705 + 13.7301i 0.307629 + 0.532829i
\(665\) 2.86475 4.96188i 0.111090 0.192414i
\(666\) 13.7082 0.531182
\(667\) −22.1591 −0.858002
\(668\) 1.47214 2.54981i 0.0569587 0.0986553i
\(669\) −6.35410 11.0056i −0.245664 0.425502i
\(670\) 0.0729490 0.126351i 0.00281827 0.00488138i
\(671\) 28.6525 + 49.6275i 1.10612 + 1.91585i
\(672\) −5.07295 8.78661i −0.195693 0.338951i
\(673\) −11.2082 19.4132i −0.432045 0.748323i 0.565005 0.825088i \(-0.308874\pi\)
−0.997049 + 0.0767646i \(0.975541\pi\)
\(674\) −45.2705 −1.74375
\(675\) 12.1353 21.0189i 0.467086 0.809017i
\(676\) 2.95492 5.11806i 0.113651 0.196849i
\(677\) 1.32624 + 2.29711i 0.0509715 + 0.0882852i 0.890385 0.455207i \(-0.150435\pi\)
−0.839414 + 0.543493i \(0.817102\pi\)
\(678\) −7.85410 −0.301635
\(679\) 28.0623 48.6053i 1.07693 1.86530i
\(680\) −3.61803 −0.138745
\(681\) −21.7426 −0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) −6.18034 −0.236311
\(685\) 0.472136 0.817763i 0.0180394 0.0312451i
\(686\) −24.2705 −0.926652
\(687\) −1.38197 2.39364i −0.0527253 0.0913229i
\(688\) −5.78115 + 10.0133i −0.220404 + 0.381752i
\(689\) 0.656541 1.13716i 0.0250122 0.0433224i
\(690\) 2.14590 0.0816929
\(691\) 24.9164 + 43.1565i 0.947865 + 1.64175i 0.749911 + 0.661539i \(0.230096\pi\)
0.197954 + 0.980211i \(0.436570\pi\)
\(692\) −3.73607 6.47106i −0.142024 0.245993i
\(693\) −15.7082 27.2074i −0.596705 1.03352i
\(694\) 25.9894 45.0149i 0.986542 1.70874i
\(695\) −0.163119 0.282530i −0.00618745 0.0107170i
\(696\) 7.13525 12.3586i 0.270461 0.468452i
\(697\) 10.4721 0.396660
\(698\) −5.32624 −0.201601
\(699\) −2.89919 + 5.02154i −0.109657 + 0.189932i
\(700\) 4.50000 + 7.79423i 0.170084 + 0.294594i
\(701\) 0.482779 0.836198i 0.0182343 0.0315828i −0.856764 0.515708i \(-0.827529\pi\)
0.874999 + 0.484125i \(0.160862\pi\)
\(702\) 7.50000 + 12.9904i 0.283069 + 0.490290i
\(703\) 10.5902 + 18.3427i 0.399416 + 0.691809i
\(704\) 11.0902 + 19.2087i 0.417977 + 0.723957i
\(705\) −2.14590 −0.0808192
\(706\) 28.0066 48.5088i 1.05404 1.82565i
\(707\) −13.8541 + 23.9960i −0.521037 + 0.902463i
\(708\) 0.163119 + 0.282530i 0.00613039 + 0.0106181i
\(709\) 10.8541 0.407634 0.203817 0.979009i \(-0.434665\pi\)
0.203817 + 0.979009i \(0.434665\pi\)
\(710\) −3.42705 + 5.93583i −0.128615 + 0.222768i
\(711\) 0 0
\(712\) 19.2705 0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) −3.70820 −0.138679
\(716\) 1.48278 2.56825i 0.0554141 0.0959800i
\(717\) −13.4164 −0.501045
\(718\) 7.82624 + 13.5554i 0.292073 + 0.505885i
\(719\) 21.8090 37.7743i 0.813339 1.40874i −0.0971753 0.995267i \(-0.530981\pi\)
0.910514 0.413477i \(-0.135686\pi\)
\(720\) 1.85410 3.21140i 0.0690983 0.119682i
\(721\) −20.5623 −0.765780
\(722\) −4.85410 8.40755i −0.180651 0.312897i
\(723\) −8.73607 15.1313i −0.324898 0.562740i
\(724\) −5.25329 9.09896i −0.195237 0.338160i
\(725\) −15.4894 + 26.8284i −0.575260 + 0.996380i
\(726\) 13.2812 + 23.0036i 0.492910 + 0.853745i
\(727\) −14.9164 + 25.8360i −0.553219 + 0.958203i 0.444821 + 0.895620i \(0.353267\pi\)
−0.998040 + 0.0625837i \(0.980066\pi\)
\(728\) 12.4377 0.460972
\(729\) 13.0000 0.481481
\(730\) 3.57295 6.18853i 0.132241 0.229048i
\(731\) −5.04508 8.73834i −0.186599 0.323199i
\(732\) 3.38197 5.85774i 0.125001 0.216508i
\(733\) −5.02786 8.70852i −0.185708 0.321656i 0.758107 0.652131i \(-0.226125\pi\)
−0.943815 + 0.330474i \(0.892791\pi\)
\(734\) 2.20820 + 3.82472i 0.0815063 + 0.141173i
\(735\) −0.381966 0.661585i −0.0140890 0.0244029i
\(736\) −11.7426 −0.432840
\(737\) 0.618034 1.07047i 0.0227656 0.0394311i
\(738\) −4.00000 + 6.92820i −0.147242 + 0.255031i
\(739\) −4.14590 7.18091i −0.152509 0.264154i 0.779640 0.626228i \(-0.215402\pi\)
−0.932149 + 0.362074i \(0.882069\pi\)
\(740\) 1.00000 0.0367607
\(741\) −4.63525 + 8.02850i −0.170280 + 0.294934i
\(742\) 3.43769 0.126202
\(743\) −23.5623 −0.864417 −0.432209 0.901774i \(-0.642266\pi\)
−0.432209 + 0.901774i \(0.642266\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) −51.2148 −1.87511
\(747\) 7.09017 12.2805i 0.259416 0.449321i
\(748\) 13.7082 0.501222
\(749\) 15.1353 + 26.2150i 0.553030 + 0.957876i
\(750\) 3.04508 5.27424i 0.111191 0.192588i
\(751\) −6.91641 + 11.9796i −0.252383 + 0.437141i −0.964182 0.265243i \(-0.914548\pi\)
0.711798 + 0.702384i \(0.247881\pi\)
\(752\) 27.2705 0.994453
\(753\) −8.47214 14.6742i −0.308742 0.534756i
\(754\) −9.57295 16.5808i −0.348626 0.603838i
\(755\) 3.53444 + 6.12183i 0.128632 + 0.222796i
\(756\) −4.63525 + 8.02850i −0.168583 + 0.291994i
\(757\) −1.43769 2.49016i −0.0522539 0.0905064i 0.838715 0.544570i \(-0.183307\pi\)
−0.890969 + 0.454064i \(0.849974\pi\)
\(758\) −6.80902 + 11.7936i −0.247315 + 0.428362i
\(759\) 18.1803 0.659905
\(760\) 4.27051 0.154908
\(761\) 17.2533 29.8836i 0.625431 1.08328i −0.363026 0.931779i \(-0.618256\pi\)
0.988457 0.151500i \(-0.0484103\pi\)
\(762\) 4.66312 + 8.07676i 0.168927 + 0.292590i
\(763\) −27.6246 + 47.8472i −1.00008 + 1.73219i
\(764\) 1.51722 + 2.62790i 0.0548911 + 0.0950742i
\(765\) 1.61803 + 2.80252i 0.0585001 + 0.101325i
\(766\) 8.20820 + 14.2170i 0.296574 + 0.513682i
\(767\) −0.978714 −0.0353393
\(768\) 6.78115 11.7453i 0.244694 0.423822i
\(769\) 5.62868 9.74915i 0.202975 0.351564i −0.746510 0.665374i \(-0.768272\pi\)
0.949486 + 0.313810i \(0.101606\pi\)
\(770\) −4.85410 8.40755i −0.174930 0.302987i
\(771\) 25.4164 0.915350
\(772\) 1.42705 2.47172i 0.0513607 0.0889593i
\(773\) −7.90983 −0.284497 −0.142248 0.989831i \(-0.545433\pi\)
−0.142248 + 0.989831i \(0.545433\pi\)
\(774\) 7.70820 0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) 12.7082 0.455904
\(778\) −23.5172 + 40.7330i −0.843133 + 1.46035i
\(779\) −12.3607 −0.442867
\(780\) 0.218847 + 0.379054i 0.00783598 + 0.0135723i
\(781\) −29.0344 + 50.2891i −1.03893 + 1.79949i
\(782\) 11.8992 20.6100i 0.425514 0.737012i
\(783\) −31.9098 −1.14036
\(784\) 4.85410 + 8.40755i 0.173361 + 0.300270i
\(785\) −0.708204 1.22665i −0.0252769 0.0437808i
\(786\) −8.97214 15.5402i −0.320025 0.554300i
\(787\) −22.3541 + 38.7184i −0.796838 + 1.38016i 0.124828 + 0.992178i \(0.460162\pi\)
−0.921666 + 0.387985i \(0.873171\pi\)
\(788\) 3.21885 + 5.57521i 0.114667 + 0.198609i
\(789\) 6.89919 11.9497i 0.245618 0.425422i
\(790\) 0 0
\(791\) 14.5623 0.517776
\(792\) 11.7082 20.2792i 0.416033 0.720590i
\(793\) 10.1459 + 17.5732i 0.360291 + 0.624043i
\(794\) −24.0344 + 41.6289i −0.852950 + 1.47735i
\(795\) −0.135255 0.234268i −0.00479700 0.00830864i
\(796\) 4.10739 + 7.11421i 0.145583 + 0.252156i
\(797\) −13.4721 23.3344i −0.477208 0.826548i 0.522451 0.852669i \(-0.325018\pi\)
−0.999659 + 0.0261215i \(0.991684\pi\)
\(798\) −24.2705 −0.859167
\(799\) −11.8992 + 20.6100i −0.420963 + 0.729129i
\(800\) −8.20820 + 14.2170i −0.290204 + 0.502648i
\(801\) −8.61803 14.9269i −0.304503 0.527415i
\(802\) 38.5623 1.36168
\(803\) 30.2705 52.4301i 1.06822 1.85022i
\(804\) −0.145898 −0.00514543
\(805\) −3.97871 −0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) −20.6525 −0.726552
\(809\) −15.1008 + 26.1554i −0.530916 + 0.919574i 0.468433 + 0.883499i \(0.344819\pi\)
−0.999349 + 0.0360749i \(0.988515\pi\)
\(810\) −0.618034 −0.0217155
\(811\) 14.3885 + 24.9217i 0.505250 + 0.875119i 0.999982 + 0.00607295i \(0.00193309\pi\)
−0.494731 + 0.869046i \(0.664734\pi\)
\(812\) 5.91641 10.2475i 0.207625 0.359617i
\(813\) −5.28115 + 9.14723i −0.185218 + 0.320807i
\(814\) 35.8885 1.25789
\(815\) 0.135255 + 0.234268i 0.00473777 + 0.00820606i
\(816\) 10.2812 + 17.8075i 0.359912 + 0.623386i
\(817\) 5.95492 + 10.3142i 0.208336 + 0.360849i
\(818\) −13.0902 + 22.6728i −0.457687 + 0.792737i
\(819\) −5.56231 9.63420i −0.194363 0.336646i
\(820\) −0.291796 + 0.505406i −0.0101900 + 0.0176495i
\(821\) −23.5279 −0.821128 −0.410564 0.911832i \(-0.634668\pi\)
−0.410564 + 0.911832i \(0.634668\pi\)
\(822\) −4.00000 −0.139516
\(823\) −17.0623 + 29.5528i −0.594755 + 1.03015i 0.398827 + 0.917026i \(0.369417\pi\)
−0.993581 + 0.113119i \(0.963916\pi\)
\(824\) −7.66312 13.2729i −0.266957 0.462384i
\(825\) 12.7082 22.0113i 0.442443 0.766334i
\(826\) −1.28115 2.21902i −0.0445770 0.0772097i
\(827\) −9.16312 15.8710i −0.318633 0.551888i 0.661570 0.749883i \(-0.269890\pi\)
−0.980203 + 0.197995i \(0.936557\pi\)
\(828\) 2.14590 + 3.71680i 0.0745751 + 0.129168i
\(829\) −8.29180 −0.287986 −0.143993 0.989579i \(-0.545994\pi\)
−0.143993 + 0.989579i \(0.545994\pi\)
\(830\) 2.19098 3.79489i 0.0760501 0.131723i
\(831\) −1.16312 + 2.01458i −0.0403481 + 0.0698850i
\(832\) 3.92705 + 6.80185i 0.136146 + 0.235812i
\(833\) −8.47214 −0.293542
\(834\) −0.690983 + 1.19682i −0.0239268 + 0.0414424i
\(835\) 1.81966 0.0629719
\(836\) −16.1803 −0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) −11.1803 −0.385988 −0.192994 0.981200i \(-0.561820\pi\)
−0.192994 + 0.981200i \(0.561820\pi\)
\(840\) 1.28115 2.21902i 0.0442040 0.0765635i
\(841\) 11.7295 0.404465
\(842\) −15.5623 26.9547i −0.536312 0.928920i
\(843\) −5.01722 + 8.69008i −0.172802 + 0.299302i
\(844\) 2.47214 4.28187i 0.0850944 0.147388i
\(845\) 3.65248 0.125649
\(846\) −9.09017 15.7446i −0.312526 0.541312i
\(847\) −24.6246 42.6511i −0.846112 1.46551i
\(848\) 1.71885 + 2.97713i 0.0590255 + 0.102235i
\(849\) −6.78115 + 11.7453i −0.232729 + 0.403098i
\(850\) −16.6353 28.8131i −0.570585 0.988281i
\(851\) 7.35410 12.7377i 0.252095 0.436642i
\(852\) 6.85410 0.234818
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) −26.5623 + 46.0073i −0.908943 + 1.57434i
\(855\) −1.90983 3.30792i −0.0653148 0.113129i
\(856\) −11.2812 + 19.5395i −0.385582 + 0.667847i
\(857\) −7.09017 12.2805i −0.242196 0.419495i 0.719144 0.694861i \(-0.244534\pi\)
−0.961339 + 0.275366i \(0.911201\pi\)
\(858\) 7.85410 + 13.6037i 0.268135 + 0.464423i
\(859\) −28.3541 49.1107i −0.967429 1.67564i −0.702941 0.711248i \(-0.748130\pi\)
−0.264488 0.964389i \(-0.585203\pi\)
\(860\) 0.562306 0.0191745
\(861\) −3.70820 + 6.42280i −0.126375 + 0.218888i
\(862\) −20.0344 + 34.7007i −0.682376 + 1.18191i
\(863\) −20.2533 35.0797i −0.689430 1.19413i −0.972023 0.234888i \(-0.924528\pi\)
0.282593 0.959240i \(-0.408806\pi\)
\(864\) −16.9098 −0.575284
\(865\) 2.30902 3.99933i 0.0785089 0.135981i
\(866\) 44.3607 1.50744
\(867\) −0.944272 −0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) −3.94427 −0.133723
\(871\) 0.218847 0.379054i 0.00741535 0.0128438i
\(872\) −41.1803 −1.39454
\(873\) −18.7082 32.4036i −0.633177 1.09669i
\(874\) −14.0451 + 24.3268i −0.475082 + 0.822866i
\(875\) −5.64590 + 9.77898i −0.190866 + 0.330590i
\(876\) −7.14590 −0.241438
\(877\) −14.8541 25.7281i −0.501587 0.868775i −0.999998 0.00183392i \(-0.999416\pi\)
0.498411 0.866941i \(-0.333917\pi\)
\(878\) 9.57295 + 16.5808i 0.323071 + 0.559576i
\(879\) −1.88197 3.25966i −0.0634771 0.109946i
\(880\) 4.85410 8.40755i 0.163632 0.283418i
\(881\) −14.6803 25.4271i −0.494593 0.856661i 0.505387 0.862893i \(-0.331350\pi\)
−0.999981 + 0.00623200i \(0.998016\pi\)
\(882\) 3.23607 5.60503i 0.108964 0.188731i
\(883\) −1.00000 −0.0336527 −0.0168263 0.999858i \(-0.505356\pi\)
−0.0168263 + 0.999858i \(0.505356\pi\)
\(884\) 4.85410 0.163261
\(885\) −0.100813 + 0.174613i −0.00338879 + 0.00586956i
\(886\) 0.708204 + 1.22665i 0.0237926 + 0.0412100i
\(887\) 24.0517 41.6587i 0.807576 1.39876i −0.106963 0.994263i \(-0.534112\pi\)
0.914538 0.404499i \(-0.132554\pi\)
\(888\) 4.73607 + 8.20311i 0.158932 + 0.275278i
\(889\) −8.64590 14.9751i −0.289974 0.502250i
\(890\) −2.66312 4.61266i −0.0892680 0.154617i
\(891\) −5.23607 −0.175415
\(892\) 3.92705 6.80185i 0.131487 0.227743i
\(893\) 14.0451 24.3268i 0.470001 0.814065i
\(894\) 9.73607 + 16.8634i 0.325623 + 0.563995i
\(895\) 1.83282 0.0612643
\(896\) −20.4271 + 35.3807i −0.682420 + 1.18199i
\(897\) 6.43769 0.214948
\(898\) −55.1246 −1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −3.00000 −0.0999445
\(902\) −10.4721 + 18.1383i −0.348684 + 0.603938i
\(903\) 7.14590 0.237801
\(904\) 5.42705 + 9.39993i 0.180501 + 0.312637i
\(905\) 3.24671 5.62347i 0.107924 0.186930i
\(906\) 14.9721 25.9325i 0.497416 0.861550i
\(907\) −11.9230 −0.395896 −0.197948 0.980212i \(-0.563428\pi\)
−0.197948 + 0.980212i \(0.563428\pi\)
\(908\) −6.71885 11.6374i −0.222973 0.386200i
\(909\) 9.23607 + 15.9973i 0.306341 + 0.530598i
\(910\) −1.71885 2.97713i −0.0569792 0.0986909i
\(911\) 7.09017 12.2805i 0.234908 0.406872i −0.724338 0.689445i \(-0.757855\pi\)
0.959246 + 0.282573i \(0.0911878\pi\)
\(912\) −12.1353 21.0189i −0.401838 0.696005i
\(913\) 18.5623 32.1509i 0.614323 1.06404i
\(914\) 43.2705 1.43126
\(915\) 4.18034 0.138198
\(916\) 0.854102 1.47935i 0.0282203 0.0488790i
\(917\) 16.6353 + 28.8131i 0.549345 + 0.951493i
\(918\) 17.1353 29.6791i 0.565548 0.979557i
\(919\) −25.0623 43.4092i −0.826729 1.43194i −0.900591 0.434668i \(-0.856866\pi\)
0.0738614 0.997269i \(-0.476468\pi\)
\(920\) −1.48278 2.56825i −0.0488858 0.0846727i
\(921\) −2.54508 4.40822i −0.0838634 0.145256i
\(922\) −51.3607 −1.69147
\(923\) −10.2812 + 17.8075i −0.338408 + 0.586140i
\(924\) −4.85410 + 8.40755i −0.159688 + 0.276588i
\(925\) −10.2812 17.8075i −0.338042 0.585506i
\(926\) 14.7639 0.485173
\(927\) −6.85410 + 11.8717i −0.225118 + 0.389916i
\(928\) 21.5836 0.708516
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −3.58359 −0.117384
\(933\) 3.76393 6.51932i 0.123226 0.213433i
\(934\) 62.7426 2.05300
\(935\) 4.23607 + 7.33708i 0.138534 + 0.239948i
\(936\) 4.14590 7.18091i 0.135513 0.234715i
\(937\) 22.2426 38.5254i 0.726636 1.25857i −0.231662 0.972796i \(-0.574416\pi\)
0.958297 0.285773i \(-0.0922504\pi\)
\(938\) 1.14590 0.0374149
\(939\) −1.61803 2.80252i −0.0528025 0.0914567i
\(940\) −0.663119 1.14856i −0.0216286 0.0374618i
\(941\) −27.7082 47.9920i −0.903262 1.56450i −0.823234 0.567702i \(-0.807832\pi\)
−0.0800278 0.996793i \(-0.525501\pi\)
\(942\) −3.00000 + 5.19615i −0.0977453 + 0.169300i
\(943\) 4.29180 + 7.43361i 0.139760 + 0.242072i
\(944\) 1.28115 2.21902i 0.0416980 0.0722230i
\(945\) −5.72949 −0.186380
\(946\) 20.1803 0.656119
\(947\) 18.0344 31.2366i 0.586041 1.01505i −0.408704 0.912667i \(-0.634019\pi\)
0.994745 0.102385i \(-0.0326474\pi\)
\(948\) 0 0
\(949\) 10.7188 18.5656i 0.347948 0.602664i
\(950\) 19.6353 + 34.0093i 0.637052 + 1.10341i
\(951\) −4.94427 8.56373i −0.160329 0.277698i
\(952\) −14.2082 24.6093i −0.460491 0.797593i
\(953\) −9.21478 −0.298496 −0.149248 0.988800i \(-0.547685\pi\)
−0.149248 + 0.988800i \(0.547685\pi\)
\(954\) 1.14590 1.98475i 0.0370998 0.0642588i
\(955\) −0.937694 + 1.62413i −0.0303431 + 0.0525557i
\(956\) −4.14590 7.18091i −0.134088 0.232247i
\(957\) −33.4164 −1.08020
\(958\) −7.23607 + 12.5332i −0.233787 + 0.404931i
\(959\) 7.41641 0.239488
\(960\) 1.61803 0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) 20.1803 0.650302
\(964\) 5.39919 9.35167i 0.173896 0.301197i
\(965\) 1.76393 0.0567830
\(966\) 8.42705 + 14.5961i 0.271136 + 0.469621i
\(967\) −6.17376 + 10.6933i −0.198535 + 0.343872i −0.948054 0.318111i \(-0.896952\pi\)
0.749519 + 0.661983i \(0.230285\pi\)
\(968\) 18.3541 31.7902i 0.589923 1.02178i
\(969\) 21.1803 0.680411
\(970\) −5.78115 10.0133i −0.185622 0.321506i
\(971\) 0.218847 + 0.379054i 0.00702314 + 0.0121644i 0.869516 0.493905i \(-0.164431\pi\)
−0.862492 + 0.506070i \(0.831098\pi\)
\(972\) 4.94427 + 8.56373i 0.158588 + 0.274682i
\(973\) 1.28115 2.21902i 0.0410719 0.0711386i
\(974\) 33.9164 + 58.7449i 1.08675 + 1.88231i
\(975\) 4.50000 7.79423i 0.144115 0.249615i
\(976\) −53.1246 −1.70048
\(977\) 52.0689 1.66583 0.832916 0.553400i \(-0.186670\pi\)
0.832916 + 0.553400i \(0.186670\pi\)
\(978\) 0.572949 0.992377i 0.0183209 0.0317327i
\(979\) −22.5623 39.0791i −0.721094 1.24897i
\(980\) 0.236068 0.408882i 0.00754091 0.0130612i
\(981\) 18.4164 + 31.8982i 0.587991 + 1.01843i
\(982\) −17.4721 30.2626i −0.557558 0.965719i
\(983\) 4.01722 + 6.95803i 0.128129 + 0.221927i 0.922952 0.384915i \(-0.125769\pi\)
−0.794822 + 0.606842i \(0.792436\pi\)
\(984\) −5.52786 −0.176222
\(985\) −1.98936 + 3.44567i −0.0633862 + 0.109788i
\(986\) −21.8713 + 37.8822i −0.696525 + 1.20642i
\(987\) −8.42705 14.5961i −0.268236 0.464598i
\(988\) −5.72949 −0.182279
\(989\) 4.13525 7.16247i 0.131493 0.227753i
\(990\) −6.47214 −0.205698
\(991\) 16.2705 0.516850 0.258425 0.966031i \(-0.416797\pi\)
0.258425 + 0.966031i \(0.416797\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) −53.8328 −1.70747
\(995\) −2.53851 + 4.39682i −0.0804761 + 0.139389i
\(996\) −4.38197 −0.138848
\(997\) −26.6246 46.1152i −0.843210 1.46048i −0.887167 0.461449i \(-0.847330\pi\)
0.0439568 0.999033i \(-0.486004\pi\)
\(998\) −8.78115 + 15.2094i −0.277963 + 0.481445i
\(999\) 10.5902 18.3427i 0.335058 0.580338i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.f.439.2 4
31.2 even 5 961.2.g.f.547.1 8
31.3 odd 30 961.2.g.g.448.1 8
31.4 even 5 961.2.g.b.235.1 8
31.5 even 3 961.2.a.d.1.2 2
31.6 odd 6 961.2.c.d.521.2 4
31.7 even 15 961.2.g.b.338.1 8
31.8 even 5 961.2.g.b.816.1 8
31.9 even 15 31.2.d.a.2.1 4
31.10 even 15 961.2.d.f.531.1 4
31.11 odd 30 961.2.d.b.388.1 4
31.12 odd 30 961.2.g.g.844.1 8
31.13 odd 30 961.2.d.e.628.1 4
31.14 even 15 961.2.g.b.732.1 8
31.15 odd 10 961.2.g.g.846.1 8
31.16 even 5 961.2.g.f.846.1 8
31.17 odd 30 961.2.g.c.732.1 8
31.18 even 15 961.2.d.f.628.1 4
31.19 even 15 961.2.g.f.844.1 8
31.20 even 15 31.2.d.a.16.1 yes 4
31.21 odd 30 961.2.d.e.531.1 4
31.22 odd 30 961.2.d.b.374.1 4
31.23 odd 10 961.2.g.c.816.1 8
31.24 odd 30 961.2.g.c.338.1 8
31.25 even 3 inner 961.2.c.f.521.2 4
31.26 odd 6 961.2.a.e.1.2 2
31.27 odd 10 961.2.g.c.235.1 8
31.28 even 15 961.2.g.f.448.1 8
31.29 odd 10 961.2.g.g.547.1 8
31.30 odd 2 961.2.c.d.439.2 4
93.5 odd 6 8649.2.a.g.1.1 2
93.20 odd 30 279.2.i.a.109.1 4
93.26 even 6 8649.2.a.f.1.1 2
93.71 odd 30 279.2.i.a.64.1 4
124.51 odd 30 496.2.n.b.481.1 4
124.71 odd 30 496.2.n.b.33.1 4
155.9 even 30 775.2.k.c.126.1 4
155.82 odd 60 775.2.bf.a.574.1 8
155.102 odd 60 775.2.bf.a.374.2 8
155.113 odd 60 775.2.bf.a.574.2 8
155.133 odd 60 775.2.bf.a.374.1 8
155.144 even 30 775.2.k.c.326.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.9 even 15
31.2.d.a.16.1 yes 4 31.20 even 15
279.2.i.a.64.1 4 93.71 odd 30
279.2.i.a.109.1 4 93.20 odd 30
496.2.n.b.33.1 4 124.71 odd 30
496.2.n.b.481.1 4 124.51 odd 30
775.2.k.c.126.1 4 155.9 even 30
775.2.k.c.326.1 4 155.144 even 30
775.2.bf.a.374.1 8 155.133 odd 60
775.2.bf.a.374.2 8 155.102 odd 60
775.2.bf.a.574.1 8 155.82 odd 60
775.2.bf.a.574.2 8 155.113 odd 60
961.2.a.d.1.2 2 31.5 even 3
961.2.a.e.1.2 2 31.26 odd 6
961.2.c.d.439.2 4 31.30 odd 2
961.2.c.d.521.2 4 31.6 odd 6
961.2.c.f.439.2 4 1.1 even 1 trivial
961.2.c.f.521.2 4 31.25 even 3 inner
961.2.d.b.374.1 4 31.22 odd 30
961.2.d.b.388.1 4 31.11 odd 30
961.2.d.e.531.1 4 31.21 odd 30
961.2.d.e.628.1 4 31.13 odd 30
961.2.d.f.531.1 4 31.10 even 15
961.2.d.f.628.1 4 31.18 even 15
961.2.g.b.235.1 8 31.4 even 5
961.2.g.b.338.1 8 31.7 even 15
961.2.g.b.732.1 8 31.14 even 15
961.2.g.b.816.1 8 31.8 even 5
961.2.g.c.235.1 8 31.27 odd 10
961.2.g.c.338.1 8 31.24 odd 30
961.2.g.c.732.1 8 31.17 odd 30
961.2.g.c.816.1 8 31.23 odd 10
961.2.g.f.448.1 8 31.28 even 15
961.2.g.f.547.1 8 31.2 even 5
961.2.g.f.844.1 8 31.19 even 15
961.2.g.f.846.1 8 31.16 even 5
961.2.g.g.448.1 8 31.3 odd 30
961.2.g.g.547.1 8 31.29 odd 10
961.2.g.g.844.1 8 31.12 odd 30
961.2.g.g.846.1 8 31.15 odd 10
8649.2.a.f.1.1 2 93.26 even 6
8649.2.a.g.1.1 2 93.5 odd 6