Properties

Label 961.2.c.d.521.1
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-2,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.1
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.d.439.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} +(-0.500000 - 0.866025i) q^{3} -1.61803 q^{4} +(1.30902 - 2.26728i) q^{5} +(0.309017 + 0.535233i) q^{6} +(-1.50000 - 2.59808i) q^{7} +2.23607 q^{8} +(1.00000 - 1.73205i) q^{9} +(-0.809017 + 1.40126i) q^{10} +(-0.381966 + 0.661585i) q^{11} +(0.809017 + 1.40126i) q^{12} +(2.42705 - 4.20378i) q^{13} +(0.927051 + 1.60570i) q^{14} -2.61803 q^{15} +1.85410 q^{16} +(0.118034 + 0.204441i) q^{17} +(-0.618034 + 1.07047i) q^{18} +(-2.50000 - 4.33013i) q^{19} +(-2.11803 + 3.66854i) q^{20} +(-1.50000 + 2.59808i) q^{21} +(0.236068 - 0.408882i) q^{22} +5.47214 q^{23} +(-1.11803 - 1.93649i) q^{24} +(-0.927051 - 1.60570i) q^{25} +(-1.50000 + 2.59808i) q^{26} -5.00000 q^{27} +(2.42705 + 4.20378i) q^{28} +8.61803 q^{29} +1.61803 q^{30} -5.61803 q^{32} +0.763932 q^{33} +(-0.0729490 - 0.126351i) q^{34} -7.85410 q^{35} +(-1.61803 + 2.80252i) q^{36} +(0.118034 + 0.204441i) q^{37} +(1.54508 + 2.67617i) q^{38} -4.85410 q^{39} +(2.92705 - 5.06980i) q^{40} +(-3.23607 + 5.60503i) q^{41} +(0.927051 - 1.60570i) q^{42} +(-2.30902 - 3.99933i) q^{43} +(0.618034 - 1.07047i) q^{44} +(-2.61803 - 4.53457i) q^{45} -3.38197 q^{46} -3.38197 q^{47} +(-0.927051 - 1.60570i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(0.572949 + 0.992377i) q^{50} +(0.118034 - 0.204441i) q^{51} +(-3.92705 + 6.80185i) q^{52} +(-6.35410 + 11.0056i) q^{53} +3.09017 q^{54} +(1.00000 + 1.73205i) q^{55} +(-3.35410 - 5.80948i) q^{56} +(-2.50000 + 4.33013i) q^{57} -5.32624 q^{58} +(-4.73607 - 8.20311i) q^{59} +4.23607 q^{60} +6.94427 q^{61} -6.00000 q^{63} -0.236068 q^{64} +(-6.35410 - 11.0056i) q^{65} -0.472136 q^{66} +(2.11803 - 3.66854i) q^{67} +(-0.190983 - 0.330792i) q^{68} +(-2.73607 - 4.73901i) q^{69} +4.85410 q^{70} +(-0.0450850 + 0.0780895i) q^{71} +(2.23607 - 3.87298i) q^{72} +(-4.28115 + 7.41517i) q^{73} +(-0.0729490 - 0.126351i) q^{74} +(-0.927051 + 1.60570i) q^{75} +(4.04508 + 7.00629i) q^{76} +2.29180 q^{77} +3.00000 q^{78} +(2.42705 - 4.20378i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.00000 - 3.46410i) q^{82} +(-2.04508 + 3.54219i) q^{83} +(2.42705 - 4.20378i) q^{84} +0.618034 q^{85} +(1.42705 + 2.47172i) q^{86} +(-4.30902 - 7.46344i) q^{87} +(-0.854102 + 1.47935i) q^{88} +6.38197 q^{89} +(1.61803 + 2.80252i) q^{90} -14.5623 q^{91} -8.85410 q^{92} +2.09017 q^{94} -13.0902 q^{95} +(2.80902 + 4.86536i) q^{96} -5.29180 q^{97} +(0.618034 - 1.07047i) q^{98} +(0.763932 + 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 3 q^{5} - q^{6} - 6 q^{7} + 4 q^{9} - q^{10} - 6 q^{11} + q^{12} + 3 q^{13} - 3 q^{14} - 6 q^{15} - 6 q^{16} - 4 q^{17} + 2 q^{18} - 10 q^{19} - 4 q^{20} - 6 q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) −1.61803 −0.809017
\(5\) 1.30902 2.26728i 0.585410 1.01396i −0.409414 0.912349i \(-0.634267\pi\)
0.994824 0.101611i \(-0.0323999\pi\)
\(6\) 0.309017 + 0.535233i 0.126156 + 0.218508i
\(7\) −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i \(-0.974791\pi\)
0.429919 0.902867i \(-0.358542\pi\)
\(8\) 2.23607 0.790569
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) −0.809017 + 1.40126i −0.255834 + 0.443117i
\(11\) −0.381966 + 0.661585i −0.115167 + 0.199475i −0.917847 0.396935i \(-0.870074\pi\)
0.802679 + 0.596411i \(0.203407\pi\)
\(12\) 0.809017 + 1.40126i 0.233543 + 0.404508i
\(13\) 2.42705 4.20378i 0.673143 1.16592i −0.303865 0.952715i \(-0.598277\pi\)
0.977008 0.213203i \(-0.0683894\pi\)
\(14\) 0.927051 + 1.60570i 0.247765 + 0.429141i
\(15\) −2.61803 −0.675973
\(16\) 1.85410 0.463525
\(17\) 0.118034 + 0.204441i 0.0286274 + 0.0495842i 0.879984 0.475003i \(-0.157553\pi\)
−0.851357 + 0.524587i \(0.824220\pi\)
\(18\) −0.618034 + 1.07047i −0.145672 + 0.252311i
\(19\) −2.50000 4.33013i −0.573539 0.993399i −0.996199 0.0871106i \(-0.972237\pi\)
0.422659 0.906289i \(-0.361097\pi\)
\(20\) −2.11803 + 3.66854i −0.473607 + 0.820311i
\(21\) −1.50000 + 2.59808i −0.327327 + 0.566947i
\(22\) 0.236068 0.408882i 0.0503299 0.0871739i
\(23\) 5.47214 1.14102 0.570510 0.821291i \(-0.306746\pi\)
0.570510 + 0.821291i \(0.306746\pi\)
\(24\) −1.11803 1.93649i −0.228218 0.395285i
\(25\) −0.927051 1.60570i −0.185410 0.321140i
\(26\) −1.50000 + 2.59808i −0.294174 + 0.509525i
\(27\) −5.00000 −0.962250
\(28\) 2.42705 + 4.20378i 0.458670 + 0.794439i
\(29\) 8.61803 1.60033 0.800164 0.599781i \(-0.204746\pi\)
0.800164 + 0.599781i \(0.204746\pi\)
\(30\) 1.61803 0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 0.763932 0.132983
\(34\) −0.0729490 0.126351i −0.0125107 0.0216691i
\(35\) −7.85410 −1.32759
\(36\) −1.61803 + 2.80252i −0.269672 + 0.467086i
\(37\) 0.118034 + 0.204441i 0.0194047 + 0.0336099i 0.875565 0.483101i \(-0.160490\pi\)
−0.856160 + 0.516711i \(0.827156\pi\)
\(38\) 1.54508 + 2.67617i 0.250646 + 0.434131i
\(39\) −4.85410 −0.777278
\(40\) 2.92705 5.06980i 0.462807 0.801606i
\(41\) −3.23607 + 5.60503i −0.505389 + 0.875359i 0.494592 + 0.869125i \(0.335318\pi\)
−0.999981 + 0.00623380i \(0.998016\pi\)
\(42\) 0.927051 1.60570i 0.143047 0.247765i
\(43\) −2.30902 3.99933i −0.352122 0.609893i 0.634499 0.772924i \(-0.281206\pi\)
−0.986621 + 0.163031i \(0.947873\pi\)
\(44\) 0.618034 1.07047i 0.0931721 0.161379i
\(45\) −2.61803 4.53457i −0.390273 0.675973i
\(46\) −3.38197 −0.498644
\(47\) −3.38197 −0.493310 −0.246655 0.969103i \(-0.579332\pi\)
−0.246655 + 0.969103i \(0.579332\pi\)
\(48\) −0.927051 1.60570i −0.133808 0.231763i
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 0.572949 + 0.992377i 0.0810272 + 0.140343i
\(51\) 0.118034 0.204441i 0.0165281 0.0286274i
\(52\) −3.92705 + 6.80185i −0.544584 + 0.943247i
\(53\) −6.35410 + 11.0056i −0.872803 + 1.51174i −0.0137182 + 0.999906i \(0.504367\pi\)
−0.859085 + 0.511833i \(0.828967\pi\)
\(54\) 3.09017 0.420519
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) −3.35410 5.80948i −0.448211 0.776324i
\(57\) −2.50000 + 4.33013i −0.331133 + 0.573539i
\(58\) −5.32624 −0.699369
\(59\) −4.73607 8.20311i −0.616584 1.06795i −0.990104 0.140332i \(-0.955183\pi\)
0.373521 0.927622i \(-0.378150\pi\)
\(60\) 4.23607 0.546874
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −0.236068 −0.0295085
\(65\) −6.35410 11.0056i −0.788129 1.36508i
\(66\) −0.472136 −0.0581159
\(67\) 2.11803 3.66854i 0.258759 0.448184i −0.707151 0.707063i \(-0.750020\pi\)
0.965910 + 0.258879i \(0.0833531\pi\)
\(68\) −0.190983 0.330792i −0.0231601 0.0401145i
\(69\) −2.73607 4.73901i −0.329384 0.570510i
\(70\) 4.85410 0.580176
\(71\) −0.0450850 + 0.0780895i −0.00535060 + 0.00926751i −0.868688 0.495359i \(-0.835036\pi\)
0.863338 + 0.504627i \(0.168370\pi\)
\(72\) 2.23607 3.87298i 0.263523 0.456435i
\(73\) −4.28115 + 7.41517i −0.501071 + 0.867881i 0.498928 + 0.866643i \(0.333727\pi\)
−0.999999 + 0.00123719i \(0.999606\pi\)
\(74\) −0.0729490 0.126351i −0.00848015 0.0146881i
\(75\) −0.927051 + 1.60570i −0.107047 + 0.185410i
\(76\) 4.04508 + 7.00629i 0.464003 + 0.803677i
\(77\) 2.29180 0.261174
\(78\) 3.00000 0.339683
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 2.42705 4.20378i 0.271353 0.469996i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.00000 3.46410i 0.220863 0.382546i
\(83\) −2.04508 + 3.54219i −0.224477 + 0.388806i −0.956162 0.292837i \(-0.905401\pi\)
0.731685 + 0.681643i \(0.238734\pi\)
\(84\) 2.42705 4.20378i 0.264813 0.458670i
\(85\) 0.618034 0.0670352
\(86\) 1.42705 + 2.47172i 0.153883 + 0.266533i
\(87\) −4.30902 7.46344i −0.461975 0.800164i
\(88\) −0.854102 + 1.47935i −0.0910476 + 0.157699i
\(89\) 6.38197 0.676487 0.338244 0.941059i \(-0.390167\pi\)
0.338244 + 0.941059i \(0.390167\pi\)
\(90\) 1.61803 + 2.80252i 0.170556 + 0.295411i
\(91\) −14.5623 −1.52654
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) −13.0902 −1.34302
\(96\) 2.80902 + 4.86536i 0.286694 + 0.496569i
\(97\) −5.29180 −0.537300 −0.268650 0.963238i \(-0.586578\pi\)
−0.268650 + 0.963238i \(0.586578\pi\)
\(98\) 0.618034 1.07047i 0.0624309 0.108133i
\(99\) 0.763932 + 1.32317i 0.0767781 + 0.132983i
\(100\) 1.50000 + 2.59808i 0.150000 + 0.259808i
\(101\) 4.76393 0.474029 0.237014 0.971506i \(-0.423831\pi\)
0.237014 + 0.971506i \(0.423831\pi\)
\(102\) −0.0729490 + 0.126351i −0.00722303 + 0.0125107i
\(103\) 0.0729490 0.126351i 0.00718788 0.0124498i −0.862409 0.506212i \(-0.831045\pi\)
0.869597 + 0.493762i \(0.164379\pi\)
\(104\) 5.42705 9.39993i 0.532166 0.921739i
\(105\) 3.92705 + 6.80185i 0.383241 + 0.663793i
\(106\) 3.92705 6.80185i 0.381429 0.660654i
\(107\) −0.545085 0.944115i −0.0526954 0.0912710i 0.838475 0.544941i \(-0.183448\pi\)
−0.891170 + 0.453670i \(0.850115\pi\)
\(108\) 8.09017 0.778477
\(109\) −8.41641 −0.806146 −0.403073 0.915168i \(-0.632058\pi\)
−0.403073 + 0.915168i \(0.632058\pi\)
\(110\) −0.618034 1.07047i −0.0589272 0.102065i
\(111\) 0.118034 0.204441i 0.0112033 0.0194047i
\(112\) −2.78115 4.81710i −0.262794 0.455173i
\(113\) 0.927051 1.60570i 0.0872096 0.151051i −0.819121 0.573621i \(-0.805538\pi\)
0.906331 + 0.422569i \(0.138872\pi\)
\(114\) 1.54508 2.67617i 0.144710 0.250646i
\(115\) 7.16312 12.4069i 0.667964 1.15695i
\(116\) −13.9443 −1.29469
\(117\) −4.85410 8.40755i −0.448762 0.777278i
\(118\) 2.92705 + 5.06980i 0.269457 + 0.466713i
\(119\) 0.354102 0.613323i 0.0324605 0.0562232i
\(120\) −5.85410 −0.534404
\(121\) 5.20820 + 9.02087i 0.473473 + 0.820079i
\(122\) −4.29180 −0.388561
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 3.70820 0.330353
\(127\) 5.11803 + 8.86469i 0.454152 + 0.786614i 0.998639 0.0521549i \(-0.0166089\pi\)
−0.544487 + 0.838769i \(0.683276\pi\)
\(128\) 11.3820 1.00603
\(129\) −2.30902 + 3.99933i −0.203298 + 0.352122i
\(130\) 3.92705 + 6.80185i 0.344425 + 0.596562i
\(131\) −0.0450850 0.0780895i −0.00393909 0.00682271i 0.864049 0.503407i \(-0.167921\pi\)
−0.867988 + 0.496585i \(0.834587\pi\)
\(132\) −1.23607 −0.107586
\(133\) −7.50000 + 12.9904i −0.650332 + 1.12641i
\(134\) −1.30902 + 2.26728i −0.113082 + 0.195864i
\(135\) −6.54508 + 11.3364i −0.563311 + 0.975684i
\(136\) 0.263932 + 0.457144i 0.0226320 + 0.0391997i
\(137\) −3.23607 + 5.60503i −0.276476 + 0.478870i −0.970506 0.241075i \(-0.922500\pi\)
0.694030 + 0.719946i \(0.255833\pi\)
\(138\) 1.69098 + 2.92887i 0.143946 + 0.249322i
\(139\) −5.85410 −0.496538 −0.248269 0.968691i \(-0.579862\pi\)
−0.248269 + 0.968691i \(0.579862\pi\)
\(140\) 12.7082 1.07404
\(141\) 1.69098 + 2.92887i 0.142406 + 0.246655i
\(142\) 0.0278640 0.0482619i 0.00233830 0.00405005i
\(143\) 1.85410 + 3.21140i 0.155048 + 0.268551i
\(144\) 1.85410 3.21140i 0.154508 0.267617i
\(145\) 11.2812 19.5395i 0.936849 1.62267i
\(146\) 2.64590 4.58283i 0.218976 0.379278i
\(147\) 2.00000 0.164957
\(148\) −0.190983 0.330792i −0.0156987 0.0271910i
\(149\) 8.51722 + 14.7523i 0.697758 + 1.20855i 0.969242 + 0.246109i \(0.0791522\pi\)
−0.271484 + 0.962443i \(0.587514\pi\)
\(150\) 0.572949 0.992377i 0.0467811 0.0810272i
\(151\) 19.5066 1.58742 0.793711 0.608295i \(-0.208146\pi\)
0.793711 + 0.608295i \(0.208146\pi\)
\(152\) −5.59017 9.68246i −0.453423 0.785351i
\(153\) 0.472136 0.0381699
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 9.70820 0.774799 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(158\) 0 0
\(159\) 12.7082 1.00783
\(160\) −7.35410 + 12.7377i −0.581393 + 1.00700i
\(161\) −8.20820 14.2170i −0.646897 1.12046i
\(162\) 0.309017 + 0.535233i 0.0242787 + 0.0420519i
\(163\) −12.7082 −0.995383 −0.497692 0.867354i \(-0.665819\pi\)
−0.497692 + 0.867354i \(0.665819\pi\)
\(164\) 5.23607 9.06914i 0.408868 0.708181i
\(165\) 1.00000 1.73205i 0.0778499 0.134840i
\(166\) 1.26393 2.18919i 0.0981002 0.169914i
\(167\) −4.61803 7.99867i −0.357354 0.618956i 0.630164 0.776462i \(-0.282988\pi\)
−0.987518 + 0.157507i \(0.949654\pi\)
\(168\) −3.35410 + 5.80948i −0.258775 + 0.448211i
\(169\) −5.28115 9.14723i −0.406243 0.703633i
\(170\) −0.381966 −0.0292955
\(171\) −10.0000 −0.764719
\(172\) 3.73607 + 6.47106i 0.284873 + 0.493414i
\(173\) −0.454915 + 0.787936i −0.0345865 + 0.0599057i −0.882801 0.469748i \(-0.844345\pi\)
0.848214 + 0.529654i \(0.177678\pi\)
\(174\) 2.66312 + 4.61266i 0.201891 + 0.349685i
\(175\) −2.78115 + 4.81710i −0.210235 + 0.364138i
\(176\) −0.708204 + 1.22665i −0.0533829 + 0.0924619i
\(177\) −4.73607 + 8.20311i −0.355985 + 0.616584i
\(178\) −3.94427 −0.295636
\(179\) 9.89919 + 17.1459i 0.739900 + 1.28154i 0.952540 + 0.304414i \(0.0984605\pi\)
−0.212640 + 0.977131i \(0.568206\pi\)
\(180\) 4.23607 + 7.33708i 0.315738 + 0.546874i
\(181\) 8.50000 14.7224i 0.631800 1.09431i −0.355383 0.934721i \(-0.615650\pi\)
0.987184 0.159589i \(-0.0510169\pi\)
\(182\) 9.00000 0.667124
\(183\) −3.47214 6.01392i −0.256668 0.444561i
\(184\) 12.2361 0.902055
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) 5.47214 0.399097
\(189\) 7.50000 + 12.9904i 0.545545 + 0.944911i
\(190\) 8.09017 0.586923
\(191\) 8.04508 13.9345i 0.582122 1.00826i −0.413106 0.910683i \(-0.635556\pi\)
0.995228 0.0975816i \(-0.0311107\pi\)
\(192\) 0.118034 + 0.204441i 0.00851837 + 0.0147542i
\(193\) 1.19098 + 2.06284i 0.0857288 + 0.148487i 0.905702 0.423916i \(-0.139345\pi\)
−0.819973 + 0.572403i \(0.806011\pi\)
\(194\) 3.27051 0.234809
\(195\) −6.35410 + 11.0056i −0.455027 + 0.788129i
\(196\) 1.61803 2.80252i 0.115574 0.200180i
\(197\) 8.20820 14.2170i 0.584810 1.01292i −0.410089 0.912046i \(-0.634502\pi\)
0.994899 0.100876i \(-0.0321644\pi\)
\(198\) −0.472136 0.817763i −0.0335532 0.0581159i
\(199\) −13.3541 + 23.1300i −0.946647 + 1.63964i −0.194228 + 0.980956i \(0.562220\pi\)
−0.752419 + 0.658685i \(0.771113\pi\)
\(200\) −2.07295 3.59045i −0.146580 0.253883i
\(201\) −4.23607 −0.298789
\(202\) −2.94427 −0.207158
\(203\) −12.9271 22.3903i −0.907301 1.57149i
\(204\) −0.190983 + 0.330792i −0.0133715 + 0.0231601i
\(205\) 8.47214 + 14.6742i 0.591720 + 1.02489i
\(206\) −0.0450850 + 0.0780895i −0.00314122 + 0.00544075i
\(207\) 5.47214 9.47802i 0.380340 0.658768i
\(208\) 4.50000 7.79423i 0.312019 0.540433i
\(209\) 3.81966 0.264211
\(210\) −2.42705 4.20378i −0.167482 0.290088i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 10.2812 17.8075i 0.706112 1.22302i
\(213\) 0.0901699 0.00617834
\(214\) 0.336881 + 0.583495i 0.0230287 + 0.0398869i
\(215\) −12.0902 −0.824543
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) 8.56231 0.578587
\(220\) −1.61803 2.80252i −0.109088 0.188946i
\(221\) 1.14590 0.0770814
\(222\) −0.0729490 + 0.126351i −0.00489602 + 0.00848015i
\(223\) 0.354102 + 0.613323i 0.0237124 + 0.0410711i 0.877638 0.479324i \(-0.159118\pi\)
−0.853926 + 0.520395i \(0.825785\pi\)
\(224\) 8.42705 + 14.5961i 0.563056 + 0.975242i
\(225\) −3.70820 −0.247214
\(226\) −0.572949 + 0.992377i −0.0381120 + 0.0660119i
\(227\) 10.3713 17.9637i 0.688369 1.19229i −0.283996 0.958825i \(-0.591660\pi\)
0.972365 0.233465i \(-0.0750063\pi\)
\(228\) 4.04508 7.00629i 0.267892 0.464003i
\(229\) −3.61803 6.26662i −0.239086 0.414110i 0.721366 0.692554i \(-0.243515\pi\)
−0.960452 + 0.278444i \(0.910181\pi\)
\(230\) −4.42705 + 7.66788i −0.291911 + 0.505605i
\(231\) −1.14590 1.98475i −0.0753946 0.130587i
\(232\) 19.2705 1.26517
\(233\) 18.7984 1.23152 0.615761 0.787933i \(-0.288849\pi\)
0.615761 + 0.787933i \(0.288849\pi\)
\(234\) 3.00000 + 5.19615i 0.196116 + 0.339683i
\(235\) −4.42705 + 7.66788i −0.288789 + 0.500197i
\(236\) 7.66312 + 13.2729i 0.498827 + 0.863993i
\(237\) 0 0
\(238\) −0.218847 + 0.379054i −0.0141857 + 0.0245704i
\(239\) −6.70820 + 11.6190i −0.433918 + 0.751567i −0.997207 0.0746926i \(-0.976202\pi\)
0.563289 + 0.826260i \(0.309536\pi\)
\(240\) −4.85410 −0.313331
\(241\) −4.26393 7.38535i −0.274664 0.475732i 0.695386 0.718636i \(-0.255233\pi\)
−0.970050 + 0.242904i \(0.921900\pi\)
\(242\) −3.21885 5.57521i −0.206915 0.358388i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −11.2361 −0.719316
\(245\) 2.61803 + 4.53457i 0.167260 + 0.289703i
\(246\) −4.00000 −0.255031
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) −5.09017 −0.321931
\(251\) 0.472136 + 0.817763i 0.0298010 + 0.0516168i 0.880541 0.473970i \(-0.157179\pi\)
−0.850740 + 0.525586i \(0.823846\pi\)
\(252\) 9.70820 0.611559
\(253\) −2.09017 + 3.62028i −0.131408 + 0.227605i
\(254\) −3.16312 5.47868i −0.198472 0.343763i
\(255\) −0.309017 0.535233i −0.0193514 0.0335176i
\(256\) −6.56231 −0.410144
\(257\) −0.708204 + 1.22665i −0.0441765 + 0.0765160i −0.887268 0.461254i \(-0.847400\pi\)
0.843092 + 0.537770i \(0.180733\pi\)
\(258\) 1.42705 2.47172i 0.0888443 0.153883i
\(259\) 0.354102 0.613323i 0.0220028 0.0381100i
\(260\) 10.2812 + 17.8075i 0.637610 + 1.10437i
\(261\) 8.61803 14.9269i 0.533443 0.923950i
\(262\) 0.0278640 + 0.0482619i 0.00172145 + 0.00298163i
\(263\) 10.7984 0.665856 0.332928 0.942952i \(-0.391963\pi\)
0.332928 + 0.942952i \(0.391963\pi\)
\(264\) 1.70820 0.105133
\(265\) 16.6353 + 28.8131i 1.02190 + 1.76998i
\(266\) 4.63525 8.02850i 0.284206 0.492259i
\(267\) −3.19098 5.52694i −0.195285 0.338244i
\(268\) −3.42705 + 5.93583i −0.209340 + 0.362588i
\(269\) −0.690983 + 1.19682i −0.0421300 + 0.0729713i −0.886321 0.463070i \(-0.846748\pi\)
0.844192 + 0.536042i \(0.180081\pi\)
\(270\) 4.04508 7.00629i 0.246176 0.426389i
\(271\) −9.56231 −0.580869 −0.290434 0.956895i \(-0.593800\pi\)
−0.290434 + 0.956895i \(0.593800\pi\)
\(272\) 0.218847 + 0.379054i 0.0132696 + 0.0229835i
\(273\) 7.28115 + 12.6113i 0.440675 + 0.763272i
\(274\) 2.00000 3.46410i 0.120824 0.209274i
\(275\) 1.41641 0.0854126
\(276\) 4.42705 + 7.66788i 0.266477 + 0.461552i
\(277\) −13.3262 −0.800696 −0.400348 0.916363i \(-0.631111\pi\)
−0.400348 + 0.916363i \(0.631111\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) 19.0344 1.13550 0.567750 0.823201i \(-0.307814\pi\)
0.567750 + 0.823201i \(0.307814\pi\)
\(282\) −1.04508 1.81014i −0.0622339 0.107792i
\(283\) 6.56231 0.390089 0.195044 0.980794i \(-0.437515\pi\)
0.195044 + 0.980794i \(0.437515\pi\)
\(284\) 0.0729490 0.126351i 0.00432873 0.00749758i
\(285\) 6.54508 + 11.3364i 0.387697 + 0.671512i
\(286\) −1.14590 1.98475i −0.0677584 0.117361i
\(287\) 19.4164 1.14611
\(288\) −5.61803 + 9.73072i −0.331046 + 0.573388i
\(289\) 8.47214 14.6742i 0.498361 0.863186i
\(290\) −6.97214 + 12.0761i −0.409418 + 0.709133i
\(291\) 2.64590 + 4.58283i 0.155105 + 0.268650i
\(292\) 6.92705 11.9980i 0.405375 0.702130i
\(293\) 4.11803 + 7.13264i 0.240578 + 0.416694i 0.960879 0.276968i \(-0.0893296\pi\)
−0.720301 + 0.693662i \(0.755996\pi\)
\(294\) −1.23607 −0.0720889
\(295\) −24.7984 −1.44382
\(296\) 0.263932 + 0.457144i 0.0153407 + 0.0265709i
\(297\) 1.90983 3.30792i 0.110820 0.191945i
\(298\) −5.26393 9.11740i −0.304931 0.528157i
\(299\) 13.2812 23.0036i 0.768069 1.33033i
\(300\) 1.50000 2.59808i 0.0866025 0.150000i
\(301\) −6.92705 + 11.9980i −0.399269 + 0.691553i
\(302\) −12.0557 −0.693729
\(303\) −2.38197 4.12569i −0.136840 0.237014i
\(304\) −4.63525 8.02850i −0.265850 0.460466i
\(305\) 9.09017 15.7446i 0.520502 0.901535i
\(306\) −0.291796 −0.0166809
\(307\) −3.04508 5.27424i −0.173792 0.301017i 0.765950 0.642900i \(-0.222269\pi\)
−0.939743 + 0.341883i \(0.888935\pi\)
\(308\) −3.70820 −0.211295
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −10.8541 −0.614493
\(313\) 0.618034 + 1.07047i 0.0349333 + 0.0605063i 0.882963 0.469442i \(-0.155545\pi\)
−0.848030 + 0.529948i \(0.822211\pi\)
\(314\) −6.00000 −0.338600
\(315\) −7.85410 + 13.6037i −0.442529 + 0.766482i
\(316\) 0 0
\(317\) −12.9443 22.4201i −0.727023 1.25924i −0.958136 0.286313i \(-0.907570\pi\)
0.231113 0.972927i \(-0.425763\pi\)
\(318\) −7.85410 −0.440436
\(319\) −3.29180 + 5.70156i −0.184305 + 0.319226i
\(320\) −0.309017 + 0.535233i −0.0172746 + 0.0299204i
\(321\) −0.545085 + 0.944115i −0.0304237 + 0.0526954i
\(322\) 5.07295 + 8.78661i 0.282704 + 0.489658i
\(323\) 0.590170 1.02220i 0.0328379 0.0568770i
\(324\) 0.809017 + 1.40126i 0.0449454 + 0.0778477i
\(325\) −9.00000 −0.499230
\(326\) 7.85410 0.434998
\(327\) 4.20820 + 7.28882i 0.232714 + 0.403073i
\(328\) −7.23607 + 12.5332i −0.399545 + 0.692032i
\(329\) 5.07295 + 8.78661i 0.279681 + 0.484421i
\(330\) −0.618034 + 1.07047i −0.0340217 + 0.0589272i
\(331\) 5.63525 9.76055i 0.309742 0.536488i −0.668564 0.743654i \(-0.733091\pi\)
0.978306 + 0.207166i \(0.0664241\pi\)
\(332\) 3.30902 5.73139i 0.181606 0.314551i
\(333\) 0.472136 0.0258729
\(334\) 2.85410 + 4.94345i 0.156170 + 0.270494i
\(335\) −5.54508 9.60437i −0.302960 0.524743i
\(336\) −2.78115 + 4.81710i −0.151724 + 0.262794i
\(337\) −18.9787 −1.03384 −0.516918 0.856035i \(-0.672921\pi\)
−0.516918 + 0.856035i \(0.672921\pi\)
\(338\) 3.26393 + 5.65330i 0.177534 + 0.307499i
\(339\) −1.85410 −0.100701
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) −15.0000 −0.809924
\(344\) −5.16312 8.94278i −0.278377 0.482163i
\(345\) −14.3262 −0.771299
\(346\) 0.281153 0.486971i 0.0151149 0.0261797i
\(347\) 4.06231 + 7.03612i 0.218076 + 0.377719i 0.954220 0.299107i \(-0.0966886\pi\)
−0.736144 + 0.676825i \(0.763355\pi\)
\(348\) 6.97214 + 12.0761i 0.373746 + 0.647347i
\(349\) −16.7082 −0.894370 −0.447185 0.894442i \(-0.647573\pi\)
−0.447185 + 0.894442i \(0.647573\pi\)
\(350\) 1.71885 2.97713i 0.0918762 0.159134i
\(351\) −12.1353 + 21.0189i −0.647732 + 1.12190i
\(352\) 2.14590 3.71680i 0.114377 0.198106i
\(353\) −16.1910 28.0436i −0.861759 1.49261i −0.870230 0.492646i \(-0.836030\pi\)
0.00847052 0.999964i \(-0.497304\pi\)
\(354\) 2.92705 5.06980i 0.155571 0.269457i
\(355\) 0.118034 + 0.204441i 0.00626459 + 0.0108506i
\(356\) −10.3262 −0.547290
\(357\) −0.708204 −0.0374821
\(358\) −6.11803 10.5967i −0.323348 0.560055i
\(359\) 12.6631 21.9332i 0.668334 1.15759i −0.310036 0.950725i \(-0.600341\pi\)
0.978370 0.206863i \(-0.0663256\pi\)
\(360\) −5.85410 10.1396i −0.308538 0.534404i
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) −5.25329 + 9.09896i −0.276107 + 0.478231i
\(363\) 5.20820 9.02087i 0.273360 0.473473i
\(364\) 23.5623 1.23500
\(365\) 11.2082 + 19.4132i 0.586664 + 1.01613i
\(366\) 2.14590 + 3.71680i 0.112168 + 0.194280i
\(367\) −18.1353 + 31.4112i −0.946653 + 1.63965i −0.194245 + 0.980953i \(0.562226\pi\)
−0.752408 + 0.658697i \(0.771108\pi\)
\(368\) 10.1459 0.528891
\(369\) 6.47214 + 11.2101i 0.336926 + 0.583573i
\(370\) −0.381966 −0.0198575
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0.111456 0.00576326
\(375\) −4.11803 7.13264i −0.212654 0.368328i
\(376\) −7.56231 −0.389996
\(377\) 20.9164 36.2283i 1.07725 1.86585i
\(378\) −4.63525 8.02850i −0.238412 0.412941i
\(379\) 9.20820 + 15.9491i 0.472994 + 0.819249i 0.999522 0.0309084i \(-0.00984001\pi\)
−0.526529 + 0.850157i \(0.676507\pi\)
\(380\) 21.1803 1.08653
\(381\) 5.11803 8.86469i 0.262205 0.454152i
\(382\) −4.97214 + 8.61199i −0.254397 + 0.440628i
\(383\) −8.42705 + 14.5961i −0.430602 + 0.745825i −0.996925 0.0783585i \(-0.975032\pi\)
0.566323 + 0.824183i \(0.308365\pi\)
\(384\) −5.69098 9.85707i −0.290417 0.503017i
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) −0.736068 1.27491i −0.0374649 0.0648911i
\(387\) −9.23607 −0.469496
\(388\) 8.56231 0.434685
\(389\) −14.5344 25.1744i −0.736925 1.27639i −0.953873 0.300209i \(-0.902944\pi\)
0.216948 0.976183i \(-0.430390\pi\)
\(390\) 3.92705 6.80185i 0.198854 0.344425i
\(391\) 0.645898 + 1.11873i 0.0326645 + 0.0565765i
\(392\) −2.23607 + 3.87298i −0.112938 + 0.195615i
\(393\) −0.0450850 + 0.0780895i −0.00227424 + 0.00393909i
\(394\) −5.07295 + 8.78661i −0.255571 + 0.442663i
\(395\) 0 0
\(396\) −1.23607 2.14093i −0.0621148 0.107586i
\(397\) −8.14590 14.1091i −0.408831 0.708116i 0.585928 0.810363i \(-0.300730\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(398\) 8.25329 14.2951i 0.413700 0.716549i
\(399\) 15.0000 0.750939
\(400\) −1.71885 2.97713i −0.0859424 0.148857i
\(401\) 29.8328 1.48978 0.744890 0.667187i \(-0.232502\pi\)
0.744890 + 0.667187i \(0.232502\pi\)
\(402\) 2.61803 0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) −2.61803 −0.130091
\(406\) 7.98936 + 13.8380i 0.396505 + 0.686767i
\(407\) −0.180340 −0.00893912
\(408\) 0.263932 0.457144i 0.0130666 0.0226320i
\(409\) −3.09017 5.35233i −0.152799 0.264656i 0.779456 0.626457i \(-0.215495\pi\)
−0.932255 + 0.361801i \(0.882162\pi\)
\(410\) −5.23607 9.06914i −0.258591 0.447893i
\(411\) 6.47214 0.319247
\(412\) −0.118034 + 0.204441i −0.00581512 + 0.0100721i
\(413\) −14.2082 + 24.6093i −0.699140 + 1.21095i
\(414\) −3.38197 + 5.85774i −0.166215 + 0.287892i
\(415\) 5.35410 + 9.27358i 0.262823 + 0.455222i
\(416\) −13.6353 + 23.6170i −0.668523 + 1.15792i
\(417\) 2.92705 + 5.06980i 0.143338 + 0.248269i
\(418\) −2.36068 −0.115465
\(419\) 4.47214 0.218478 0.109239 0.994016i \(-0.465159\pi\)
0.109239 + 0.994016i \(0.465159\pi\)
\(420\) −6.35410 11.0056i −0.310048 0.537020i
\(421\) −7.38197 + 12.7859i −0.359775 + 0.623149i −0.987923 0.154945i \(-0.950480\pi\)
0.628148 + 0.778094i \(0.283813\pi\)
\(422\) −2.47214 4.28187i −0.120342 0.208438i
\(423\) −3.38197 + 5.85774i −0.164437 + 0.284813i
\(424\) −14.2082 + 24.6093i −0.690011 + 1.19513i
\(425\) 0.218847 0.379054i 0.0106156 0.0183868i
\(426\) −0.0557281 −0.00270003
\(427\) −10.4164 18.0417i −0.504085 0.873101i
\(428\) 0.881966 + 1.52761i 0.0426314 + 0.0738398i
\(429\) 1.85410 3.21140i 0.0895169 0.155048i
\(430\) 7.47214 0.360338
\(431\) −14.6180 25.3192i −0.704126 1.21958i −0.967006 0.254753i \(-0.918006\pi\)
0.262880 0.964828i \(-0.415328\pi\)
\(432\) −9.27051 −0.446028
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) 13.6180 0.652186
\(437\) −13.6803 23.6950i −0.654419 1.13349i
\(438\) −5.29180 −0.252852
\(439\) −20.9164 + 36.2283i −0.998286 + 1.72908i −0.448455 + 0.893805i \(0.648026\pi\)
−0.549831 + 0.835276i \(0.685308\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) 2.00000 + 3.46410i 0.0952381 + 0.164957i
\(442\) −0.708204 −0.0336858
\(443\) 20.5623 35.6150i 0.976945 1.69212i 0.303582 0.952805i \(-0.401817\pi\)
0.673363 0.739312i \(-0.264849\pi\)
\(444\) −0.190983 + 0.330792i −0.00906365 + 0.0156987i
\(445\) 8.35410 14.4697i 0.396022 0.685931i
\(446\) −0.218847 0.379054i −0.0103627 0.0179487i
\(447\) 8.51722 14.7523i 0.402851 0.697758i
\(448\) 0.354102 + 0.613323i 0.0167297 + 0.0289768i
\(449\) −24.0689 −1.13588 −0.567940 0.823070i \(-0.692260\pi\)
−0.567940 + 0.823070i \(0.692260\pi\)
\(450\) 2.29180 0.108036
\(451\) −2.47214 4.28187i −0.116408 0.201625i
\(452\) −1.50000 + 2.59808i −0.0705541 + 0.122203i
\(453\) −9.75329 16.8932i −0.458249 0.793711i
\(454\) −6.40983 + 11.1022i −0.300828 + 0.521050i
\(455\) −19.0623 + 33.0169i −0.893655 + 1.54786i
\(456\) −5.59017 + 9.68246i −0.261784 + 0.453423i
\(457\) 15.7426 0.736410 0.368205 0.929745i \(-0.379972\pi\)
0.368205 + 0.929745i \(0.379972\pi\)
\(458\) 2.23607 + 3.87298i 0.104485 + 0.180973i
\(459\) −0.590170 1.02220i −0.0275468 0.0477124i
\(460\) −11.5902 + 20.0748i −0.540394 + 0.935991i
\(461\) −10.7426 −0.500335 −0.250167 0.968203i \(-0.580486\pi\)
−0.250167 + 0.968203i \(0.580486\pi\)
\(462\) 0.708204 + 1.22665i 0.0329486 + 0.0570687i
\(463\) 31.1246 1.44648 0.723242 0.690595i \(-0.242651\pi\)
0.723242 + 0.690595i \(0.242651\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −32.7771 −1.51674 −0.758371 0.651823i \(-0.774005\pi\)
−0.758371 + 0.651823i \(0.774005\pi\)
\(468\) 7.85410 + 13.6037i 0.363056 + 0.628831i
\(469\) −12.7082 −0.586810
\(470\) 2.73607 4.73901i 0.126205 0.218594i
\(471\) −4.85410 8.40755i −0.223665 0.387400i
\(472\) −10.5902 18.3427i −0.487452 0.844292i
\(473\) 3.52786 0.162211
\(474\) 0 0
\(475\) −4.63525 + 8.02850i −0.212680 + 0.368373i
\(476\) −0.572949 + 0.992377i −0.0262611 + 0.0454855i
\(477\) 12.7082 + 22.0113i 0.581869 + 1.00783i
\(478\) 4.14590 7.18091i 0.189629 0.328447i
\(479\) 4.47214 + 7.74597i 0.204337 + 0.353922i 0.949921 0.312489i \(-0.101163\pi\)
−0.745584 + 0.666411i \(0.767829\pi\)
\(480\) 14.7082 0.671335
\(481\) 1.14590 0.0522485
\(482\) 2.63525 + 4.56440i 0.120033 + 0.207903i
\(483\) −8.20820 + 14.2170i −0.373486 + 0.646897i
\(484\) −8.42705 14.5961i −0.383048 0.663458i
\(485\) −6.92705 + 11.9980i −0.314541 + 0.544801i
\(486\) 4.94427 8.56373i 0.224277 0.388459i
\(487\) 11.4615 19.8519i 0.519370 0.899575i −0.480377 0.877062i \(-0.659500\pi\)
0.999747 0.0225127i \(-0.00716661\pi\)
\(488\) 15.5279 0.702913
\(489\) 6.35410 + 11.0056i 0.287342 + 0.497692i
\(490\) −1.61803 2.80252i −0.0730953 0.126605i
\(491\) −13.7984 + 23.8995i −0.622712 + 1.07857i 0.366267 + 0.930510i \(0.380636\pi\)
−0.988979 + 0.148059i \(0.952698\pi\)
\(492\) −10.4721 −0.472120
\(493\) 1.01722 + 1.76188i 0.0458133 + 0.0793510i
\(494\) 15.0000 0.674882
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) −2.52786 −0.113276
\(499\) 2.07295 + 3.59045i 0.0927979 + 0.160731i 0.908687 0.417477i \(-0.137086\pi\)
−0.815889 + 0.578208i \(0.803752\pi\)
\(500\) −13.3262 −0.595967
\(501\) −4.61803 + 7.99867i −0.206319 + 0.357354i
\(502\) −0.291796 0.505406i −0.0130235 0.0225574i
\(503\) −6.57295 11.3847i −0.293073 0.507618i 0.681462 0.731854i \(-0.261345\pi\)
−0.974535 + 0.224236i \(0.928011\pi\)
\(504\) −13.4164 −0.597614
\(505\) 6.23607 10.8012i 0.277501 0.480646i
\(506\) 1.29180 2.23746i 0.0574273 0.0994671i
\(507\) −5.28115 + 9.14723i −0.234544 + 0.406243i
\(508\) −8.28115 14.3434i −0.367417 0.636384i
\(509\) −0.954915 + 1.65396i −0.0423259 + 0.0733105i −0.886412 0.462897i \(-0.846810\pi\)
0.844086 + 0.536207i \(0.180143\pi\)
\(510\) 0.190983 + 0.330792i 0.00845687 + 0.0146477i
\(511\) 25.6869 1.13632
\(512\) −18.7082 −0.826794
\(513\) 12.5000 + 21.6506i 0.551888 + 0.955899i
\(514\) 0.437694 0.758108i 0.0193059 0.0334387i
\(515\) −0.190983 0.330792i −0.00841572 0.0145764i
\(516\) 3.73607 6.47106i 0.164471 0.284873i
\(517\) 1.29180 2.23746i 0.0568131 0.0984032i
\(518\) −0.218847 + 0.379054i −0.00961559 + 0.0166547i
\(519\) 0.909830 0.0399371
\(520\) −14.2082 24.6093i −0.623071 1.07919i
\(521\) −15.5344 26.9064i −0.680576 1.17879i −0.974805 0.223058i \(-0.928396\pi\)
0.294229 0.955735i \(-0.404937\pi\)
\(522\) −5.32624 + 9.22531i −0.233123 + 0.403781i
\(523\) −34.1246 −1.49217 −0.746083 0.665853i \(-0.768068\pi\)
−0.746083 + 0.665853i \(0.768068\pi\)
\(524\) 0.0729490 + 0.126351i 0.00318679 + 0.00551969i
\(525\) 5.56231 0.242759
\(526\) −6.67376 −0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) 6.94427 0.301925
\(530\) −10.2812 17.8075i −0.446585 0.773507i
\(531\) −18.9443 −0.822111
\(532\) 12.1353 21.0189i 0.526130 0.911284i
\(533\) 15.7082 + 27.2074i 0.680398 + 1.17848i
\(534\) 1.97214 + 3.41584i 0.0853427 + 0.147818i
\(535\) −2.85410 −0.123394
\(536\) 4.73607 8.20311i 0.204567 0.354320i
\(537\) 9.89919 17.1459i 0.427181 0.739900i
\(538\) 0.427051 0.739674i 0.0184115 0.0318896i
\(539\) −0.763932 1.32317i −0.0329049 0.0569929i
\(540\) 10.5902 18.3427i 0.455728 0.789345i
\(541\) −11.0000 19.0526i −0.472927 0.819133i 0.526593 0.850118i \(-0.323469\pi\)
−0.999520 + 0.0309841i \(0.990136\pi\)
\(542\) 5.90983 0.253849
\(543\) −17.0000 −0.729540
\(544\) −0.663119 1.14856i −0.0284310 0.0492439i
\(545\) −11.0172 + 19.0824i −0.471926 + 0.817400i
\(546\) −4.50000 7.79423i −0.192582 0.333562i
\(547\) 11.8541 20.5319i 0.506845 0.877881i −0.493124 0.869959i \(-0.664145\pi\)
0.999969 0.00792181i \(-0.00252162\pi\)
\(548\) 5.23607 9.06914i 0.223674 0.387414i
\(549\) 6.94427 12.0278i 0.296374 0.513335i
\(550\) −0.875388 −0.0373267
\(551\) −21.5451 37.3172i −0.917851 1.58977i
\(552\) −6.11803 10.5967i −0.260401 0.451027i
\(553\) 0 0
\(554\) 8.23607 0.349917
\(555\) −0.309017 0.535233i −0.0131170 0.0227194i
\(556\) 9.47214 0.401708
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) −14.5623 −0.615370
\(561\) 0.0901699 + 0.156179i 0.00380698 + 0.00659388i
\(562\) −11.7639 −0.496232
\(563\) 4.28115 7.41517i 0.180429 0.312512i −0.761598 0.648050i \(-0.775585\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(564\) −2.73607 4.73901i −0.115209 0.199548i
\(565\) −2.42705 4.20378i −0.102107 0.176854i
\(566\) −4.05573 −0.170475
\(567\) −1.50000 + 2.59808i −0.0629941 + 0.109109i
\(568\) −0.100813 + 0.174613i −0.00423002 + 0.00732661i
\(569\) 7.76393 13.4475i 0.325481 0.563750i −0.656129 0.754649i \(-0.727807\pi\)
0.981610 + 0.190900i \(0.0611405\pi\)
\(570\) −4.04508 7.00629i −0.169430 0.293461i
\(571\) 3.50000 6.06218i 0.146470 0.253694i −0.783450 0.621455i \(-0.786542\pi\)
0.929921 + 0.367760i \(0.119875\pi\)
\(572\) −3.00000 5.19615i −0.125436 0.217262i
\(573\) −16.0902 −0.672176
\(574\) −12.0000 −0.500870
\(575\) −5.07295 8.78661i −0.211557 0.366427i
\(576\) −0.236068 + 0.408882i −0.00983617 + 0.0170367i
\(577\) −19.4894 33.7566i −0.811353 1.40530i −0.911918 0.410373i \(-0.865398\pi\)
0.100565 0.994930i \(-0.467935\pi\)
\(578\) −5.23607 + 9.06914i −0.217792 + 0.377226i
\(579\) 1.19098 2.06284i 0.0494956 0.0857288i
\(580\) −18.2533 + 31.6156i −0.757927 + 1.31277i
\(581\) 12.2705 0.509067
\(582\) −1.63525 2.83234i −0.0677835 0.117404i
\(583\) −4.85410 8.40755i −0.201036 0.348205i
\(584\) −9.57295 + 16.5808i −0.396131 + 0.686120i
\(585\) −25.4164 −1.05084
\(586\) −2.54508 4.40822i −0.105136 0.182102i
\(587\) −36.0132 −1.48642 −0.743211 0.669057i \(-0.766698\pi\)
−0.743211 + 0.669057i \(0.766698\pi\)
\(588\) −3.23607 −0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) −16.4164 −0.675281
\(592\) 0.218847 + 0.379054i 0.00899456 + 0.0155790i
\(593\) 6.11146 0.250967 0.125484 0.992096i \(-0.459952\pi\)
0.125484 + 0.992096i \(0.459952\pi\)
\(594\) −1.18034 + 2.04441i −0.0484299 + 0.0838831i
\(595\) −0.927051 1.60570i −0.0380054 0.0658273i
\(596\) −13.7812 23.8697i −0.564498 0.977739i
\(597\) 26.7082 1.09309
\(598\) −8.20820 + 14.2170i −0.335658 + 0.581377i
\(599\) −14.8992 + 25.8061i −0.608764 + 1.05441i 0.382680 + 0.923881i \(0.375001\pi\)
−0.991444 + 0.130530i \(0.958332\pi\)
\(600\) −2.07295 + 3.59045i −0.0846278 + 0.146580i
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) 4.28115 7.41517i 0.174487 0.302220i
\(603\) −4.23607 7.33708i −0.172506 0.298789i
\(604\) −31.5623 −1.28425
\(605\) 27.2705 1.10870
\(606\) 1.47214 + 2.54981i 0.0598014 + 0.103579i
\(607\) 12.7082 22.0113i 0.515810 0.893409i −0.484021 0.875056i \(-0.660824\pi\)
0.999832 0.0183532i \(-0.00584232\pi\)
\(608\) 14.0451 + 24.3268i 0.569603 + 0.986582i
\(609\) −12.9271 + 22.3903i −0.523831 + 0.907301i
\(610\) −5.61803 + 9.73072i −0.227468 + 0.393985i
\(611\) −8.20820 + 14.2170i −0.332068 + 0.575159i
\(612\) −0.763932 −0.0308801
\(613\) 12.5279 + 21.6989i 0.505996 + 0.876410i 0.999976 + 0.00693709i \(0.00220816\pi\)
−0.493980 + 0.869473i \(0.664459\pi\)
\(614\) 1.88197 + 3.25966i 0.0759500 + 0.131549i
\(615\) 8.47214 14.6742i 0.341629 0.591720i
\(616\) 5.12461 0.206476
\(617\) 7.11803 + 12.3288i 0.286561 + 0.496339i 0.972987 0.230862i \(-0.0741545\pi\)
−0.686425 + 0.727200i \(0.740821\pi\)
\(618\) 0.0901699 0.00362717
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −10.1803 −0.408194
\(623\) −9.57295 16.5808i −0.383532 0.664297i
\(624\) −9.00000 −0.360288
\(625\) 15.4164 26.7020i 0.616656 1.06808i
\(626\) −0.381966 0.661585i −0.0152664 0.0264422i
\(627\) −1.90983 3.30792i −0.0762713 0.132106i
\(628\) −15.7082 −0.626826
\(629\) −0.0278640 + 0.0482619i −0.00111101 + 0.00192433i
\(630\) 4.85410 8.40755i 0.193392 0.334965i
\(631\) −4.36475 + 7.55996i −0.173758 + 0.300957i −0.939731 0.341916i \(-0.888924\pi\)
0.765973 + 0.642873i \(0.222258\pi\)
\(632\) 0 0
\(633\) 4.00000 6.92820i 0.158986 0.275371i
\(634\) 8.00000 + 13.8564i 0.317721 + 0.550308i
\(635\) 26.7984 1.06346
\(636\) −20.5623 −0.815348
\(637\) 4.85410 + 8.40755i 0.192327 + 0.333119i
\(638\) 2.03444 3.52376i 0.0805443 0.139507i
\(639\) 0.0901699 + 0.156179i 0.00356707 + 0.00617834i
\(640\) 14.8992 25.8061i 0.588942 1.02008i
\(641\) −20.5451 + 35.5851i −0.811482 + 1.40553i 0.100345 + 0.994953i \(0.468005\pi\)
−0.911827 + 0.410575i \(0.865328\pi\)
\(642\) 0.336881 0.583495i 0.0132956 0.0230287i
\(643\) −8.14590 −0.321243 −0.160621 0.987016i \(-0.551350\pi\)
−0.160621 + 0.987016i \(0.551350\pi\)
\(644\) 13.2812 + 23.0036i 0.523351 + 0.906470i
\(645\) 6.04508 + 10.4704i 0.238025 + 0.412271i
\(646\) −0.364745 + 0.631757i −0.0143507 + 0.0248561i
\(647\) 29.8885 1.17504 0.587520 0.809210i \(-0.300104\pi\)
0.587520 + 0.809210i \(0.300104\pi\)
\(648\) −1.11803 1.93649i −0.0439205 0.0760726i
\(649\) 7.23607 0.284041
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) 39.6525 1.55172 0.775861 0.630904i \(-0.217316\pi\)
0.775861 + 0.630904i \(0.217316\pi\)
\(654\) −2.60081 4.50474i −0.101700 0.176149i
\(655\) −0.236068 −0.00922394
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 8.56231 + 14.8303i 0.334047 + 0.578587i
\(658\) −3.13525 5.43042i −0.122225 0.211700i
\(659\) 22.6869 0.883757 0.441878 0.897075i \(-0.354312\pi\)
0.441878 + 0.897075i \(0.354312\pi\)
\(660\) −1.61803 + 2.80252i −0.0629819 + 0.109088i
\(661\) 8.30902 14.3916i 0.323183 0.559770i −0.657960 0.753053i \(-0.728580\pi\)
0.981143 + 0.193283i \(0.0619136\pi\)
\(662\) −3.48278 + 6.03235i −0.135362 + 0.234454i
\(663\) −0.572949 0.992377i −0.0222515 0.0385407i
\(664\) −4.57295 + 7.92058i −0.177465 + 0.307378i
\(665\) 19.6353 + 34.0093i 0.761423 + 1.31882i
\(666\) −0.291796 −0.0113069
\(667\) 47.1591 1.82601
\(668\) 7.47214 + 12.9421i 0.289106 + 0.500746i
\(669\) 0.354102 0.613323i 0.0136904 0.0237124i
\(670\) 3.42705 + 5.93583i 0.132399 + 0.229321i
\(671\) −2.65248 + 4.59422i −0.102398 + 0.177358i
\(672\) 8.42705 14.5961i 0.325081 0.563056i
\(673\) −2.20820 + 3.82472i −0.0851200 + 0.147432i −0.905442 0.424469i \(-0.860461\pi\)
0.820322 + 0.571901i \(0.193794\pi\)
\(674\) 11.7295 0.451803
\(675\) 4.63525 + 8.02850i 0.178411 + 0.309017i
\(676\) 8.54508 + 14.8005i 0.328657 + 0.569251i
\(677\) 14.3262 24.8138i 0.550602 0.953671i −0.447629 0.894219i \(-0.647732\pi\)
0.998231 0.0594514i \(-0.0189351\pi\)
\(678\) 1.14590 0.0440079
\(679\) 7.93769 + 13.7485i 0.304621 + 0.527619i
\(680\) 1.38197 0.0529960
\(681\) −20.7426 −0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) 16.1803 0.618671
\(685\) 8.47214 + 14.6742i 0.323704 + 0.560671i
\(686\) 9.27051 0.353950
\(687\) −3.61803 + 6.26662i −0.138037 + 0.239086i
\(688\) −4.28115 7.41517i −0.163217 0.282701i
\(689\) 30.8435 + 53.4224i 1.17504 + 2.03523i
\(690\) 8.85410 0.337070
\(691\) −1.91641 + 3.31932i −0.0729036 + 0.126273i −0.900173 0.435533i \(-0.856560\pi\)
0.827269 + 0.561806i \(0.189893\pi\)
\(692\) 0.736068 1.27491i 0.0279811 0.0484647i
\(693\) 2.29180 3.96951i 0.0870581 0.150789i
\(694\) −2.51064 4.34856i −0.0953027 0.165069i
\(695\) −7.66312 + 13.2729i −0.290679 + 0.503470i
\(696\) −9.63525 16.6888i −0.365223 0.632585i
\(697\) −1.52786 −0.0578720
\(698\) 10.3262 0.390854
\(699\) −9.39919 16.2799i −0.355510 0.615761i
\(700\) 4.50000 7.79423i 0.170084 0.294594i
\(701\) 15.0172 + 26.0106i 0.567193 + 0.982406i 0.996842 + 0.0794106i \(0.0253038\pi\)
−0.429649 + 0.902996i \(0.641363\pi\)
\(702\) 7.50000 12.9904i 0.283069 0.490290i
\(703\) 0.590170 1.02220i 0.0222587 0.0385532i
\(704\) 0.0901699 0.156179i 0.00339841 0.00588621i
\(705\) 8.85410 0.333465
\(706\) 10.0066 + 17.3319i 0.376603 + 0.652295i
\(707\) −7.14590 12.3771i −0.268749 0.465487i
\(708\) 7.66312 13.2729i 0.287998 0.498827i
\(709\) −4.14590 −0.155702 −0.0778512 0.996965i \(-0.524806\pi\)
−0.0778512 + 0.996965i \(0.524806\pi\)
\(710\) −0.0729490 0.126351i −0.00273773 0.00474188i
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) 9.70820 0.363066
\(716\) −16.0172 27.7426i −0.598592 1.03679i
\(717\) 13.4164 0.501045
\(718\) −7.82624 + 13.5554i −0.292073 + 0.505885i
\(719\) −20.6910 35.8378i −0.771643 1.33653i −0.936662 0.350235i \(-0.886102\pi\)
0.165018 0.986290i \(-0.447232\pi\)
\(720\) −4.85410 8.40755i −0.180902 0.313331i
\(721\) −0.437694 −0.0163006
\(722\) 1.85410 3.21140i 0.0690025 0.119516i
\(723\) −4.26393 + 7.38535i −0.158577 + 0.274664i
\(724\) −13.7533 + 23.8214i −0.511137 + 0.885315i
\(725\) −7.98936 13.8380i −0.296717 0.513929i
\(726\) −3.21885 + 5.57521i −0.119463 + 0.206915i
\(727\) 11.9164 + 20.6398i 0.441955 + 0.765489i 0.997835 0.0657742i \(-0.0209517\pi\)
−0.555879 + 0.831263i \(0.687618\pi\)
\(728\) −32.5623 −1.20684
\(729\) 13.0000 0.481481
\(730\) −6.92705 11.9980i −0.256382 0.444066i
\(731\) 0.545085 0.944115i 0.0201607 0.0349193i
\(732\) 5.61803 + 9.73072i 0.207649 + 0.359658i
\(733\) −13.9721 + 24.2004i −0.516073 + 0.893864i 0.483753 + 0.875204i \(0.339273\pi\)
−0.999826 + 0.0186596i \(0.994060\pi\)
\(734\) 11.2082 19.4132i 0.413702 0.716554i
\(735\) 2.61803 4.53457i 0.0965676 0.167260i
\(736\) −30.7426 −1.13319
\(737\) 1.61803 + 2.80252i 0.0596010 + 0.103232i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) 10.8541 18.7999i 0.399275 0.691564i −0.594362 0.804198i \(-0.702595\pi\)
0.993637 + 0.112634i \(0.0359287\pi\)
\(740\) −1.00000 −0.0367607
\(741\) 12.1353 + 21.0189i 0.445800 + 0.772148i
\(742\) −23.5623 −0.864999
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0.214782 0.00786372
\(747\) 4.09017 + 7.08438i 0.149651 + 0.259204i
\(748\) 0.291796 0.0106691
\(749\) −1.63525 + 2.83234i −0.0597509 + 0.103492i
\(750\) 2.54508 + 4.40822i 0.0929334 + 0.160965i
\(751\) 19.9164 + 34.4962i 0.726760 + 1.25879i 0.958245 + 0.285947i \(0.0923081\pi\)
−0.231485 + 0.972838i \(0.574359\pi\)
\(752\) −6.27051 −0.228662
\(753\) 0.472136 0.817763i 0.0172056 0.0298010i
\(754\) −12.9271 + 22.3903i −0.470775 + 0.815407i
\(755\) 25.5344 44.2270i 0.929293 1.60958i
\(756\) −12.1353 21.0189i −0.441355 0.764449i
\(757\) 21.5623 37.3470i 0.783695 1.35740i −0.146080 0.989273i \(-0.546666\pi\)
0.929775 0.368127i \(-0.120001\pi\)
\(758\) −5.69098 9.85707i −0.206706 0.358025i
\(759\) 4.18034 0.151737
\(760\) −29.2705 −1.06175
\(761\) 1.75329 + 3.03679i 0.0635567 + 0.110083i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(762\) −3.16312 + 5.47868i −0.114588 + 0.198472i
\(763\) 12.6246 + 21.8665i 0.457042 + 0.791619i
\(764\) −13.0172 + 22.5465i −0.470947 + 0.815703i
\(765\) 0.618034 1.07047i 0.0223451 0.0387028i
\(766\) 5.20820 9.02087i 0.188180 0.325937i
\(767\) −45.9787 −1.66020
\(768\) 3.28115 + 5.68312i 0.118398 + 0.205072i
\(769\) 26.8713 + 46.5425i 0.969005 + 1.67837i 0.698447 + 0.715662i \(0.253875\pi\)
0.270557 + 0.962704i \(0.412792\pi\)
\(770\) −1.85410 + 3.21140i −0.0668172 + 0.115731i
\(771\) 1.41641 0.0510107
\(772\) −1.92705 3.33775i −0.0693561 0.120128i
\(773\) 19.0902 0.686626 0.343313 0.939221i \(-0.388451\pi\)
0.343313 + 0.939221i \(0.388451\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.708204 −0.0254067
\(778\) 8.98278 + 15.5586i 0.322048 + 0.557804i
\(779\) 32.3607 1.15944
\(780\) 10.2812 17.8075i 0.368124 0.637610i
\(781\) −0.0344419 0.0596550i −0.00123243 0.00213463i
\(782\) −0.399187 0.691412i −0.0142749 0.0247248i
\(783\) −43.0902 −1.53992
\(784\) −1.85410 + 3.21140i −0.0662179 + 0.114693i
\(785\) 12.7082 22.0113i 0.453575 0.785615i
\(786\) 0.0278640 0.0482619i 0.000993878 0.00172145i
\(787\) 15.6459 + 27.0995i 0.557716 + 0.965993i 0.997687 + 0.0679803i \(0.0216555\pi\)
−0.439971 + 0.898012i \(0.645011\pi\)
\(788\) −13.2812 + 23.0036i −0.473121 + 0.819470i
\(789\) −5.39919 9.35167i −0.192216 0.332928i
\(790\) 0 0
\(791\) −5.56231 −0.197773
\(792\) 1.70820 + 2.95870i 0.0606984 + 0.105133i
\(793\) 16.8541 29.1922i 0.598507 1.03664i
\(794\) 5.03444 + 8.71991i 0.178666 + 0.309458i
\(795\) 16.6353 28.8131i 0.589992 1.02190i
\(796\) 21.6074 37.4251i 0.765854 1.32650i
\(797\) 4.52786 7.84249i 0.160385 0.277795i −0.774622 0.632425i \(-0.782060\pi\)
0.935007 + 0.354630i \(0.115393\pi\)
\(798\) −9.27051 −0.328172
\(799\) −0.399187 0.691412i −0.0141222 0.0244604i
\(800\) 5.20820 + 9.02087i 0.184138 + 0.318936i
\(801\) 6.38197 11.0539i 0.225496 0.390570i
\(802\) −18.4377 −0.651058
\(803\) −3.27051 5.66469i −0.115414 0.199903i
\(804\) 6.85410 0.241726
\(805\) −42.9787 −1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) 10.6525 0.374753
\(809\) 27.3992 + 47.4568i 0.963304 + 1.66849i 0.714104 + 0.700040i \(0.246834\pi\)
0.249200 + 0.968452i \(0.419832\pi\)
\(810\) 1.61803 0.0568519
\(811\) −21.3885 + 37.0460i −0.751053 + 1.30086i 0.196259 + 0.980552i \(0.437121\pi\)
−0.947313 + 0.320311i \(0.896213\pi\)
\(812\) 20.9164 + 36.2283i 0.734022 + 1.27136i
\(813\) 4.78115 + 8.28120i 0.167682 + 0.290434i
\(814\) 0.111456 0.00390654
\(815\) −16.6353 + 28.8131i −0.582708 + 1.00928i
\(816\) 0.218847 0.379054i 0.00766118 0.0132696i
\(817\) −11.5451 + 19.9967i −0.403911 + 0.699595i
\(818\) 1.90983 + 3.30792i 0.0667756 + 0.115659i
\(819\) −14.5623 + 25.2227i −0.508848 + 0.881351i
\(820\) −13.7082 23.7433i −0.478711 0.829152i
\(821\) 32.4721 1.13329 0.566643 0.823964i \(-0.308242\pi\)
0.566643 + 0.823964i \(0.308242\pi\)
\(822\) −4.00000 −0.139516
\(823\) −3.06231 5.30407i −0.106745 0.184888i 0.807705 0.589587i \(-0.200710\pi\)
−0.914450 + 0.404699i \(0.867376\pi\)
\(824\) 0.163119 0.282530i 0.00568252 0.00984241i
\(825\) −0.708204 1.22665i −0.0246565 0.0427063i
\(826\) 8.78115 15.2094i 0.305535 0.529203i
\(827\) 1.33688 2.31555i 0.0464879 0.0805194i −0.841845 0.539719i \(-0.818530\pi\)
0.888333 + 0.459200i \(0.151864\pi\)
\(828\) −8.85410 + 15.3358i −0.307701 + 0.532954i
\(829\) 21.7082 0.753957 0.376979 0.926222i \(-0.376963\pi\)
0.376979 + 0.926222i \(0.376963\pi\)
\(830\) −3.30902 5.73139i −0.114858 0.198939i
\(831\) 6.66312 + 11.5409i 0.231141 + 0.400348i
\(832\) −0.572949 + 0.992377i −0.0198634 + 0.0344045i
\(833\) −0.472136 −0.0163585
\(834\) −1.80902 3.13331i −0.0626411 0.108498i
\(835\) −24.1803 −0.836795
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) 11.1803 0.385988 0.192994 0.981200i \(-0.438180\pi\)
0.192994 + 0.981200i \(0.438180\pi\)
\(840\) 8.78115 + 15.2094i 0.302979 + 0.524774i
\(841\) 45.2705 1.56105
\(842\) 4.56231 7.90215i 0.157227 0.272326i
\(843\) −9.51722 16.4843i −0.327791 0.567750i
\(844\) −6.47214 11.2101i −0.222780 0.385866i
\(845\) −27.6525 −0.951274
\(846\) 2.09017 3.62028i 0.0718615 0.124468i
\(847\) 15.6246 27.0626i 0.536868 0.929883i
\(848\) −11.7812 + 20.4056i −0.404566 + 0.700730i
\(849\) −3.28115 5.68312i −0.112609 0.195044i
\(850\) −0.135255 + 0.234268i −0.00463921 + 0.00803534i
\(851\) 0.645898 + 1.11873i 0.0221411 + 0.0383495i
\(852\) −0.145898 −0.00499838
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) 6.43769 + 11.1504i 0.220293 + 0.381559i
\(855\) −13.0902 + 22.6728i −0.447674 + 0.775395i
\(856\) −1.21885 2.11111i −0.0416593 0.0721561i
\(857\) 4.09017 7.08438i 0.139718 0.241998i −0.787672 0.616095i \(-0.788714\pi\)
0.927390 + 0.374097i \(0.122047\pi\)
\(858\) −1.14590 + 1.98475i −0.0391203 + 0.0677584i
\(859\) 21.6459 37.4918i 0.738549 1.27920i −0.214600 0.976702i \(-0.568845\pi\)
0.953149 0.302502i \(-0.0978218\pi\)
\(860\) 19.5623 0.667069
\(861\) −9.70820 16.8151i −0.330855 0.573057i
\(862\) 9.03444 + 15.6481i 0.307714 + 0.532977i
\(863\) 1.24671 2.15937i 0.0424385 0.0735057i −0.844026 0.536302i \(-0.819821\pi\)
0.886464 + 0.462797i \(0.153154\pi\)
\(864\) 28.0902 0.955647
\(865\) 1.19098 + 2.06284i 0.0404946 + 0.0701388i
\(866\) 0.360680 0.0122564
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 13.9443 0.472755
\(871\) −10.2812 17.8075i −0.348364 0.603383i
\(872\) −18.8197 −0.637314
\(873\) −5.29180 + 9.16566i −0.179100 + 0.310211i
\(874\) 8.45492 + 14.6443i 0.285992 + 0.495352i
\(875\) −12.3541 21.3979i −0.417645 0.723382i
\(876\) −13.8541 −0.468087
\(877\) −8.14590 + 14.1091i −0.275067 + 0.476431i −0.970152 0.242497i \(-0.922034\pi\)
0.695085 + 0.718928i \(0.255367\pi\)
\(878\) 12.9271 22.3903i 0.436267 0.755636i
\(879\) 4.11803 7.13264i 0.138898 0.240578i
\(880\) 1.85410 + 3.21140i 0.0625018 + 0.108256i
\(881\) −7.68034 + 13.3027i −0.258757 + 0.448181i −0.965909 0.258881i \(-0.916646\pi\)
0.707152 + 0.707062i \(0.249980\pi\)
\(882\) −1.23607 2.14093i −0.0416206 0.0720889i
\(883\) 1.00000 0.0336527 0.0168263 0.999858i \(-0.494644\pi\)
0.0168263 + 0.999858i \(0.494644\pi\)
\(884\) −1.85410 −0.0623602
\(885\) 12.3992 + 21.4760i 0.416794 + 0.721909i
\(886\) −12.7082 + 22.0113i −0.426940 + 0.739483i
\(887\) −19.5517 33.8645i −0.656481 1.13706i −0.981520 0.191357i \(-0.938711\pi\)
0.325040 0.945700i \(-0.394622\pi\)
\(888\) 0.263932 0.457144i 0.00885698 0.0153407i
\(889\) 15.3541 26.5941i 0.514960 0.891937i
\(890\) −5.16312 + 8.94278i −0.173068 + 0.299763i
\(891\) 0.763932 0.0255927
\(892\) −0.572949 0.992377i −0.0191838 0.0332272i
\(893\) 8.45492 + 14.6443i 0.282933 + 0.490054i
\(894\) −5.26393 + 9.11740i −0.176052 + 0.304931i
\(895\) 51.8328 1.73258
\(896\) −17.0729 29.5712i −0.570367 0.987905i
\(897\) −26.5623 −0.886890
\(898\) 14.8754 0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −3.00000 −0.0999445
\(902\) 1.52786 + 2.64634i 0.0508723 + 0.0881134i
\(903\) 13.8541 0.461036
\(904\) 2.07295 3.59045i 0.0689453 0.119417i
\(905\) −22.2533 38.5438i −0.739724 1.28124i
\(906\) 6.02786 + 10.4406i 0.200262 + 0.346865i
\(907\) 52.9230 1.75728 0.878639 0.477486i \(-0.158452\pi\)
0.878639 + 0.477486i \(0.158452\pi\)
\(908\) −16.7812 + 29.0658i −0.556902 + 0.964583i
\(909\) 4.76393 8.25137i 0.158010 0.273681i
\(910\) 11.7812 20.4056i 0.390541 0.676438i
\(911\) 4.09017 + 7.08438i 0.135513 + 0.234716i 0.925793 0.378030i \(-0.123398\pi\)
−0.790280 + 0.612746i \(0.790065\pi\)
\(912\) −4.63525 + 8.02850i −0.153489 + 0.265850i
\(913\) −1.56231 2.70599i −0.0517048 0.0895553i
\(914\) −9.72949 −0.321823
\(915\) −18.1803 −0.601023
\(916\) 5.85410 + 10.1396i 0.193425 + 0.335022i
\(917\) −0.135255 + 0.234268i −0.00446651 + 0.00773622i
\(918\) 0.364745 + 0.631757i 0.0120384 + 0.0208511i
\(919\) −4.93769 + 8.55234i −0.162879 + 0.282116i −0.935900 0.352265i \(-0.885412\pi\)
0.773021 + 0.634381i \(0.218745\pi\)
\(920\) 16.0172 27.7426i 0.528072 0.914648i
\(921\) −3.04508 + 5.27424i −0.100339 + 0.173792i
\(922\) 6.63932 0.218654
\(923\) 0.218847 + 0.379054i 0.00720344 + 0.0124767i
\(924\) 1.85410 + 3.21140i 0.0609955 + 0.105647i
\(925\) 0.218847 0.379054i 0.00719565 0.0124632i
\(926\) −19.2361 −0.632136
\(927\) −0.145898 0.252703i −0.00479192 0.00829985i
\(928\) −48.4164 −1.58935
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −30.4164 −0.996323
\(933\) −8.23607 14.2653i −0.269637 0.467025i
\(934\) 20.2574 0.662841
\(935\) −0.236068 + 0.408882i −0.00772025 + 0.0133719i
\(936\) −10.8541 18.7999i −0.354777 0.614493i
\(937\) −20.2426 35.0613i −0.661298 1.14540i −0.980275 0.197640i \(-0.936672\pi\)
0.318976 0.947763i \(-0.396661\pi\)
\(938\) 7.85410 0.256446
\(939\) 0.618034 1.07047i 0.0201688 0.0349333i
\(940\) 7.16312 12.4069i 0.233635 0.404668i
\(941\) 14.2918 24.7541i 0.465899 0.806961i −0.533342 0.845899i \(-0.679064\pi\)
0.999242 + 0.0389383i \(0.0123976\pi\)
\(942\) 3.00000 + 5.19615i 0.0977453 + 0.169300i
\(943\) −17.7082 + 30.6715i −0.576658 + 0.998802i
\(944\) −8.78115 15.2094i −0.285802 0.495024i
\(945\) 39.2705 1.27747
\(946\) −2.18034 −0.0708890
\(947\) 11.0344 + 19.1122i 0.358571 + 0.621064i 0.987722 0.156219i \(-0.0499307\pi\)
−0.629151 + 0.777283i \(0.716597\pi\)
\(948\) 0 0
\(949\) 20.7812 + 35.9940i 0.674585 + 1.16842i
\(950\) 2.86475 4.96188i 0.0929446 0.160985i
\(951\) −12.9443 + 22.4201i −0.419747 + 0.727023i
\(952\) 0.791796 1.37143i 0.0256623 0.0444483i
\(953\) −42.2148 −1.36747 −0.683735 0.729730i \(-0.739646\pi\)
−0.683735 + 0.729730i \(0.739646\pi\)
\(954\) −7.85410 13.6037i −0.254286 0.440436i
\(955\) −21.0623 36.4810i −0.681560 1.18050i
\(956\) 10.8541 18.7999i 0.351047 0.608031i
\(957\) 6.58359 0.212817
\(958\) −2.76393 4.78727i −0.0892986 0.154670i
\(959\) 19.4164 0.626989
\(960\) 0.618034 0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) −2.18034 −0.0702605
\(964\) 6.89919 + 11.9497i 0.222208 + 0.384875i
\(965\) 6.23607 0.200746
\(966\) 5.07295 8.78661i 0.163219 0.282704i
\(967\) 21.8262 + 37.8042i 0.701884 + 1.21570i 0.967804 + 0.251704i \(0.0809911\pi\)
−0.265920 + 0.963995i \(0.585676\pi\)
\(968\) 11.6459 + 20.1713i 0.374313 + 0.648330i
\(969\) −1.18034 −0.0379180
\(970\) 4.28115 7.41517i 0.137460 0.238087i
\(971\) 10.2812 17.8075i 0.329938 0.571469i −0.652561 0.757736i \(-0.726306\pi\)
0.982499 + 0.186267i \(0.0596389\pi\)
\(972\) 12.9443 22.4201i 0.415188 0.719126i
\(973\) 8.78115 + 15.2094i 0.281511 + 0.487591i
\(974\) −7.08359 + 12.2691i −0.226973 + 0.393129i
\(975\) 4.50000 + 7.79423i 0.144115 + 0.249615i
\(976\) 12.8754 0.412131
\(977\) −6.06888 −0.194161 −0.0970804 0.995277i \(-0.530950\pi\)
−0.0970804 + 0.995277i \(0.530950\pi\)
\(978\) −3.92705 6.80185i −0.125573 0.217499i
\(979\) −2.43769 + 4.22221i −0.0779090 + 0.134942i
\(980\) −4.23607 7.33708i −0.135316 0.234375i
\(981\) −8.41641 + 14.5776i −0.268715 + 0.465428i
\(982\) 8.52786 14.7707i 0.272135 0.471352i
\(983\) 10.5172 18.2164i 0.335447 0.581012i −0.648123 0.761535i \(-0.724446\pi\)
0.983571 + 0.180524i \(0.0577792\pi\)
\(984\) 14.4721 0.461355
\(985\) −21.4894 37.2207i −0.684708 1.18595i
\(986\) −0.628677 1.08890i −0.0200212 0.0346777i
\(987\) 5.07295 8.78661i 0.161474 0.279681i
\(988\) 39.2705 1.24936
\(989\) −12.6353 21.8849i −0.401778 0.695899i
\(990\) −2.47214 −0.0785696
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) −0.167184 −0.00530276
\(995\) 34.9615 + 60.5551i 1.10835 + 1.91973i
\(996\) −6.61803 −0.209700
\(997\) 13.6246 23.5985i 0.431496 0.747373i −0.565507 0.824744i \(-0.691319\pi\)
0.997002 + 0.0773712i \(0.0246526\pi\)
\(998\) −1.28115 2.21902i −0.0405542 0.0702419i
\(999\) −0.590170 1.02220i −0.0186722 0.0323411i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.d.521.1 4
31.2 even 5 961.2.g.c.844.1 8
31.3 odd 30 31.2.d.a.8.1 yes 4
31.4 even 5 961.2.g.g.338.1 8
31.5 even 3 inner 961.2.c.d.439.1 4
31.6 odd 6 961.2.a.d.1.1 2
31.7 even 15 961.2.d.e.388.1 4
31.8 even 5 961.2.g.g.732.1 8
31.9 even 15 961.2.g.g.816.1 8
31.10 even 15 961.2.g.c.547.1 8
31.11 odd 30 961.2.g.f.235.1 8
31.12 odd 30 31.2.d.a.4.1 4
31.13 odd 30 961.2.g.b.846.1 8
31.14 even 15 961.2.d.e.374.1 4
31.15 odd 10 961.2.g.b.448.1 8
31.16 even 5 961.2.g.c.448.1 8
31.17 odd 30 961.2.d.f.374.1 4
31.18 even 15 961.2.g.c.846.1 8
31.19 even 15 961.2.d.b.531.1 4
31.20 even 15 961.2.g.g.235.1 8
31.21 odd 30 961.2.g.b.547.1 8
31.22 odd 30 961.2.g.f.816.1 8
31.23 odd 10 961.2.g.f.732.1 8
31.24 odd 30 961.2.d.f.388.1 4
31.25 even 3 961.2.a.e.1.1 2
31.26 odd 6 961.2.c.f.439.1 4
31.27 odd 10 961.2.g.f.338.1 8
31.28 even 15 961.2.d.b.628.1 4
31.29 odd 10 961.2.g.b.844.1 8
31.30 odd 2 961.2.c.f.521.1 4
93.56 odd 6 8649.2.a.f.1.2 2
93.65 even 30 279.2.i.a.163.1 4
93.68 even 6 8649.2.a.g.1.2 2
93.74 even 30 279.2.i.a.190.1 4
124.3 even 30 496.2.n.b.225.1 4
124.43 even 30 496.2.n.b.97.1 4
155.3 even 60 775.2.bf.a.349.2 8
155.12 even 60 775.2.bf.a.624.2 8
155.34 odd 30 775.2.k.c.101.1 4
155.43 even 60 775.2.bf.a.624.1 8
155.74 odd 30 775.2.k.c.376.1 4
155.127 even 60 775.2.bf.a.349.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.12 odd 30
31.2.d.a.8.1 yes 4 31.3 odd 30
279.2.i.a.163.1 4 93.65 even 30
279.2.i.a.190.1 4 93.74 even 30
496.2.n.b.97.1 4 124.43 even 30
496.2.n.b.225.1 4 124.3 even 30
775.2.k.c.101.1 4 155.34 odd 30
775.2.k.c.376.1 4 155.74 odd 30
775.2.bf.a.349.1 8 155.127 even 60
775.2.bf.a.349.2 8 155.3 even 60
775.2.bf.a.624.1 8 155.43 even 60
775.2.bf.a.624.2 8 155.12 even 60
961.2.a.d.1.1 2 31.6 odd 6
961.2.a.e.1.1 2 31.25 even 3
961.2.c.d.439.1 4 31.5 even 3 inner
961.2.c.d.521.1 4 1.1 even 1 trivial
961.2.c.f.439.1 4 31.26 odd 6
961.2.c.f.521.1 4 31.30 odd 2
961.2.d.b.531.1 4 31.19 even 15
961.2.d.b.628.1 4 31.28 even 15
961.2.d.e.374.1 4 31.14 even 15
961.2.d.e.388.1 4 31.7 even 15
961.2.d.f.374.1 4 31.17 odd 30
961.2.d.f.388.1 4 31.24 odd 30
961.2.g.b.448.1 8 31.15 odd 10
961.2.g.b.547.1 8 31.21 odd 30
961.2.g.b.844.1 8 31.29 odd 10
961.2.g.b.846.1 8 31.13 odd 30
961.2.g.c.448.1 8 31.16 even 5
961.2.g.c.547.1 8 31.10 even 15
961.2.g.c.844.1 8 31.2 even 5
961.2.g.c.846.1 8 31.18 even 15
961.2.g.f.235.1 8 31.11 odd 30
961.2.g.f.338.1 8 31.27 odd 10
961.2.g.f.732.1 8 31.23 odd 10
961.2.g.f.816.1 8 31.22 odd 30
961.2.g.g.235.1 8 31.20 even 15
961.2.g.g.338.1 8 31.4 even 5
961.2.g.g.732.1 8 31.8 even 5
961.2.g.g.816.1 8 31.9 even 15
8649.2.a.f.1.2 2 93.56 odd 6
8649.2.a.g.1.2 2 93.68 even 6