Properties

Label 961.2.a.j.1.5
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,3,8,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.143490\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.23217 q^{2} -2.07497 q^{3} -0.481752 q^{4} -1.54562 q^{5} -2.55673 q^{6} -3.80376 q^{7} -3.05795 q^{8} +1.30552 q^{9} -1.90447 q^{10} +3.76152 q^{11} +0.999622 q^{12} +2.63506 q^{13} -4.68689 q^{14} +3.20713 q^{15} -2.80441 q^{16} -3.77434 q^{17} +1.60863 q^{18} +6.09831 q^{19} +0.744606 q^{20} +7.89270 q^{21} +4.63485 q^{22} -0.909847 q^{23} +6.34516 q^{24} -2.61105 q^{25} +3.24685 q^{26} +3.51600 q^{27} +1.83247 q^{28} +6.80859 q^{29} +3.95173 q^{30} +2.66037 q^{32} -7.80507 q^{33} -4.65064 q^{34} +5.87917 q^{35} -0.628936 q^{36} +1.81406 q^{37} +7.51417 q^{38} -5.46769 q^{39} +4.72643 q^{40} +0.337145 q^{41} +9.72517 q^{42} -3.88400 q^{43} -1.81212 q^{44} -2.01784 q^{45} -1.12109 q^{46} -1.18915 q^{47} +5.81908 q^{48} +7.46858 q^{49} -3.21726 q^{50} +7.83166 q^{51} -1.26945 q^{52} +2.34413 q^{53} +4.33232 q^{54} -5.81390 q^{55} +11.6317 q^{56} -12.6538 q^{57} +8.38936 q^{58} +7.77883 q^{59} -1.54504 q^{60} +2.72343 q^{61} -4.96588 q^{63} +8.88686 q^{64} -4.07281 q^{65} -9.61719 q^{66} -7.42118 q^{67} +1.81829 q^{68} +1.88791 q^{69} +7.24416 q^{70} -5.09818 q^{71} -3.99221 q^{72} -5.39174 q^{73} +2.23524 q^{74} +5.41786 q^{75} -2.93787 q^{76} -14.3079 q^{77} -6.73714 q^{78} +9.73723 q^{79} +4.33456 q^{80} -11.2122 q^{81} +0.415420 q^{82} +8.39515 q^{83} -3.80232 q^{84} +5.83370 q^{85} -4.78575 q^{86} -14.1277 q^{87} -11.5025 q^{88} -5.09560 q^{89} -2.48633 q^{90} -10.0231 q^{91} +0.438320 q^{92} -1.46523 q^{94} -9.42569 q^{95} -5.52020 q^{96} +10.9142 q^{97} +9.20257 q^{98} +4.91075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 3 q^{3} + 8 q^{4} + 3 q^{5} + 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} + 18 q^{11} + 8 q^{13} - 9 q^{14} + 18 q^{15} + 4 q^{16} + 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} - q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23217 0.871277 0.435639 0.900122i \(-0.356523\pi\)
0.435639 + 0.900122i \(0.356523\pi\)
\(3\) −2.07497 −1.19799 −0.598994 0.800754i \(-0.704433\pi\)
−0.598994 + 0.800754i \(0.704433\pi\)
\(4\) −0.481752 −0.240876
\(5\) −1.54562 −0.691223 −0.345612 0.938378i \(-0.612329\pi\)
−0.345612 + 0.938378i \(0.612329\pi\)
\(6\) −2.55673 −1.04378
\(7\) −3.80376 −1.43769 −0.718843 0.695173i \(-0.755328\pi\)
−0.718843 + 0.695173i \(0.755328\pi\)
\(8\) −3.05795 −1.08115
\(9\) 1.30552 0.435173
\(10\) −1.90447 −0.602247
\(11\) 3.76152 1.13414 0.567071 0.823669i \(-0.308076\pi\)
0.567071 + 0.823669i \(0.308076\pi\)
\(12\) 0.999622 0.288566
\(13\) 2.63506 0.730835 0.365418 0.930844i \(-0.380926\pi\)
0.365418 + 0.930844i \(0.380926\pi\)
\(14\) −4.68689 −1.25262
\(15\) 3.20713 0.828077
\(16\) −2.80441 −0.701103
\(17\) −3.77434 −0.915412 −0.457706 0.889104i \(-0.651329\pi\)
−0.457706 + 0.889104i \(0.651329\pi\)
\(18\) 1.60863 0.379157
\(19\) 6.09831 1.39905 0.699525 0.714608i \(-0.253395\pi\)
0.699525 + 0.714608i \(0.253395\pi\)
\(20\) 0.744606 0.166499
\(21\) 7.89270 1.72233
\(22\) 4.63485 0.988152
\(23\) −0.909847 −0.189716 −0.0948581 0.995491i \(-0.530240\pi\)
−0.0948581 + 0.995491i \(0.530240\pi\)
\(24\) 6.34516 1.29520
\(25\) −2.61105 −0.522210
\(26\) 3.24685 0.636760
\(27\) 3.51600 0.676655
\(28\) 1.83247 0.346304
\(29\) 6.80859 1.26432 0.632162 0.774836i \(-0.282168\pi\)
0.632162 + 0.774836i \(0.282168\pi\)
\(30\) 3.95173 0.721485
\(31\) 0 0
\(32\) 2.66037 0.470292
\(33\) −7.80507 −1.35869
\(34\) −4.65064 −0.797578
\(35\) 5.87917 0.993762
\(36\) −0.628936 −0.104823
\(37\) 1.81406 0.298230 0.149115 0.988820i \(-0.452357\pi\)
0.149115 + 0.988820i \(0.452357\pi\)
\(38\) 7.51417 1.21896
\(39\) −5.46769 −0.875531
\(40\) 4.72643 0.747314
\(41\) 0.337145 0.0526531 0.0263266 0.999653i \(-0.491619\pi\)
0.0263266 + 0.999653i \(0.491619\pi\)
\(42\) 9.72517 1.50063
\(43\) −3.88400 −0.592304 −0.296152 0.955141i \(-0.595703\pi\)
−0.296152 + 0.955141i \(0.595703\pi\)
\(44\) −1.81212 −0.273187
\(45\) −2.01784 −0.300802
\(46\) −1.12109 −0.165295
\(47\) −1.18915 −0.173455 −0.0867275 0.996232i \(-0.527641\pi\)
−0.0867275 + 0.996232i \(0.527641\pi\)
\(48\) 5.81908 0.839913
\(49\) 7.46858 1.06694
\(50\) −3.21726 −0.454990
\(51\) 7.83166 1.09665
\(52\) −1.26945 −0.176040
\(53\) 2.34413 0.321990 0.160995 0.986955i \(-0.448530\pi\)
0.160995 + 0.986955i \(0.448530\pi\)
\(54\) 4.33232 0.589554
\(55\) −5.81390 −0.783946
\(56\) 11.6317 1.55435
\(57\) −12.6538 −1.67604
\(58\) 8.38936 1.10158
\(59\) 7.77883 1.01272 0.506359 0.862323i \(-0.330991\pi\)
0.506359 + 0.862323i \(0.330991\pi\)
\(60\) −1.54504 −0.199464
\(61\) 2.72343 0.348700 0.174350 0.984684i \(-0.444218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(62\) 0 0
\(63\) −4.96588 −0.625642
\(64\) 8.88686 1.11086
\(65\) −4.07281 −0.505170
\(66\) −9.61719 −1.18379
\(67\) −7.42118 −0.906642 −0.453321 0.891347i \(-0.649761\pi\)
−0.453321 + 0.891347i \(0.649761\pi\)
\(68\) 1.81829 0.220501
\(69\) 1.88791 0.227278
\(70\) 7.24416 0.865842
\(71\) −5.09818 −0.605043 −0.302521 0.953143i \(-0.597828\pi\)
−0.302521 + 0.953143i \(0.597828\pi\)
\(72\) −3.99221 −0.470486
\(73\) −5.39174 −0.631056 −0.315528 0.948916i \(-0.602182\pi\)
−0.315528 + 0.948916i \(0.602182\pi\)
\(74\) 2.23524 0.259841
\(75\) 5.41786 0.625601
\(76\) −2.93787 −0.336997
\(77\) −14.3079 −1.63054
\(78\) −6.73714 −0.762830
\(79\) 9.73723 1.09552 0.547762 0.836634i \(-0.315480\pi\)
0.547762 + 0.836634i \(0.315480\pi\)
\(80\) 4.33456 0.484619
\(81\) −11.2122 −1.24580
\(82\) 0.415420 0.0458755
\(83\) 8.39515 0.921487 0.460743 0.887533i \(-0.347583\pi\)
0.460743 + 0.887533i \(0.347583\pi\)
\(84\) −3.80232 −0.414867
\(85\) 5.83370 0.632754
\(86\) −4.78575 −0.516061
\(87\) −14.1277 −1.51464
\(88\) −11.5025 −1.22617
\(89\) −5.09560 −0.540132 −0.270066 0.962842i \(-0.587046\pi\)
−0.270066 + 0.962842i \(0.587046\pi\)
\(90\) −2.48633 −0.262082
\(91\) −10.0231 −1.05071
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) −9.42569 −0.967056
\(96\) −5.52020 −0.563403
\(97\) 10.9142 1.10817 0.554086 0.832460i \(-0.313068\pi\)
0.554086 + 0.832460i \(0.313068\pi\)
\(98\) 9.20257 0.929600
\(99\) 4.91075 0.493549
\(100\) 1.25788 0.125788
\(101\) −0.398727 −0.0396748 −0.0198374 0.999803i \(-0.506315\pi\)
−0.0198374 + 0.999803i \(0.506315\pi\)
\(102\) 9.64995 0.955488
\(103\) 3.27680 0.322873 0.161436 0.986883i \(-0.448387\pi\)
0.161436 + 0.986883i \(0.448387\pi\)
\(104\) −8.05788 −0.790140
\(105\) −12.1991 −1.19051
\(106\) 2.88837 0.280543
\(107\) 3.15685 0.305184 0.152592 0.988289i \(-0.451238\pi\)
0.152592 + 0.988289i \(0.451238\pi\)
\(108\) −1.69384 −0.162990
\(109\) 6.95622 0.666285 0.333142 0.942877i \(-0.391891\pi\)
0.333142 + 0.942877i \(0.391891\pi\)
\(110\) −7.16372 −0.683034
\(111\) −3.76414 −0.357276
\(112\) 10.6673 1.00797
\(113\) −15.2468 −1.43430 −0.717148 0.696920i \(-0.754553\pi\)
−0.717148 + 0.696920i \(0.754553\pi\)
\(114\) −15.5917 −1.46030
\(115\) 1.40628 0.131136
\(116\) −3.28005 −0.304545
\(117\) 3.44013 0.318040
\(118\) 9.58486 0.882358
\(119\) 14.3567 1.31607
\(120\) −9.80722 −0.895273
\(121\) 3.14907 0.286279
\(122\) 3.35574 0.303814
\(123\) −0.699567 −0.0630778
\(124\) 0 0
\(125\) 11.7638 1.05219
\(126\) −6.11882 −0.545108
\(127\) 20.2264 1.79480 0.897400 0.441218i \(-0.145453\pi\)
0.897400 + 0.441218i \(0.145453\pi\)
\(128\) 5.62940 0.497573
\(129\) 8.05919 0.709572
\(130\) −5.01841 −0.440143
\(131\) 12.6513 1.10535 0.552674 0.833398i \(-0.313608\pi\)
0.552674 + 0.833398i \(0.313608\pi\)
\(132\) 3.76010 0.327275
\(133\) −23.1965 −2.01139
\(134\) −9.14417 −0.789936
\(135\) −5.43441 −0.467720
\(136\) 11.5417 0.989695
\(137\) 9.87801 0.843936 0.421968 0.906611i \(-0.361340\pi\)
0.421968 + 0.906611i \(0.361340\pi\)
\(138\) 2.32623 0.198022
\(139\) 15.4990 1.31461 0.657303 0.753626i \(-0.271697\pi\)
0.657303 + 0.753626i \(0.271697\pi\)
\(140\) −2.83230 −0.239373
\(141\) 2.46745 0.207797
\(142\) −6.28184 −0.527160
\(143\) 9.91185 0.828871
\(144\) −3.66122 −0.305101
\(145\) −10.5235 −0.873930
\(146\) −6.64356 −0.549825
\(147\) −15.4971 −1.27818
\(148\) −0.873928 −0.0718364
\(149\) −15.2432 −1.24878 −0.624388 0.781115i \(-0.714651\pi\)
−0.624388 + 0.781115i \(0.714651\pi\)
\(150\) 6.67574 0.545072
\(151\) 0.261828 0.0213073 0.0106536 0.999943i \(-0.496609\pi\)
0.0106536 + 0.999943i \(0.496609\pi\)
\(152\) −18.6483 −1.51258
\(153\) −4.92748 −0.398363
\(154\) −17.6298 −1.42065
\(155\) 0 0
\(156\) 2.63407 0.210894
\(157\) 15.9265 1.27108 0.635538 0.772070i \(-0.280778\pi\)
0.635538 + 0.772070i \(0.280778\pi\)
\(158\) 11.9979 0.954505
\(159\) −4.86400 −0.385740
\(160\) −4.11193 −0.325077
\(161\) 3.46084 0.272752
\(162\) −13.8153 −1.08544
\(163\) −0.133175 −0.0104311 −0.00521555 0.999986i \(-0.501660\pi\)
−0.00521555 + 0.999986i \(0.501660\pi\)
\(164\) −0.162420 −0.0126829
\(165\) 12.0637 0.939157
\(166\) 10.3443 0.802871
\(167\) 3.94878 0.305566 0.152783 0.988260i \(-0.451176\pi\)
0.152783 + 0.988260i \(0.451176\pi\)
\(168\) −24.1355 −1.86209
\(169\) −6.05644 −0.465880
\(170\) 7.18813 0.551304
\(171\) 7.96147 0.608829
\(172\) 1.87112 0.142672
\(173\) −14.4569 −1.09914 −0.549570 0.835447i \(-0.685209\pi\)
−0.549570 + 0.835447i \(0.685209\pi\)
\(174\) −17.4077 −1.31967
\(175\) 9.93180 0.750774
\(176\) −10.5489 −0.795151
\(177\) −16.1409 −1.21322
\(178\) −6.27865 −0.470605
\(179\) 17.7199 1.32445 0.662223 0.749307i \(-0.269613\pi\)
0.662223 + 0.749307i \(0.269613\pi\)
\(180\) 0.972098 0.0724559
\(181\) 12.0592 0.896350 0.448175 0.893946i \(-0.352074\pi\)
0.448175 + 0.893946i \(0.352074\pi\)
\(182\) −12.3502 −0.915461
\(183\) −5.65105 −0.417738
\(184\) 2.78226 0.205111
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) 0.572874 0.0417811
\(189\) −13.3740 −0.972817
\(190\) −11.6141 −0.842574
\(191\) 5.07152 0.366962 0.183481 0.983023i \(-0.441263\pi\)
0.183481 + 0.983023i \(0.441263\pi\)
\(192\) −18.4400 −1.33079
\(193\) −20.0417 −1.44264 −0.721318 0.692604i \(-0.756463\pi\)
−0.721318 + 0.692604i \(0.756463\pi\)
\(194\) 13.4482 0.965525
\(195\) 8.45099 0.605188
\(196\) −3.59800 −0.257000
\(197\) −21.7084 −1.54666 −0.773328 0.634006i \(-0.781410\pi\)
−0.773328 + 0.634006i \(0.781410\pi\)
\(198\) 6.05089 0.430018
\(199\) −15.1655 −1.07505 −0.537527 0.843246i \(-0.680641\pi\)
−0.537527 + 0.843246i \(0.680641\pi\)
\(200\) 7.98445 0.564586
\(201\) 15.3988 1.08615
\(202\) −0.491300 −0.0345678
\(203\) −25.8982 −1.81770
\(204\) −3.77291 −0.264157
\(205\) −0.521098 −0.0363951
\(206\) 4.03759 0.281312
\(207\) −1.18782 −0.0825595
\(208\) −7.38980 −0.512391
\(209\) 22.9390 1.58672
\(210\) −15.0314 −1.03727
\(211\) 6.30441 0.434013 0.217007 0.976170i \(-0.430371\pi\)
0.217007 + 0.976170i \(0.430371\pi\)
\(212\) −1.12929 −0.0775597
\(213\) 10.5786 0.724833
\(214\) 3.88978 0.265900
\(215\) 6.00319 0.409414
\(216\) −10.7517 −0.731564
\(217\) 0 0
\(218\) 8.57126 0.580519
\(219\) 11.1877 0.755997
\(220\) 2.80085 0.188834
\(221\) −9.94562 −0.669015
\(222\) −4.63806 −0.311287
\(223\) −7.38911 −0.494811 −0.247406 0.968912i \(-0.579578\pi\)
−0.247406 + 0.968912i \(0.579578\pi\)
\(224\) −10.1194 −0.676132
\(225\) −3.40878 −0.227252
\(226\) −18.7867 −1.24967
\(227\) 19.2398 1.27699 0.638495 0.769626i \(-0.279557\pi\)
0.638495 + 0.769626i \(0.279557\pi\)
\(228\) 6.09601 0.403718
\(229\) 6.08710 0.402247 0.201124 0.979566i \(-0.435541\pi\)
0.201124 + 0.979566i \(0.435541\pi\)
\(230\) 1.73278 0.114256
\(231\) 29.6886 1.95337
\(232\) −20.8203 −1.36692
\(233\) 17.5280 1.14830 0.574150 0.818750i \(-0.305333\pi\)
0.574150 + 0.818750i \(0.305333\pi\)
\(234\) 4.23883 0.277101
\(235\) 1.83797 0.119896
\(236\) −3.74746 −0.243939
\(237\) −20.2045 −1.31242
\(238\) 17.6899 1.14667
\(239\) 27.9120 1.80548 0.902740 0.430187i \(-0.141552\pi\)
0.902740 + 0.430187i \(0.141552\pi\)
\(240\) −8.99411 −0.580567
\(241\) −22.7497 −1.46544 −0.732720 0.680531i \(-0.761749\pi\)
−0.732720 + 0.680531i \(0.761749\pi\)
\(242\) 3.88019 0.249428
\(243\) 12.7170 0.815794
\(244\) −1.31202 −0.0839933
\(245\) −11.5436 −0.737494
\(246\) −0.861987 −0.0549583
\(247\) 16.0694 1.02247
\(248\) 0 0
\(249\) −17.4197 −1.10393
\(250\) 14.4950 0.916747
\(251\) 16.2345 1.02471 0.512356 0.858773i \(-0.328773\pi\)
0.512356 + 0.858773i \(0.328773\pi\)
\(252\) 2.39232 0.150702
\(253\) −3.42241 −0.215165
\(254\) 24.9224 1.56377
\(255\) −12.1048 −0.758031
\(256\) −10.8373 −0.677333
\(257\) 23.3521 1.45666 0.728332 0.685224i \(-0.240296\pi\)
0.728332 + 0.685224i \(0.240296\pi\)
\(258\) 9.93031 0.618234
\(259\) −6.90026 −0.428761
\(260\) 1.96208 0.121683
\(261\) 8.88875 0.550200
\(262\) 15.5886 0.963064
\(263\) 10.3944 0.640944 0.320472 0.947258i \(-0.396159\pi\)
0.320472 + 0.947258i \(0.396159\pi\)
\(264\) 23.8675 1.46894
\(265\) −3.62313 −0.222567
\(266\) −28.5821 −1.75248
\(267\) 10.5732 0.647072
\(268\) 3.57517 0.218388
\(269\) 4.41805 0.269373 0.134686 0.990888i \(-0.456997\pi\)
0.134686 + 0.990888i \(0.456997\pi\)
\(270\) −6.69613 −0.407514
\(271\) −6.15286 −0.373760 −0.186880 0.982383i \(-0.559838\pi\)
−0.186880 + 0.982383i \(0.559838\pi\)
\(272\) 10.5848 0.641798
\(273\) 20.7978 1.25874
\(274\) 12.1714 0.735302
\(275\) −9.82153 −0.592261
\(276\) −0.909503 −0.0547457
\(277\) −22.0474 −1.32470 −0.662350 0.749194i \(-0.730441\pi\)
−0.662350 + 0.749194i \(0.730441\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) −30.7736 −1.83580 −0.917899 0.396815i \(-0.870115\pi\)
−0.917899 + 0.396815i \(0.870115\pi\)
\(282\) 3.04032 0.181049
\(283\) −21.3453 −1.26884 −0.634422 0.772987i \(-0.718762\pi\)
−0.634422 + 0.772987i \(0.718762\pi\)
\(284\) 2.45606 0.145740
\(285\) 19.5581 1.15852
\(286\) 12.2131 0.722176
\(287\) −1.28242 −0.0756987
\(288\) 3.47317 0.204658
\(289\) −2.75436 −0.162021
\(290\) −12.9668 −0.761436
\(291\) −22.6467 −1.32758
\(292\) 2.59748 0.152006
\(293\) −1.79903 −0.105100 −0.0525501 0.998618i \(-0.516735\pi\)
−0.0525501 + 0.998618i \(0.516735\pi\)
\(294\) −19.0951 −1.11365
\(295\) −12.0231 −0.700014
\(296\) −5.54731 −0.322431
\(297\) 13.2255 0.767423
\(298\) −18.7823 −1.08803
\(299\) −2.39750 −0.138651
\(300\) −2.61006 −0.150692
\(301\) 14.7738 0.851546
\(302\) 0.322617 0.0185645
\(303\) 0.827349 0.0475299
\(304\) −17.1022 −0.980878
\(305\) −4.20940 −0.241030
\(306\) −6.07150 −0.347085
\(307\) 26.7694 1.52781 0.763905 0.645328i \(-0.223279\pi\)
0.763905 + 0.645328i \(0.223279\pi\)
\(308\) 6.89287 0.392758
\(309\) −6.79928 −0.386798
\(310\) 0 0
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 16.7199 0.946578
\(313\) 11.3428 0.641135 0.320567 0.947226i \(-0.396126\pi\)
0.320567 + 0.947226i \(0.396126\pi\)
\(314\) 19.6242 1.10746
\(315\) 7.67538 0.432459
\(316\) −4.69092 −0.263885
\(317\) 25.8813 1.45364 0.726820 0.686828i \(-0.240997\pi\)
0.726820 + 0.686828i \(0.240997\pi\)
\(318\) −5.99329 −0.336087
\(319\) 25.6107 1.43392
\(320\) −13.7357 −0.767851
\(321\) −6.55038 −0.365606
\(322\) 4.26435 0.237643
\(323\) −23.0171 −1.28071
\(324\) 5.40148 0.300082
\(325\) −6.88028 −0.381649
\(326\) −0.164095 −0.00908838
\(327\) −14.4340 −0.798201
\(328\) −1.03097 −0.0569258
\(329\) 4.52323 0.249374
\(330\) 14.8645 0.818266
\(331\) −0.765788 −0.0420915 −0.0210457 0.999779i \(-0.506700\pi\)
−0.0210457 + 0.999779i \(0.506700\pi\)
\(332\) −4.04437 −0.221964
\(333\) 2.36830 0.129782
\(334\) 4.86558 0.266232
\(335\) 11.4703 0.626692
\(336\) −22.1344 −1.20753
\(337\) −2.39434 −0.130428 −0.0652140 0.997871i \(-0.520773\pi\)
−0.0652140 + 0.997871i \(0.520773\pi\)
\(338\) −7.46258 −0.405911
\(339\) 31.6367 1.71827
\(340\) −2.81040 −0.152415
\(341\) 0 0
\(342\) 9.80991 0.530459
\(343\) −1.78235 −0.0962378
\(344\) 11.8770 0.640367
\(345\) −2.91800 −0.157100
\(346\) −17.8134 −0.957656
\(347\) −5.65780 −0.303727 −0.151863 0.988402i \(-0.548527\pi\)
−0.151863 + 0.988402i \(0.548527\pi\)
\(348\) 6.80602 0.364841
\(349\) 29.0676 1.55595 0.777977 0.628293i \(-0.216246\pi\)
0.777977 + 0.628293i \(0.216246\pi\)
\(350\) 12.2377 0.654132
\(351\) 9.26489 0.494523
\(352\) 10.0071 0.533378
\(353\) 19.2752 1.02592 0.512958 0.858414i \(-0.328550\pi\)
0.512958 + 0.858414i \(0.328550\pi\)
\(354\) −19.8883 −1.05705
\(355\) 7.87986 0.418220
\(356\) 2.45481 0.130105
\(357\) −29.7897 −1.57664
\(358\) 21.8340 1.15396
\(359\) 10.3443 0.545950 0.272975 0.962021i \(-0.411992\pi\)
0.272975 + 0.962021i \(0.411992\pi\)
\(360\) 6.17045 0.325211
\(361\) 18.1894 0.957339
\(362\) 14.8590 0.780970
\(363\) −6.53423 −0.342958
\(364\) 4.82867 0.253091
\(365\) 8.33360 0.436201
\(366\) −6.96307 −0.363966
\(367\) 0.136564 0.00712857 0.00356428 0.999994i \(-0.498865\pi\)
0.00356428 + 0.999994i \(0.498865\pi\)
\(368\) 2.55159 0.133011
\(369\) 0.440149 0.0229133
\(370\) −3.45484 −0.179608
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) −17.4935 −0.904566
\(375\) −24.4096 −1.26051
\(376\) 3.63635 0.187530
\(377\) 17.9411 0.924012
\(378\) −16.4791 −0.847593
\(379\) −4.60813 −0.236704 −0.118352 0.992972i \(-0.537761\pi\)
−0.118352 + 0.992972i \(0.537761\pi\)
\(380\) 4.54084 0.232940
\(381\) −41.9692 −2.15015
\(382\) 6.24899 0.319726
\(383\) 32.2948 1.65019 0.825093 0.564997i \(-0.191123\pi\)
0.825093 + 0.564997i \(0.191123\pi\)
\(384\) −11.6809 −0.596087
\(385\) 22.1147 1.12707
\(386\) −24.6949 −1.25694
\(387\) −5.07063 −0.257755
\(388\) −5.25794 −0.266932
\(389\) 35.2713 1.78832 0.894162 0.447743i \(-0.147772\pi\)
0.894162 + 0.447743i \(0.147772\pi\)
\(390\) 10.4131 0.527286
\(391\) 3.43407 0.173668
\(392\) −22.8385 −1.15352
\(393\) −26.2511 −1.32419
\(394\) −26.7484 −1.34757
\(395\) −15.0501 −0.757252
\(396\) −2.36576 −0.118884
\(397\) −4.03402 −0.202462 −0.101231 0.994863i \(-0.532278\pi\)
−0.101231 + 0.994863i \(0.532278\pi\)
\(398\) −18.6865 −0.936671
\(399\) 48.1322 2.40962
\(400\) 7.32246 0.366123
\(401\) −24.8832 −1.24261 −0.621304 0.783570i \(-0.713397\pi\)
−0.621304 + 0.783570i \(0.713397\pi\)
\(402\) 18.9739 0.946334
\(403\) 0 0
\(404\) 0.192087 0.00955671
\(405\) 17.3298 0.861124
\(406\) −31.9111 −1.58372
\(407\) 6.82365 0.338236
\(408\) −23.9488 −1.18564
\(409\) −3.50722 −0.173421 −0.0867105 0.996234i \(-0.527636\pi\)
−0.0867105 + 0.996234i \(0.527636\pi\)
\(410\) −0.642083 −0.0317102
\(411\) −20.4966 −1.01102
\(412\) −1.57860 −0.0777723
\(413\) −29.5888 −1.45597
\(414\) −1.46360 −0.0719322
\(415\) −12.9757 −0.636953
\(416\) 7.01025 0.343706
\(417\) −32.1600 −1.57488
\(418\) 28.2647 1.38247
\(419\) 4.12031 0.201290 0.100645 0.994922i \(-0.467909\pi\)
0.100645 + 0.994922i \(0.467909\pi\)
\(420\) 5.87695 0.286766
\(421\) 27.6014 1.34521 0.672605 0.740002i \(-0.265175\pi\)
0.672605 + 0.740002i \(0.265175\pi\)
\(422\) 7.76812 0.378146
\(423\) −1.55246 −0.0754830
\(424\) −7.16821 −0.348119
\(425\) 9.85499 0.478037
\(426\) 13.0347 0.631531
\(427\) −10.3593 −0.501321
\(428\) −1.52082 −0.0735114
\(429\) −20.5668 −0.992977
\(430\) 7.39697 0.356713
\(431\) −14.8739 −0.716452 −0.358226 0.933635i \(-0.616618\pi\)
−0.358226 + 0.933635i \(0.616618\pi\)
\(432\) −9.86032 −0.474405
\(433\) −9.26195 −0.445101 −0.222550 0.974921i \(-0.571438\pi\)
−0.222550 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 21.8360 1.04696
\(436\) −3.35117 −0.160492
\(437\) −5.54853 −0.265422
\(438\) 13.7852 0.658683
\(439\) 17.7182 0.845643 0.422821 0.906213i \(-0.361040\pi\)
0.422821 + 0.906213i \(0.361040\pi\)
\(440\) 17.7786 0.847561
\(441\) 9.75038 0.464304
\(442\) −12.2547 −0.582898
\(443\) −18.4502 −0.876597 −0.438299 0.898829i \(-0.644419\pi\)
−0.438299 + 0.898829i \(0.644419\pi\)
\(444\) 1.81338 0.0860591
\(445\) 7.87587 0.373352
\(446\) −9.10465 −0.431118
\(447\) 31.6294 1.49602
\(448\) −33.8035 −1.59706
\(449\) −22.7102 −1.07176 −0.535881 0.844294i \(-0.680020\pi\)
−0.535881 + 0.844294i \(0.680020\pi\)
\(450\) −4.20020 −0.197999
\(451\) 1.26818 0.0597162
\(452\) 7.34516 0.345487
\(453\) −0.543286 −0.0255258
\(454\) 23.7067 1.11261
\(455\) 15.4920 0.726276
\(456\) 38.6948 1.81205
\(457\) 16.1619 0.756020 0.378010 0.925802i \(-0.376608\pi\)
0.378010 + 0.925802i \(0.376608\pi\)
\(458\) 7.50036 0.350469
\(459\) −13.2706 −0.619418
\(460\) −0.677478 −0.0315876
\(461\) −21.5388 −1.00316 −0.501580 0.865111i \(-0.667248\pi\)
−0.501580 + 0.865111i \(0.667248\pi\)
\(462\) 36.5815 1.70192
\(463\) 17.5098 0.813750 0.406875 0.913484i \(-0.366619\pi\)
0.406875 + 0.913484i \(0.366619\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) −11.8066 −0.546346 −0.273173 0.961965i \(-0.588073\pi\)
−0.273173 + 0.961965i \(0.588073\pi\)
\(468\) −1.65729 −0.0766081
\(469\) 28.2284 1.30347
\(470\) 2.26470 0.104463
\(471\) −33.0472 −1.52273
\(472\) −23.7872 −1.09490
\(473\) −14.6097 −0.671757
\(474\) −24.8954 −1.14348
\(475\) −15.9230 −0.730598
\(476\) −6.91635 −0.317010
\(477\) 3.06030 0.140122
\(478\) 34.3924 1.57307
\(479\) −15.8087 −0.722319 −0.361159 0.932504i \(-0.617619\pi\)
−0.361159 + 0.932504i \(0.617619\pi\)
\(480\) 8.53215 0.389438
\(481\) 4.78017 0.217957
\(482\) −28.0316 −1.27680
\(483\) −7.18115 −0.326754
\(484\) −1.51707 −0.0689576
\(485\) −16.8693 −0.765994
\(486\) 15.6695 0.710783
\(487\) −12.7916 −0.579645 −0.289822 0.957080i \(-0.593596\pi\)
−0.289822 + 0.957080i \(0.593596\pi\)
\(488\) −8.32811 −0.376996
\(489\) 0.276335 0.0124963
\(490\) −14.2237 −0.642561
\(491\) 18.5282 0.836166 0.418083 0.908409i \(-0.362702\pi\)
0.418083 + 0.908409i \(0.362702\pi\)
\(492\) 0.337017 0.0151939
\(493\) −25.6979 −1.15738
\(494\) 19.8003 0.890859
\(495\) −7.59016 −0.341152
\(496\) 0 0
\(497\) 19.3922 0.869861
\(498\) −21.4641 −0.961829
\(499\) −40.8873 −1.83036 −0.915182 0.403040i \(-0.867954\pi\)
−0.915182 + 0.403040i \(0.867954\pi\)
\(500\) −5.66723 −0.253446
\(501\) −8.19362 −0.366064
\(502\) 20.0037 0.892809
\(503\) 20.0771 0.895194 0.447597 0.894235i \(-0.352280\pi\)
0.447597 + 0.894235i \(0.352280\pi\)
\(504\) 15.1854 0.676411
\(505\) 0.616282 0.0274242
\(506\) −4.21700 −0.187469
\(507\) 12.5670 0.558118
\(508\) −9.74408 −0.432324
\(509\) 31.9112 1.41444 0.707220 0.706994i \(-0.249949\pi\)
0.707220 + 0.706994i \(0.249949\pi\)
\(510\) −14.9152 −0.660456
\(511\) 20.5089 0.907260
\(512\) −24.6123 −1.08772
\(513\) 21.4417 0.946674
\(514\) 28.7738 1.26916
\(515\) −5.06470 −0.223177
\(516\) −3.88253 −0.170919
\(517\) −4.47301 −0.196723
\(518\) −8.50231 −0.373570
\(519\) 29.9978 1.31676
\(520\) 12.4544 0.546163
\(521\) 2.10756 0.0923339 0.0461670 0.998934i \(-0.485299\pi\)
0.0461670 + 0.998934i \(0.485299\pi\)
\(522\) 10.9525 0.479377
\(523\) −4.90777 −0.214602 −0.107301 0.994227i \(-0.534221\pi\)
−0.107301 + 0.994227i \(0.534221\pi\)
\(524\) −6.09477 −0.266251
\(525\) −20.6082 −0.899418
\(526\) 12.8076 0.558440
\(527\) 0 0
\(528\) 21.8886 0.952580
\(529\) −22.1722 −0.964008
\(530\) −4.46432 −0.193918
\(531\) 10.1554 0.440708
\(532\) 11.1750 0.484496
\(533\) 0.888398 0.0384808
\(534\) 13.0280 0.563779
\(535\) −4.87929 −0.210950
\(536\) 22.6936 0.980213
\(537\) −36.7683 −1.58667
\(538\) 5.44379 0.234699
\(539\) 28.0932 1.21006
\(540\) 2.61804 0.112662
\(541\) −12.4370 −0.534709 −0.267355 0.963598i \(-0.586150\pi\)
−0.267355 + 0.963598i \(0.586150\pi\)
\(542\) −7.58139 −0.325648
\(543\) −25.0225 −1.07382
\(544\) −10.0411 −0.430511
\(545\) −10.7517 −0.460552
\(546\) 25.6264 1.09671
\(547\) −13.9650 −0.597101 −0.298550 0.954394i \(-0.596503\pi\)
−0.298550 + 0.954394i \(0.596503\pi\)
\(548\) −4.75875 −0.203284
\(549\) 3.55550 0.151745
\(550\) −12.1018 −0.516023
\(551\) 41.5209 1.76885
\(552\) −5.77312 −0.245721
\(553\) −37.0381 −1.57502
\(554\) −27.1662 −1.15418
\(555\) 5.81793 0.246958
\(556\) −7.46666 −0.316657
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) −16.4876 −0.696730
\(561\) 29.4590 1.24376
\(562\) −37.9183 −1.59949
\(563\) −30.0267 −1.26548 −0.632738 0.774366i \(-0.718069\pi\)
−0.632738 + 0.774366i \(0.718069\pi\)
\(564\) −1.18870 −0.0500532
\(565\) 23.5658 0.991420
\(566\) −26.3010 −1.10551
\(567\) 42.6484 1.79106
\(568\) 15.5900 0.654140
\(569\) 40.3713 1.69245 0.846227 0.532823i \(-0.178869\pi\)
0.846227 + 0.532823i \(0.178869\pi\)
\(570\) 24.0989 1.00939
\(571\) −42.6015 −1.78282 −0.891410 0.453199i \(-0.850283\pi\)
−0.891410 + 0.453199i \(0.850283\pi\)
\(572\) −4.77505 −0.199655
\(573\) −10.5233 −0.439616
\(574\) −1.58016 −0.0659545
\(575\) 2.37566 0.0990717
\(576\) 11.6020 0.483416
\(577\) −6.53777 −0.272171 −0.136085 0.990697i \(-0.543452\pi\)
−0.136085 + 0.990697i \(0.543452\pi\)
\(578\) −3.39385 −0.141165
\(579\) 41.5861 1.72826
\(580\) 5.06972 0.210509
\(581\) −31.9331 −1.32481
\(582\) −27.9047 −1.15669
\(583\) 8.81749 0.365183
\(584\) 16.4877 0.682264
\(585\) −5.31714 −0.219837
\(586\) −2.21671 −0.0915715
\(587\) 21.3777 0.882352 0.441176 0.897421i \(-0.354561\pi\)
0.441176 + 0.897421i \(0.354561\pi\)
\(588\) 7.46576 0.307883
\(589\) 0 0
\(590\) −14.8146 −0.609907
\(591\) 45.0443 1.85287
\(592\) −5.08738 −0.209090
\(593\) 25.9906 1.06731 0.533653 0.845704i \(-0.320819\pi\)
0.533653 + 0.845704i \(0.320819\pi\)
\(594\) 16.2961 0.668638
\(595\) −22.1900 −0.909701
\(596\) 7.34346 0.300800
\(597\) 31.4680 1.28790
\(598\) −2.95414 −0.120804
\(599\) −9.18796 −0.375410 −0.187705 0.982225i \(-0.560105\pi\)
−0.187705 + 0.982225i \(0.560105\pi\)
\(600\) −16.5675 −0.676367
\(601\) −33.3190 −1.35911 −0.679556 0.733624i \(-0.737828\pi\)
−0.679556 + 0.733624i \(0.737828\pi\)
\(602\) 18.2038 0.741933
\(603\) −9.68850 −0.394546
\(604\) −0.126136 −0.00513240
\(605\) −4.86727 −0.197883
\(606\) 1.01944 0.0414118
\(607\) −48.7008 −1.97670 −0.988352 0.152188i \(-0.951368\pi\)
−0.988352 + 0.152188i \(0.951368\pi\)
\(608\) 16.2238 0.657961
\(609\) 53.7382 2.17758
\(610\) −5.18671 −0.210004
\(611\) −3.13348 −0.126767
\(612\) 2.37382 0.0959560
\(613\) −20.9140 −0.844709 −0.422354 0.906431i \(-0.638796\pi\)
−0.422354 + 0.906431i \(0.638796\pi\)
\(614\) 32.9845 1.33115
\(615\) 1.08127 0.0436009
\(616\) 43.7529 1.76285
\(617\) 45.3840 1.82709 0.913545 0.406738i \(-0.133334\pi\)
0.913545 + 0.406738i \(0.133334\pi\)
\(618\) −8.37789 −0.337008
\(619\) 10.2462 0.411832 0.205916 0.978570i \(-0.433983\pi\)
0.205916 + 0.978570i \(0.433983\pi\)
\(620\) 0 0
\(621\) −3.19902 −0.128372
\(622\) 5.15188 0.206572
\(623\) 19.3824 0.776540
\(624\) 15.3337 0.613838
\(625\) −5.12716 −0.205086
\(626\) 13.9763 0.558606
\(627\) −47.5978 −1.90087
\(628\) −7.67263 −0.306171
\(629\) −6.84689 −0.273003
\(630\) 9.45739 0.376792
\(631\) 10.6770 0.425043 0.212522 0.977156i \(-0.431832\pi\)
0.212522 + 0.977156i \(0.431832\pi\)
\(632\) −29.7759 −1.18442
\(633\) −13.0815 −0.519942
\(634\) 31.8903 1.26652
\(635\) −31.2623 −1.24061
\(636\) 2.34324 0.0929155
\(637\) 19.6802 0.779757
\(638\) 31.5568 1.24934
\(639\) −6.65578 −0.263298
\(640\) −8.70093 −0.343934
\(641\) −23.8621 −0.942496 −0.471248 0.882001i \(-0.656196\pi\)
−0.471248 + 0.882001i \(0.656196\pi\)
\(642\) −8.07119 −0.318545
\(643\) 7.93926 0.313094 0.156547 0.987671i \(-0.449964\pi\)
0.156547 + 0.987671i \(0.449964\pi\)
\(644\) −1.66726 −0.0656994
\(645\) −12.4565 −0.490473
\(646\) −28.3610 −1.11585
\(647\) −2.47761 −0.0974050 −0.0487025 0.998813i \(-0.515509\pi\)
−0.0487025 + 0.998813i \(0.515509\pi\)
\(648\) 34.2862 1.34689
\(649\) 29.2603 1.14857
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) 22.4940 0.880260 0.440130 0.897934i \(-0.354932\pi\)
0.440130 + 0.897934i \(0.354932\pi\)
\(654\) −17.7851 −0.695454
\(655\) −19.5541 −0.764042
\(656\) −0.945493 −0.0369153
\(657\) −7.03903 −0.274619
\(658\) 5.57340 0.217274
\(659\) −11.9596 −0.465881 −0.232941 0.972491i \(-0.574835\pi\)
−0.232941 + 0.972491i \(0.574835\pi\)
\(660\) −5.81170 −0.226220
\(661\) 23.8360 0.927112 0.463556 0.886068i \(-0.346573\pi\)
0.463556 + 0.886068i \(0.346573\pi\)
\(662\) −0.943582 −0.0366734
\(663\) 20.6369 0.801471
\(664\) −25.6719 −0.996263
\(665\) 35.8531 1.39032
\(666\) 2.91815 0.113076
\(667\) −6.19478 −0.239863
\(668\) −1.90233 −0.0736034
\(669\) 15.3322 0.592777
\(670\) 14.1334 0.546022
\(671\) 10.2443 0.395475
\(672\) 20.9975 0.809997
\(673\) −3.49412 −0.134688 −0.0673442 0.997730i \(-0.521453\pi\)
−0.0673442 + 0.997730i \(0.521453\pi\)
\(674\) −2.95024 −0.113639
\(675\) −9.18046 −0.353356
\(676\) 2.91770 0.112219
\(677\) 19.2457 0.739674 0.369837 0.929097i \(-0.379414\pi\)
0.369837 + 0.929097i \(0.379414\pi\)
\(678\) 38.9819 1.49709
\(679\) −41.5151 −1.59320
\(680\) −17.8391 −0.684100
\(681\) −39.9221 −1.52982
\(682\) 0 0
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) −3.83545 −0.146652
\(685\) −15.2677 −0.583348
\(686\) −2.19616 −0.0838498
\(687\) −12.6306 −0.481887
\(688\) 10.8923 0.415266
\(689\) 6.17692 0.235322
\(690\) −3.59547 −0.136877
\(691\) 38.4104 1.46120 0.730601 0.682804i \(-0.239240\pi\)
0.730601 + 0.682804i \(0.239240\pi\)
\(692\) 6.96465 0.264756
\(693\) −18.6793 −0.709568
\(694\) −6.97139 −0.264630
\(695\) −23.9556 −0.908687
\(696\) 43.2016 1.63755
\(697\) −1.27250 −0.0481993
\(698\) 35.8163 1.35567
\(699\) −36.3703 −1.37565
\(700\) −4.78466 −0.180843
\(701\) −35.4255 −1.33800 −0.669001 0.743262i \(-0.733278\pi\)
−0.669001 + 0.743262i \(0.733278\pi\)
\(702\) 11.4159 0.430867
\(703\) 11.0627 0.417239
\(704\) 33.4281 1.25987
\(705\) −3.81375 −0.143634
\(706\) 23.7504 0.893857
\(707\) 1.51666 0.0570399
\(708\) 7.77589 0.292236
\(709\) 25.8093 0.969288 0.484644 0.874711i \(-0.338949\pi\)
0.484644 + 0.874711i \(0.338949\pi\)
\(710\) 9.70935 0.364385
\(711\) 12.7121 0.476743
\(712\) 15.5821 0.583962
\(713\) 0 0
\(714\) −36.7061 −1.37369
\(715\) −15.3200 −0.572935
\(716\) −8.53658 −0.319027
\(717\) −57.9168 −2.16294
\(718\) 12.7459 0.475674
\(719\) 39.0467 1.45620 0.728099 0.685472i \(-0.240404\pi\)
0.728099 + 0.685472i \(0.240404\pi\)
\(720\) 5.65886 0.210893
\(721\) −12.4642 −0.464190
\(722\) 22.4125 0.834108
\(723\) 47.2051 1.75558
\(724\) −5.80952 −0.215909
\(725\) −17.7776 −0.660243
\(726\) −8.05130 −0.298812
\(727\) 24.9836 0.926592 0.463296 0.886204i \(-0.346667\pi\)
0.463296 + 0.886204i \(0.346667\pi\)
\(728\) 30.6502 1.13597
\(729\) 7.24913 0.268486
\(730\) 10.2684 0.380052
\(731\) 14.6595 0.542202
\(732\) 2.72240 0.100623
\(733\) −16.9490 −0.626027 −0.313014 0.949749i \(-0.601339\pi\)
−0.313014 + 0.949749i \(0.601339\pi\)
\(734\) 0.168270 0.00621096
\(735\) 23.9527 0.883508
\(736\) −2.42053 −0.0892220
\(737\) −27.9150 −1.02826
\(738\) 0.542340 0.0199638
\(739\) −14.3821 −0.529055 −0.264528 0.964378i \(-0.585216\pi\)
−0.264528 + 0.964378i \(0.585216\pi\)
\(740\) 1.35076 0.0496550
\(741\) −33.3437 −1.22491
\(742\) −10.9866 −0.403333
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) −9.07363 −0.332209
\(747\) 10.9600 0.401007
\(748\) 6.83956 0.250079
\(749\) −12.0079 −0.438758
\(750\) −30.0768 −1.09825
\(751\) −43.5702 −1.58990 −0.794950 0.606676i \(-0.792503\pi\)
−0.794950 + 0.606676i \(0.792503\pi\)
\(752\) 3.33486 0.121610
\(753\) −33.6862 −1.22759
\(754\) 22.1065 0.805071
\(755\) −0.404687 −0.0147281
\(756\) 6.44296 0.234328
\(757\) −25.2171 −0.916531 −0.458266 0.888815i \(-0.651529\pi\)
−0.458266 + 0.888815i \(0.651529\pi\)
\(758\) −5.67802 −0.206235
\(759\) 7.10142 0.257765
\(760\) 28.8233 1.04553
\(761\) 2.61593 0.0948274 0.0474137 0.998875i \(-0.484902\pi\)
0.0474137 + 0.998875i \(0.484902\pi\)
\(762\) −51.7133 −1.87337
\(763\) −26.4598 −0.957908
\(764\) −2.44321 −0.0883923
\(765\) 7.61602 0.275358
\(766\) 39.7927 1.43777
\(767\) 20.4977 0.740130
\(768\) 22.4872 0.811437
\(769\) 11.3507 0.409316 0.204658 0.978834i \(-0.434392\pi\)
0.204658 + 0.978834i \(0.434392\pi\)
\(770\) 27.2491 0.981988
\(771\) −48.4550 −1.74507
\(772\) 9.65514 0.347496
\(773\) 11.4174 0.410655 0.205327 0.978693i \(-0.434174\pi\)
0.205327 + 0.978693i \(0.434174\pi\)
\(774\) −6.24789 −0.224576
\(775\) 0 0
\(776\) −33.3751 −1.19810
\(777\) 14.3179 0.513651
\(778\) 43.4603 1.55813
\(779\) 2.05601 0.0736644
\(780\) −4.07128 −0.145775
\(781\) −19.1769 −0.686204
\(782\) 4.23137 0.151313
\(783\) 23.9390 0.855511
\(784\) −20.9450 −0.748035
\(785\) −24.6164 −0.878597
\(786\) −32.3459 −1.15374
\(787\) 27.0892 0.965626 0.482813 0.875723i \(-0.339615\pi\)
0.482813 + 0.875723i \(0.339615\pi\)
\(788\) 10.4580 0.372552
\(789\) −21.5680 −0.767842
\(790\) −18.5443 −0.659776
\(791\) 57.9951 2.06207
\(792\) −15.0168 −0.533599
\(793\) 7.17642 0.254842
\(794\) −4.97060 −0.176400
\(795\) 7.51791 0.266633
\(796\) 7.30601 0.258955
\(797\) −48.6558 −1.72348 −0.861739 0.507352i \(-0.830624\pi\)
−0.861739 + 0.507352i \(0.830624\pi\)
\(798\) 59.3071 2.09945
\(799\) 4.48825 0.158783
\(800\) −6.94637 −0.245591
\(801\) −6.65241 −0.235051
\(802\) −30.6604 −1.08266
\(803\) −20.2812 −0.715707
\(804\) −7.41838 −0.261626
\(805\) −5.34915 −0.188533
\(806\) 0 0
\(807\) −9.16733 −0.322705
\(808\) 1.21929 0.0428943
\(809\) 18.8091 0.661294 0.330647 0.943755i \(-0.392733\pi\)
0.330647 + 0.943755i \(0.392733\pi\)
\(810\) 21.3533 0.750278
\(811\) −39.5385 −1.38839 −0.694193 0.719789i \(-0.744239\pi\)
−0.694193 + 0.719789i \(0.744239\pi\)
\(812\) 12.4765 0.437840
\(813\) 12.7670 0.447760
\(814\) 8.40791 0.294697
\(815\) 0.205839 0.00721022
\(816\) −21.9632 −0.768866
\(817\) −23.6858 −0.828662
\(818\) −4.32150 −0.151098
\(819\) −13.0854 −0.457241
\(820\) 0.251040 0.00876670
\(821\) 14.6367 0.510825 0.255412 0.966832i \(-0.417789\pi\)
0.255412 + 0.966832i \(0.417789\pi\)
\(822\) −25.2554 −0.880882
\(823\) −41.7867 −1.45659 −0.728296 0.685262i \(-0.759688\pi\)
−0.728296 + 0.685262i \(0.759688\pi\)
\(824\) −10.0203 −0.349073
\(825\) 20.3794 0.709521
\(826\) −36.4585 −1.26855
\(827\) 9.40613 0.327083 0.163542 0.986536i \(-0.447708\pi\)
0.163542 + 0.986536i \(0.447708\pi\)
\(828\) 0.572236 0.0198866
\(829\) −40.3307 −1.40074 −0.700372 0.713778i \(-0.746983\pi\)
−0.700372 + 0.713778i \(0.746983\pi\)
\(830\) −15.9883 −0.554963
\(831\) 45.7478 1.58697
\(832\) 23.4174 0.811854
\(833\) −28.1889 −0.976689
\(834\) −39.6266 −1.37216
\(835\) −6.10332 −0.211214
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) 7.14965 0.246833 0.123417 0.992355i \(-0.460615\pi\)
0.123417 + 0.992355i \(0.460615\pi\)
\(840\) 37.3043 1.28712
\(841\) 17.3569 0.598514
\(842\) 34.0097 1.17205
\(843\) 63.8544 2.19926
\(844\) −3.03716 −0.104543
\(845\) 9.36097 0.322027
\(846\) −1.91289 −0.0657666
\(847\) −11.9783 −0.411579
\(848\) −6.57389 −0.225748
\(849\) 44.2909 1.52006
\(850\) 12.1430 0.416503
\(851\) −1.65052 −0.0565791
\(852\) −5.09625 −0.174595
\(853\) 1.12667 0.0385765 0.0192882 0.999814i \(-0.493860\pi\)
0.0192882 + 0.999814i \(0.493860\pi\)
\(854\) −12.7644 −0.436789
\(855\) −12.3054 −0.420837
\(856\) −9.65346 −0.329949
\(857\) −23.8540 −0.814838 −0.407419 0.913241i \(-0.633571\pi\)
−0.407419 + 0.913241i \(0.633571\pi\)
\(858\) −25.3419 −0.865158
\(859\) −32.4657 −1.10771 −0.553857 0.832612i \(-0.686845\pi\)
−0.553857 + 0.832612i \(0.686845\pi\)
\(860\) −2.89205 −0.0986180
\(861\) 2.66098 0.0906860
\(862\) −18.3273 −0.624229
\(863\) 23.8418 0.811585 0.405793 0.913965i \(-0.366996\pi\)
0.405793 + 0.913965i \(0.366996\pi\)
\(864\) 9.35387 0.318225
\(865\) 22.3450 0.759752
\(866\) −11.4123 −0.387806
\(867\) 5.71523 0.194099
\(868\) 0 0
\(869\) 36.6268 1.24248
\(870\) 26.9057 0.912190
\(871\) −19.5553 −0.662605
\(872\) −21.2717 −0.720352
\(873\) 14.2487 0.482247
\(874\) −6.83675 −0.231256
\(875\) −44.7467 −1.51271
\(876\) −5.38971 −0.182101
\(877\) 29.2746 0.988534 0.494267 0.869310i \(-0.335436\pi\)
0.494267 + 0.869310i \(0.335436\pi\)
\(878\) 21.8319 0.736789
\(879\) 3.73294 0.125909
\(880\) 16.3046 0.549627
\(881\) −9.03008 −0.304231 −0.152116 0.988363i \(-0.548609\pi\)
−0.152116 + 0.988363i \(0.548609\pi\)
\(882\) 12.0141 0.404537
\(883\) −21.4076 −0.720422 −0.360211 0.932871i \(-0.617295\pi\)
−0.360211 + 0.932871i \(0.617295\pi\)
\(884\) 4.79132 0.161150
\(885\) 24.9477 0.838608
\(886\) −22.7339 −0.763759
\(887\) 24.5950 0.825820 0.412910 0.910772i \(-0.364512\pi\)
0.412910 + 0.910772i \(0.364512\pi\)
\(888\) 11.5105 0.386268
\(889\) −76.9362 −2.58036
\(890\) 9.70443 0.325293
\(891\) −42.1749 −1.41291
\(892\) 3.55971 0.119188
\(893\) −7.25179 −0.242672
\(894\) 38.9728 1.30345
\(895\) −27.3883 −0.915488
\(896\) −21.4129 −0.715354
\(897\) 4.97476 0.166102
\(898\) −27.9829 −0.933801
\(899\) 0 0
\(900\) 1.64218 0.0547395
\(901\) −8.84753 −0.294754
\(902\) 1.56261 0.0520293
\(903\) −30.6552 −1.02014
\(904\) 46.6238 1.55069
\(905\) −18.6389 −0.619578
\(906\) −0.669422 −0.0222401
\(907\) −19.7663 −0.656329 −0.328165 0.944621i \(-0.606430\pi\)
−0.328165 + 0.944621i \(0.606430\pi\)
\(908\) −9.26880 −0.307596
\(909\) −0.520546 −0.0172654
\(910\) 19.0888 0.632788
\(911\) 35.6216 1.18020 0.590098 0.807332i \(-0.299089\pi\)
0.590098 + 0.807332i \(0.299089\pi\)
\(912\) 35.4866 1.17508
\(913\) 31.5785 1.04510
\(914\) 19.9142 0.658703
\(915\) 8.73440 0.288750
\(916\) −2.93247 −0.0968916
\(917\) −48.1224 −1.58914
\(918\) −16.3516 −0.539685
\(919\) −17.1563 −0.565935 −0.282968 0.959129i \(-0.591319\pi\)
−0.282968 + 0.959129i \(0.591319\pi\)
\(920\) −4.30033 −0.141778
\(921\) −55.5458 −1.83030
\(922\) −26.5395 −0.874030
\(923\) −13.4340 −0.442186
\(924\) −14.3025 −0.470519
\(925\) −4.73661 −0.155739
\(926\) 21.5751 0.709002
\(927\) 4.27793 0.140506
\(928\) 18.1134 0.594601
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) −8.44416 −0.276598
\(933\) −8.67575 −0.284031
\(934\) −14.5478 −0.476018
\(935\) 21.9436 0.717633
\(936\) −10.5197 −0.343848
\(937\) 25.6175 0.836887 0.418443 0.908243i \(-0.362576\pi\)
0.418443 + 0.908243i \(0.362576\pi\)
\(938\) 34.7822 1.13568
\(939\) −23.5361 −0.768071
\(940\) −0.885446 −0.0288801
\(941\) −12.1238 −0.395226 −0.197613 0.980280i \(-0.563319\pi\)
−0.197613 + 0.980280i \(0.563319\pi\)
\(942\) −40.7198 −1.32672
\(943\) −0.306750 −0.00998916
\(944\) −21.8151 −0.710019
\(945\) 20.6712 0.672434
\(946\) −18.0017 −0.585286
\(947\) 27.2011 0.883916 0.441958 0.897036i \(-0.354284\pi\)
0.441958 + 0.897036i \(0.354284\pi\)
\(948\) 9.73355 0.316131
\(949\) −14.2076 −0.461198
\(950\) −19.6199 −0.636553
\(951\) −53.7031 −1.74144
\(952\) −43.9019 −1.42287
\(953\) −24.8927 −0.806353 −0.403177 0.915122i \(-0.632094\pi\)
−0.403177 + 0.915122i \(0.632094\pi\)
\(954\) 3.77082 0.122085
\(955\) −7.83866 −0.253653
\(956\) −13.4467 −0.434896
\(957\) −53.1415 −1.71782
\(958\) −19.4791 −0.629340
\(959\) −37.5736 −1.21331
\(960\) 28.5013 0.919876
\(961\) 0 0
\(962\) 5.89000 0.189901
\(963\) 4.12133 0.132808
\(964\) 10.9597 0.352989
\(965\) 30.9770 0.997184
\(966\) −8.84842 −0.284693
\(967\) −52.1998 −1.67863 −0.839316 0.543643i \(-0.817044\pi\)
−0.839316 + 0.543643i \(0.817044\pi\)
\(968\) −9.62967 −0.309509
\(969\) 47.7599 1.53427
\(970\) −20.7858 −0.667393
\(971\) −19.9608 −0.640574 −0.320287 0.947321i \(-0.603779\pi\)
−0.320287 + 0.947321i \(0.603779\pi\)
\(972\) −6.12642 −0.196505
\(973\) −58.9544 −1.88999
\(974\) −15.7615 −0.505031
\(975\) 14.2764 0.457211
\(976\) −7.63763 −0.244475
\(977\) −60.2506 −1.92759 −0.963794 0.266648i \(-0.914084\pi\)
−0.963794 + 0.266648i \(0.914084\pi\)
\(978\) 0.340493 0.0108878
\(979\) −19.1672 −0.612587
\(980\) 5.56115 0.177644
\(981\) 9.08148 0.289949
\(982\) 22.8299 0.728532
\(983\) 11.5387 0.368028 0.184014 0.982924i \(-0.441091\pi\)
0.184014 + 0.982924i \(0.441091\pi\)
\(984\) 2.13924 0.0681964
\(985\) 33.5529 1.06909
\(986\) −31.6643 −1.00840
\(987\) −9.38559 −0.298746
\(988\) −7.74148 −0.246289
\(989\) 3.53384 0.112370
\(990\) −9.35239 −0.297238
\(991\) −37.3423 −1.18622 −0.593109 0.805122i \(-0.702100\pi\)
−0.593109 + 0.805122i \(0.702100\pi\)
\(992\) 0 0
\(993\) 1.58899 0.0504251
\(994\) 23.8946 0.757890
\(995\) 23.4402 0.743103
\(996\) 8.39197 0.265910
\(997\) 20.8024 0.658820 0.329410 0.944187i \(-0.393150\pi\)
0.329410 + 0.944187i \(0.393150\pi\)
\(998\) −50.3801 −1.59476
\(999\) 6.37825 0.201799
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.j.1.5 8
3.2 odd 2 8649.2.a.be.1.4 8
31.2 even 5 961.2.d.n.531.3 16
31.3 odd 30 31.2.g.a.9.2 yes 16
31.4 even 5 961.2.d.q.388.2 16
31.5 even 3 961.2.c.i.521.5 16
31.6 odd 6 961.2.c.j.439.5 16
31.7 even 15 961.2.g.n.235.1 16
31.8 even 5 961.2.d.q.374.2 16
31.9 even 15 961.2.g.n.732.1 16
31.10 even 15 961.2.g.l.844.2 16
31.11 odd 30 961.2.g.s.338.1 16
31.12 odd 30 961.2.g.k.547.2 16
31.13 odd 30 961.2.g.k.448.2 16
31.14 even 15 961.2.g.m.816.1 16
31.15 odd 10 961.2.d.o.628.3 16
31.16 even 5 961.2.d.n.628.3 16
31.17 odd 30 961.2.g.s.816.1 16
31.18 even 15 961.2.g.j.448.2 16
31.19 even 15 961.2.g.j.547.2 16
31.20 even 15 961.2.g.m.338.1 16
31.21 odd 30 31.2.g.a.7.2 16
31.22 odd 30 961.2.g.t.732.1 16
31.23 odd 10 961.2.d.p.374.2 16
31.24 odd 30 961.2.g.t.235.1 16
31.25 even 3 961.2.c.i.439.5 16
31.26 odd 6 961.2.c.j.521.5 16
31.27 odd 10 961.2.d.p.388.2 16
31.28 even 15 961.2.g.l.846.2 16
31.29 odd 10 961.2.d.o.531.3 16
31.30 odd 2 961.2.a.i.1.5 8
93.65 even 30 279.2.y.c.226.1 16
93.83 even 30 279.2.y.c.100.1 16
93.92 even 2 8649.2.a.bf.1.4 8
124.3 even 30 496.2.bg.c.257.2 16
124.83 even 30 496.2.bg.c.193.2 16
155.3 even 60 775.2.ck.a.474.2 32
155.34 odd 30 775.2.bl.a.226.1 16
155.52 even 60 775.2.ck.a.224.2 32
155.83 even 60 775.2.ck.a.224.3 32
155.114 odd 30 775.2.bl.a.751.1 16
155.127 even 60 775.2.ck.a.474.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 31.21 odd 30
31.2.g.a.9.2 yes 16 31.3 odd 30
279.2.y.c.100.1 16 93.83 even 30
279.2.y.c.226.1 16 93.65 even 30
496.2.bg.c.193.2 16 124.83 even 30
496.2.bg.c.257.2 16 124.3 even 30
775.2.bl.a.226.1 16 155.34 odd 30
775.2.bl.a.751.1 16 155.114 odd 30
775.2.ck.a.224.2 32 155.52 even 60
775.2.ck.a.224.3 32 155.83 even 60
775.2.ck.a.474.2 32 155.3 even 60
775.2.ck.a.474.3 32 155.127 even 60
961.2.a.i.1.5 8 31.30 odd 2
961.2.a.j.1.5 8 1.1 even 1 trivial
961.2.c.i.439.5 16 31.25 even 3
961.2.c.i.521.5 16 31.5 even 3
961.2.c.j.439.5 16 31.6 odd 6
961.2.c.j.521.5 16 31.26 odd 6
961.2.d.n.531.3 16 31.2 even 5
961.2.d.n.628.3 16 31.16 even 5
961.2.d.o.531.3 16 31.29 odd 10
961.2.d.o.628.3 16 31.15 odd 10
961.2.d.p.374.2 16 31.23 odd 10
961.2.d.p.388.2 16 31.27 odd 10
961.2.d.q.374.2 16 31.8 even 5
961.2.d.q.388.2 16 31.4 even 5
961.2.g.j.448.2 16 31.18 even 15
961.2.g.j.547.2 16 31.19 even 15
961.2.g.k.448.2 16 31.13 odd 30
961.2.g.k.547.2 16 31.12 odd 30
961.2.g.l.844.2 16 31.10 even 15
961.2.g.l.846.2 16 31.28 even 15
961.2.g.m.338.1 16 31.20 even 15
961.2.g.m.816.1 16 31.14 even 15
961.2.g.n.235.1 16 31.7 even 15
961.2.g.n.732.1 16 31.9 even 15
961.2.g.s.338.1 16 31.11 odd 30
961.2.g.s.816.1 16 31.17 odd 30
961.2.g.t.235.1 16 31.24 odd 30
961.2.g.t.732.1 16 31.22 odd 30
8649.2.a.be.1.4 8 3.2 odd 2
8649.2.a.bf.1.4 8 93.92 even 2