Properties

Label 961.2.a.h.1.3
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,0,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.874032\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61803 q^{2} -0.874032 q^{3} +4.85410 q^{4} +2.23607 q^{5} -2.28825 q^{6} -1.00000 q^{7} +7.47214 q^{8} -2.23607 q^{9} +5.85410 q^{10} +4.24264 q^{11} -4.24264 q^{12} -2.62210 q^{13} -2.61803 q^{14} -1.95440 q^{15} +9.85410 q^{16} +3.70246 q^{17} -5.85410 q^{18} +1.00000 q^{19} +10.8541 q^{20} +0.874032 q^{21} +11.1074 q^{22} -2.62210 q^{23} -6.53089 q^{24} -6.86474 q^{26} +4.57649 q^{27} -4.85410 q^{28} -0.540182 q^{29} -5.11667 q^{30} +10.8541 q^{32} -3.70820 q^{33} +9.69316 q^{34} -2.23607 q^{35} -10.8541 q^{36} +4.24264 q^{37} +2.61803 q^{38} +2.29180 q^{39} +16.7082 q^{40} -1.47214 q^{41} +2.28825 q^{42} -9.69316 q^{43} +20.5942 q^{44} -5.00000 q^{45} -6.86474 q^{46} -9.70820 q^{47} -8.61280 q^{48} -6.00000 q^{49} -3.23607 q^{51} -12.7279 q^{52} -13.7295 q^{53} +11.9814 q^{54} +9.48683 q^{55} -7.47214 q^{56} -0.874032 q^{57} -1.41421 q^{58} +11.9443 q^{59} -9.48683 q^{60} +13.9358 q^{61} +2.23607 q^{63} +8.70820 q^{64} -5.86319 q^{65} -9.70820 q^{66} +6.00000 q^{67} +17.9721 q^{68} +2.29180 q^{69} -5.85410 q^{70} -1.47214 q^{71} -16.7082 q^{72} +4.24264 q^{73} +11.1074 q^{74} +4.85410 q^{76} -4.24264 q^{77} +6.00000 q^{78} -1.62054 q^{79} +22.0344 q^{80} +2.70820 q^{81} -3.85410 q^{82} -3.16228 q^{83} +4.24264 q^{84} +8.27895 q^{85} -25.3770 q^{86} +0.472136 q^{87} +31.7016 q^{88} -15.3500 q^{89} -13.0902 q^{90} +2.62210 q^{91} -12.7279 q^{92} -25.4164 q^{94} +2.23607 q^{95} -9.48683 q^{96} -7.00000 q^{97} -15.7082 q^{98} -9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 6 q^{4} - 4 q^{7} + 12 q^{8} + 10 q^{10} - 6 q^{14} + 26 q^{16} - 10 q^{18} + 4 q^{19} + 30 q^{20} - 6 q^{28} + 30 q^{32} + 12 q^{33} - 30 q^{36} + 6 q^{38} + 36 q^{39} + 40 q^{40} + 12 q^{41}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61803 1.85123 0.925615 0.378467i \(-0.123549\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) −0.874032 −0.504623 −0.252311 0.967646i \(-0.581191\pi\)
−0.252311 + 0.967646i \(0.581191\pi\)
\(4\) 4.85410 2.42705
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) −2.28825 −0.934172
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 7.47214 2.64180
\(9\) −2.23607 −0.745356
\(10\) 5.85410 1.85123
\(11\) 4.24264 1.27920 0.639602 0.768706i \(-0.279099\pi\)
0.639602 + 0.768706i \(0.279099\pi\)
\(12\) −4.24264 −1.22474
\(13\) −2.62210 −0.727239 −0.363619 0.931548i \(-0.618459\pi\)
−0.363619 + 0.931548i \(0.618459\pi\)
\(14\) −2.61803 −0.699699
\(15\) −1.95440 −0.504623
\(16\) 9.85410 2.46353
\(17\) 3.70246 0.897978 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(18\) −5.85410 −1.37983
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 10.8541 2.42705
\(21\) 0.874032 0.190729
\(22\) 11.1074 2.36810
\(23\) −2.62210 −0.546745 −0.273372 0.961908i \(-0.588139\pi\)
−0.273372 + 0.961908i \(0.588139\pi\)
\(24\) −6.53089 −1.33311
\(25\) 0 0
\(26\) −6.86474 −1.34629
\(27\) 4.57649 0.880746
\(28\) −4.85410 −0.917339
\(29\) −0.540182 −0.100309 −0.0501546 0.998741i \(-0.515971\pi\)
−0.0501546 + 0.998741i \(0.515971\pi\)
\(30\) −5.11667 −0.934172
\(31\) 0 0
\(32\) 10.8541 1.91875
\(33\) −3.70820 −0.645515
\(34\) 9.69316 1.66236
\(35\) −2.23607 −0.377964
\(36\) −10.8541 −1.80902
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 2.61803 0.424701
\(39\) 2.29180 0.366981
\(40\) 16.7082 2.64180
\(41\) −1.47214 −0.229909 −0.114955 0.993371i \(-0.536672\pi\)
−0.114955 + 0.993371i \(0.536672\pi\)
\(42\) 2.28825 0.353084
\(43\) −9.69316 −1.47819 −0.739097 0.673599i \(-0.764747\pi\)
−0.739097 + 0.673599i \(0.764747\pi\)
\(44\) 20.5942 3.10469
\(45\) −5.00000 −0.745356
\(46\) −6.86474 −1.01215
\(47\) −9.70820 −1.41609 −0.708044 0.706169i \(-0.750422\pi\)
−0.708044 + 0.706169i \(0.750422\pi\)
\(48\) −8.61280 −1.24315
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −3.23607 −0.453140
\(52\) −12.7279 −1.76505
\(53\) −13.7295 −1.88589 −0.942944 0.332951i \(-0.891956\pi\)
−0.942944 + 0.332951i \(0.891956\pi\)
\(54\) 11.9814 1.63046
\(55\) 9.48683 1.27920
\(56\) −7.47214 −0.998506
\(57\) −0.874032 −0.115768
\(58\) −1.41421 −0.185695
\(59\) 11.9443 1.55501 0.777506 0.628876i \(-0.216485\pi\)
0.777506 + 0.628876i \(0.216485\pi\)
\(60\) −9.48683 −1.22474
\(61\) 13.9358 1.78430 0.892148 0.451742i \(-0.149197\pi\)
0.892148 + 0.451742i \(0.149197\pi\)
\(62\) 0 0
\(63\) 2.23607 0.281718
\(64\) 8.70820 1.08853
\(65\) −5.86319 −0.727239
\(66\) −9.70820 −1.19500
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 17.9721 2.17944
\(69\) 2.29180 0.275900
\(70\) −5.85410 −0.699699
\(71\) −1.47214 −0.174710 −0.0873552 0.996177i \(-0.527842\pi\)
−0.0873552 + 0.996177i \(0.527842\pi\)
\(72\) −16.7082 −1.96908
\(73\) 4.24264 0.496564 0.248282 0.968688i \(-0.420134\pi\)
0.248282 + 0.968688i \(0.420134\pi\)
\(74\) 11.1074 1.29121
\(75\) 0 0
\(76\) 4.85410 0.556804
\(77\) −4.24264 −0.483494
\(78\) 6.00000 0.679366
\(79\) −1.62054 −0.182326 −0.0911628 0.995836i \(-0.529058\pi\)
−0.0911628 + 0.995836i \(0.529058\pi\)
\(80\) 22.0344 2.46353
\(81\) 2.70820 0.300912
\(82\) −3.85410 −0.425614
\(83\) −3.16228 −0.347105 −0.173553 0.984825i \(-0.555525\pi\)
−0.173553 + 0.984825i \(0.555525\pi\)
\(84\) 4.24264 0.462910
\(85\) 8.27895 0.897978
\(86\) −25.3770 −2.73648
\(87\) 0.472136 0.0506183
\(88\) 31.7016 3.37940
\(89\) −15.3500 −1.62710 −0.813549 0.581496i \(-0.802468\pi\)
−0.813549 + 0.581496i \(0.802468\pi\)
\(90\) −13.0902 −1.37983
\(91\) 2.62210 0.274870
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) −25.4164 −2.62150
\(95\) 2.23607 0.229416
\(96\) −9.48683 −0.968246
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) −15.7082 −1.58677
\(99\) −9.48683 −0.953463
\(100\) 0 0
\(101\) 2.23607 0.222497 0.111249 0.993793i \(-0.464515\pi\)
0.111249 + 0.993793i \(0.464515\pi\)
\(102\) −8.47214 −0.838866
\(103\) 10.7082 1.05511 0.527555 0.849521i \(-0.323109\pi\)
0.527555 + 0.849521i \(0.323109\pi\)
\(104\) −19.5927 −1.92122
\(105\) 1.95440 0.190729
\(106\) −35.9442 −3.49121
\(107\) 1.47214 0.142317 0.0711584 0.997465i \(-0.477330\pi\)
0.0711584 + 0.997465i \(0.477330\pi\)
\(108\) 22.2148 2.13762
\(109\) −1.29180 −0.123732 −0.0618658 0.998084i \(-0.519705\pi\)
−0.0618658 + 0.998084i \(0.519705\pi\)
\(110\) 24.8369 2.36810
\(111\) −3.70820 −0.351967
\(112\) −9.85410 −0.931125
\(113\) −9.76393 −0.918513 −0.459257 0.888304i \(-0.651884\pi\)
−0.459257 + 0.888304i \(0.651884\pi\)
\(114\) −2.28825 −0.214314
\(115\) −5.86319 −0.546745
\(116\) −2.62210 −0.243456
\(117\) 5.86319 0.542052
\(118\) 31.2705 2.87868
\(119\) −3.70246 −0.339404
\(120\) −14.6035 −1.33311
\(121\) 7.00000 0.636364
\(122\) 36.4844 3.30314
\(123\) 1.28669 0.116017
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 5.85410 0.521525
\(127\) −9.48683 −0.841820 −0.420910 0.907102i \(-0.638289\pi\)
−0.420910 + 0.907102i \(0.638289\pi\)
\(128\) 1.09017 0.0963583
\(129\) 8.47214 0.745930
\(130\) −15.3500 −1.34629
\(131\) 7.41641 0.647975 0.323987 0.946061i \(-0.394976\pi\)
0.323987 + 0.946061i \(0.394976\pi\)
\(132\) −18.0000 −1.56670
\(133\) −1.00000 −0.0867110
\(134\) 15.7082 1.35698
\(135\) 10.2333 0.880746
\(136\) 27.6653 2.37228
\(137\) −2.62210 −0.224021 −0.112010 0.993707i \(-0.535729\pi\)
−0.112010 + 0.993707i \(0.535729\pi\)
\(138\) 6.00000 0.510754
\(139\) −17.9721 −1.52437 −0.762187 0.647356i \(-0.775875\pi\)
−0.762187 + 0.647356i \(0.775875\pi\)
\(140\) −10.8541 −0.917339
\(141\) 8.48528 0.714590
\(142\) −3.85410 −0.323429
\(143\) −11.1246 −0.930287
\(144\) −22.0344 −1.83620
\(145\) −1.20788 −0.100309
\(146\) 11.1074 0.919253
\(147\) 5.24419 0.432534
\(148\) 20.5942 1.69283
\(149\) −13.4164 −1.09911 −0.549557 0.835456i \(-0.685204\pi\)
−0.549557 + 0.835456i \(0.685204\pi\)
\(150\) 0 0
\(151\) 12.5216 1.01899 0.509496 0.860473i \(-0.329832\pi\)
0.509496 + 0.860473i \(0.329832\pi\)
\(152\) 7.47214 0.606070
\(153\) −8.27895 −0.669313
\(154\) −11.1074 −0.895058
\(155\) 0 0
\(156\) 11.1246 0.890682
\(157\) 8.70820 0.694990 0.347495 0.937682i \(-0.387032\pi\)
0.347495 + 0.937682i \(0.387032\pi\)
\(158\) −4.24264 −0.337526
\(159\) 12.0000 0.951662
\(160\) 24.2705 1.91875
\(161\) 2.62210 0.206650
\(162\) 7.09017 0.557056
\(163\) 14.4164 1.12918 0.564590 0.825371i \(-0.309034\pi\)
0.564590 + 0.825371i \(0.309034\pi\)
\(164\) −7.14590 −0.558001
\(165\) −8.29180 −0.645515
\(166\) −8.27895 −0.642571
\(167\) −1.08036 −0.0836010 −0.0418005 0.999126i \(-0.513309\pi\)
−0.0418005 + 0.999126i \(0.513309\pi\)
\(168\) 6.53089 0.503869
\(169\) −6.12461 −0.471124
\(170\) 21.6746 1.66236
\(171\) −2.23607 −0.170996
\(172\) −47.0516 −3.58765
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 1.23607 0.0937061
\(175\) 0 0
\(176\) 41.8074 3.15135
\(177\) −10.4397 −0.784694
\(178\) −40.1869 −3.01213
\(179\) 13.2681 0.991705 0.495852 0.868407i \(-0.334856\pi\)
0.495852 + 0.868407i \(0.334856\pi\)
\(180\) −24.2705 −1.80902
\(181\) 8.69161 0.646042 0.323021 0.946392i \(-0.395301\pi\)
0.323021 + 0.946392i \(0.395301\pi\)
\(182\) 6.86474 0.508848
\(183\) −12.1803 −0.900397
\(184\) −19.5927 −1.44439
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 15.7082 1.14870
\(188\) −47.1246 −3.43692
\(189\) −4.57649 −0.332891
\(190\) 5.85410 0.424701
\(191\) 9.76393 0.706493 0.353247 0.935530i \(-0.385078\pi\)
0.353247 + 0.935530i \(0.385078\pi\)
\(192\) −7.61125 −0.549295
\(193\) −20.7082 −1.49061 −0.745305 0.666724i \(-0.767696\pi\)
−0.745305 + 0.666724i \(0.767696\pi\)
\(194\) −18.3262 −1.31575
\(195\) 5.12461 0.366981
\(196\) −29.1246 −2.08033
\(197\) −1.08036 −0.0769727 −0.0384863 0.999259i \(-0.512254\pi\)
−0.0384863 + 0.999259i \(0.512254\pi\)
\(198\) −24.8369 −1.76508
\(199\) 23.2163 1.64576 0.822880 0.568215i \(-0.192366\pi\)
0.822880 + 0.568215i \(0.192366\pi\)
\(200\) 0 0
\(201\) −5.24419 −0.369897
\(202\) 5.85410 0.411893
\(203\) 0.540182 0.0379133
\(204\) −15.7082 −1.09979
\(205\) −3.29180 −0.229909
\(206\) 28.0344 1.95325
\(207\) 5.86319 0.407520
\(208\) −25.8384 −1.79157
\(209\) 4.24264 0.293470
\(210\) 5.11667 0.353084
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −66.6443 −4.57715
\(213\) 1.28669 0.0881628
\(214\) 3.85410 0.263461
\(215\) −21.6746 −1.47819
\(216\) 34.1962 2.32675
\(217\) 0 0
\(218\) −3.38197 −0.229056
\(219\) −3.70820 −0.250577
\(220\) 46.0501 3.10469
\(221\) −9.70820 −0.653044
\(222\) −9.70820 −0.651572
\(223\) 16.1452 1.08117 0.540583 0.841291i \(-0.318204\pi\)
0.540583 + 0.841291i \(0.318204\pi\)
\(224\) −10.8541 −0.725220
\(225\) 0 0
\(226\) −25.5623 −1.70038
\(227\) 2.29180 0.152112 0.0760559 0.997104i \(-0.475767\pi\)
0.0760559 + 0.997104i \(0.475767\pi\)
\(228\) −4.24264 −0.280976
\(229\) 4.24264 0.280362 0.140181 0.990126i \(-0.455232\pi\)
0.140181 + 0.990126i \(0.455232\pi\)
\(230\) −15.3500 −1.01215
\(231\) 3.70820 0.243982
\(232\) −4.03631 −0.264997
\(233\) −13.4721 −0.882589 −0.441294 0.897362i \(-0.645481\pi\)
−0.441294 + 0.897362i \(0.645481\pi\)
\(234\) 15.3500 1.00346
\(235\) −21.7082 −1.41609
\(236\) 57.9787 3.77409
\(237\) 1.41641 0.0920056
\(238\) −9.69316 −0.628314
\(239\) 12.1089 0.783262 0.391631 0.920122i \(-0.371911\pi\)
0.391631 + 0.920122i \(0.371911\pi\)
\(240\) −19.2588 −1.24315
\(241\) −23.2163 −1.49549 −0.747747 0.663984i \(-0.768864\pi\)
−0.747747 + 0.663984i \(0.768864\pi\)
\(242\) 18.3262 1.17806
\(243\) −16.0965 −1.03259
\(244\) 67.6458 4.33058
\(245\) −13.4164 −0.857143
\(246\) 3.36861 0.214775
\(247\) −2.62210 −0.166840
\(248\) 0 0
\(249\) 2.76393 0.175157
\(250\) −29.2705 −1.85123
\(251\) 11.0286 0.696117 0.348058 0.937473i \(-0.386841\pi\)
0.348058 + 0.937473i \(0.386841\pi\)
\(252\) 10.8541 0.683744
\(253\) −11.1246 −0.699398
\(254\) −24.8369 −1.55840
\(255\) −7.23607 −0.453140
\(256\) −14.5623 −0.910144
\(257\) 6.05573 0.377746 0.188873 0.982002i \(-0.439517\pi\)
0.188873 + 0.982002i \(0.439517\pi\)
\(258\) 22.1803 1.38089
\(259\) −4.24264 −0.263625
\(260\) −28.4605 −1.76505
\(261\) 1.20788 0.0747661
\(262\) 19.4164 1.19955
\(263\) 18.5123 1.14152 0.570759 0.821118i \(-0.306649\pi\)
0.570759 + 0.821118i \(0.306649\pi\)
\(264\) −27.7082 −1.70532
\(265\) −30.7000 −1.88589
\(266\) −2.61803 −0.160522
\(267\) 13.4164 0.821071
\(268\) 29.1246 1.77907
\(269\) 2.16073 0.131742 0.0658709 0.997828i \(-0.479017\pi\)
0.0658709 + 0.997828i \(0.479017\pi\)
\(270\) 26.7912 1.63046
\(271\) −18.5911 −1.12933 −0.564665 0.825320i \(-0.690994\pi\)
−0.564665 + 0.825320i \(0.690994\pi\)
\(272\) 36.4844 2.21219
\(273\) −2.29180 −0.138706
\(274\) −6.86474 −0.414714
\(275\) 0 0
\(276\) 11.1246 0.669623
\(277\) 10.1058 0.607200 0.303600 0.952800i \(-0.401811\pi\)
0.303600 + 0.952800i \(0.401811\pi\)
\(278\) −47.0516 −2.82197
\(279\) 0 0
\(280\) −16.7082 −0.998506
\(281\) 13.3607 0.797031 0.398516 0.917162i \(-0.369525\pi\)
0.398516 + 0.917162i \(0.369525\pi\)
\(282\) 22.2148 1.32287
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) −7.14590 −0.424031
\(285\) −1.95440 −0.115768
\(286\) −29.1246 −1.72217
\(287\) 1.47214 0.0868974
\(288\) −24.2705 −1.43015
\(289\) −3.29180 −0.193635
\(290\) −3.16228 −0.185695
\(291\) 6.11822 0.358657
\(292\) 20.5942 1.20519
\(293\) −2.29180 −0.133888 −0.0669441 0.997757i \(-0.521325\pi\)
−0.0669441 + 0.997757i \(0.521325\pi\)
\(294\) 13.7295 0.800719
\(295\) 26.7082 1.55501
\(296\) 31.7016 1.84262
\(297\) 19.4164 1.12665
\(298\) −35.1246 −2.03471
\(299\) 6.87539 0.397614
\(300\) 0 0
\(301\) 9.69316 0.558705
\(302\) 32.7820 1.88639
\(303\) −1.95440 −0.112277
\(304\) 9.85410 0.565172
\(305\) 31.1614 1.78430
\(306\) −21.6746 −1.23905
\(307\) 24.1246 1.37686 0.688432 0.725301i \(-0.258299\pi\)
0.688432 + 0.725301i \(0.258299\pi\)
\(308\) −20.5942 −1.17346
\(309\) −9.35931 −0.532433
\(310\) 0 0
\(311\) 25.4721 1.44439 0.722196 0.691688i \(-0.243133\pi\)
0.722196 + 0.691688i \(0.243133\pi\)
\(312\) 17.1246 0.969490
\(313\) −11.5200 −0.651151 −0.325576 0.945516i \(-0.605558\pi\)
−0.325576 + 0.945516i \(0.605558\pi\)
\(314\) 22.7984 1.28659
\(315\) 5.00000 0.281718
\(316\) −7.86629 −0.442513
\(317\) 26.2361 1.47356 0.736782 0.676130i \(-0.236344\pi\)
0.736782 + 0.676130i \(0.236344\pi\)
\(318\) 31.4164 1.76174
\(319\) −2.29180 −0.128316
\(320\) 19.4721 1.08853
\(321\) −1.28669 −0.0718163
\(322\) 6.86474 0.382557
\(323\) 3.70246 0.206010
\(324\) 13.1459 0.730328
\(325\) 0 0
\(326\) 37.7426 2.09037
\(327\) 1.12907 0.0624378
\(328\) −11.0000 −0.607373
\(329\) 9.70820 0.535231
\(330\) −21.7082 −1.19500
\(331\) 31.2889 1.71979 0.859897 0.510467i \(-0.170527\pi\)
0.859897 + 0.510467i \(0.170527\pi\)
\(332\) −15.3500 −0.842442
\(333\) −9.48683 −0.519875
\(334\) −2.82843 −0.154765
\(335\) 13.4164 0.733017
\(336\) 8.61280 0.469867
\(337\) −15.3500 −0.836169 −0.418084 0.908408i \(-0.637298\pi\)
−0.418084 + 0.908408i \(0.637298\pi\)
\(338\) −16.0344 −0.872159
\(339\) 8.53399 0.463503
\(340\) 40.1869 2.17944
\(341\) 0 0
\(342\) −5.85410 −0.316554
\(343\) 13.0000 0.701934
\(344\) −72.4286 −3.90509
\(345\) 5.12461 0.275900
\(346\) 47.1246 2.53343
\(347\) −21.5958 −1.15932 −0.579661 0.814858i \(-0.696815\pi\)
−0.579661 + 0.814858i \(0.696815\pi\)
\(348\) 2.29180 0.122853
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) −12.0000 −0.640513
\(352\) 46.0501 2.45448
\(353\) 9.56564 0.509128 0.254564 0.967056i \(-0.418068\pi\)
0.254564 + 0.967056i \(0.418068\pi\)
\(354\) −27.3314 −1.45265
\(355\) −3.29180 −0.174710
\(356\) −74.5106 −3.94905
\(357\) 3.23607 0.171271
\(358\) 34.7363 1.83587
\(359\) 14.2361 0.751351 0.375675 0.926751i \(-0.377411\pi\)
0.375675 + 0.926751i \(0.377411\pi\)
\(360\) −37.3607 −1.96908
\(361\) −18.0000 −0.947368
\(362\) 22.7549 1.19597
\(363\) −6.11822 −0.321123
\(364\) 12.7279 0.667124
\(365\) 9.48683 0.496564
\(366\) −31.8885 −1.66684
\(367\) 6.65841 0.347566 0.173783 0.984784i \(-0.444401\pi\)
0.173783 + 0.984784i \(0.444401\pi\)
\(368\) −25.8384 −1.34692
\(369\) 3.29180 0.171364
\(370\) 24.8369 1.29121
\(371\) 13.7295 0.712799
\(372\) 0 0
\(373\) −9.29180 −0.481111 −0.240555 0.970635i \(-0.577330\pi\)
−0.240555 + 0.970635i \(0.577330\pi\)
\(374\) 41.1246 2.12650
\(375\) 9.77198 0.504623
\(376\) −72.5410 −3.74102
\(377\) 1.41641 0.0729487
\(378\) −11.9814 −0.616257
\(379\) 7.41641 0.380955 0.190478 0.981692i \(-0.438996\pi\)
0.190478 + 0.981692i \(0.438996\pi\)
\(380\) 10.8541 0.556804
\(381\) 8.29180 0.424802
\(382\) 25.5623 1.30788
\(383\) −6.40337 −0.327197 −0.163598 0.986527i \(-0.552310\pi\)
−0.163598 + 0.986527i \(0.552310\pi\)
\(384\) −0.952843 −0.0486246
\(385\) −9.48683 −0.483494
\(386\) −54.2148 −2.75946
\(387\) 21.6746 1.10178
\(388\) −33.9787 −1.72501
\(389\) −16.8129 −0.852450 −0.426225 0.904617i \(-0.640157\pi\)
−0.426225 + 0.904617i \(0.640157\pi\)
\(390\) 13.4164 0.679366
\(391\) −9.70820 −0.490965
\(392\) −44.8328 −2.26440
\(393\) −6.48218 −0.326983
\(394\) −2.82843 −0.142494
\(395\) −3.62365 −0.182326
\(396\) −46.0501 −2.31410
\(397\) 14.7082 0.738184 0.369092 0.929393i \(-0.379669\pi\)
0.369092 + 0.929393i \(0.379669\pi\)
\(398\) 60.7811 3.04668
\(399\) 0.874032 0.0437563
\(400\) 0 0
\(401\) −0.540182 −0.0269754 −0.0134877 0.999909i \(-0.504293\pi\)
−0.0134877 + 0.999909i \(0.504293\pi\)
\(402\) −13.7295 −0.684764
\(403\) 0 0
\(404\) 10.8541 0.540012
\(405\) 6.05573 0.300912
\(406\) 1.41421 0.0701862
\(407\) 18.0000 0.892227
\(408\) −24.1803 −1.19711
\(409\) 30.0810 1.48741 0.743706 0.668507i \(-0.233066\pi\)
0.743706 + 0.668507i \(0.233066\pi\)
\(410\) −8.61803 −0.425614
\(411\) 2.29180 0.113046
\(412\) 51.9787 2.56081
\(413\) −11.9443 −0.587739
\(414\) 15.3500 0.754412
\(415\) −7.07107 −0.347105
\(416\) −28.4605 −1.39539
\(417\) 15.7082 0.769234
\(418\) 11.1074 0.543280
\(419\) 30.5967 1.49475 0.747374 0.664403i \(-0.231314\pi\)
0.747374 + 0.664403i \(0.231314\pi\)
\(420\) 9.48683 0.462910
\(421\) 26.4164 1.28746 0.643728 0.765254i \(-0.277387\pi\)
0.643728 + 0.765254i \(0.277387\pi\)
\(422\) −13.0902 −0.637220
\(423\) 21.7082 1.05549
\(424\) −102.588 −4.98214
\(425\) 0 0
\(426\) 3.36861 0.163210
\(427\) −13.9358 −0.674401
\(428\) 7.14590 0.345410
\(429\) 9.72327 0.469444
\(430\) −56.7448 −2.73648
\(431\) −35.8885 −1.72869 −0.864345 0.502899i \(-0.832267\pi\)
−0.864345 + 0.502899i \(0.832267\pi\)
\(432\) 45.0972 2.16974
\(433\) −25.8384 −1.24171 −0.620857 0.783924i \(-0.713215\pi\)
−0.620857 + 0.783924i \(0.713215\pi\)
\(434\) 0 0
\(435\) 1.05573 0.0506183
\(436\) −6.27051 −0.300303
\(437\) −2.62210 −0.125432
\(438\) −9.70820 −0.463876
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 70.8869 3.37940
\(441\) 13.4164 0.638877
\(442\) −25.4164 −1.20894
\(443\) 6.05573 0.287716 0.143858 0.989598i \(-0.454049\pi\)
0.143858 + 0.989598i \(0.454049\pi\)
\(444\) −18.0000 −0.854242
\(445\) −34.3237 −1.62710
\(446\) 42.2688 2.00148
\(447\) 11.7264 0.554638
\(448\) −8.70820 −0.411424
\(449\) 33.7047 1.59062 0.795311 0.606201i \(-0.207307\pi\)
0.795311 + 0.606201i \(0.207307\pi\)
\(450\) 0 0
\(451\) −6.24574 −0.294101
\(452\) −47.3951 −2.22928
\(453\) −10.9443 −0.514207
\(454\) 6.00000 0.281594
\(455\) 5.86319 0.274870
\(456\) −6.53089 −0.305837
\(457\) 11.3137 0.529233 0.264616 0.964354i \(-0.414755\pi\)
0.264616 + 0.964354i \(0.414755\pi\)
\(458\) 11.1074 0.519014
\(459\) 16.9443 0.790891
\(460\) −28.4605 −1.32698
\(461\) 5.16538 0.240576 0.120288 0.992739i \(-0.461618\pi\)
0.120288 + 0.992739i \(0.461618\pi\)
\(462\) 9.70820 0.451667
\(463\) −3.82998 −0.177994 −0.0889971 0.996032i \(-0.528366\pi\)
−0.0889971 + 0.996032i \(0.528366\pi\)
\(464\) −5.32300 −0.247114
\(465\) 0 0
\(466\) −35.2705 −1.63387
\(467\) −15.6525 −0.724310 −0.362155 0.932118i \(-0.617959\pi\)
−0.362155 + 0.932118i \(0.617959\pi\)
\(468\) 28.4605 1.31559
\(469\) −6.00000 −0.277054
\(470\) −56.8328 −2.62150
\(471\) −7.61125 −0.350708
\(472\) 89.2492 4.10803
\(473\) −41.1246 −1.89091
\(474\) 3.70820 0.170323
\(475\) 0 0
\(476\) −17.9721 −0.823751
\(477\) 30.7000 1.40566
\(478\) 31.7016 1.45000
\(479\) 16.5279 0.755177 0.377589 0.925973i \(-0.376753\pi\)
0.377589 + 0.925973i \(0.376753\pi\)
\(480\) −21.2132 −0.968246
\(481\) −11.1246 −0.507239
\(482\) −60.7811 −2.76850
\(483\) −2.29180 −0.104280
\(484\) 33.9787 1.54449
\(485\) −15.6525 −0.710742
\(486\) −42.1413 −1.91157
\(487\) 28.0779 1.27233 0.636166 0.771552i \(-0.280519\pi\)
0.636166 + 0.771552i \(0.280519\pi\)
\(488\) 104.130 4.71375
\(489\) −12.6004 −0.569810
\(490\) −35.1246 −1.58677
\(491\) −15.8902 −0.717115 −0.358557 0.933508i \(-0.616731\pi\)
−0.358557 + 0.933508i \(0.616731\pi\)
\(492\) 6.24574 0.281580
\(493\) −2.00000 −0.0900755
\(494\) −6.86474 −0.308859
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) 1.47214 0.0660343
\(498\) 7.23607 0.324256
\(499\) 18.3848 0.823016 0.411508 0.911406i \(-0.365002\pi\)
0.411508 + 0.911406i \(0.365002\pi\)
\(500\) −54.2705 −2.42705
\(501\) 0.944272 0.0421870
\(502\) 28.8732 1.28867
\(503\) −32.8885 −1.46643 −0.733214 0.679998i \(-0.761981\pi\)
−0.733214 + 0.679998i \(0.761981\pi\)
\(504\) 16.7082 0.744243
\(505\) 5.00000 0.222497
\(506\) −29.1246 −1.29475
\(507\) 5.35311 0.237740
\(508\) −46.0501 −2.04314
\(509\) −7.94510 −0.352160 −0.176080 0.984376i \(-0.556342\pi\)
−0.176080 + 0.984376i \(0.556342\pi\)
\(510\) −18.9443 −0.838866
\(511\) −4.24264 −0.187683
\(512\) −40.3050 −1.78124
\(513\) 4.57649 0.202057
\(514\) 15.8541 0.699294
\(515\) 23.9443 1.05511
\(516\) 41.1246 1.81041
\(517\) −41.1884 −1.81146
\(518\) −11.1074 −0.488030
\(519\) −15.7326 −0.690583
\(520\) −43.8105 −1.92122
\(521\) −13.4164 −0.587784 −0.293892 0.955839i \(-0.594951\pi\)
−0.293892 + 0.955839i \(0.594951\pi\)
\(522\) 3.16228 0.138409
\(523\) 0.618993 0.0270667 0.0135333 0.999908i \(-0.495692\pi\)
0.0135333 + 0.999908i \(0.495692\pi\)
\(524\) 36.0000 1.57267
\(525\) 0 0
\(526\) 48.4658 2.11321
\(527\) 0 0
\(528\) −36.5410 −1.59024
\(529\) −16.1246 −0.701070
\(530\) −80.3737 −3.49121
\(531\) −26.7082 −1.15904
\(532\) −4.85410 −0.210452
\(533\) 3.86008 0.167199
\(534\) 35.1246 1.51999
\(535\) 3.29180 0.142317
\(536\) 44.8328 1.93648
\(537\) −11.5967 −0.500437
\(538\) 5.65685 0.243884
\(539\) −25.4558 −1.09646
\(540\) 49.6737 2.13762
\(541\) 25.8328 1.11064 0.555320 0.831637i \(-0.312596\pi\)
0.555320 + 0.831637i \(0.312596\pi\)
\(542\) −48.6722 −2.09065
\(543\) −7.59675 −0.326008
\(544\) 40.1869 1.72300
\(545\) −2.88854 −0.123732
\(546\) −6.00000 −0.256776
\(547\) 2.41641 0.103318 0.0516591 0.998665i \(-0.483549\pi\)
0.0516591 + 0.998665i \(0.483549\pi\)
\(548\) −12.7279 −0.543710
\(549\) −31.1614 −1.32994
\(550\) 0 0
\(551\) −0.540182 −0.0230125
\(552\) 17.1246 0.728872
\(553\) 1.62054 0.0689126
\(554\) 26.4574 1.12407
\(555\) −8.29180 −0.351967
\(556\) −87.2385 −3.69974
\(557\) −10.6460 −0.451086 −0.225543 0.974233i \(-0.572416\pi\)
−0.225543 + 0.974233i \(0.572416\pi\)
\(558\) 0 0
\(559\) 25.4164 1.07500
\(560\) −22.0344 −0.931125
\(561\) −13.7295 −0.579659
\(562\) 34.9787 1.47549
\(563\) 9.76393 0.411501 0.205750 0.978605i \(-0.434037\pi\)
0.205750 + 0.978605i \(0.434037\pi\)
\(564\) 41.1884 1.73435
\(565\) −21.8328 −0.918513
\(566\) 62.8328 2.64106
\(567\) −2.70820 −0.113734
\(568\) −11.0000 −0.461550
\(569\) −11.7264 −0.491595 −0.245798 0.969321i \(-0.579050\pi\)
−0.245798 + 0.969321i \(0.579050\pi\)
\(570\) −5.11667 −0.214314
\(571\) −2.62210 −0.109731 −0.0548657 0.998494i \(-0.517473\pi\)
−0.0548657 + 0.998494i \(0.517473\pi\)
\(572\) −54.0000 −2.25785
\(573\) −8.53399 −0.356513
\(574\) 3.85410 0.160867
\(575\) 0 0
\(576\) −19.4721 −0.811339
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) −8.61803 −0.358463
\(579\) 18.0996 0.752195
\(580\) −5.86319 −0.243456
\(581\) 3.16228 0.131193
\(582\) 16.0177 0.663956
\(583\) −58.2492 −2.41244
\(584\) 31.7016 1.31182
\(585\) 13.1105 0.542052
\(586\) −6.00000 −0.247858
\(587\) −15.7326 −0.649353 −0.324676 0.945825i \(-0.605255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 69.9230 2.87868
\(591\) 0.944272 0.0388422
\(592\) 41.8074 1.71827
\(593\) 5.18034 0.212731 0.106366 0.994327i \(-0.466079\pi\)
0.106366 + 0.994327i \(0.466079\pi\)
\(594\) 50.8328 2.08570
\(595\) −8.27895 −0.339404
\(596\) −65.1246 −2.66761
\(597\) −20.2918 −0.830488
\(598\) 18.0000 0.736075
\(599\) 6.05573 0.247430 0.123715 0.992318i \(-0.460519\pi\)
0.123715 + 0.992318i \(0.460519\pi\)
\(600\) 0 0
\(601\) 18.1784 0.741514 0.370757 0.928730i \(-0.379098\pi\)
0.370757 + 0.928730i \(0.379098\pi\)
\(602\) 25.3770 1.03429
\(603\) −13.4164 −0.546358
\(604\) 60.7811 2.47315
\(605\) 15.6525 0.636364
\(606\) −5.11667 −0.207851
\(607\) 15.1246 0.613889 0.306945 0.951727i \(-0.400693\pi\)
0.306945 + 0.951727i \(0.400693\pi\)
\(608\) 10.8541 0.440192
\(609\) −0.472136 −0.0191319
\(610\) 81.5816 3.30314
\(611\) 25.4558 1.02983
\(612\) −40.1869 −1.62446
\(613\) 0.588890 0.0237850 0.0118925 0.999929i \(-0.496214\pi\)
0.0118925 + 0.999929i \(0.496214\pi\)
\(614\) 63.1591 2.54889
\(615\) 2.87714 0.116017
\(616\) −31.7016 −1.27729
\(617\) −6.87539 −0.276793 −0.138396 0.990377i \(-0.544195\pi\)
−0.138396 + 0.990377i \(0.544195\pi\)
\(618\) −24.5030 −0.985655
\(619\) 25.8384 1.03853 0.519267 0.854612i \(-0.326205\pi\)
0.519267 + 0.854612i \(0.326205\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 66.6869 2.67390
\(623\) 15.3500 0.614985
\(624\) 22.5836 0.904067
\(625\) −25.0000 −1.00000
\(626\) −30.1599 −1.20543
\(627\) −3.70820 −0.148091
\(628\) 42.2705 1.68678
\(629\) 15.7082 0.626327
\(630\) 13.0902 0.521525
\(631\) −23.6290 −0.940654 −0.470327 0.882492i \(-0.655864\pi\)
−0.470327 + 0.882492i \(0.655864\pi\)
\(632\) −12.1089 −0.481667
\(633\) 4.37016 0.173698
\(634\) 68.6869 2.72791
\(635\) −21.2132 −0.841820
\(636\) 58.2492 2.30973
\(637\) 15.7326 0.623347
\(638\) −6.00000 −0.237542
\(639\) 3.29180 0.130221
\(640\) 2.43769 0.0963583
\(641\) −8.48528 −0.335148 −0.167574 0.985859i \(-0.553593\pi\)
−0.167574 + 0.985859i \(0.553593\pi\)
\(642\) −3.36861 −0.132948
\(643\) −4.65530 −0.183587 −0.0917936 0.995778i \(-0.529260\pi\)
−0.0917936 + 0.995778i \(0.529260\pi\)
\(644\) 12.7279 0.501550
\(645\) 18.9443 0.745930
\(646\) 9.69316 0.381372
\(647\) 31.7804 1.24942 0.624708 0.780858i \(-0.285218\pi\)
0.624708 + 0.780858i \(0.285218\pi\)
\(648\) 20.2361 0.794948
\(649\) 50.6753 1.98918
\(650\) 0 0
\(651\) 0 0
\(652\) 69.9787 2.74058
\(653\) 24.6525 0.964726 0.482363 0.875971i \(-0.339779\pi\)
0.482363 + 0.875971i \(0.339779\pi\)
\(654\) 2.95595 0.115587
\(655\) 16.5836 0.647975
\(656\) −14.5066 −0.566387
\(657\) −9.48683 −0.370117
\(658\) 25.4164 0.990835
\(659\) 24.8197 0.966837 0.483418 0.875389i \(-0.339395\pi\)
0.483418 + 0.875389i \(0.339395\pi\)
\(660\) −40.2492 −1.56670
\(661\) 7.83282 0.304661 0.152331 0.988330i \(-0.451322\pi\)
0.152331 + 0.988330i \(0.451322\pi\)
\(662\) 81.9155 3.18374
\(663\) 8.48528 0.329541
\(664\) −23.6290 −0.916982
\(665\) −2.23607 −0.0867110
\(666\) −24.8369 −0.962408
\(667\) 1.41641 0.0548435
\(668\) −5.24419 −0.202904
\(669\) −14.1115 −0.545580
\(670\) 35.1246 1.35698
\(671\) 59.1246 2.28248
\(672\) 9.48683 0.365963
\(673\) 39.9805 1.54114 0.770568 0.637357i \(-0.219973\pi\)
0.770568 + 0.637357i \(0.219973\pi\)
\(674\) −40.1869 −1.54794
\(675\) 0 0
\(676\) −29.7295 −1.14344
\(677\) −21.2132 −0.815290 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(678\) 22.3423 0.858050
\(679\) 7.00000 0.268635
\(680\) 61.8614 2.37228
\(681\) −2.00310 −0.0767591
\(682\) 0 0
\(683\) −41.1803 −1.57572 −0.787861 0.615853i \(-0.788811\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(684\) −10.8541 −0.415017
\(685\) −5.86319 −0.224021
\(686\) 34.0344 1.29944
\(687\) −3.70820 −0.141477
\(688\) −95.5174 −3.64157
\(689\) 36.0000 1.37149
\(690\) 13.4164 0.510754
\(691\) −48.4164 −1.84185 −0.920923 0.389743i \(-0.872564\pi\)
−0.920923 + 0.389743i \(0.872564\pi\)
\(692\) 87.3738 3.32145
\(693\) 9.48683 0.360375
\(694\) −56.5384 −2.14617
\(695\) −40.1869 −1.52437
\(696\) 3.52786 0.133723
\(697\) −5.45052 −0.206453
\(698\) 15.7082 0.594564
\(699\) 11.7751 0.445374
\(700\) 0 0
\(701\) −3.65248 −0.137952 −0.0689761 0.997618i \(-0.521973\pi\)
−0.0689761 + 0.997618i \(0.521973\pi\)
\(702\) −31.4164 −1.18574
\(703\) 4.24264 0.160014
\(704\) 36.9458 1.39245
\(705\) 18.9737 0.714590
\(706\) 25.0432 0.942513
\(707\) −2.23607 −0.0840960
\(708\) −50.6753 −1.90449
\(709\) −41.1884 −1.54686 −0.773432 0.633880i \(-0.781462\pi\)
−0.773432 + 0.633880i \(0.781462\pi\)
\(710\) −8.61803 −0.323429
\(711\) 3.62365 0.135897
\(712\) −114.697 −4.29847
\(713\) 0 0
\(714\) 8.47214 0.317062
\(715\) −24.8754 −0.930287
\(716\) 64.4047 2.40692
\(717\) −10.5836 −0.395251
\(718\) 37.2705 1.39092
\(719\) −37.5648 −1.40093 −0.700465 0.713687i \(-0.747024\pi\)
−0.700465 + 0.713687i \(0.747024\pi\)
\(720\) −49.2705 −1.83620
\(721\) −10.7082 −0.398794
\(722\) −47.1246 −1.75380
\(723\) 20.2918 0.754660
\(724\) 42.1900 1.56798
\(725\) 0 0
\(726\) −16.0177 −0.594473
\(727\) −30.4164 −1.12808 −0.564041 0.825747i \(-0.690754\pi\)
−0.564041 + 0.825747i \(0.690754\pi\)
\(728\) 19.5927 0.726152
\(729\) 5.94427 0.220158
\(730\) 24.8369 0.919253
\(731\) −35.8885 −1.32739
\(732\) −59.1246 −2.18531
\(733\) −14.4164 −0.532482 −0.266241 0.963906i \(-0.585782\pi\)
−0.266241 + 0.963906i \(0.585782\pi\)
\(734\) 17.4319 0.643424
\(735\) 11.7264 0.432534
\(736\) −28.4605 −1.04907
\(737\) 25.4558 0.937678
\(738\) 8.61803 0.317234
\(739\) −35.1490 −1.29298 −0.646489 0.762924i \(-0.723763\pi\)
−0.646489 + 0.762924i \(0.723763\pi\)
\(740\) 46.0501 1.69283
\(741\) 2.29180 0.0841912
\(742\) 35.9442 1.31955
\(743\) −36.4844 −1.33848 −0.669242 0.743045i \(-0.733381\pi\)
−0.669242 + 0.743045i \(0.733381\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −24.3262 −0.890647
\(747\) 7.07107 0.258717
\(748\) 76.2492 2.78795
\(749\) −1.47214 −0.0537907
\(750\) 25.5834 0.934172
\(751\) −37.5410 −1.36989 −0.684946 0.728594i \(-0.740174\pi\)
−0.684946 + 0.728594i \(0.740174\pi\)
\(752\) −95.6656 −3.48857
\(753\) −9.63932 −0.351276
\(754\) 3.70820 0.135045
\(755\) 27.9991 1.01899
\(756\) −22.2148 −0.807943
\(757\) 9.28050 0.337306 0.168653 0.985676i \(-0.446058\pi\)
0.168653 + 0.985676i \(0.446058\pi\)
\(758\) 19.4164 0.705236
\(759\) 9.72327 0.352932
\(760\) 16.7082 0.606070
\(761\) 40.1869 1.45677 0.728386 0.685167i \(-0.240271\pi\)
0.728386 + 0.685167i \(0.240271\pi\)
\(762\) 21.7082 0.786405
\(763\) 1.29180 0.0467662
\(764\) 47.3951 1.71470
\(765\) −18.5123 −0.669313
\(766\) −16.7642 −0.605716
\(767\) −31.3190 −1.13086
\(768\) 12.7279 0.459279
\(769\) 54.1246 1.95178 0.975892 0.218255i \(-0.0700365\pi\)
0.975892 + 0.218255i \(0.0700365\pi\)
\(770\) −24.8369 −0.895058
\(771\) −5.29290 −0.190619
\(772\) −100.520 −3.61778
\(773\) −11.1862 −0.402339 −0.201170 0.979556i \(-0.564474\pi\)
−0.201170 + 0.979556i \(0.564474\pi\)
\(774\) 56.7448 2.03965
\(775\) 0 0
\(776\) −52.3050 −1.87764
\(777\) 3.70820 0.133031
\(778\) −44.0168 −1.57808
\(779\) −1.47214 −0.0527447
\(780\) 24.8754 0.890682
\(781\) −6.24574 −0.223490
\(782\) −25.4164 −0.908889
\(783\) −2.47214 −0.0883469
\(784\) −59.1246 −2.11159
\(785\) 19.4721 0.694990
\(786\) −16.9706 −0.605320
\(787\) −37.5648 −1.33904 −0.669520 0.742794i \(-0.733500\pi\)
−0.669520 + 0.742794i \(0.733500\pi\)
\(788\) −5.24419 −0.186817
\(789\) −16.1803 −0.576035
\(790\) −9.48683 −0.337526
\(791\) 9.76393 0.347165
\(792\) −70.8869 −2.51886
\(793\) −36.5410 −1.29761
\(794\) 38.5066 1.36655
\(795\) 26.8328 0.951662
\(796\) 112.694 3.99434
\(797\) −13.7295 −0.486323 −0.243161 0.969986i \(-0.578184\pi\)
−0.243161 + 0.969986i \(0.578184\pi\)
\(798\) 2.28825 0.0810030
\(799\) −35.9442 −1.27162
\(800\) 0 0
\(801\) 34.3237 1.21277
\(802\) −1.41421 −0.0499376
\(803\) 18.0000 0.635206
\(804\) −25.4558 −0.897758
\(805\) 5.86319 0.206650
\(806\) 0 0
\(807\) −1.88854 −0.0664799
\(808\) 16.7082 0.587793
\(809\) 47.5130 1.67047 0.835234 0.549895i \(-0.185332\pi\)
0.835234 + 0.549895i \(0.185332\pi\)
\(810\) 15.8541 0.557056
\(811\) −16.5836 −0.582329 −0.291164 0.956673i \(-0.594043\pi\)
−0.291164 + 0.956673i \(0.594043\pi\)
\(812\) 2.62210 0.0920175
\(813\) 16.2492 0.569885
\(814\) 47.1246 1.65172
\(815\) 32.2361 1.12918
\(816\) −31.8885 −1.11632
\(817\) −9.69316 −0.339121
\(818\) 78.7532 2.75354
\(819\) −5.86319 −0.204876
\(820\) −15.9787 −0.558001
\(821\) 23.8353 0.831858 0.415929 0.909397i \(-0.363457\pi\)
0.415929 + 0.909397i \(0.363457\pi\)
\(822\) 6.00000 0.209274
\(823\) −13.5231 −0.471387 −0.235694 0.971827i \(-0.575736\pi\)
−0.235694 + 0.971827i \(0.575736\pi\)
\(824\) 80.0132 2.78739
\(825\) 0 0
\(826\) −31.2705 −1.08804
\(827\) −18.3547 −0.638255 −0.319127 0.947712i \(-0.603390\pi\)
−0.319127 + 0.947712i \(0.603390\pi\)
\(828\) 28.4605 0.989071
\(829\) 51.0879 1.77436 0.887178 0.461427i \(-0.152662\pi\)
0.887178 + 0.461427i \(0.152662\pi\)
\(830\) −18.5123 −0.642571
\(831\) −8.83282 −0.306407
\(832\) −22.8337 −0.791618
\(833\) −22.2148 −0.769696
\(834\) 41.1246 1.42403
\(835\) −2.41577 −0.0836010
\(836\) 20.5942 0.712266
\(837\) 0 0
\(838\) 80.1033 2.76712
\(839\) −19.4164 −0.670329 −0.335164 0.942160i \(-0.608792\pi\)
−0.335164 + 0.942160i \(0.608792\pi\)
\(840\) 14.6035 0.503869
\(841\) −28.7082 −0.989938
\(842\) 69.1591 2.38338
\(843\) −11.6777 −0.402200
\(844\) −24.2705 −0.835425
\(845\) −13.6950 −0.471124
\(846\) 56.8328 1.95395
\(847\) −7.00000 −0.240523
\(848\) −135.292 −4.64593
\(849\) −20.9768 −0.719921
\(850\) 0 0
\(851\) −11.1246 −0.381347
\(852\) 6.24574 0.213976
\(853\) −32.2918 −1.10565 −0.552825 0.833297i \(-0.686450\pi\)
−0.552825 + 0.833297i \(0.686450\pi\)
\(854\) −36.4844 −1.24847
\(855\) −5.00000 −0.170996
\(856\) 11.0000 0.375972
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 25.4558 0.869048
\(859\) −41.6011 −1.41941 −0.709705 0.704499i \(-0.751172\pi\)
−0.709705 + 0.704499i \(0.751172\pi\)
\(860\) −105.211 −3.58765
\(861\) −1.28669 −0.0438504
\(862\) −93.9574 −3.20020
\(863\) −31.0826 −1.05806 −0.529032 0.848602i \(-0.677445\pi\)
−0.529032 + 0.848602i \(0.677445\pi\)
\(864\) 49.6737 1.68993
\(865\) 40.2492 1.36851
\(866\) −67.6458 −2.29870
\(867\) 2.87714 0.0977126
\(868\) 0 0
\(869\) −6.87539 −0.233232
\(870\) 2.76393 0.0937061
\(871\) −15.7326 −0.533078
\(872\) −9.65248 −0.326874
\(873\) 15.6525 0.529756
\(874\) −6.86474 −0.232203
\(875\) 11.1803 0.377964
\(876\) −18.0000 −0.608164
\(877\) −28.7082 −0.969407 −0.484704 0.874678i \(-0.661073\pi\)
−0.484704 + 0.874678i \(0.661073\pi\)
\(878\) −65.4508 −2.20886
\(879\) 2.00310 0.0675630
\(880\) 93.4842 3.15135
\(881\) 7.24730 0.244168 0.122084 0.992520i \(-0.461042\pi\)
0.122084 + 0.992520i \(0.461042\pi\)
\(882\) 35.1246 1.18271
\(883\) −33.9411 −1.14221 −0.571105 0.820877i \(-0.693485\pi\)
−0.571105 + 0.820877i \(0.693485\pi\)
\(884\) −47.1246 −1.58497
\(885\) −23.3438 −0.784694
\(886\) 15.8541 0.532629
\(887\) 25.3607 0.851528 0.425764 0.904834i \(-0.360005\pi\)
0.425764 + 0.904834i \(0.360005\pi\)
\(888\) −27.7082 −0.929826
\(889\) 9.48683 0.318178
\(890\) −89.8606 −3.01213
\(891\) 11.4899 0.384927
\(892\) 78.3706 2.62404
\(893\) −9.70820 −0.324873
\(894\) 30.7000 1.02676
\(895\) 29.6684 0.991705
\(896\) −1.09017 −0.0364200
\(897\) −6.00931 −0.200645
\(898\) 88.2400 2.94461
\(899\) 0 0
\(900\) 0 0
\(901\) −50.8328 −1.69349
\(902\) −16.3516 −0.544448
\(903\) −8.47214 −0.281935
\(904\) −72.9574 −2.42653
\(905\) 19.4350 0.646042
\(906\) −28.6525 −0.951915
\(907\) 11.5410 0.383213 0.191607 0.981472i \(-0.438630\pi\)
0.191607 + 0.981472i \(0.438630\pi\)
\(908\) 11.1246 0.369183
\(909\) −5.00000 −0.165840
\(910\) 15.3500 0.508848
\(911\) −26.9188 −0.891859 −0.445929 0.895068i \(-0.647127\pi\)
−0.445929 + 0.895068i \(0.647127\pi\)
\(912\) −8.61280 −0.285198
\(913\) −13.4164 −0.444018
\(914\) 29.6197 0.979732
\(915\) −27.2361 −0.900397
\(916\) 20.5942 0.680452
\(917\) −7.41641 −0.244911
\(918\) 44.3607 1.46412
\(919\) −42.5410 −1.40330 −0.701649 0.712522i \(-0.747553\pi\)
−0.701649 + 0.712522i \(0.747553\pi\)
\(920\) −43.8105 −1.44439
\(921\) −21.0857 −0.694797
\(922\) 13.5231 0.445361
\(923\) 3.86008 0.127056
\(924\) 18.0000 0.592157
\(925\) 0 0
\(926\) −10.0270 −0.329508
\(927\) −23.9443 −0.786433
\(928\) −5.86319 −0.192468
\(929\) 10.6460 0.349284 0.174642 0.984632i \(-0.444123\pi\)
0.174642 + 0.984632i \(0.444123\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −65.3951 −2.14209
\(933\) −22.2635 −0.728873
\(934\) −40.9787 −1.34086
\(935\) 35.1246 1.14870
\(936\) 43.8105 1.43199
\(937\) 24.2492 0.792188 0.396094 0.918210i \(-0.370366\pi\)
0.396094 + 0.918210i \(0.370366\pi\)
\(938\) −15.7082 −0.512891
\(939\) 10.0689 0.328586
\(940\) −105.374 −3.43692
\(941\) 25.5347 0.832406 0.416203 0.909272i \(-0.363361\pi\)
0.416203 + 0.909272i \(0.363361\pi\)
\(942\) −19.9265 −0.649241
\(943\) 3.86008 0.125702
\(944\) 117.700 3.83081
\(945\) −10.2333 −0.332891
\(946\) −107.666 −3.50051
\(947\) 40.1869 1.30590 0.652949 0.757402i \(-0.273532\pi\)
0.652949 + 0.757402i \(0.273532\pi\)
\(948\) 6.87539 0.223302
\(949\) −11.1246 −0.361120
\(950\) 0 0
\(951\) −22.9312 −0.743594
\(952\) −27.6653 −0.896637
\(953\) 18.6699 0.604778 0.302389 0.953185i \(-0.402216\pi\)
0.302389 + 0.953185i \(0.402216\pi\)
\(954\) 80.3737 2.60220
\(955\) 21.8328 0.706493
\(956\) 58.7780 1.90102
\(957\) 2.00310 0.0647511
\(958\) 43.2705 1.39801
\(959\) 2.62210 0.0846719
\(960\) −17.0193 −0.549295
\(961\) 0 0
\(962\) −29.1246 −0.939015
\(963\) −3.29180 −0.106077
\(964\) −112.694 −3.62964
\(965\) −46.3050 −1.49061
\(966\) −6.00000 −0.193047
\(967\) 44.0168 1.41549 0.707743 0.706470i \(-0.249713\pi\)
0.707743 + 0.706470i \(0.249713\pi\)
\(968\) 52.3050 1.68114
\(969\) −3.23607 −0.103957
\(970\) −40.9787 −1.31575
\(971\) 53.8885 1.72937 0.864683 0.502318i \(-0.167519\pi\)
0.864683 + 0.502318i \(0.167519\pi\)
\(972\) −78.1342 −2.50616
\(973\) 17.9721 0.576160
\(974\) 73.5090 2.35538
\(975\) 0 0
\(976\) 137.325 4.39566
\(977\) −42.4853 −1.35922 −0.679612 0.733571i \(-0.737852\pi\)
−0.679612 + 0.733571i \(0.737852\pi\)
\(978\) −32.9883 −1.05485
\(979\) −65.1246 −2.08139
\(980\) −65.1246 −2.08033
\(981\) 2.88854 0.0922241
\(982\) −41.6011 −1.32754
\(983\) 53.9163 1.71966 0.859832 0.510577i \(-0.170568\pi\)
0.859832 + 0.510577i \(0.170568\pi\)
\(984\) 9.61435 0.306494
\(985\) −2.41577 −0.0769727
\(986\) −5.23607 −0.166750
\(987\) −8.48528 −0.270089
\(988\) −12.7279 −0.404929
\(989\) 25.4164 0.808195
\(990\) −55.5369 −1.76508
\(991\) −13.9358 −0.442685 −0.221343 0.975196i \(-0.571044\pi\)
−0.221343 + 0.975196i \(0.571044\pi\)
\(992\) 0 0
\(993\) −27.3475 −0.867847
\(994\) 3.85410 0.122245
\(995\) 51.9132 1.64576
\(996\) 13.4164 0.425115
\(997\) −58.6656 −1.85796 −0.928980 0.370131i \(-0.879313\pi\)
−0.928980 + 0.370131i \(0.879313\pi\)
\(998\) 48.1320 1.52359
\(999\) 19.4164 0.614308
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.h.1.3 4
3.2 odd 2 8649.2.a.r.1.1 4
31.2 even 5 961.2.d.j.531.1 8
31.3 odd 30 961.2.g.p.846.1 16
31.4 even 5 961.2.d.h.388.2 8
31.5 even 3 961.2.c.h.521.4 8
31.6 odd 6 961.2.c.h.439.3 8
31.7 even 15 961.2.g.i.235.1 16
31.8 even 5 961.2.d.h.374.2 8
31.9 even 15 961.2.g.i.732.1 16
31.10 even 15 961.2.g.p.844.2 16
31.11 odd 30 961.2.g.i.338.1 16
31.12 odd 30 961.2.g.p.547.2 16
31.13 odd 30 961.2.g.p.448.2 16
31.14 even 15 961.2.g.i.816.2 16
31.15 odd 10 961.2.d.j.628.2 8
31.16 even 5 961.2.d.j.628.1 8
31.17 odd 30 961.2.g.i.816.1 16
31.18 even 15 961.2.g.p.448.1 16
31.19 even 15 961.2.g.p.547.1 16
31.20 even 15 961.2.g.i.338.2 16
31.21 odd 30 961.2.g.p.844.1 16
31.22 odd 30 961.2.g.i.732.2 16
31.23 odd 10 961.2.d.h.374.1 8
31.24 odd 30 961.2.g.i.235.2 16
31.25 even 3 961.2.c.h.439.4 8
31.26 odd 6 961.2.c.h.521.3 8
31.27 odd 10 961.2.d.h.388.1 8
31.28 even 15 961.2.g.p.846.2 16
31.29 odd 10 961.2.d.j.531.2 8
31.30 odd 2 inner 961.2.a.h.1.4 yes 4
93.92 even 2 8649.2.a.r.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.3 4 1.1 even 1 trivial
961.2.a.h.1.4 yes 4 31.30 odd 2 inner
961.2.c.h.439.3 8 31.6 odd 6
961.2.c.h.439.4 8 31.25 even 3
961.2.c.h.521.3 8 31.26 odd 6
961.2.c.h.521.4 8 31.5 even 3
961.2.d.h.374.1 8 31.23 odd 10
961.2.d.h.374.2 8 31.8 even 5
961.2.d.h.388.1 8 31.27 odd 10
961.2.d.h.388.2 8 31.4 even 5
961.2.d.j.531.1 8 31.2 even 5
961.2.d.j.531.2 8 31.29 odd 10
961.2.d.j.628.1 8 31.16 even 5
961.2.d.j.628.2 8 31.15 odd 10
961.2.g.i.235.1 16 31.7 even 15
961.2.g.i.235.2 16 31.24 odd 30
961.2.g.i.338.1 16 31.11 odd 30
961.2.g.i.338.2 16 31.20 even 15
961.2.g.i.732.1 16 31.9 even 15
961.2.g.i.732.2 16 31.22 odd 30
961.2.g.i.816.1 16 31.17 odd 30
961.2.g.i.816.2 16 31.14 even 15
961.2.g.p.448.1 16 31.18 even 15
961.2.g.p.448.2 16 31.13 odd 30
961.2.g.p.547.1 16 31.19 even 15
961.2.g.p.547.2 16 31.12 odd 30
961.2.g.p.844.1 16 31.21 odd 30
961.2.g.p.844.2 16 31.10 even 15
961.2.g.p.846.1 16 31.3 odd 30
961.2.g.p.846.2 16 31.28 even 15
8649.2.a.r.1.1 4 3.2 odd 2
8649.2.a.r.1.2 4 93.92 even 2