Properties

Label 961.1.h.a.145.1
Level $961$
Weight $1$
Character 961.145
Analytic conductor $0.480$
Analytic rank $0$
Dimension $8$
Projective image $D_{3}$
CM discriminant -31
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,1,Mod(115,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([17]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.115");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 961.h (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.479601477140\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.31.1
Artin image: $S_3\times C_{15}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{45} - \cdots)\)

Embedding invariants

Embedding label 145.1
Root \(0.669131 - 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 961.145
Dual form 961.1.h.a.623.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(0.500000 + 0.866025i) q^{5} +(0.978148 + 0.207912i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.978148 + 0.207912i) q^{9} +O(q^{10})\) \(q+(0.809017 + 0.587785i) q^{2} +(0.500000 + 0.866025i) q^{5} +(0.978148 + 0.207912i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.978148 + 0.207912i) q^{9} +(-0.104528 + 0.994522i) q^{10} +(0.669131 + 0.743145i) q^{14} +(0.809017 - 0.587785i) q^{16} +(-0.913545 - 0.406737i) q^{18} +(-0.913545 + 0.406737i) q^{19} +(0.309017 + 0.951057i) q^{35} +(-0.978148 - 0.207912i) q^{38} +(0.978148 - 0.207912i) q^{40} +(0.104528 - 0.994522i) q^{41} +(-0.669131 - 0.743145i) q^{45} +(-1.61803 + 1.17557i) q^{47} +(0.500000 - 0.866025i) q^{56} +(0.104528 + 0.994522i) q^{59} -1.00000 q^{63} +(-0.809017 - 0.587785i) q^{64} +(-1.00000 - 1.73205i) q^{67} +(-0.309017 + 0.951057i) q^{70} +(0.978148 - 0.207912i) q^{71} +(-0.104528 + 0.994522i) q^{72} +(0.913545 + 0.406737i) q^{80} +(0.913545 - 0.406737i) q^{81} +(0.669131 - 0.743145i) q^{82} +(-0.104528 - 0.994522i) q^{90} -2.00000 q^{94} +(-0.809017 - 0.587785i) q^{95} +(-0.309017 - 0.951057i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{5} - q^{7} - 2 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 4 q^{5} - q^{7} - 2 q^{8} + q^{9} + q^{10} + q^{14} + 2 q^{16} - q^{18} - q^{19} - 2 q^{35} + q^{38} - q^{40} - q^{41} - q^{45} - 4 q^{47} + 4 q^{56} - q^{59} - 8 q^{63} - 2 q^{64} - 8 q^{67} + 2 q^{70} - q^{71} + q^{72} + q^{80} + q^{81} + q^{82} + q^{90} - 16 q^{94} - 2 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{29}{30}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(3\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i \(-0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(8\) 0.309017 0.951057i 0.309017 0.951057i
\(9\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(10\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(11\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(12\) 0 0
\(13\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(14\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(15\) 0 0
\(16\) 0.809017 0.587785i 0.809017 0.587785i
\(17\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(18\) −0.913545 0.406737i −0.913545 0.406737i
\(19\) −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(36\) 0 0
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −0.978148 0.207912i −0.978148 0.207912i
\(39\) 0 0
\(40\) 0.978148 0.207912i 0.978148 0.207912i
\(41\) 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(42\) 0 0
\(43\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(44\) 0 0
\(45\) −0.669131 0.743145i −0.669131 0.743145i
\(46\) 0 0
\(47\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.500000 0.866025i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i \(0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) −0.809017 0.587785i −0.809017 0.587785i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(71\) 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(72\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(73\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(80\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(81\) 0.913545 0.406737i 0.913545 0.406737i
\(82\) 0.669131 0.743145i 0.669131 0.743145i
\(83\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(90\) −0.104528 0.994522i −0.104528 0.994522i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −2.00000 −2.00000
\(95\) −0.809017 0.587785i −0.809017 0.587785i
\(96\) 0 0
\(97\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(102\) 0 0
\(103\) 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i \(-0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(108\) 0 0
\(109\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.913545 0.406737i 0.913545 0.406737i
\(113\) −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.104528 0.994522i −0.104528 0.994522i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 1.00000
\(126\) −0.809017 0.587785i −0.809017 0.587785i
\(127\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(128\) −0.309017 0.951057i −0.309017 0.951057i
\(129\) 0 0
\(130\) 0 0
\(131\) −1.95630 0.415823i −1.95630 0.415823i −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 0.207912i \(-0.933333\pi\)
\(132\) 0 0
\(133\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(134\) 0.209057 1.98904i 0.209057 1.98904i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(138\) 0 0
\(139\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(143\) 0 0
\(144\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(152\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(163\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(168\) 0 0
\(169\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(170\) 0 0
\(171\) 0.809017 0.587785i 0.809017 0.587785i
\(172\) 0 0
\(173\) 1.82709 + 0.813473i 1.82709 + 0.813473i 0.913545 + 0.406737i \(0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(180\) 0 0
\(181\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −0.309017 0.951057i −0.309017 0.951057i
\(191\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i \(-0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(194\) 0.309017 0.951057i 0.309017 0.951057i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.913545 0.406737i 0.913545 0.406737i
\(206\) 0.669131 0.743145i 0.669131 0.743145i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.104528 0.994522i −0.104528 0.994522i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.00000 1.00000
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(227\) −0.209057 + 1.98904i −0.209057 + 1.98904i −0.104528 + 0.994522i \(0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(228\) 0 0
\(229\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(234\) 0 0
\(235\) −1.82709 0.813473i −1.82709 0.813473i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(240\) 0 0
\(241\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(242\) 0.500000 0.866025i 0.500000 0.866025i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(251\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.33826 1.48629i −1.33826 1.48629i
\(263\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.913545 0.406737i −0.913545 0.406737i
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(270\) 0 0
\(271\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 1.00000 1.00000
\(281\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(282\) 0 0
\(283\) 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.309017 0.951057i 0.309017 0.951057i
\(288\) 0 0
\(289\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i \(0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(294\) 0 0
\(295\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(296\) 0 0
\(297\) 0 0
\(298\) −1.82709 + 0.813473i −1.82709 + 0.813473i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i \(0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(314\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(315\) −0.500000 0.866025i −0.500000 0.866025i
\(316\) 0 0
\(317\) 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i \(-0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.104528 0.994522i 0.104528 0.994522i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(327\) 0 0
\(328\) −0.913545 0.406737i −0.913545 0.406737i
\(329\) −1.82709 + 0.813473i −1.82709 + 0.813473i
\(330\) 0 0
\(331\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.00000 1.73205i 1.00000 1.73205i
\(336\) 0 0
\(337\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(338\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 1.00000 1.00000
\(343\) −0.809017 0.587785i −0.809017 0.587785i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(354\) 0 0
\(355\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i \(-0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(377\) 0 0
\(378\) 0 0
\(379\) −1.95630 0.415823i −1.95630 0.415823i −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 0.207912i \(-0.933333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(383\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(411\) 0 0
\(412\) 0 0
\(413\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(420\) 0 0
\(421\) −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i \(-0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0.913545 0.406737i 0.913545 0.406737i
\(423\) 1.33826 1.48629i 1.33826 1.48629i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.209057 1.98904i −0.209057 1.98904i −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.669131 0.743145i −0.669131 0.743145i
\(449\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.33826 + 1.48629i −1.33826 + 1.48629i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 1.00000
\(467\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(468\) 0 0
\(469\) −0.618034 1.90211i −0.618034 1.90211i
\(470\) −1.00000 1.73205i −1.00000 1.73205i
\(471\) 0 0
\(472\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i \(-0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.669131 0.743145i 0.669131 0.743145i
\(486\) 0 0
\(487\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.00000 1.00000
\(498\) 0 0
\(499\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i \(-0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(505\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(513\) 0 0
\(514\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(515\) 0.913545 0.406737i 0.913545 0.406737i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.809017 0.587785i −0.809017 0.587785i
\(530\) 0 0
\(531\) −0.309017 0.951057i −0.309017 0.951057i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.309017 0.951057i 0.309017 0.951057i
\(536\) −1.95630 + 0.415823i −1.95630 + 0.415823i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i \(-0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(546\) 0 0
\(547\) −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(561\) 0 0
\(562\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(563\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) −0.978148 0.207912i −0.978148 0.207912i
\(566\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(567\) 0.978148 0.207912i 0.978148 0.207912i
\(568\) 0.104528 0.994522i 0.104528 0.994522i
\(569\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(570\) 0 0
\(571\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.809017 0.587785i 0.809017 0.587785i
\(575\) 0 0
\(576\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(577\) 1.82709 0.813473i 1.82709 0.813473i 0.913545 0.406737i \(-0.133333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(578\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.209057 + 1.98904i 0.209057 + 1.98904i
\(587\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1.00000 −1.00000
\(591\) 0 0
\(592\) 0 0
\(593\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(600\) 0 0
\(601\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(602\) 0 0
\(603\) 1.33826 + 1.48629i 1.33826 + 1.48629i
\(604\) 0 0
\(605\) 0.809017 0.587785i 0.809017 0.587785i
\(606\) 0 0
\(607\) 1.82709 + 0.813473i 1.82709 + 0.813473i 0.913545 + 0.406737i \(0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(614\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.209057 1.98904i −0.209057 1.98904i −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.809017 0.587785i −0.809017 0.587785i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.104528 0.994522i 0.104528 0.994522i
\(631\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(640\) 0.669131 0.743145i 0.669131 0.743145i
\(641\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(642\) 0 0
\(643\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) −0.104528 0.994522i −0.104528 0.994522i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(654\) 0 0
\(655\) −0.618034 1.90211i −0.618034 1.90211i
\(656\) −0.500000 0.866025i −0.500000 0.866025i
\(657\) 0 0
\(658\) −1.95630 0.415823i −1.95630 0.415823i
\(659\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(660\) 0 0
\(661\) 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.669131 0.743145i −0.669131 0.743145i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 1.82709 0.813473i 1.82709 0.813473i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) −0.104528 0.994522i −0.104528 0.994522i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.309017 0.951057i −0.309017 0.951057i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i \(-0.400000\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 1.61803 1.17557i 1.61803 1.17557i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(708\) 0 0
\(709\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −0.500000 0.866025i −0.500000 0.866025i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) −0.978148 0.207912i −0.978148 0.207912i
\(721\) 0.309017 0.951057i 0.309017 0.951057i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i \(-0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −2.00000 −2.00000
\(746\) −0.809017 0.587785i −0.809017 0.587785i
\(747\) 0 0
\(748\) 0 0
\(749\) −0.500000 0.866025i −0.500000 0.866025i
\(750\) 0 0
\(751\) 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i \(-0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(752\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(758\) −1.33826 1.48629i −1.33826 1.48629i
\(759\) 0 0
\(760\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(761\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(762\) 0 0
\(763\) 0.913545 0.406737i 0.913545 0.406737i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.00000 −1.00000
\(777\) 0 0
\(778\) 0 0
\(779\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(786\) 0 0
\(787\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.913545 0.406737i 0.913545 0.406737i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)