Properties

Label 9600.2.a.bk.1.1
Level $9600$
Weight $2$
Character 9600.1
Self dual yes
Analytic conductor $76.656$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9600 = 2^{7} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9600.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(76.6563859404\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9600.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -2.00000 q^{7} +1.00000 q^{9} +4.00000 q^{11} -2.00000 q^{13} +2.00000 q^{17} +8.00000 q^{19} -2.00000 q^{21} -4.00000 q^{23} +1.00000 q^{27} -6.00000 q^{31} +4.00000 q^{33} +2.00000 q^{37} -2.00000 q^{39} +6.00000 q^{41} -4.00000 q^{47} -3.00000 q^{49} +2.00000 q^{51} +8.00000 q^{57} -4.00000 q^{59} +14.0000 q^{61} -2.00000 q^{63} -4.00000 q^{67} -4.00000 q^{69} +12.0000 q^{71} +10.0000 q^{73} -8.00000 q^{77} +10.0000 q^{79} +1.00000 q^{81} +12.0000 q^{83} -14.0000 q^{89} +4.00000 q^{91} -6.00000 q^{93} -10.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 0 0
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 32.0000 2.21349
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 18.0000 1.20537 0.602685 0.797980i \(-0.294098\pi\)
0.602685 + 0.797980i \(0.294098\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 0 0
\(269\) 16.0000 0.975537 0.487769 0.872973i \(-0.337811\pi\)
0.487769 + 0.872973i \(0.337811\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 12.0000 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.00000 −0.331801
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 38.0000 1.98358 0.991792 0.127862i \(-0.0408116\pi\)
0.991792 + 0.127862i \(0.0408116\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −32.0000 −1.64373 −0.821865 0.569683i \(-0.807066\pi\)
−0.821865 + 0.569683i \(0.807066\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 12.0000 0.597763
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 0 0
\(423\) −4.00000 −0.194487
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −28.0000 −1.35501
\(428\) 0 0
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.0000 −1.53077
\(438\) 0 0
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 14.0000 0.634401 0.317200 0.948359i \(-0.397257\pi\)
0.317200 + 0.948359i \(0.397257\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) −44.0000 −1.96186 −0.980932 0.194354i \(-0.937739\pi\)
−0.980932 + 0.194354i \(0.937739\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) −20.0000 −0.884748
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) −22.0000 −0.944110
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.0000 1.18640 0.593199 0.805056i \(-0.297865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 38.0000 1.59304 0.796521 0.604610i \(-0.206671\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) 2.00000 0.0831172
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −48.0000 −1.97781
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.0000 0.572982
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 28.0000 1.12180
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 32.0000 1.27796
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) −48.0000 −1.89294 −0.946468 0.322799i \(-0.895376\pi\)
−0.946468 + 0.322799i \(0.895376\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) 12.0000 0.469596 0.234798 0.972044i \(-0.424557\pi\)
0.234798 + 0.972044i \(0.424557\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 18.0000 0.695920
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.0000 −0.768662 −0.384331 0.923195i \(-0.625568\pi\)
−0.384331 + 0.923195i \(0.625568\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −24.0000 −0.913003 −0.456502 0.889723i \(-0.650898\pi\)
−0.456502 + 0.889723i \(0.650898\pi\)
\(692\) 0 0
\(693\) −8.00000 −0.303895
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −40.0000 −1.51078 −0.755390 0.655276i \(-0.772552\pi\)
−0.755390 + 0.655276i \(0.772552\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −42.0000 −1.55769 −0.778847 0.627214i \(-0.784195\pi\)
−0.778847 + 0.627214i \(0.784195\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) −22.0000 −0.802791 −0.401396 0.915905i \(-0.631475\pi\)
−0.401396 + 0.915905i \(0.631475\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.00000 −0.143499
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) 48.0000 1.71758
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 4.00000 0.142224
\(792\) 0 0
\(793\) −28.0000 −0.994309
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 40.0000 1.41157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16.0000 0.563227
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 24.0000 0.842754 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(812\) 0 0
\(813\) 14.0000 0.491001
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) −8.00000 −0.279202 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(822\) 0 0
\(823\) 22.0000 0.766872 0.383436 0.923567i \(-0.374741\pi\)
0.383436 + 0.923567i \(0.374741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.0000 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 6.00000 0.208138
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −6.00000 −0.207390
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 18.0000 0.619953
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) −46.0000 −1.54978 −0.774890 0.632096i \(-0.782195\pi\)
−0.774890 + 0.632096i \(0.782195\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −24.0000 −0.792550
\(918\) 0 0
\(919\) −6.00000 −0.197922 −0.0989609 0.995091i \(-0.531552\pi\)
−0.0989609 + 0.995091i \(0.531552\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.0000 0.328443
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) −24.0000 −0.786568
\(932\) 0 0
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 0 0
\(939\) 26.0000 0.848478
\(940\) 0 0
\(941\) 28.0000 0.912774 0.456387 0.889781i \(-0.349143\pi\)
0.456387 + 0.889781i \(0.349143\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 24.0000 0.778253
\(952\) 0 0
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) 16.0000 0.513994
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) −56.0000 −1.78977
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) −56.0000 −1.78612 −0.893061 0.449935i \(-0.851447\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 10.0000 0.317660 0.158830 0.987306i \(-0.449228\pi\)
0.158830 + 0.987306i \(0.449228\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −54.0000 −1.71020 −0.855099 0.518465i \(-0.826503\pi\)
−0.855099 + 0.518465i \(0.826503\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9600.2.a.bk.1.1 1
4.3 odd 2 9600.2.a.t.1.1 1
5.4 even 2 384.2.a.a.1.1 1
8.3 odd 2 9600.2.a.bz.1.1 1
8.5 even 2 9600.2.a.e.1.1 1
15.14 odd 2 1152.2.a.t.1.1 1
20.19 odd 2 384.2.a.e.1.1 yes 1
40.19 odd 2 384.2.a.d.1.1 yes 1
40.29 even 2 384.2.a.h.1.1 yes 1
60.59 even 2 1152.2.a.s.1.1 1
80.19 odd 4 768.2.d.f.385.2 2
80.29 even 4 768.2.d.c.385.1 2
80.59 odd 4 768.2.d.f.385.1 2
80.69 even 4 768.2.d.c.385.2 2
120.29 odd 2 1152.2.a.b.1.1 1
120.59 even 2 1152.2.a.a.1.1 1
240.29 odd 4 2304.2.d.f.1153.1 2
240.59 even 4 2304.2.d.o.1153.2 2
240.149 odd 4 2304.2.d.f.1153.2 2
240.179 even 4 2304.2.d.o.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.2.a.a.1.1 1 5.4 even 2
384.2.a.d.1.1 yes 1 40.19 odd 2
384.2.a.e.1.1 yes 1 20.19 odd 2
384.2.a.h.1.1 yes 1 40.29 even 2
768.2.d.c.385.1 2 80.29 even 4
768.2.d.c.385.2 2 80.69 even 4
768.2.d.f.385.1 2 80.59 odd 4
768.2.d.f.385.2 2 80.19 odd 4
1152.2.a.a.1.1 1 120.59 even 2
1152.2.a.b.1.1 1 120.29 odd 2
1152.2.a.s.1.1 1 60.59 even 2
1152.2.a.t.1.1 1 15.14 odd 2
2304.2.d.f.1153.1 2 240.29 odd 4
2304.2.d.f.1153.2 2 240.149 odd 4
2304.2.d.o.1153.1 2 240.179 even 4
2304.2.d.o.1153.2 2 240.59 even 4
9600.2.a.e.1.1 1 8.5 even 2
9600.2.a.t.1.1 1 4.3 odd 2
9600.2.a.bk.1.1 1 1.1 even 1 trivial
9600.2.a.bz.1.1 1 8.3 odd 2