Defining parameters
Level: | \( N \) | = | \( 9600 = 2^{7} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 72 \) | ||
Sturm bound: | \(9830400\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(9600))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2475520 | 957552 | 1517968 |
Cusp forms | 2439681 | 953616 | 1486065 |
Eisenstein series | 35839 | 3936 | 31903 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(9600))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(9600))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(9600)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 48}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 42}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 21}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 30}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 28}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(384))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(480))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(600))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(640))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(800))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(960))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1600))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1920))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4800))\)\(^{\oplus 2}\)