Properties

Label 960.4.f.p
Level $960$
Weight $4$
Character orbit 960.f
Analytic conductor $56.642$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 960.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(56.6418336055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{3} + 2 \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{2} + 3 \beta_1) q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{3} + ( - \beta_{3} + 2 \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{2} + 3 \beta_1) q^{7} - 9 q^{9} + ( - 2 \beta_{3} + \beta_{2} + \beta_1 - 20) q^{11} + ( - 13 \beta_{2} - 3 \beta_1) q^{13} + (\beta_{3} - 2 \beta_{2} + 4 \beta_1 - 14) q^{15} + ( - 17 \beta_{2} + 5 \beta_1) q^{17} + (8 \beta_{3} - 4 \beta_{2} - 4 \beta_1 - 32) q^{19} + (6 \beta_{3} - 3 \beta_{2} - 3 \beta_1 - 12) q^{21} + (8 \beta_{2} + 4 \beta_1) q^{23} + (6 \beta_{3} + 13 \beta_{2} + 9 \beta_1 + 61) q^{25} - 9 \beta_{2} q^{27} + (14 \beta_{3} - 7 \beta_{2} - 7 \beta_1 - 166) q^{29} + (4 \beta_{3} - 2 \beta_{2} - 2 \beta_1 - 28) q^{31} + ( - 21 \beta_{2} + 9 \beta_1) q^{33} + (10 \beta_{3} + 55 \beta_{2} - 5 \beta_1 - 80) q^{35} + (51 \beta_{2} - 27 \beta_1) q^{37} + ( - 6 \beta_{3} + 3 \beta_{2} + 3 \beta_1 + 120) q^{39} + ( - 4 \beta_{3} + 2 \beta_{2} + 2 \beta_1 - 202) q^{41} + (20 \beta_{2} - 48 \beta_1) q^{43} + (9 \beta_{3} - 18 \beta_{2} - 9 \beta_1 + 9) q^{45} + (30 \beta_{2} + 46 \beta_1) q^{47} + (12 \beta_{3} - 6 \beta_{2} - 6 \beta_1 - 41) q^{49} + (10 \beta_{3} - 5 \beta_{2} - 5 \beta_1 + 148) q^{51} + ( - 67 \beta_{2} - 41 \beta_1) q^{53} + (24 \beta_{3} - 23 \beta_{2} - 9 \beta_1 + 204) q^{55} + ( - 28 \beta_{2} - 36 \beta_1) q^{57} + (2 \beta_{3} - \beta_{2} - \beta_1 + 92) q^{59} + ( - 32 \beta_{3} + 16 \beta_{2} + 16 \beta_1 - 154) q^{61} + ( - 9 \beta_{2} - 27 \beta_1) q^{63} + ( - 22 \beta_{3} - 31 \beta_{2} - 43 \beta_1 + 248) q^{65} + ( - 122 \beta_{2} + 30 \beta_1) q^{67} + (8 \beta_{3} - 4 \beta_{2} - 4 \beta_1 - 76) q^{69} + ( - 60 \beta_{3} + 30 \beta_{2} + 30 \beta_1 + 48) q^{71} + (222 \beta_{2} - 54 \beta_1) q^{73} + (24 \beta_{3} + 52 \beta_{2} - 39 \beta_1 - 156) q^{75} + (102 \beta_{2} - 54 \beta_1) q^{77} + (100 \beta_{3} - 50 \beta_{2} - 50 \beta_1 + 140) q^{79} + 81 q^{81} + ( - 164 \beta_{2} + 104 \beta_1) q^{83} + ( - 2 \beta_{3} + 129 \beta_{2} - 83 \beta_1 + 128) q^{85} + ( - 159 \beta_{2} - 63 \beta_1) q^{87} + (48 \beta_{3} - 24 \beta_{2} - 24 \beta_1 - 582) q^{89} + ( - 84 \beta_{3} + 42 \beta_{2} + 42 \beta_1 + 528) q^{91} + ( - 26 \beta_{2} - 18 \beta_1) q^{93} + (16 \beta_{3} - 132 \beta_{2} - 76 \beta_1 - 704) q^{95} + (128 \beta_{2} - 120 \beta_1) q^{97} + (18 \beta_{3} - 9 \beta_{2} - 9 \beta_1 + 180) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{5} - 36 q^{9} - 84 q^{11} - 54 q^{15} - 112 q^{19} - 36 q^{21} + 256 q^{25} - 636 q^{29} - 104 q^{31} - 300 q^{35} + 468 q^{39} - 816 q^{41} + 54 q^{45} - 140 q^{49} + 612 q^{51} + 864 q^{55} + 372 q^{59} - 680 q^{61} + 948 q^{65} - 288 q^{69} + 72 q^{71} - 576 q^{75} + 760 q^{79} + 324 q^{81} + 508 q^{85} - 2232 q^{89} + 1944 q^{91} - 2784 q^{95} + 756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 21x^{2} + 100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 31\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{3} - 33\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 30\nu^{2} - \nu + 320 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} - \beta_{2} - \beta _1 - 64 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -31\beta_{2} - 33\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
769.1
2.70156i
3.70156i
2.70156i
3.70156i
0 3.00000i 0 −11.1047 1.29844i 0 16.2094i 0 −9.00000 0
769.2 0 3.00000i 0 8.10469 7.70156i 0 22.2094i 0 −9.00000 0
769.3 0 3.00000i 0 −11.1047 + 1.29844i 0 16.2094i 0 −9.00000 0
769.4 0 3.00000i 0 8.10469 + 7.70156i 0 22.2094i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.4.f.p 4
4.b odd 2 1 960.4.f.q 4
5.b even 2 1 inner 960.4.f.p 4
8.b even 2 1 240.4.f.f 4
8.d odd 2 1 15.4.b.a 4
20.d odd 2 1 960.4.f.q 4
24.f even 2 1 45.4.b.b 4
24.h odd 2 1 720.4.f.j 4
40.e odd 2 1 15.4.b.a 4
40.f even 2 1 240.4.f.f 4
40.i odd 4 1 1200.4.a.bn 2
40.i odd 4 1 1200.4.a.bt 2
40.k even 4 1 75.4.a.c 2
40.k even 4 1 75.4.a.f 2
120.i odd 2 1 720.4.f.j 4
120.m even 2 1 45.4.b.b 4
120.q odd 4 1 225.4.a.i 2
120.q odd 4 1 225.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.4.b.a 4 8.d odd 2 1
15.4.b.a 4 40.e odd 2 1
45.4.b.b 4 24.f even 2 1
45.4.b.b 4 120.m even 2 1
75.4.a.c 2 40.k even 4 1
75.4.a.f 2 40.k even 4 1
225.4.a.i 2 120.q odd 4 1
225.4.a.o 2 120.q odd 4 1
240.4.f.f 4 8.b even 2 1
240.4.f.f 4 40.f even 2 1
720.4.f.j 4 24.h odd 2 1
720.4.f.j 4 120.i odd 2 1
960.4.f.p 4 1.a even 1 1 trivial
960.4.f.p 4 5.b even 2 1 inner
960.4.f.q 4 4.b odd 2 1
960.4.f.q 4 20.d odd 2 1
1200.4.a.bn 2 40.i odd 4 1
1200.4.a.bt 2 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(960, [\chi])\):

\( T_{7}^{4} + 756T_{7}^{2} + 129600 \) Copy content Toggle raw display
\( T_{11}^{2} + 42T_{11} + 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 6 T^{3} - 110 T^{2} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( T^{4} + 756 T^{2} + 129600 \) Copy content Toggle raw display
$11$ \( (T^{2} + 42 T + 72)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 3780 T^{2} + \cdots + 1327104 \) Copy content Toggle raw display
$17$ \( T^{4} + 7252 T^{2} + \cdots + 2483776 \) Copy content Toggle raw display
$19$ \( (T^{2} + 56 T - 5120)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 2464 T^{2} + 6400 \) Copy content Toggle raw display
$29$ \( (T^{2} + 318 T + 7200)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 52 T - 800)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 106596 T^{2} + \cdots + 41990400 \) Copy content Toggle raw display
$41$ \( (T^{2} + 408 T + 40140)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 196128 T^{2} + \cdots + 8256266496 \) Copy content Toggle raw display
$47$ \( T^{4} + 189712 T^{2} + \cdots + 6186766336 \) Copy content Toggle raw display
$53$ \( T^{4} + 218644 T^{2} + \cdots + 813390400 \) Copy content Toggle raw display
$59$ \( (T^{2} - 186 T + 8280)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 340 T - 65564)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 341712 T^{2} + \cdots + 9419867136 \) Copy content Toggle raw display
$71$ \( (T^{2} - 36 T - 331776)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 1126224 T^{2} + \cdots + 104976000000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 380 T - 886400)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 1371040 T^{2} + \cdots + 40558737664 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1116 T + 98820)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 1475712 T^{2} + \cdots + 196199387136 \) Copy content Toggle raw display
show more
show less